SDE techniques: martingale solutions, time change

Uniqueness of martingale solutions, one dimensional diffusions.

1 Uniqueness of the martingale problem for a diffusion

Let \(\mathcal{C} = \mathcal{C}^n = C(\mathbb{R}_+, \mathbb{R}^n) \) with its Borel \(\sigma \)-algebra \(\mathcal{F} \) and canonical process \((X_t)_{t \geq 0} \) with associated filtration \((\mathcal{F}_t)_{t \geq 0} \). Remember that with \(\Pi(\mathcal{C}) \) we denote the probability measures on the path space \(\mathcal{C} \).

Consider the generator \(\mathcal{L} \) defined for any \(f \in C^2(\mathbb{R}^n) \) as

\[
\mathcal{L} f(x) = b(x) \cdot \nabla f(x) + \frac{1}{2} \text{Tr}(a \nabla^2 f(x)), \quad x \in \mathbb{R}^n,
\]

with measurable and bounded coefficients.

Definition 1. We say that \(\mathbb{P} \) on \((\mathcal{C}, (\mathcal{F}_t)_{t \geq 0}) \) is a solution of the martingale problem for the generator \(\mathcal{L} \) iff for any \(f \in C^1,2(\mathbb{R}_+ \times \mathbb{R}^n; \mathbb{R}) \)

\[
M_t^f := f(t, X_t) - f(0, X_0) - \int_0^t (\partial_x + \mathcal{L}) f(s, X_s) \, ds
\]

is a \(\mathbb{P} \)-martingale wrt. \((\mathcal{F}_t)_{t \geq 0} \).

We want to discuss the uniqueness of such solutions, meaning the following.

Definition 2. We say that the martingale problem (1) has unique solution if any two solutions \(\mathbb{P}, \mathbb{Q} \in \Pi(\mathcal{C}) \) of the martingale problem such that \(\text{Law}_{\mathbb{P}}(X_0) = \text{Law}_{\mathbb{Q}}(X_0) \) then \(\mathbb{P} = \mathbb{Q} \).

This notion corresponds directly with the uniqueness in law of the corresponding weak solutions. It is enough that \(\mathbb{P}, \mathbb{Q} \) coincide on finite dimensional distributions.

Let us observe that if \(\varphi \in C^1,2(\mathbb{R}_+ \times \mathbb{R}^n; \mathbb{R}) \) is a solution to the (parabolic) PDE (Kolmogorov backward equation)

\[
\partial_t \varphi(t, x) = \mathcal{L} \varphi(t, x), \quad t \geq 0, x \in \mathbb{R}^n,
\]

Note that \((\partial_s + \mathcal{L}) \varphi(r-s, X_s) = 0\) for any \(r > s \), therefore for any \(r > 0 \) and any \(t \in [0, r] \) the process

\[
M_t^r := \varphi(r-t, X_t) - \varphi(r, X_0) - \int_0^t (\partial_s + \mathcal{L}) \varphi(r-s, X_s) \, ds = \varphi(r-t, X_t) - \varphi(r, X_0)
\]

is a martingale under any solution \(\mathbb{P} \) of the martingale problem associated to \(\mathbb{P} \). Now \(M_t^r = \varphi(0, X_r) - \varphi(r, X_0) \) so

\[
0 = \mathbb{E}_\mathbb{P}[M_t^r - M_0^r] = \mathbb{E}_\mathbb{P}[\varphi(0, X_r) - \varphi(r, X_0)|\mathcal{F}_t]
\]

tells me that for any \(r \geq t \) we have

\[
\mathbb{E}_\mathbb{P}[\varphi(0, X_r)|\mathcal{F}_t] = \mathbb{E}_\mathbb{P}[\varphi(r-t, X_0)|\mathcal{F}_t] = \varphi(r-t, X_t), \quad \mathbb{P} - a.s.
\]

So the value of this expectation essentially do not depends on which solution of the martingale problem we get

\[
\mathbb{E}_\mathbb{P}[\varphi(0, X_t)] = \mathbb{E}_\mathbb{P}[\mathbb{E}_\mathbb{P}[\varphi(0, X_t)|\mathcal{F}_0]] = \mathbb{E}_\mathbb{P}[\varphi(r, X_0)]
\]
and if Q is another solution with $\text{Law}_Q(X_0) = \text{Law}_P(X_0)$ then we conclude that

$$E_P[\varphi(0, X_r)] = E_Q[\varphi(0, X_r)]$$

for any $r \geq 0$. Let us assume know that the Kolmogorov backward equation has solution for any initial condition $\psi \in C^\infty_0(\mathbb{R}^n)$ (where the 0 means compactly supported). This implies that if we use such solutions in the argument above we get that for any $\psi \in C^\infty_0(\mathbb{R}^n)$ we have

$$E_P[\psi(X_r)] = E_Q[\psi(X_r)]$$

and this implies that

$$\text{Law}_P(X_r) = \text{Law}_Q(X_r)$$

for any $r \geq 0$. So we deduced that the one time marginals of P and Q coincide. Now let $\psi \in C^\infty_0(\mathbb{R}^n)$ and let φ^ψ to be the solution of (2) such that $\varphi(0, x) = \psi(x)$ for all $x \in \mathbb{R}^n$ then as we already seen $E_P[\psi(X_r)|\mathcal{F}_t] = \varphi^\psi(r-t, X_r)$, therefore for any $r_1 > r_2 \geq 0$ we have for any bounded and measurable $g: \mathbb{R}^n \to \mathbb{R}^n$

$$E_P[\psi(X_r)g(X_r)] = E_P[E_P[\psi(X_r)|\mathcal{F}_{r_2}]g(X_r)] = E_P[\varphi^\psi(r_1-r_2, X_r)g(X_r)]$$

since ψ and g are arbitrary we conclude that

$$\text{Law}_P(X_{r_1}, X_{r_2}) = \text{Law}_Q(X_{r_1}, X_{r_2}).$$

We can continue by induction and deduce that P, Q have the same finite dimensional marginals, and therefore are equal as probability measures on \mathcal{C}. (think about it). Moreover note that we also have for any $r > t$

$$E_P[\psi(X_r)|\mathcal{F}_t] = \varphi^\psi(r-t, X_t),$$

which implies that the process $(X_t)_{t \geq 0}$ under P is a Markov process, indeed for any $t_1 < \cdots < t_n < r$ we have

$$E_P[\psi(X_r)g(X_{t_1}, \ldots, X_{t_n})] = E_P[E_P[\psi(X_r)|\mathcal{F}_{t_n}]g(X_{t_1}, \ldots, X_{t_n})] = E_P[\varphi^\psi(r-t_n, X_{t_n})g(X_{t_1}, \ldots, X_{t_n})]$$

but also

$$E_P[E_P[\psi(X_r)|X_{t_n}]g(X_{t_1}, \ldots, X_{t_n})] = E_P[\varphi^\psi(r-t_n, X_{t_n})g(X_{t_1}, \ldots, X_{t_n})]$$

from which we get

$$E_P[E_P[\psi(X_r)|X_{t_n}]g(X_{t_1}, \ldots, X_{t_n})] = E_P[\varphi^\psi(r-t_n, X_{t_n})g(X_{t_1}, \ldots, X_{t_n})]$$

and by a monotone class argument one deduce that

$$E[\psi(X_r)|X_{t_n}] = E[E[\psi(X_r)|X_{t_n}]|\mathcal{F}_{t_n}] = E[\psi(X_r)|\mathcal{F}_{t_n}]$$

for any $\psi \in C^\infty_0(\mathbb{R}^n)$ which approximates any continuous function and then also indicator functions of open sets from which we conclude that it is true for any ψ which is bounded and measurable. This proves the Markov property of $(X_t)_{t \geq 0}$ under P.

Theorem 3. Assume that the Kolmogorov backward PDE

$$\partial_t \varphi(t, x) = \mathcal{L} \varphi(t, x), \quad \varphi(0, \cdot) = \psi$$

has a solution $\varphi \in C^{1,2}(\mathbb{R}_+ \times \mathbb{R}^n)$ for any $\psi \in C^\infty_0(\mathbb{R}^n)$ then the martingale problem associated to \mathcal{L} in the sense of Definition 1 has a unique solution in the sense of Definition 2. (and as a consequence uniqueness of weak solutions to the associated SDE).
Remark 4. This reduces the uniqueness problem to a problem about existence of enough regular solutions to a PDE. Note that the set of initial conditions \(C_\Omega^0(\mathbb{R}^n) \) could be replaced by any set \(\mathcal{D} \) with the property that if two probability measures \(\mu, \nu \in \Pi(\mathbb{R}^n) \) satisfy

\[
\int_{\mathbb{R}^n} f(x) \mu(dx) = \int_{\mathbb{R}^n} f(x) \nu(dx), \quad f \in \mathcal{D}
\]

then \(\mu = \nu \), i.e. \(\mathcal{D} \) is a determining (or separating) class for \(\Pi(\mathbb{R}^n) \).

Remark 5. What about existence of solutions to the martingale problem.

a) (Construction of the weak solution SDE) maybe strong solutions via fixpoint arguments, or time-change, or Girsanov transformation (to be seen), Doob’s transform.

b) (Compactness arguments) Assume that we have a sequence of probabilities \((P^n)_n \) on \(\mathcal{E} \) such that \(P^n \) solve the martingale problem wrt. \(\mathcal{L}^n \) (some generator). Assume also that we can show pointwise convergence of \(\mathcal{L}^n \) to a limiting generator \(\mathcal{L} \), in the sense that for any \(f \) “in a large class of functions” we have that \(\mathcal{L}^n f(x) = \mathcal{L} f(x) \) uniformly in \(x \in \mathbb{R}^n \). Assume also that the family \((P^n)_n \) is tight on \(\mathcal{E} \), then one can show that any accumulation point of \((P^n)_n \) wrt. to the weak topology of probability measures is a solution of the martingale problem for \(\mathcal{L} \).

c) (Markov process theory) If one can construct the semigroup \((P_t)_{t \geq 0} \) in the space of continuous functions \(C(\mathbb{R}^n) \), associated to the operator \(\mathcal{L} \) in the sense that \(\partial_t P_t = \mathcal{L} P_t \) in the sense of Hille–Yoshida theory. Then one can construct a measure \(P \) using \(P_t \) to specify the finite dimensional distributions and then prove that it is a solution of the martingale problem. (this is stated here very vaguely).

Theorem 6. (Stroock–Varadhan) Assume \(b, \sigma \) is bounded measurable functions and \(a \) is bounded from below away from zero (in the sense of symmetric matrices) then there exists a solution to the martingale problem for \(\mathcal{L} \) and the martingale problem for \(\mathcal{L} \) has a unique solution.

The condition on \(a \) means that there exists \(\lambda > 0 \) such that \((v, a(x)v)_{\mathbb{R}^n} \geq \lambda \|v\|^2_{\mathbb{R}^n} \) for any \(v \in \mathbb{R}^n \) and \(x \in \mathbb{R}^n \) (ellipticity condition).

There is no further regularity requirement on the coefficients, i.e. they can be discontinuous.