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Exercise 1. [2+2 Pts] Consider a random variable X with law 𝒩(0, 1) and let Z an independent random
variable taking values {−1,1} with equal probabilities. Let Y =ZX. Clearly Z ∼𝒩(0,1).

a) Show that X,Y are uncorrelated, but not independent.

b) Show that (X,Y) is not a Gaussian vector.

Exercise 2. [2+3+4+2+2+2 pts] Let (Bt)t≥0 be a (one-dimensional) Brownian motion. Prove the following
properties

a) (Bt)t≥0 is a continuous Gaussian process on ℝ+ with covariance Cov(Bs,Bt)=min{s, t}.

b) For any t > s and any bounded measurable f :ℝ→ℝ we have

𝔼[ f (Bt)|Bs]=(Pt−s f )(Bs),

where the transition kernel Pt is given by

Pt (x, dy)= 1
2𝜋 t�

e−(x−y)2/2t dy.

c) The process (Bt)t is a Markov process wrt. the filtration (ℱt)t given by ℱt = 𝜎(Bs: s ∈ [0, t]). Here the
relevant Markov property is

𝔼[ f (Bt)|ℱs]=𝔼[ f (Bt)|Bs]=(Pt−s f )(Xs).

d) The process (−Bt)t≥0 is also a Brownian motion (symmetry property).

e) For any c>0, the process defined by

Xt ≔
1
c√ Bc⋅t, t ⩾0,

is also a Brownian motion (scaling invariance property).

f) The process Zt ≔Bt+r −Br is also a Brownian motion.

Exercise 3. [2+2+1 pts] Let (Bt)t⩾0 a standard Brownian motion. Let Z ≔supt⩾0Bt.

a) Show that Z and cZ have the same law for all c>0. Conclude that the law of Z is supported on {0,∞}.

b) Show that ℙ(Z =0)⩽ℙ(B1⩽0)ℙ(supt⩾0 (Bt+1−B1)=0) and conclude that ℙ(Z =0)=0.

c) Conclude that ℙ(supt⩾0Bt = +∞, inft⩾0Bt = −∞) = 1. That is the Brownian motion oscillates a.s.
infinitely often between +∞ and −∞. (see also the law of iterated logarithm).
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