The Space of Rough Paths

Graduate Seminar on Rough Paths - Summer Semester 2022 Lead by: Prof. Dr. Massimiliano Gubinelli

Throughout this talk, V is a Banach space. Moreover, $V \otimes V$ is understood to be the algebraic tensor product equipped with a symmetric and compatible tensor norm, i.e., $|w \otimes v| = |v \otimes w| \le |v| \cdot |w|$.

1. Motivation

Definition 1.1. For a smooth path $X : [0,T] \to \mathbb{R}^d$, we define the second order iterated integral of X against itself as

$$\int_{0 < r_1 < r_2 < T} dX_{r_1} \otimes dX_{r_2} \coloneqq (\int_{0 < r_1 < r_2 < T} dX_{r_1}^i \cdot dX_{r_2}^j)_{i,j=1,\dots,d}$$
(1)

where the integration on the right hand side is understood to be the Riemann-Stieltjes integral.

Definition 1.2. Given a smooth path $X : [0,T] \to \mathbb{R}^d$, the signature of X, denoted $S(X)_{0,T}$ is defined as

$$S(X)_{0,T} := \left(1, \int_{0 < r_1 < T} dX_{r_1}, \int_{0 < r_1 < r_2 < T} dX_{r_1} \otimes dX_{r_2}, \dots, \int_{0 < r_1 < r_2 < \dots < r_n < T} dX_{r_1} \otimes dX_{r_2} \otimes \dots \otimes dX_{r_n}, \dots\right)$$

in the above sense.

Remark 1.3. • We have $S(X)_{0,T} \in \mathbb{R} \oplus \mathbb{R}^d \oplus (\mathbb{R}^d)^{\otimes 2} \oplus (\mathbb{R}^d)^{\otimes 3} \oplus \cdots$.

- If X is α -Hölder for $\alpha > \frac{1}{2}$, then one can define its signature via Young's integral. (Later in talk 6.)
- When the path X is not regular enough, the integrals in the definition of signature are not well defined. But, if one could construct an object

$$\mathbb{X}_{s,t} := (1 =: \mathbb{X}_{s,t}^0, \ X_t - X_s =: \mathbb{X}_{s,t}^1, \ \mathbb{X}_{s,t}^2, \ \mathbb{X}_{s,t}^3, \cdots) \qquad \forall s, t \in [0,T],$$
(2)

which mimics signature of X up to some algebraic and analytical properties, then one could use that object in the place of signature for practically all relevant purposes.

Questions:

- What basic properties of signature of smooth paths do we want to impose on that object?
- How do we construct such object?
- Up to which component \mathbb{X}^k is it sufficient to construct the whole object \mathbb{X} ?
- What consequences do we have if we can construct some object satisfying those basic properties?

2. Basic definitions

Definition 2.1. For $\alpha \in (\frac{1}{3}, \frac{1}{2}]$, we define the space of α -Hölder rough paths (over V), in symbol $\mathscr{C}^{\alpha}([0,T],V)$, as those pairs $(\mathbb{X}^1, \mathbb{X}^2) =: X$ with $\mathbb{X}^1 : [0,T] \to V$ and $\mathbb{X}^2 : [0,T]^2 \to V \otimes V$ being continuous and satisfying the following conditions:

$$\mathbb{X}_{s,t}^{2} - \mathbb{X}_{s,u}^{2} - \mathbb{X}_{u,t}^{2} = \mathbb{X}_{s,u}^{1} \otimes \mathbb{X}_{u,t}^{1}, \quad \forall s, u, t \in [0,T]$$
(3)

$$||\mathbb{X}^{1}||_{\alpha} := \sup_{s \neq t \in [0,T]} \frac{|\mathbb{X}^{1}_{s,t}|}{|t-s|^{\alpha}} < \infty, \qquad ||\mathbb{X}^{2}||_{2\alpha} := \sup_{s \neq t \in [0,T]} \frac{|\mathbb{X}^{2}_{s,t}|}{|t-s|^{2\alpha}} < \infty.$$
(4)

Example 2.2. (Constructions of \mathbb{X}^2)

- If X is a smooth V-valued path, setting $\mathbb{X}_{s,t}^2 := \int_s^t X_{s,r} \otimes \dot{X}_r dr$ gives the canonical rough path lift (X, \mathbb{X}^2) of X, where $X_{s,r} := X_r X_s$.
- Consider the 2-dimensional Brownian motion $B = (B^1, B^2)$. Define \mathbb{B}^2 as the Ito integral or Stratonovich integral of B against itself which takes value in \mathbb{R}^4 , then (B, \mathbb{B}^2) will be rough paths \mathbb{P} -almost surely.
- **Remark 2.3.** (a). One can also define \mathbb{X} as $[0,T] \to V \oplus V^{\otimes 2}$, $t \mapsto (\mathbb{X}_t^1, \mathbb{X}_{0,t}^2)$ since all "second order increments" are already determined by such information.
- (b). Given \mathbb{X}^1 an underlying path, then \mathbb{X}^2 is unique up to some function $F \in C^{2\alpha}([0,T], V \otimes V)$.
- (c). The Lyons-Victoir extension theorem states that for any $X \in C^{\alpha}$, with values in any Banach space V for some $\alpha \in (\frac{1}{3}, \frac{1}{2}]$, one can find some suitable "second order increments", with which X lifts to an α -Hölder rough path. (cf. [FH] Exercise 2.14 and [LV]). However, in the setting of stochastic analysis, one does not rely on the extension theorem. Some typical constructions are via probability, e.g. via Stratonovich integral.

Definition 2.4. Given $\mathbb{X}, \mathbb{Y} \in \mathscr{C}^{\alpha}([0,T], V)$, we define the α -Hölder rough path metric via

$$\varrho_{\alpha}(\mathbb{X}, \mathbb{Y}) := \sup_{s \neq t \in [0,T]} \frac{|\mathbb{X}_{s,t}^{1} - \mathbb{Y}_{s,t}^{1}|}{|t - s|^{\alpha}} + \sup_{s \neq t \in [0,T]} \frac{|\mathbb{X}_{s,t}^{2} - \mathbb{Y}_{s,t}^{2}|}{|t - s|^{2\alpha}}.$$
(5)

Remark 2.5. The space of α -Hölder rough paths equipped with the metric above is a nonlinear but closed subspace of the Banach space $C^{\alpha}([0,T],V) \oplus C_2^{2\alpha}([0,T],V \otimes V)$, and thus complete.

3. (Weakly) geometric rough paths

Definition 3.1. We define the space of weakly geometric (α -Hölder) rough paths,

$$\mathscr{C}_{g}^{\alpha}([0,T],V) \subset \mathscr{C}^{\alpha}([0,T],V)$$

as the space of α -Hölder rough paths such that for all times s, t we have the "first order calculus" condition:

$$\operatorname{Sym}(\mathbb{X}_{s,t}^2) = \frac{1}{2} \mathbb{X}_{s,t}^1 \otimes \mathbb{X}_{s,t}^1.$$
(6)

Definition 3.2. We define the space of geometric (α -Hölder) rough paths,

$$\mathscr{C}_{g}^{0,\alpha}([0,T],V) \subset \mathscr{C}^{\alpha}([0,T],V)$$

as the closure of the space of canonical rough path lifts of smooth paths.

Remark 3.3. One has the strict inclusion $\mathscr{C}_g^{0,\alpha}([0,T],V) \subset \mathscr{C}_g^{\alpha}([0,T],V)$. However, the distinction between them rarely matters since $\mathscr{C}_g^{\beta}([0,T],V) \subset \mathscr{C}_g^{0,\alpha}([0,T],V)$ whenever $\beta > \alpha$.

4. A pure area rough path example

Proposition 4.1 (No Proof). Assume that ${}^{n}\mathbb{X} \in \mathscr{C}^{\beta}$, for $1/3 < \alpha < \beta$, with uniform bounds

$$\sup_{n} \left\| {^{n}\mathbb{X}^{1}} \right\|_{\beta} < \infty \quad and \quad \sup_{n} \left\| {^{n}\mathbb{X}^{2}} \right\|_{2\beta} < \infty$$

and uniform convergence ${}^{n}\mathbb{X}_{s,t}^{1} \to \mathbb{X}_{s,t}^{1}$ and ${}^{n}\mathbb{X}_{s,t}^{2} \to \mathbb{X}_{s,t}^{2}$, i.e. uniformly over $s, t \in [0,T]$. Then we have $\mathbb{X} := (\mathbb{X}^{1}, \mathbb{X}^{2}) \in \mathcal{C}^{\beta}$ and ${}^{n}\mathbb{X} \to \mathbb{X}$ in \mathcal{C}^{α} . Furthermore, the assumption of uniform convergence can be weakened to pointwise convergence:

$$\forall t \in [0,T]: \quad {^n \mathbb{X}_{0,t}^1} \stackrel{n}{\to} \mathbb{X}_{0,t}^1 \quad and \quad {^n \mathbb{X}_{0,t}^2} \rightarrow \mathbb{X}_{0,t}^2.$$

Example 4.2. Identify \mathbb{R}^2 with the complex numbers and consider

$$[0,1] \ni t \mapsto n^{-1} \exp\left(2\pi i n^2 t\right) \equiv X^n.$$

Set $\mathbb{X}^n_{s,t} := \int_s^t X^n_{s,r} \otimes dX^n_r.$ Then for fixed s < t,

$$X_{s,t}^n \to 0, \quad \mathbb{X}_{s,t}^n \to \pi(t-s) \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

and (X^n, \mathbb{X}^n) converges in \mathcal{C}^{α} , any $\alpha < 1/2$.

References

- [FH] Fritz, Hairer: A Course on Rough Paths: With an Introduction to Regularity Structures. Springer, 2014.
- [LV] Lyons, Victoir: An extension theorem to rough paths. Ann. Inst. H. Poincare Anal. Non Linéaire 24, no. 5, (2007), 835–847