Recall the theorem we proved last week:

Theorem 1. For all $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$ we have

$$\lim_{N \to \infty} \rho_N^n \left(\prod_{k=1}^n e^{i\alpha_k \sigma_N(A_k)} \right) = \Phi_A(\alpha)$$

with

$$\Phi_A(\alpha) = \exp \left(-\frac{1}{2} \sum_{1 \leq j, k \leq n} Q(A_j, A_k) \alpha_j \alpha_k - i \sum_{1 \leq j < k \leq n} \kappa(A_j, A_k) \alpha_j \alpha_k \right)$$

where $Q(A, B) = \text{Re} \left(\rho(AB) - \rho(A) \rho(B) \right)$ and $\kappa(A, B) = \text{Im} \rho(AB) = -i \rho([A, B]) / 2$.

Theorem 1 suggests that the function $\Phi_A(\alpha)$ should be the quasi-characteristic function of a quantum probability space (F, ω) endowed with a family of non-commuting (why?) operators $\varphi(A_j)$ labeled by the α_j such that, on the state ω we have

$$\omega \left(\prod_{k=1}^n e^{i\alpha_k \varphi(A_k)} \right) = \exp \left(-\frac{1}{2} \sum_{1 \leq j, k \leq n} Q(A_j, A_k) \alpha_j \alpha_k - i \sum_{1 \leq j < k \leq n} \kappa(A_j, A_k) \alpha_j \alpha_k \right).$$

In classical probability the existence of such a probability, with prescribed characteristic function, would be automatic given the (uniform) convergence of the characteristic functions itself. Here it is not so simple. But the information we possess will be enough to show explicitly the existence of such a quantum probability space which is labeled by the functions Q, κ.

If we recall the considerations of the previous section and apply the last theorem to the operators $\sigma_x, \sigma_y, \sigma_z$ on the quantum Bernoulli space on the pure state e_0 we have that

$$Q(\sigma_x, \sigma_y) = \text{Re} \left(e_0 | \sigma_x \sigma_y e_0 \right) = \delta_{x, 0}, \quad \kappa(\sigma_x, \sigma_y) = \frac{1}{2i} \langle e_0 | [\sigma_x, \sigma_y] | e_0 \rangle = 1,$$

so in this case for example

$$\omega(e^{i\alpha_x \varphi(\sigma_x)} e^{i\alpha_y \varphi(\sigma_x)}) = \exp \left(-\frac{1}{2} (\alpha_x^2 + \alpha_y^2) - i \alpha_x \alpha_y \right).$$

If $\kappa = 0$ this corresponds to the characteristic function of a family of Gaussian variables.

On the other hand if $\kappa \neq 0$ we need necessarily have $Q \neq 0$, indeed the Hermitian form $L(A, B) = \rho((A - \rho(A))(B - \rho(B)))$ satisfy the Cauchy–Schwartz inequality

$$\kappa(A, B) \leq \sqrt{L(A^*, B)^2} \leq L(A^*, A) L(B^*, B) = Q(A, A) Q(B, B)$$

which is a restatement of Heisenberg’s uncertainty principle.
1 A quantum Gaussian white noise

We give here an spatial extension of Theorem 1. We imagine that copies of the Hilbert space \mathcal{H} are indexed by elements of a finite box $\Lambda_{L,N} = [-LN, LN]^d \subseteq \mathbb{Z}^d$ in d dimensions. Here $L, N \in \mathbb{N}$ are two integers. With this additional structure we can consider averaging operators indexed by smooth compactly supported functions $\varphi \in \mathcal{S}(\mathbb{R}^d)$ supported on $[-L, L]^d \subseteq \mathbb{R}^d$ and let

$$\sigma_N(A, \varphi) = \sum_{k \in \Lambda_{L,N}} \varphi(k/N) A(k)$$

in $\mathcal{H}^{\Lambda_{L,N}}$. Then, essentially using the same arguments as in the proof of Theorem 1, we can verify that

Theorem 2. For all $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$ and $\varphi_1, \ldots, \varphi_k \in \mathcal{S}(\mathbb{R}^d)$ with compact support we have

$$\lim_{L \to \infty} \lim_{N \to \infty} \rho^{\Lambda_{L,N}} \left(\prod_{k=1}^{n} e^{i\alpha_k \sigma_N(A, \varphi)} \right) = \Phi_A(\alpha \varphi)$$

$$\Phi_A(\alpha \varphi) = \exp \left(-\frac{1}{2} \sum_{1 \leq j, k \leq n} Q(A_j, A_k) \langle \langle \varphi_j, \varphi_k \rangle \rangle \alpha_j \alpha_k - i \sum_{1 \leq j < k \leq n} \kappa(A_j, A_k) \langle \langle \varphi_j, \varphi_k \rangle \rangle \alpha_j \alpha_k \right)$$

where $Q(A, B) = \text{Re} (\rho(AB) - \rho(A) \rho(B))$, $\kappa(A, B) = \text{Im} \rho(AB) = -i \rho([A, B])/2$ and

$$\langle \langle \varphi_j, \varphi_k \rangle \rangle = \int_{\mathbb{R}^d} \varphi_j(x) \varphi_k(x) dx.$$

▷ Theorem 2 suggests that the function $\Phi_A(\varphi)$ should be the quasi-characteristic function of a quantum probability space (\mathcal{F}, ω) endowed with a family of non-commuting (why?) operators $\psi(A_j)(\varphi)$ labeled by the A_j and φ such that, on the state ω we have

$$\omega \left(\prod_{k=1}^{n} e^{i\alpha_k \psi(A_k)(\varphi)} \right) = \Phi_A(\alpha \varphi).$$

In classical probability the existence of such a probability, with prescribed characteristic function, would be automatic given the (uniform) convergence of the characteristic functions itself. Here it is not so simple. But the information we possess will be enough to show explicitly the existence of such a quantum probability space which is labeled by the functions Q, κ.

▷ Note that when $\kappa = 0$ the function $\Phi_A(\alpha \varphi)$ is the characteristic function of a finite dimensional projection of a vector valued white noise ξ over \mathbb{R}^d, that is, a vector valued, centered Gaussian process ξ indexed by $\varphi \in \mathcal{S}(\mathbb{R}^d)$ with covariance

$$\mathbb{E}[\xi_i(\varphi) \xi_j(\psi)] = Q(A_i, A_j) \langle \langle \varphi, \psi \rangle \rangle.$$

2 Existence of the quantum Gaussian

▷ Here we want to explicitly construct the space (\mathcal{F}, ω). Consider the polynomial algebra \mathcal{P} generated by $(U(A))_{A \in \mathcal{A}}$ where \mathcal{A} is the vector space of (bounded) selfadjoint operators on \mathcal{H} and endow it with the inner product

$$\left\langle \prod_j U(A'_j), \prod_k U(A_k) \right\rangle = \lim_{N} \rho \left(\prod_{j} e^{i\sigma_N(A'_j)} \prod_{k} e^{i\sigma_N(A_k)} \right)$$
Similarly we have from which we deduce that

\[B = \text{Gelfand–Naimark–Segal construction} B \text{ as we were looking for.} \]

Going back to our quantum Gaussian space \((F, \omega)\) we see that

\[\langle U(A + B), U(A)U(B) \rangle = \langle u, U(-(A + B))U(A)U(B)u \rangle = \exp(-i\kappa(A, B)) \]

from which we deduce that

\[U(A + B) = \exp(i\kappa(A, B))U(A)U(B) \]

where this equality is understood in \(H\). Indeed

\[\|U(A + B) - \exp(i\kappa(A, B))U(A)U(B)\|^2 = 2 - 2\Re(U(A + B), \exp(i\kappa(A, B))U(A)U(B)) = 0. \]

Similarly we have

\[U(A)U(B)U(C) = U(A)\exp(-i\kappa(B, C))U(B + C) = \exp(-i\kappa(B, C) - i\kappa(A, B + C))U(A + B + C) \]

\[= \exp(-i\kappa(B, C) - i\kappa(A, B + C) + i\kappa(A + B, C))U(A + B)U(C) = \exp(-i\kappa(A, B))U(A + B)U(C) \]
which implies that, as operators on \mathcal{F}:

$$U(A)U(B) = \exp(-i\kappa(A, B))U(A + B)$$

which implies also

$$U(A)U(B) = \exp(-2i\kappa(A, B))U(B)U(A).$$

This relation will play a very important role in the following and is called the Weyl form of the canonical commutation relations.

\triangleright From the Weyl relation we see that \mathcal{P} is the span of all the operators in the form $U(A)$ and therefore that the state ω is determined by the relation

$$\omega(U(A)) = \exp\left(-\frac{1}{2}Q(A, A)\right).$$

\triangleright From the Weyl relations we deduce also that, if $\kappa = 0$, then the algebra generated by the $U(A_j)$ acting on \mathcal{F} is commutative and therefore “corresponds” to a family of classical random variables with Gaussian law and covariance matrix $Q(A_i, A_j)$. To make this precise we would need to represent $U(A_j) = e^{i\varphi(A_j)}$ for some operator $\varphi(A_j)$. This will be unbounded (since it corresponds to a classical Gaussian). This problem will be dealt in the next section.