Brownian Motion as a Rough Path

BY PAOLO RINALDI Seminar on Rough Path

Universität Bonn

May 27, 2022

Outline of the seminar

• Introduction

• Kolmogorov criterion for rough paths

• Itô and Stratonovich Brownian motion

• Brownian motion in a magnetic field

Recall : Definition of rough paths

Definition. For $\alpha \in (1/3, 1/2)$, we define the space $C^{\alpha}([0, T]; V)$ of α -Hölder rough paths (over a Banach space V) as those pairs $\mathbf{X} := (X, \mathbb{X})$ such that

$$X\|_{\alpha} := \sup_{s \neq t, s, t \in [0,T]} \frac{|X_{s,t}|}{|t-s|^{\alpha}} < \infty, \qquad \|\mathbb{X}\|_{\alpha} := \sup_{s \neq t, s, t \in [0,T]} \frac{|\mathbb{X}_{s,t}|}{|t-s|^{2\alpha}} < \infty.$$

with the notation $X_{s,t} := X_t - X_s$, and such that

$$\mathbb{X}_{s,t} - \mathbb{X}_{s,u} - \mathbb{X}_{u,t} = X_{s,u} \otimes X_{u,t}$$

Remark. In this seminar we shall be interested in random rough path

$$X(\omega): [0,T] \to V, \qquad \mathbb{X}(\omega): [0,T] \to V \otimes V.$$

In particular we shall consider the d-dimensional standard Brownian motion B (here $V = \mathbb{R}^d$) enhanced with

$$\mathbb{B}_{s,t}^{\mathrm{It}\hat{o}} := \int_{s}^{\iota} B_{s,r} \otimes \mathrm{d}B_{r}, \quad \text{or} \quad \mathbb{B}_{s,t}^{\mathrm{Strat}} := \int_{s}^{\iota} B_{s,r} \circ \mathrm{d}B_{r}$$

Claim

• We want to prove that $B^{It\hat{o}} = (B, \mathbb{B}^{It\hat{o}})$ and $B^{Strat} = (B, \mathbb{B}^{Strat})$ are RP of regularity α for any $\alpha \in (1/3, 1/2)$.

To this end we need to check:

- regularity condition (~Kolmogorov criterion for RP);
- algebraic condition (this follows directly from linearity and properties of the integral)

Theorem. (KC for RP)

Let $q \ge 2$ and $\beta > 1/q$. Suppose that for any $s, t \in [0, T]$, with T > 0, there exists a constant $C < \infty$ such that

 $\mathbb{E}[X_{s,t}^{q}]^{1/q} = \|X_{s,t}\|_{L^{q}} \leqslant C |t-s|^{\beta}, \qquad \mathbb{E}[\mathbb{X}_{s,t}^{q}]^{1/q} = \|\mathbb{X}_{s,t}\|_{L^{q}} \leqslant C |t-s|^{2\beta},$

and that (X, \mathbb{X}) satisfies the algebraic condition.

Then for any $\alpha \in [0, \beta - 1/q)$ there exists a modification of (X, \mathbb{X}) and random variables $K_{\alpha} \in L^{q}$ and $\mathbb{K}_{\alpha} \in L^{q/2}$ such that for all $s, t \in [0, T]$ it holds that

 $|X_{s,t}| \leq K_{\alpha}(\omega)|t-s|^{\alpha}, \qquad |\mathbb{X}_{s,t}| \leq \mathbb{K}_{\alpha}(\omega)|t-s|^{2\alpha}.$

In particular, if $\beta - 1/q > 1/3$, then for any $\alpha \in (1/3, \beta - 1/q)$ it holds that $(X, \mathbb{X}) \in \mathcal{C}^{\alpha}$ a.s.

Proof of KC for RP

For simplicity fix T = 1 and let

$$D_n := \{k2^{-n} \mid k \in \mathbb{N}, k2^{-n} \in (0,1)\}$$

be the set of integer multiples of 2^{-n} in (0,1). Note that $\#D_n = 1/2^{-n} = 2^n$.

We shall consider $s, t \in \bigcup_n D_n$ (the remaining times are filled in by continuity). We define

$$K_n := \sup_{t \in D_n} |X_{t,t+2^{-n}}|, \qquad \mathbb{K}_n := \sup_{t \in D_n} |\mathbb{X}_{t,t+2^{-n}}|.$$

Exploiting the hypothesis, it holds that

$$\mathbb{E}[K_n^q] \leqslant \mathbb{E}\left[\sum_{t \in D_n} |X_{t,t+2^{-n}}|^q\right] \leqslant \frac{1}{2^{-n}} C^q (2^{-n})^{\beta q} = C^q (2^{-n})^{\beta q-1},$$

and similarly $\mathbb{E}\left[\mathbb{K}_{n}^{q/2}\right] \leqslant C^{q/2}(2^{-n})^{\beta q-1}$.

Proof of KC for RP (II)

Fix now $s, t \in \bigcup_n D_n$ with s < t and take $m \in \mathbb{N}$ such that

 $2^{-(m+1)} < t - s \leq 2^{-m}.$

Consider a partition of [s, t) of the form $s = \tau_0 < \tau_1 < \cdots < \tau_N = t$, where $(\tau_i, \tau_{i+1}) \in D_n$ for some $n \ge m+1$ and where at most two sub-intervals share the same n. It follows that

$$|X_{s,t}| \leq \max_{0 \leq i < N} |X_{s,\tau_{i+1}}| \leq \sum_{i=0}^{N-1} |X_{\tau_i,\tau_{i+1}}| \leq 2\sum_{n \geq m+1} K_n$$

and thus

$$\frac{|X_{s,t}|}{|t-s|^{\alpha}} \leqslant \sum_{n \ge m+1} \frac{2K_n}{(2^{-(m+1)})^{\alpha}} \leqslant \sum_{n \ge m+1} \frac{2K_n}{(2^{-n})^{\alpha}} \leqslant K_{\alpha},$$

with $K_{\alpha} := 2 \sum_{n \ge 0} \frac{K_n}{(2^{-n})^{\alpha}}$. Finally, $K_{\alpha} \in L^q$ since, recalling that $\alpha \in [0, \beta - 1/q)$,

$$\|K_{\alpha}\|_{L^{q}}^{1/q} \leqslant \sum_{n \ge 0} \frac{2}{(2^{-n})^{\alpha}} \mathbb{E}[K_{n}^{q}]^{1/q} \leqslant \sum_{n \ge 0} \frac{2C}{(2^{-n})^{\alpha}} (2^{-n})^{\beta - 1/q} < \infty.$$

Proof of KC for RP (III)

Analogously, we have

$$\begin{aligned} |\mathbb{X}_{s,t}| &= \left| \sum_{i=0}^{N-1} |\mathbb{X}_{\tau_i,\tau_{i+1}} + X_{s,\tau_i} \otimes X_{\tau_i,\tau_{i+1}} \right| &\leq \sum_{i=0}^{N-1} |\mathbb{X}_{\tau_i,\tau_{i+1}}| + |X_{s,\tau_i}| |X_{\tau_i,\tau_{i+1}}| \leq \\ &\leq \sum_{i=0}^{N-1} |\mathbb{X}_{\tau_i,\tau_{i+1}}| + \max_{0 \leq i < N} |X_{s,\tau_i}| \sum_{j=0}^{N-1} |X_{\tau_j,\tau_{j+1}}| \leq \\ &\leq 2 \sum_{n \geq m+1} |\mathbb{K}_n + \left(2 \sum_{n \geq m+1} K_n\right)^2, \end{aligned}$$

and thus

$$\frac{|\mathbb{X}_{s,t}|}{|t-s|^{2\alpha}} \leqslant \sum_{n \ge m+1} \frac{2\mathbb{K}_n}{(2^{-(m+1)})^{2\alpha}} + \left(\sum_{n \ge m+1} \frac{2K_n}{(2^{-(m+1)})^{\alpha}}\right)^2 \leqslant \mathbb{K}_\alpha + K_\alpha^2$$

with $\mathbb{K}_{\alpha} := 2 \sum_{n \ge 0} \frac{\mathbb{K}_n}{(2^{-n})^{2\alpha}} \in L^{q/2}$ and $K_{\alpha} \in L^q$. This concludes the proof.

8/24

Itô Brownian motion

• Let B be a d-dimensional standard Brownian motion enhanced with its iterated integrals

$$\mathbb{B}^{\mathrm{It}\hat{o}}_{s,t}\!:=\!\int_{s}^{t}\!B_{s,r}\otimes\mathrm{d}B_{r}\!\in\!\mathbb{R}^{d}\otimes\mathbb{R}^{d}.$$

where the stochastic integration is understood in the sense of Itô;

Proposition. For any $\alpha \in (1/3, 1/2)$ and T > 0, with probability one

 $\boldsymbol{B}^{\mathrm{It}\hat{o}} := (B, \mathbb{B}^{\mathrm{It}\hat{o}}) \in \mathcal{C}^{\alpha}([0, T]; \mathbb{R}^d).$

Proof. (sketch) This follows from the KC for RP together with the Gaussian nature (we need to control only the case q = 2), the finiteness of moments and the scaling behaviour of B ($B_t = \lambda^{-1/2} B_{\lambda t}$ and $\mathbb{B}_{0,t} = \lambda^{-1} \mathbb{B}_{0,\lambda t}$).

Itô BM is not a geometric RP

 $oldsymbol{B}^{\mathrm{It}\hat{o}}$ is actually a RP but not a geometric RP

• This comes from Itô formula

 $\mathbf{d}(B^i B^j) = B^i \mathbf{d}B^j + B^j \mathbf{d}B^i + \langle B^i, B^j \rangle \mathbf{d}t, \qquad i, j = 1, \dots, d,$

yielding, for s < t,

$$\operatorname{Sym}(\mathbb{B}_{s,t}^{\operatorname{It}\hat{o}}) = \frac{1}{2} B_{s,t} \otimes B_{s,t} - \frac{1}{2} \mathbb{I}(t-s) \neq \frac{1}{2} B_{s,t} \otimes B_{s,t}.$$

Stratonovich Brownian motion

• Stratonovich BM is defined analogously but enhanced with its iterated integrals

$$\mathbb{B}^{\mathrm{Strat}}_{s,t} := \int_{s}^{t} B_{s,r} \circ \mathrm{d}B_{r} \in \mathbb{R}^{d} \otimes \mathbb{R}^{d},$$

understood in the sense of Stratonovich. This gives

$$\mathbb{B}_{s,t}^{\text{Strat}} = \mathbb{B}_{s,t}^{\text{It}\hat{o}} + \frac{1}{2}\mathbb{I}(t-s)$$

• Similarly, $\boldsymbol{B}^{\text{Strat}} := (B, \mathbb{B}^{\text{Strat}}) \in \mathcal{C}^{\alpha}([0, T]; \mathbb{R}^d)$ for any $\alpha \in (1/3, 1/2)$;

• $oldsymbol{B}^{\mathrm{Strat}}$ is a geometric RP

$$\operatorname{Sym}(\mathbb{B}^{\operatorname{Strat}}_{s,t}) = \frac{1}{2} B_{s,t} \otimes B_{s,t}.$$

Physical Brownian motion

- MODEL: particle of mass m and position x(t) in R³, subject to a white noise B (distributional derivative of a Brownian motion B) in time and some frictions α₁, α₂, α₃ > 0 in orthonormal directions.
- Described by the Newton's second law of dynamics which reads

 $m\ddot{x} = -M\dot{x} + \dot{B},$

where M is a symmetric 3×3 matrix having spectrum $\alpha_1, \alpha_2, \alpha_3$.

• The process x(t) is called *physical Brownian motion*.

• In the limit of small mass, $m \to 0$, a good approximation of x(t) is the (mathematical) Brownian motion with a non-standard covariance (if $m = 0 \Rightarrow M\dot{x} = \dot{B} \Rightarrow x = M^{-1}B$).

Brownian motion in a magnetic field

- What if our particle carries a non-zero electric charge q and it moves in a (constant) *magnetic field H*?
- Newton's second law is again of the form

 $m\ddot{x} = -M\dot{x} + \dot{B},$

but now M is no longer a symmetric matrix (due to Lorentz force $\vec{F} = q\vec{x} \times \vec{H}$).

• Instead we shall simply assume M to be a 3 imes 3 matrix such that

 $\operatorname{Real}\{\sigma(M)\} \subset (0, +\infty).$

• We are studying

 $m\ddot{x} = -M\dot{x} + \dot{B};$

• We introduce the *momentum* variable $p(t) = m\dot{x}(t)$ and get

$$\dot{p} = -\frac{1}{m}Mp + \dot{B}.$$

• Claim: we shall prove that $X = X^m$, indexed by the mass m, converges in a *non-trivial* way to BM at the level of RP as $m \rightarrow 0$.

In particular, it converges to $\tilde{\mathbf{B}} := (B, \tilde{\mathbb{B}})$, with $\tilde{\mathbb{B}}_{s,t} := \mathbb{B}_{s,t}^{\text{Strat}} + (t-s)A$ where

$$A = \frac{1}{2}(M\Sigma - \Sigma M^*), \qquad \Sigma := \int_0^\infty e^{-Ms} e^{-M^*s} \mathrm{d}s$$

(A is anti-symmetric).

Precise formulation

Theorem 1. Let M be a $d \times d$ square matrix whose eingenvalues have strictly positive real part. Let B be a d – dimensional standard Brownian motion, m > 0 and consider the following SDEs

$$dX = \frac{1}{m}Pdt, \qquad dP = -\frac{1}{m}Pdt + dB$$

with vanishing initial conditions. For any $q \ge 1$ and $\alpha \in \left(\frac{1}{3}, \frac{1}{2}\right)$, it holds that, as $m \to 0$,

$$\left(MX, \int MX \otimes d(MX)\right) \to \tilde{\mathbf{B}}, \quad \text{in } \mathcal{C}^{\alpha} \text{ and } L^{q}$$

where $\tilde{\mathbf{B}} := (B, \tilde{\mathbb{B}})$, with $\tilde{\mathbb{B}}_{s,t} := \mathbb{B}_{s,t}^{\text{Strat}} + (t-s)A$ where

$$A = \frac{1}{2}(M\Sigma - \Sigma M^*), \qquad \Sigma := \int_0^\infty e^{-Ms} e^{-M^*s} \mathrm{d}s.$$

Outline of the proof

In general, given $(\mathbf{X}^n)_n \subset \mathcal{C}^{\beta}$ for $1/3 < \alpha < \beta$ with uniform RP bounds

 $\sup_{n} \|X^{n}\|_{\beta} < \infty, \qquad \sup_{n} \|\mathbb{X}^{n}\|_{2\beta} < \infty,$

and pointwise convergence

$$\forall t \in [0, T], \qquad X_{0,t}^n \to X_{0,t}, \qquad \mathbb{X}_{0,t}^n \to \mathbb{X}_{0,t},$$

this implies $\mathbf{X} \in \mathcal{C}^{\beta}$ and $\rho_{\alpha}(\mathbf{X}^{n}, \mathbf{X}) \rightarrow 0$.

The proof is thus divided in two steps:

1. Pointwise convergence in L^q

$$\left(MX_t^{\varepsilon}, \int_0^t MX_s^{\varepsilon} \otimes \mathrm{d}(MX^{\varepsilon})_s\right) \to (B_{0,t}, \tilde{\mathbb{B}}_{0,t});$$

2. Uniform RP bounds in L^q .

Pointwise convergence in L^q

• In order to exploit Brownian scaling, we set $m\!=\!arepsilon^2$ and we introduce the rescaled momentum

$$Y^{\varepsilon} := \frac{P}{\varepsilon}.$$

We have

 $\mathrm{d} Y^{\varepsilon} = -\varepsilon^{-2} M Y^{\varepsilon} \mathrm{d} t + \varepsilon^{-1} \mathrm{d} B, \qquad \mathrm{d} X^{\varepsilon} = \varepsilon^{-1} Y^{\varepsilon} \mathrm{d} t.$

• For a fixed ε , we define the Brownian motion $\bar{B}_t := \varepsilon B_{\varepsilon^{-2}t}$ and consider the SDEs

$$\mathrm{d}\bar{Y} = -M\bar{Y}\mathrm{d}t + \mathrm{d}\bar{B}, \qquad \mathrm{d}\bar{X} = \bar{Y}\mathrm{d}t.$$

• When solved with identical initial condition, we have the pathwise equality

$$(Y_t^{\varepsilon}, \varepsilon^{-1}X_t^{\varepsilon}) = (Y_{\varepsilon^{-2}t}, X_{\varepsilon^{-2}t}).$$

17/24

Pointwise convergence in L^q (II)

• We observe that since M is positive, \overline{Y} is ergodic and the stationary solution has law

 $\nu \sim \mathcal{N}(0, \Sigma);$

• To compute the covariance matrix Σ we write the stationary solution

$$\bar{Y}_t^{\text{stat}} = \int_{-\infty}^t e^{-M(t-s)} \mathrm{d}\bar{B}_s$$

and observe that thus, e.g.,

$$\Sigma = \mathbb{E}[\bar{Y}_0^{\text{stat}} \otimes \bar{Y}_0^{\text{stat}}] = \int_0^\infty e^{-Ms} e^{-M^*s} \mathrm{d}s$$

where we exploited the properties of the BM.

Pointwise convergence in L^q (III)

• Since $\sup_{t\in[0,\infty)}\mathbb{E}[|\bar{Y}|^2]<\infty$, it follows that

 $\varepsilon Y_t^{\varepsilon} \!=\! \varepsilon \bar{Y}_{\varepsilon^{-2}t} \!\rightarrow\! 0$

in L^2 (and thus in any L^q , $q < \infty$) as $\varepsilon \to 0$ uniformly in t;

• From

 $\mathrm{d}Y^{\varepsilon} = -\varepsilon^{-2}MY^{\varepsilon}\mathrm{d}t + \varepsilon^{-1}\mathrm{d}B, \qquad \mathrm{d}X^{\varepsilon} = \varepsilon^{-1}Y^{\varepsilon}\mathrm{d}t.$

it follows that $MX_t^{\varepsilon} = B_t - \varepsilon Y_{0,t}^{\varepsilon}$.

• The first part of the convergence directly follows, *i.e.*,

 $MX_t^{\varepsilon} \to B_t$

as $\varepsilon \rightarrow 0$.

Pointwise convergence in L^q (IV)

• Moreover, thanks to ergodicity,

$$\int_0^t f(Y_t^{\varepsilon}) \mathrm{dt} \to t \int f(y) \nu(\mathrm{d}y), \qquad \text{in } L^q, \text{ for } q < \infty.$$

• In particular, it holds that

$$\begin{split} \int_{0}^{t} MX_{s}^{\varepsilon} \otimes \mathrm{d}(MX^{\varepsilon})_{s} &= \int_{0}^{t} MX_{s}^{\varepsilon} \otimes \mathrm{d}B_{s} - \varepsilon \int_{0}^{t} MX_{s}^{\varepsilon} \otimes \mathrm{d}Y_{s}^{\varepsilon} \\ &= \int_{0}^{t} MX_{s}^{\varepsilon} \otimes \mathrm{d}B_{s} - MX_{t}^{\varepsilon} \otimes (\varepsilon Y_{t}^{\varepsilon}) + \varepsilon \int_{0}^{t} \mathrm{d}(MX^{\varepsilon})_{s} \otimes Y_{s}^{\varepsilon} \\ &= \int_{0}^{t} MX_{s}^{\varepsilon} \otimes \mathrm{d}B_{s} - MX_{t}^{\varepsilon} \otimes (\varepsilon Y_{t}^{\varepsilon}) + \varepsilon \int_{0}^{t} MY_{s}^{\varepsilon} \otimes Y_{s}^{\varepsilon} \mathrm{d}s \\ &\to \int_{0}^{t} B_{s} \otimes \mathrm{d}B_{s} - 0 + t \int (My \otimes y)\nu(\mathrm{d}y) \\ &= \int_{0}^{t} B_{s} \otimes \mathrm{d}B_{s} + t\mathrm{M}\Sigma = \mathbb{B}_{0,t}^{\mathrm{Strat}} + t \left(M\Sigma - \frac{1}{2}\mathbb{I}\right), \end{split}$$

where the convergence is in L^q for $q \ge 2$.

Pointwise convergence in L^q (V)

• But taking the symmetric part of the above equation yields

$$\frac{1}{2}MX_t^{\varepsilon} \otimes MX_t^{\varepsilon} \to \frac{1}{2}B_t \otimes B_t + \operatorname{Sym}\left(M\Sigma - \frac{1}{2}\mathbb{I}\right),$$

• But we already know that

$$\frac{1}{2}MX_t^{\varepsilon} \otimes MX_t^{\varepsilon} \to \frac{1}{2}B_t \otimes B_t,$$

and thus we conclude that $\operatorname{Sym}(M\Sigma - \frac{1}{2}\mathbb{I}) = 0$. • Hence $M\Sigma - \frac{1}{2}\mathbb{I}$ is *anti-symmetric*, yielding

$$M\Sigma - \frac{1}{2}\mathbb{I} = \frac{1}{2}(M\Sigma - \Sigma M^*)$$

• Summarizing, we proved that pointwise in t, we have convergence

$$\left(MX_t^{\varepsilon}, \int_0^t MX_s^{\varepsilon} \otimes \mathrm{d}(MX^{\varepsilon})_s\right) \to (B_{0,t}, \tilde{\mathbb{B}}_{0,t})$$

Uniform RP bounds

• To conclude, we need to prove the following uniform bounds, for $q<\infty$

 $\sup_{\varepsilon \in (0,1]} \mathbb{E}[\|MX^{\varepsilon}\|_{\alpha}^{q}] < \infty, \qquad \sup_{\varepsilon \in (0,1]} \mathbb{E}\left[\left\|\int MX^{\varepsilon} \otimes d(MX^{\varepsilon})\right\|_{2\alpha}^{q}\right] < \infty.$

• Thanks to the KC for RP, it suffices to prove that

 $\sup_{\varepsilon \in (0,1]} \mathbb{E}[|X_{s,t}^{\varepsilon}|^{q}] \lesssim |t-s|^{q/2}, \qquad \sup_{\varepsilon \in (0,1]} \mathbb{E}\left[\left|\int_{s}^{t} X_{s,\cdot}^{\varepsilon} \otimes d(X_{\cdot}^{\varepsilon})\right|^{q}\right] \lesssim |t-s|^{q}.$

• For what concerns the first bound, we see that since X is Gaussian, it suffices to consider the case q = 2. We observe that this follows from

 $\mathbb{E}[|\bar{X}_{s,t}|^2] \lesssim |t-s|.$

Indeed, provided the above bound holds true, we have

 $\mathbb{E}[|X_{s,t}^{\varepsilon}|^2] = \mathbb{E}[|\varepsilon \bar{X}_{\varepsilon^{-2}s,\varepsilon^{-2}t}|^2] \lesssim \varepsilon^2 |\varepsilon^{-2}t - \varepsilon^{-2}s| = |t-s|.$

Uniform RP bounds (II)

• Thus we have to prove that

 $\mathbb{E}[|\bar{X}_{s,t}|^2] \lesssim |t-s|.$

This follows from $M \bar{X}_{s,t} = \bar{B}_{s,t} - \bar{Y}_{s,t}$ together with the estimate

$$\mathbb{E}[|\bar{Y}_{s,t}|^2] = \mathbb{E}[|(e^{-M(t-s)} - \mathbb{I})\bar{Y}_s|^2] + \int_s^s \operatorname{Tr}(e^{-Mu}e^{-M^*u}) \mathrm{d}u \lesssim |t-s|$$

where the bound is uniform since $\operatorname{Real}\{\sigma(M)\} \subset (0, +\infty)$.

• An analogous computation shows that at the level of iterated integrals it holds that

$$\mathbb{E}\left[\left|\int_{s}^{t} \bar{X}_{s,u} \otimes d(\bar{X}_{u})\right|^{2}\right] \lesssim |t-s|^{2}.$$

which in turns implies

$$\mathbb{E}\left[\left|\int_{s}^{t} X_{s,\cdot}^{\varepsilon} \otimes \mathrm{d}(X_{\cdot}^{\varepsilon})\right|^{2}\right] \lesssim |t-s|^{2}.$$

This concludes the proof.

Summarizing...

- Kolmogorov criterion for RP;
- Itô and Stratonovich Brownian motions;
- Brownian motion in a magnetic field and limit for vanishing mass m.

Fhank you for attention