Let \(\Omega := C(\mathbb{R}_{\geq 0}; \mathbb{R}) \), \(\mathcal{F}, \mathcal{F}_t, \mathbb{P} \) the one dimensional Wiener space and \(X \) the canonical process.

Exercise 1 (Pts 2+2+2+2+2) Find a predictable process \(F \) such that
\[
\Phi = \mathbb{E}[\Phi] + \int_0^\infty F_s dX_s
\]
when \(\Phi \in L^2(\Omega, \mathcal{F}_T, \mathbb{P}) \) is each of the following r.v. (with \(T > 0 \) fixed)
\[
X^2_T, \quad e^{X_T}, \quad \int_0^T X_t dt, \quad X^3_T, \quad \sin(X_T).
\]
(One possible approach: for any \(\Phi \) try to find a martingale \((M_t)\) such that \(M_T = \Phi \), and then apply Itô formula.)

Exercise 2 (Pts 2+2+2) We want to prove that the linear span of r.v. of the form
\[
E(h) = \cos \left(\int h_s dX_s \right) \exp \left(\frac{1}{2} \int h^2_s ds \right), \quad F(h) = \sin \left(\int h_s dX_s \right) \exp \left(\frac{1}{2} \int h^2_s ds \right), \quad h \in L^2(\mathbb{R}_{\geq 0}),
\]
is dense in \(L^2(\Omega, \mathcal{F}, \mathbb{P}) \) (\(h \) is a deterministic function and the integrals are over \(\mathbb{R}_{\geq 0} \)).

a) Show that if \(G \in L^2(\Omega, \mathcal{F}, \mathbb{P}) \) is orthogonal to all \(\{E(h), F(h) : h \in L^2(\mathbb{R})\} \), then in particular
\[
\mathbb{E}[G \exp(i\lambda_1 B_{t_1} + \cdots + i\lambda_n B_{t_n})] = 0
\]
for all \(\lambda_1, \ldots, \lambda_n \in \mathbb{R} \) and \(t_1, \ldots, t_n \geq 0 \).

b) Deduce from this that \(G \) is orthogonal to all functions of the from \(\phi(B_{t_1}, \ldots, B_{t_n}) \) with \(\phi \in C_0^\infty \).

[Hint: use Fourier transform]

c) Conclude.

Exercise 3 (Pts 4+4) Use the class of functions introduced in Exercise 2 to reprove the Brownian martingale representation theorem.

a) Determine the martingale representation for functions \(\Phi \) of the from
\[
\Phi = \sum_i (a_i E(h_i) + b_i F(h_i))
\]
where \(a_i, b_i \in \mathbb{R} \), \(h_i \in L^2(\mathbb{R}_{\geq 0}) \) and the sum is finite.

b) Use the density of such functions to approximate an arbitrary element \(\Phi \in L^2 \) and conclude.