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[T: 11.04.2025]

1 Preliminary notions

1.1 Introduction

Our goal is to study measures of the form dp™Ne 55 where dp™V = Hj\f: 1 ®; is a product of
Lebesgue measures and S(¢) = S(p1,...,pnN) is a real function.
Assuming e=#% € L1(RY) we have

Z::/ deVe —B3() < o0
RN

and hence we can define the probability measure
dun(p) = dsoN oste),

This measure has two parameters:

e N describes the number of particles or the volume of the system. The limit N — oo is
called the thermodynamic limit.

e 3 > 0is the inverse temperature 3 = T~! or the inverse Plank constant 3 = A~!, depending
on the context. The limit  — oo is called the low temperature limit or semiclassical limit.

If we keep N fixed we can study the limit 5 — oo by Laplace method, under some conditions:

M-1

E[g] := /RN dun(e)g(p) = B~ a, +0(BM)

k=0

The problem is to control this expansion in the limit N — oco. We will often compare to the
following two reference cases.

Product measure. Let S(¢) = Z;Vzl F(pj). In this case the variables ¢; are independent
identically distributed

N

H i —IBF(SOJ

‘L Z;

where Z; = fR do e PF®) For any function g = 9(@js -, 4,) with ji,..., ji fixed and inde-
pendent of N, the corresponding average

Eg :/ dSOkH Fle) ((pju-”a@jk)

is independent of N and can be studied, for 5 > 1 via Laplace method.

3 [MAy 18, 2025]



Gaussian measure. Let S(¢) = %(@,A(p) = Zgjzl ;i Aijp; where A € Ré\;ﬁ\; With this

choice A is invertible and A~! > 0 as a quadratic form. The measure

dp(p) = dwN ~5(pA9)

is a centred normalized Gaussian measure with covariance C = %Ail. The normalization con-
stant is

Z: d 7(410"450) A —
o " Vdet A

The corresponding Laplace transform is, for ¢t € RY,

(1.1)

E[ezyzl tj@j] = e%(t’A_lt) = eﬁ(t’Ct) (12)

Using the Laplace transform one can compute the average of any polynomial function. In
particular we compute

Elpj] =0,  Elpjer] = A3 = Cj.

General case. In general we try to approximate dp with a product or Gaussian measure.
In this lecture we will consider the following three strategies.

1: reduce to a low dimensional integral (I). Sometime one can reformulate the integral as

Z- / dpNe B = (£, TN f,)
RN

where T': L?(R) — L?(R) and (., .) is the scalar product in L?(R). The N — oo limit corresponds
to study high powers of the operator T'. For 5 >> 1 the operator T' can be approximated by

T(p) ~ /R dp e o~ (=P P (1)

which can be studied explicitely.
2: use convexity. If S” > C~! > 0 Vp € RV, we will see (under some additional regularity
requirements) that the following holds

E[eZim ti(ei—Elei))] < (.01

3: reduce to a low dimensional integral (II). As N — oo we write Z a sum of integrals over a
finite number of variables
Z=> Ix.

1.2 Example 1: Curie-Weiss model and scalar Laplace principle

The measures above appear naturally even if the starting model deals only with Dirac measures.
As an example we consider the Ising model in the mean field approximation (Curie-Weiss model).
This is obtained by replacing

doj — [do_1(oj) + doy(oj)], RN — {=1,1}",
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and defining the energy of the configuration o € Qy := {—1,1}" via
;N N
H(o):= 5N Z ook — hZO'j.
jk=1 j=1
The average of a function f is

Yocay € 9 f(0)

Elf] .=
{f] ZO’EQN eiﬂH(U)
We investigate the behavior of the macroscopic random variable X := % Z;V: 10j. The law of
X is encoded in the Laplace transform E[e!X].
[1: 11.04.2025]
[2: 16.04.2025]
Proposition 1.1. For allt € R it holds
2
E[e'] = (¢ #) ¢ TN M, (1.3)
where I NF(p)
de e ¥g(e)
(9(p)) == = “NF
fR dgp e ()
and 12
F(p):= (90—25) — Incosh ¢ (1.4)
where remember that coshxz = %
Proof. Remember
E[e!X] = ey (1.5)

ZO’EQN e—ﬁH(g)

We can reorganize SH (o) as follows

2
N N

B
—BH(O‘):ﬁ j;aj +h j;aj

Using (|1.2)) we argue

1
e%(zyzlajf = (%) : / dp e 259" #5015
R

Inserting this in the denominator of ((1.5) we obtain

S e — (éjﬁ)é /]R dp e~ 25 3 (o +BR) L o

oEQN oceQN
1

1 _N 2
_ 9N <%>2 /Rdgo e~ 259 (cosh(p + Bh))N

= KN/ dp e_%wrz(cosh(cp + Bh)N = KN/ dp e_%w_ﬂh)Q(cosh o)V,
R R
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1
where K, := 2V (2 6) , and we used

N
Y eletam s 105 = H Y e — (2cosh(p + Bh))Y

cEQN o;e{-1,1}

followed by the coordinate change ¢ — ¢ — Sh. Repeating the same procedure for the numerator

of (1.5) we obtain

T BT = Ky / dip e~ 353 (cosh o)V

cEQN R

The result now follows expanding the terms containing ¢ in the exponent.

To study the asymptotic behavior of (g(p)) as N — oo we use the following proposition.

Proposition 1.2 (Laplace’s principle (scalar version)). Let f,g € C*°(R) be two given functions.
Assume

(a) [ admits a unique global minimum in xy and f"(x¢) > 0,

(b) inf:):loc;zlmin[f(x> — f(xo)] >0

TF£xQ

(¢) 3Ny > 0 such that [, dz e Nof @) < 00 and [ dv e~ No/@)|g(2)| < oo.

Then for N — oo we have

() Jide NI = NI (140 (4)).

..  fpdz e NI@g(z) 1 ae "(20) f®) (z 20) @) (x 1
(”) <g> T ]RfRd:E e—Nf) g($0) =+ IN [?//El’g)) -4 (fg’)(xo)g o) _ g(4(})”(x0)(20)] +o0 (N)
If we have k global minima 1, ..., y, under the same assumptions for each minimum, we obtain
(i) Jypdw NI = 3 N0 B (140 ().

. _ k "(x5) ") ) (z5) () f (x)
(i1) (g) = ﬂﬂzl \/ﬁ (g(xj) +3x [fm(gg;) — 7 e . IEDE } +
VI

o (%))

Informal proof of (i) For N > 1 the measure concentrates on a small region near the

minimum point g
/ dx e Nf@) :/ dx e NF(@),
R |lz—zo|<e

For small € the function is well approximated by its Taylor expansion

(z — x0)°
e

/ dz e NI@) ~ / dx e NI@) ~ e_Nf(xO)/ dx e_Nf”(xo)%.
R |lx—zo|<e |z—xo|<e
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We claim we can replace above the integral on R

2

/ dr e NI @) ~ o=NF(xo) / dz e NI @) N (o) / dp e NI @05 — ~Nf(zo) 21 __
R lz—z0|<e R Nf"(zo)

Proof. Here we only prove limy_,o(g) = g(z¢). For the other statements see the lecture notes on
Functional integrals involving commuting and anticommuting variables from Winter Semester
2024/2025.

e The integral in (7) is well defined YN > Ny since
0< / de e NF@) _ o~Nf(xo) / de e~ NU@ 1) < o~Ni(z0) / de e~ No(7 (@)~ f(x0))
R R B R
_ o~ (N=No) (o) / d e~ Nol@) < o,
R

where we used f(z) — f(xz¢) > 0. The same argument shows that the integrals in (i) are well
defined VN > Ny. In the following we can assume f(z) = 0 and xo = 0. If this is not the case,

we consider f(x) := f(xo+ x) — f(x0o).
e Since f is smooth and (a) and (b) hold, there exists €9 > 0 such that V0 < & < gy we have

f(@) = f(z) = f(zo) 2 min{f(e), f(=e)}  V]z[=e. (1.6)
For ¢ < 1 we also have, using f(0) = f/(0) =0,
flz) = f”2(0)x2 + R(z), with |R(z)| < K3e® V|z| <e, (1.7)

for some constant K3 > 0. Replacing x = +¢ we obtain, using f”(0) > 0,

f(xe) = ]”’2(0)82 +0(e%) > f//io)g.

e We decompose the integral in the denominator as follows

/Rda: e NI (@) :/l dx e_Nf(I)+/ dz e N@® = I, (e) + Ly(e).
r|<e

|z|>e

Using the bounds above, we argue, for N > %7

()| = / dp o~ NI@) _ / di o= 3@~ 3@) < qup 3@ / do VoS (@) < gmeoNe?
|z|>e |z|>e |z|>e |z|>e

where we defined

1
co = / (0), c1 = / dr e~ Nof (@),
8 R

We choose now € = e such that

o limpy_s NE%V = 00.
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Hence we set

N 1
EN = —T, 0<6<§.
2

We will optimize ¢ later.
e For |z| < ¢ we replace f by its Taylor expansion at order 2 (|1.7). We obtain

Ii(e) = / dg e~ 2" (ONa? —I—/ dx e_%f”(o)Nxz(e_NR(:‘) -1)
|z|<e

|z|<e

= % dz e~ 21"z +/ dx e_%f”(O)NQ’Q(e_NR(I) -1)
Nz J)jz|<eN=N? lz|<e

— 1 P L (O > — 1 V2 7
= (/Rd +h()) = — ( s T he

Ii(e) = - /I . d 20" 02 1 N3 /| | dz e—%f”(O)NﬂCQ(e—NR(x) —1).
x|> r|<e

where

The first integral in this sum is bounded by

/ dx 6_%f//(0)x2
|x|>N?

To estimate the second integral we use ((1.7)) and

" 37(0)

1
‘e—NR@) _ 1’ - 'NR(x) / dt e NE@)| < oy (NeB)ela(Ve)
0

Inserting this bound we obtain

N3

/ dr e—%f”(O)Nm2 (6—NR(z) _ 1)
|z|<e

Vor
VI0)

< K3(Ned)eFs(Ve) 3 / dp oL ON?
R

= K3(N53)6K3(N53)

Choosing § < % we obtain
1
Ned = N¥72 5y, 0,

hence . )
1Li(e)] € 2N¥72 —n00 0,

for some ¢y > 0.

e Putting all this together we have

e eNi@) L[ V2 s !
/Rd o ( G +Li(e) + N -72(5)>

where ) ) ) ) ,
|I1(e) + N2Iy(e)| < caN373 4 ¢y Nae ONe™ v, 0.

8 [May 18, 2025]



e Similarly, the integral in the numerator can be decomposed as

1 V2
/R dz e N/ @ = <g(0)ﬂ + Imm>

N2 £7(0)
where

Lyem = —9(0)/ dz e~2/"O" | N3 / dz =2 ONT (g(z)e=NEE) _ g(0))
|z|>N9 lz|<e
+ N2 /| N dz e NI @ g(x).

Using the same arguments as above we obtain

1
|Irem‘ < cyen + 051\']’36_§ —N—oo 0

O
[2: 16.04.2025)
[3: 23.04.2025]
Application to the mean field Ising model Remember cf (1.3)) and (1.4)),
2
E[e!X] = <€%P> ¢~ 2% ¢ ht
with
Jrdp e NI @g(p)
<g( )> - fRd(P e—NF(QO)
and 12
F(p) G _25 ) — In cosh .
Proposition 1.3.
(i) The critical points of F are the solutions of
— Bh
p =P = tanh . (1.9)

B
We denote by pm = pm(h, B) the largest critical point.

(ii) Assume B < 1. Then F admits a unique critical point oo = @o(h, ) = @m. This point is
a global minimum and F"(pg) > 0. The function h +— @(h, ) is continuous and satisfies

vo(—h, B) = —po(h, B), ©o(h, B) > OVh > 0.

In particular ¢o(0,3) = 0.

(11i) Assume B > 1. We distinguish two cases.
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(a) If h =0 F has two (global) minimum points in ¢z and one local maximum in ¢ = 0,
where @g := pp,. Moreover

F'(pg) = F"(—pg) > 0.

(b) There exists a hg > 0 such that, for 0 < h < hg the function F' has 3 critical points
p—(h,B) < @o(h, B) <0 < @i (h,B), where
® . = Py, is the unique global minimum point and F"(p4) > 0,
e ©_ is a local minimum point,

e g is a local maximum point.

Moreover all these are continuous functions of h and

li = li _=—pg, i =0.
éf[f)l¢+ ¥B }}?OHP ¥B 5?01900

Proof. See Section 3.2 in the lecture notes on Functional integrals involving commuting and
anticommauting variables from Winter Semester 2024,/2025 O

Proposition 1.4.

(i) Assume h = 0.
(a) If B < 1 then limy_ o0 E[etX] = 1

rpt rpt

(b) If B> 1 then limy_,oo E[e'X] =€ +e 7.

(ii) Assume h > 0.

: tX —th,, L2UA »
(a) If B <1 then limy_,oc E[e"*] = e e & . In particular

lim limE[e"] =1 =1lim lim E[e"X].
N—o0 hl0 h10 N—oo

vy (h,B)t

(b) If B> 1 then limy oo E[e!X] = e~ 7 . In particular

Pt Pt ppt

lim imE[eX]=¢e +e 5 #e 5 =lim lim E[e¥]. (1.10)
N=00 hi0 710 N—oo
Proof. Apply Proposition and O

Note that (1.10]) implies the limit measure does not recover the symmetry ¢ — —¢ as h | 0. In
this case one says the system exhibits spontaneous symmetry breaking.

1.3 Example 2: Ising with long range interactions

We replace {1,..., N} with the finite volume Aj := [—L, L] N Z%. The set of possible spin
configurations becomes Qy, = {—1, 1}AL. The energy of a configuration o € Q2 ,, is defined by

1
H(o) = —3 Z Jirojor —h Z oj, (1.11)
ijEAL jGAL
where Jj, = Ji; > 0 V), k € Ar.
To define J we introduce the lattice Laplacian.
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Definition 1.5 (lattice Laplacian). The lattice (or graph) Laplacian on Z% is the linear operator
A: 224 — (2(Z9) defined by

ANG) = > (G —FfE)= > Apfk) (1.12)

kezZd,|k—j|=1 kezd,|k—j|=1
where —Aj, = 2d1j—p — 1jj_p—1-

This operator is well defined and bounded (exercise) with ||A|| < 4d. For all f € ¢?(Z%) we have
(exercise)

(f,=ANegy = Y (f@) - f7)? =0, (1.13)
li—jl=1
hence —A > 0 as a quadratic form. One can show that —A is self-adjoint with spectrum
o(—=A) = 04.(—A) = [0,4d].

Definition 1.6 (finite volume lattice Laplacian). For any A CC Z¢ the finite volume Laplacian
A with Dirichlet boundary conditions is the matriz Ay € RAXA defined by

sym
(AA)U = A’LJ
For all f € £2(A) we have (exercise)
(fi =Af)en = Z (F(@) = F()* + Zdif(i)z >0, (1.14)
ijeNi—j]|=1 (ISHN

where d; := ngA,ﬁ—j\:l 1. Hence —Aj > 0 as a quadratic form.
Using these notations, we define

Jij = (=An, + 1)1, (1.15)
where —Aj, +1:=—-A), +1d € RQyLanL.

Proposition 1.7. J is well defined and satisfies J > 0 as a quadratic form and Jj, > 0
Vi, ke Ar.

Note that M > 0 does not imply M;; > 0 Vi, j. Indeed M := —Aj, satisfies M > 0 but M;; <0
for |i — j| = 1. Also, Mj;, > 0 Vi, j does not imply M > 0. As an example take the matrix

we (! )

Proof of Proposition[I.7. —Ax, +1 > 0 as a quadratic form and hence it is invertible with
(—Ap, + D)7t >0.

We show now that Jjp > 0 holds. For this we reformulate J;; as infinite sum of positive terms.
Note that

with ¢ > 1.

~Ap, =2d— P

where P;; = 1);_j—; is the adjacency matrix of the graph Ar. Therefore we can write

1 1 L)
-1 o — — == -
Jl=(@2d+1)-P (2d+1)<1 2d+1p>’ ! 2d+1(1 2d+1P) '
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We have || P||op < 2d since
> (Pf Z Z ikfr)? = Z(Z VP /Pi )’ < Z k) Z ik fi)
J k J
< 2dZZPﬂ«fk/ < 4% i
- "

where we used Pj; > 0, Cauchy-Schwartz and 0 < >, Pj; < 2d.

It follows )

- Pl < =
H2ol+1 lop < 2d + 1

1 1 "
- P
2d+1n§;;<2d+1 >

converges in operator norm. We conclude

1
ij:2d+1z 2d+1 2. FiinPuize Py i > 0

11 5eesln—1

<1,

hence the Neumann series

since Pj; > 0 Vjk and at least some term in the sum is strictly positive. O

Set now

S ean, €1 f(0)
ZO’EQAL e_BH(U)

with the energy function H (o) defined in ((1.11]). We study the Laplace transform of the random
variable X, = ﬁ > jen, O

Ea, [f] =

Proposition 1.8. It holds

42 |AL|+]0%FI AL

EaL e\AL'Z"eAL%} :<eﬁ‘AL'2j€AL(1+dJ)%)A e 2P IALP

L
where O Ap{j & N\;| dist (4,Ar) = 1},

Joa, dp™t e F@g(p)

<g((70)>AL = fRAL dQDAL e—F(p)
and (0. 710)
_pJ 7y ,
F(y) = BT Z [In cosh(y; + Bh)] .
JEAL
Proof. exercise O
[3: 23.04.2025]
[4: 25.04.2025]
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2 Transfer operator approach

2.1 Ising model with nearest neighbor interaction

We consider the finite volume Ap := [-L,L|NZ ={-L,—L+1,...,-1,0,1,...,L}. The set
of possible spin configurations is 2y, = {—1, 1}AL. The energy of a configuration o € €2y, is
defined by

L-1 L
H(o):= —% Z 1 p=1050k — h Z oj = — Z 0j0j41 —h Z gj. (2.1)

JjkeAL JEAL j=—L Jj=—L

If we do not introduce additional conditions on the boundary points j = +L we say we have
simple boundary conditions. The average is defined as usual by

Sreqn, 1@ PO

ZEGQA e—BH(?)
L

E[f@)] =

, the mean [ [0;] and the covariance

_t L .
Our goal is to study the Laplace transform E [e ALl =L UJ]

E[ojor] — E 0] E [o4] in the thermodynamic limit L — oo.

Dual representation To formulate the dual representation we need some notation. Setting
Qo = {—1,1} the one-spin configuration space we introduce the transfer operator

T: R% 5 R
f= (THo):=20eq, T(o,0")f(c")
where we defined

V(o) V(')

T(o,0'):=e 2 K(o,0)e 2, K(o,0') =€, V(o) = Bho.

We this definition 7" f(0) = >_,/cq, T"(0,0") f(0') where

T"(0,0') = Z T(o,01)T(01,02) - T(op_1,0").

01,500,000 —1€020

We also introduce the (real) scalar product

(f,9) =Y flo)g(0),

g€

and the left/right boundary functions fj(o) = f.(0) = 2517 For more general boundary
conditions we have f; # f.

Theorem 2.1. With the notations above the following statements hold.

(i) The partition function admits the dual representation

Z= > e PHO = (f, T?Lf).

TeNrL
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(ii) For all jo € AL the mean in jo admits the dual representation

(fi, THHOTE 0 f,)
<fl7 TQLfT> ’

E[o;] =
where Of (o) == o f(o) for all o € Q.
(iii) For all jo < ko € AL we have

(fy, TEHoOTk0o—joOT =Ko f, )
<fl7 T2Lf7“> '

E [Gjoako] =

(iv) Fort € R we have
ﬁzj;:*L g5 <ﬁ77ﬂLfT>
oS | e s
where T f(o) = Dol T(o,0")f(c0") is defined by

T(a, o) = €%<6h+‘f\7‘)0K(0’70‘) %<Bh+IA\>

and fi(o) = fr(o) == %('BH\A\)

Proof.
(1) We argue, using Sho; = 2\/(53-),
L
7 = H > H efoacin H e
j*—LO']EQO j=-L Jj=-L
L 1 L-1 1
_ H Z ezV(o-1) H T(oj,0541)| 2V8) = (f;, T* f,).
| j=—"L o€ | j=-L

(7i) — (i4i) similar arguments.
(iv) Same argument as in (7) but in the numerator we replace Sh with Sh + I%\ which modifies

the definition of 7 in 7 and the definition of f; into f;.
O
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