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Recall : Definition of rough paths 3/24

Definition. For � 2 (1/3; 1/2), we define the space C�([0; T ]; V ) of �-Ho�lder rough paths
(over a Banach space V) as those pairs X: =(X;X) such that

kXk� := sup
s=/ t;s;t2[0;T ]

jXs;tj
jt¡ sj� <1; kXk� := sup

s=/ t;s;t2[0;T ]

jXs;tj
jt¡ sj2� <1;

with the notation Xs;t :=Xt¡Xs, and such that

Xs;t¡Xs;u¡Xu;t=Xs;u
Xu;t:

Remark. In this seminar we shall be interested in random rough path

X(!): [0; T ]!V ; X(!): [0; T ]!V 
V :

In particular we shall consider the d-dimensional standard Brownian motion B (here V =Rd)
enhanced with

Bs;t
Itô :=

Z
s

t

Bs;r
 dBr; or Bs;t
Strat :=

Z
s

t

Bs;r �dBr:



Claim 4/24

� We want to prove that BItô= (B;BItô) and BStrat= (B;BStrat) are RP of regularity �
for any �2 (1/3; 1/2).

To this end we need to check:

� regularity condition (�Kolmogorov criterion for RP);

� algebraic condition (this follows directly from linearity and properties of the integral)



Kolmogorov criterion for rough path 5/24

Theorem. (KC for RP)

Let q> 2 and � > 1/q. Suppose that for any s; t2 [0; T ], with T > 0, there exists a constant
C <1 such that

E[Xs;t
q ]1/q= kXs;tkLq6C jt¡ sj� ; E[Xs;t

q ]1/q= kXs;tkLq6C jt¡ sj2�;

and that (X;X) satisfies the algebraic condition.

Then for any �2 [0; � ¡ 1/ q) there exists a modification of (X;X) and random variables
K�2Lq and K�2Lq/2 such that for all s; t2 [0; T ] it holds that

jXs;tj6K�(!)jt¡ sj�; jXs;tj6K�(!)jt¡ sj2�:

In particular, if �¡1/q>1/3, then for any �2 (1/3; �¡1/q) it holds that (X;X)2C� a.s.



Proof of KC for RP 6/24

For simplicity fix T =1 and let

Dn := fk2¡n j k 2N; k2¡n2 (0; 1)g

be the set of integer multiples of 2¡n in (0; 1). Note that #Dn=1/2¡n=2n:

We shall consider s; t2
S
nDn (the remaining times are filled in by continuity).

We define

Kn := sup
t2Dn

jXt;t+2¡nj; Kn := sup
t2Dn

jXt;t+2¡nj:

Exploiting the hypothesis, it holds that

E[Kn
q]6E

" X
t2Dn

jXt;t+2¡njq
#
6 1
2¡n

Cq(2¡n)�q=Cq(2¡n)�q¡1;

and similarly E
�
Kn
q/2�6C q/2(2¡n)�q¡1.



Proof of KC for RP (II) 7/24

Fix now s; t2
S
n
Dn with s< t and take m2N such that

2¡(m+1)<t¡ s6 2¡m:

Consider a partition of [s; t) of the form s= �0<�1< � � � <�N = t, where (�i; �i+1)2Dn for
some n>m+1 and where at most two sub-intervals share the same n. It follows that

jXs;tj6 max
06i<N

jXs;�i+1j6
X
i=0

N¡1

jX�i;�i+1j6 2
X

n>m+1

Kn;

and thus

jXs;tj
jt¡ sj� 6

X
n>m+1

2Kn

(2¡(m+1))�
6

X
n>m+1

2Kn

(2¡n)�
6K�;

with K� := 2
P

n>0
Kn

(2¡n)�
. Finally, K�2Lq since, recalling that �2 [0; � ¡ 1/q);

kK�kLq
1/q6

X
n>0

2
(2¡n)�

E[Kn
q]1/q6

X
n>0

2C
(2¡n)�

(2¡n)�¡1/q<1:



Proof of KC for RP (III) 8/24

Analogously, we have

jXs;tj=

����������X
i=0

N¡1

X�i;�i+1+Xs;�i
X�i;�i+1

���������� 6X
i=0

N¡1

jX�i;�i+1j+ jXs;�ijjX�i;�i+1j6

6
X
i=0

N¡1

jX�i;�i+1j+ max
06i<N

jXs;�ij
X
j=0

N¡1

jX�j;�j+1j6

62
X

n>m+1

Kn+
 
2
X

n>m+1

Kn

!
2

;

and thus

jXs;tj
jt¡ sj2� 6

X
n>m+1

2Kn

(2¡(m+1))2�
+

 X
n>m+1

2Kn

(2¡(m+1))�

!
2

6K�+K�
2;

with K�: =2
P

n>0
Kn

(2¡n)2�
2Lq/2 and K�2Lq. This concludes the proof.



Itô Brownian motion 9/24

� Let B be a d-dimensional standard Brownian motion enhanced with its iterated integrals

Bs;t
Itô :=

Z
s

t

Bs;r
 dBr2Rd
Rd;

where the stochastic integration is understood in the sense of Itô;

Proposition. For any �2 (1/3; 1/2) and T > 0, with probability one

BItô := (B;BItô)2C�([0; T ];Rd):

Proof. (sketch) This follows from the KC for RP together with the Gaussian nature (we
need to control only the case q=2), the finiteness of moments and the scaling behaviour of
B (Bt=�¡1/2B�t and B0;t=�¡1B0;�t). �



Itô BM is not a geometric RP 10/24

BItô is actually a RP but not a geometric RP

� This comes from Itô formula

d(BiBj)=BidBj+BjdBi+ hBi; Bjidt; i; j=1; : : : ; d;

yielding, for s< t,

Sym(Bs;t
Itô)= 1

2
Bs;t
Bs;t¡

1
2
I(t¡ s)=/ 1

2
Bs;t
Bs;t:



Stratonovich Brownian motion 11/24

� Stratonovich BM is defined analogously but enhanced with its iterated integrals

Bs;t
Strat :=

Z
s

t

Bs;r � dBr2Rd
Rd;

understood in the sense of Stratonovich. This gives

Bs;t
Strat=Bs;t

Itô+ 1
2
I(t¡ s)

� Similarly, BStrat := (B;BStrat)2C�([0; T ];Rd) for any �2 (1/3; 1/2);

� BStrat is a geometric RP

Sym(Bs;t
Strat)= 1

2
Bs;t
Bs;t:



Physical Brownian motion 12/24

� MODEL: particle of mass m and position x(t) in R3, subject to a white noise B_ (distri-
butional derivative of a Brownian motion B) in time and some frictions �1; �2; �3> 0 in
orthonormal directions.

� Described by the Newton's second law of dynamics which reads

mx�=¡Mx_ +B_ ;

where M is a symmetric 3� 3 matrix having spectrum �1; �2; �3.

� The process x(t) is called physical Brownian motion.

� In the limit of small mass, m! 0, a good approximation of x(t) is the (mathematical)
Brownian motion with a non-standard covariance (if m=0)Mx_ =B_ ) x=M¡1B).



Brownian motion in a magnetic field 13/24

� What if our particle carries a non-zero electric charge q and it moves in a (constant)magnetic
field H?

� Newton's second law is again of the form

mx�=¡Mx_ +B_ ;

but now M is no longer a symmetric matrix (due to Lorentz force F~ = qx_~ �H~ ).

� Instead we shall simply assume M to be a 3� 3 matrix such that

Realf�(M)g� (0;+1):



Claim 14/24

� We are studying

mx�=¡Mx_ +B_ ;

� We introduce the momentum variable p(t)=mx_(t) and get

p_ =¡ 1
m
Mp+B_ :

� Claim: we shall prove that X =Xm, indexed by the mass m, converges in a non-trivial way
to BM at the level of RP as m! 0.

In particular, it converges to B~ := (B;B~ ), with B~ s;t: =Bs;t
Strat+(t¡ s)A where

A= 1
2
(M�¡�M�); � :=

Z
0

1
e¡Mse¡M

�sds

(A is anti-symmetric).



Precise formulation 15/24

Theorem 1. LetM be a d�d square matrix whose eingenvalues have strictly positive real part.
Let B be a d¡ dimensional standard Brownian motion, m> 0 and consider the following SDEs

dX = 1
m
Pdt; dP =¡ 1

m
Pdt+dB;

with vanishing initial conditions. For any q> 1 and �2
¡ 1
3
;
1

2

�
, it holds that, as m! 0,�

MX;

Z
MX 
 d(MX)

�
!B~ ; in C� and Lq;

where B~ := (B;B~ ), with B~ s;t: =Bs;t
Strat+(t¡ s)A where

A= 1
2
(M�¡�M�); � :=

Z
0

1
e¡Mse¡M

�sds:



Outline of the proof 16/24

In general, given (Xn)n�C� for 1/3<�< � with uniform RP bounds

sup
n

kXnk�<1, sup
n

kXnk2�<1,

and pointwise convergence

8t2 [0; T ]; X0;t
n !X0;t; X0;t

n !X0;t;

this implies X2C� and ��(Xn;X)! 0.

The proof is thus divided in two steps:

1. Pointwise convergence in Lq�
MXt

";

Z
0

t

MXs
"
 d(MX")s

�
! (B0;t;B~ 0;t);

2. Uniform RP bounds in Lq.



Pointwise convergence in Lq
17/24

� In order to exploit Brownian scaling, we setm="2 and we introduce the rescaled momentum

Y " := P
"
:

� We have

dY "=¡"¡2MY "dt+ "¡1dB; dX"= "¡1Y "dt:

� For a fixed ", we define the Brownian motion B�t := "B"¡2t and consider the SDEs

dY� =¡MY�dt+dB� ; dX� =Y�dt:

� When solved with identical initial condition, we have the pathwise equality

(Yt"; "¡1Xt
")= (Y�"¡2t; X�"¡2t):



Pointwise convergence in Lq (II) 18/24

� We observe that since M is positive, Y� is ergodic and the stationary solution has law

��N (0;�);

� To compute the covariance matrix � we write the stationary solution

Y�tstat=
Z
¡1

t

e¡M(t¡s)dB�s

and observe that thus, e.g.,

�=E[Y�0stat
Y�0stat] =
Z
0

1
e¡Mse¡M

�sds:

where we exploited the properties of the BM.



Pointwise convergence in Lq (III) 19/24

� Since supt2[0;1)E[jY� j2]<1, it follows that

"Yt
"= "Y�"¡2t! 0

in L2 (and thus in any Lq, q <1) as "! 0 uniformly in t;

� From

dY "=¡"¡2MY "dt+ "¡1dB; dX"= "¡1Y "dt:

it follows that MXt
"=Bt¡ "Y0;t" .

� The first part of the convergence directly follows, i.e.,

MXt
"!Bt

as "! 0.



Pointwise convergence in Lq (IV) 20/24

� Moreover, thanks to ergodicity,Z
0

t

f(Yt")dt! t

Z
f(y)�(dy); inLq; for q <1:

� In particular, it holds thatZ
0

t

MXs
"
d(MX")s =

Z
0

t

MXs
"
 dBs¡ "

Z
0

t

MXs
"
 dYs"

=
Z
0

t

MXs
"
 dBs¡MXt

"
 ("Yt")+ "

Z
0

t

d(MX")s
Ys"

=
Z
0

t

MXs
"
 dBs¡MXt

"
 ("Yt")+ "

Z
0

t

MYs
"
Ys"ds

!
Z
0

t

Bs
 dBs¡ 0+ t

Z
(My
 y)�(dy)

=
Z
0

t

Bs
 dBs+ tM�=B0;t
Strat+ t

�
M�¡ 1

2
I

�
;

where the convergence is in Lq for q> 2.



Pointwise convergence in Lq (V) 21/24

� But taking the symmetric part of the above equation yields

1
2
MXt

"
MXt
"! 1

2
Bt
Bt+ Sym

�
M�¡ 1

2
I

�
;

� But we already know that

1
2
MXt

"
MXt
"! 1

2
Bt
Bt;

and thus we conclude that Sym
¡
M�¡ 1

2
I
�
=0:

� Hence M�¡ 1

2
I is anti-symmetric , yielding

M�¡ 1
2
I= 1

2
(M�¡�M�):

� Summarizing, we proved that pointwise in t, we have convergence�
MXt

";

Z
0

t

MXs
"
 d(MX")s

�
! (B0;t;B~ 0;t):



Uniform RP bounds 22/24

� To conclude, we need to prove the following uniform bounds, for q <1

sup
"2(0;1]

E[kMX"k�
q ]<1; sup

"2(0;1]
E

�Z MX"
 d(MX")

2�

q �
<1:

� Thanks to the KC for RP, it suffices to prove that

sup
"2(0;1]

E[jXs;t
" jq]. jt¡ sjq/2; sup

"2(0;1]
E

���������Z
s

t

Xs;�
" 
 d(X�")

��������q�. jt¡ sjq:
� For what concerns the first bound, we see that since X is Gaussian, it suffices to consider

the case q=2. We observe that this follows from

E[jX�s;tj2]. jt¡ sj:

Indeed, provided the above bound holds true, we have

E[jXs;t
" j2] =E[j"X�"¡2s;"¡2tj2]. "2j"¡2t¡ "¡2sj= jt¡ sj:



Uniform RP bounds (II) 23/24

� Thus we have to prove that

E[jX�s;tj2]. jt¡ sj:

This follows from MX�s;t=B�s;t¡Y�s;t together with the estimate

E[jY�
s;t
j2] =E[j(e¡M(t¡s)¡ I)Y�

s
j2] +

Z
s

t

Tr(e¡Mue¡M
�u)du. jt¡ sj;

where the bound is uniform since Realf�(M)g� (0;+1).

� An analogous computation shows that at the level of iterated integrals it holds that

E

���������Z
s

t

X�s;u
 d(X�u)
��������2�. jt¡ sj2;

which in turns implies

E

���������Z
s

t

Xs;�
" 
d(X�")

��������2�. jt¡ sj2:
This concludes the proof.



Summarizing . . . 24/24

� Kolmogorov criterion for RP;

� Itô and Stratonovich Brownian motions;

� Brownian motion in a magnetic field and limit for vanishing mass m.

Thank you for attention!


