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[1: 9.10.2023]

1 Preliminary definitions

1.1 Introduction

A partial differential equation of order k is an equation involving an unknown function w: Q —
R™, with © C R?, and its partial derivatives up of order k :

F({aau(x)}0§|a|gk,$) =0 Vxel.

Here o = (avq,...,q) € N? is a multi-index and we used the notation 0%u = H?Zl 977 u. We
always assume the function is regular enough so that partial derivatives commute.

A linear PDE of order k can be written as

Z ao(2)0%u(z) + f(x) =0, (1.1)

0<|e|<k

where the coefficients a,: 2 — R may depend on z, and f: 2 — R™ is the non homogeneous
term.

There are several levels of nonlinearity, depending of the behavior of the highest order derivatives.
A semilinear PDE of order k takes the form

Z ao(z)0%u(z) + F({(‘?ﬁu(m)}ogwgk,l, z) =0. (1.2)
|a|=k

This equation is linear in the highest order derivatives, with coefficients a, independent of w.

A quasilinear PDE of order k takes the form

Z aa(({aﬂu(x)}0§|5|§k—la $)aau($) + F({aﬁu(m)}0§|6|§k—1v$) =0. (1.3)
|a|=k

This equation is linear in the highest order derivatives, with coefficients a,, depending on u and
derivatives of order less than k.

A fully nonlinear PDE of order k is nonlinear in the k—th order derivatives.

The most famous examples of linear second order PDEs are:
e Laplace equation Au(z) =0, u: Q — R, with Q ¢ R?,
e heat equation dyu(t,z) — Au(t,z) =0, u: R x Q@ = R,
e wave equation 0?u(t,r) — Au(t,r) =0, u: R x Q — R.
Examples of semilinear PDEs are:
e nonlinear heat equation: dyu(t,z) — Au(t,z) = f(u(t,z)), with u: R x Q@ — R;
e incompressible Navier-Stokes equation: Oyu;(t, x) — Au;(t, ) +u-Vu;(t,z)+0;p(t, z) = 0,

with p a given function, u: R x Q@ — R¢, and u - V := Z‘;:l u;0;.
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An example of quasilinear PDEs is the incompressible Euler equation
Ouj(t,x) +u- Vui(t,z) + 0;p(t,x) =0,
while the Hamiltion-Jacobi equation
Owu(t,z) + H(Vu(t,z)) =0
is fully nonlinear.
Some tools we have seen to study these equations are:

e linearization: approximate the solution of the nonlinear PDE by solving a linearized ver-
sion;

e fixed point in some Banach space (used for example for nonlinear heat and Navier-Stokes
equation)

e minimization (calculus of variations): reformulate the problem of solving the PDE into
finding a minimizer for some functional I(u).

Here we will develop systematically these and other tools.

1.2 Sobolev spaces: definition and some properties

Definition 1.1. Let Q C R? be open, f € L} (), i.e. f€ LY(K) VK C Q compact.

loc

(i) f is weakly differentiable if there exist d functions g1, ...,gq in L} (Q) such that

loc

/faigodac:—/gicpd:c Vo € C°(9). (1.4)
Q Q

In this case, g; is called the weak derivative of f in the direction i.
(ii) f is k times weakly differentiable if, for all multiindices o € N™ with |«| < k, there exist
g\ € L}, () such that
/ fo%pdr = (—1)k / g% pdr Yy e CX(Q). (1.5)
Q Q

Notation The functions g; and g¢ are called weak derivatives and are still denoted by 9; f and
0% f, respectively.

Remarks

e The weak derivative is unique up to a null set, i.e. {g € L} (Q) | g = 0°f} is a single
equivalence class in L}, ().

e The weak derivative and the usual derivative agree if g € C*(Q).

e In the following, we will usually make no notational distinction between functions and
their equivalence classes.
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Definition 1.2. Let Q C R? be open, 1 < p < oo and k € N\ {0}.
The Sobolev space WFP(Q) consists of all f € LP(Q) which are k times weakly differentiable with
all weak derivatives in LP(€Q).

WEP(Q) ;= {f € LP(Q) | f k times weakly differentiable with 8 f € LP(Q)V|a| < k}

We define || - HWk,p(Q): WHFP(Q) — [0, 00) by

1

(ZOS\&|§k H@O‘fH’Ep(Q)) " p< (1.6)

1 lwks) =
20<|al<k 10% fll Lo () p =00

Theorem 1.3. Let Q C R? be open, 1 < p < oo and k € N\ {0}.
(i) (WFP(Q), || - lwrr)) is a Banach space.

(ii) WH*2(Q) is a Hilbert space with the scalar product

(F, D@ = Y. (0°F,0%9)r2(q), (1.7)

0<a| <k
where (f,9)2(q) = [ fg dz Vf,g € L*(Q).

We will often use the notation H*(Q) := Wk2(Q).

Proof. See lecture notes for FA or the book by Evans. O

Remark. Let d = 1 and I = (a,b) C R an open bounded interval. Then f € WhHi(I) =
Je € R such that the function

flx):=c+ /93 f'(t)dt Yz € [a,b] (1.8)

satisfies f € [f]. Note that f € C([a,b]), and f is differentiable a.e. with f=fae.
If f € WHP(I) with 1 < p < oo, then we have in addition f € C%%(I) with o := 1 — % and

. 1£@) = f{#)]
o= sup =

<1f'llzr()-
Definition 1.4. Let Q C R? be open, 1 < p < 0o and k € N\ {0}. We define the space
Wg’p(Q) = {f e WFP(Q)|3j — f; € CZ(Q) such that f; — f in WEP(Q)}. (1.9)

This is therefore the completion of C2°(§) in the Sobolev norm. For p = 2 we will write

HE(Q) := WEP(Q).

Remarks The space W(f P(Q)) corresponds to the set of Sobolev functions “with zero boundary
value”. We will make this more precise later after we introduce the trace. W(;C P(Q) is a closed
linear subspace of W¥*?(Q). Moreover, Wéf’p(Rd) = WkP(RY), but Wéf’p(Q) C WkP(Q) when
Q C RY. For k = 0 we have WOP(Q) = LP(Q) = WP () since C2°(Q) is dense in L ().
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Theorem 1.5 (approximation by smooth functions). Let Q@ C R? be open, p € [1,00), k € N.
Then

(i) C=(Q) N WFkP(Q) is dense in WHP(Q),
(i1) C*(R?) is dense in WFP(RY),
(i1i) C°(Q) is dense in Wéf’p(Q).

Proof. (i), (i7) See lecture notes on FA or the book by Evans.
(iii) Follows directly from the definition of Wy (€). O

Theorem 1.6 (Rellich). Let Q C RY open and bounded, 1 < p < oo and k > 1.
Let n — u, € W(;C’p(Q) be a bounded sequence, and u € Wé‘:_l’p(Q) such that u, — wu in
WP (Q).

Then u, — u strongly in WE—1P().
Proof. See lecture notes on FA. d
[1: 9.10.2023]
[2: 12.10.2023]

Theorem 1.7 (Sobolev inequalities in R?).

(i) Let 1 <p<d and let

p* = dd_pp or, equivalently, ;* = ]17 — é (1.10)
Then it holds
s oy < P Ve, e WHPR, (111)
(ii) Let 1 <d < p < oo and let
= 1—;5. (1.12)

Then every u € WHP(R?) has a Hélder continuous representative i € C¥%(R?), and there
exist a constant Cp, g > 0 such that

- u(x) —u
[@]co.a = sup w < Cpal| Ve Yu € Wy P(RY). (1.13)
zy
Proof. See lecture notes on FA or Evans. O
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Remark. If u € LP(RY) N C%*(RY) then u is bounded and

sup [u(z)| < C([u]coamay + [[ullLr@a))
zeR4

for some constant C' > 0 independent of u. Indeed we have, for each € R% and r > 0,

1

U0 = 1B,@) o

u(y)dy + | (u(z) — u(y))dy.

B.(z)| /B, (2)
The result now follows from

@) < —— [ )yt [ @) = u)]

1
dy < —|lu 0y +7° [t o0
|Br(z)] /B, (2) )  llull o gay [ulc

1B (@) /() |z =yl B,(0)|»
and optimizing in r > 0.

Theorem 1.8 (Sobolev embedding). Let Q C R be open and bounded. The following statements
hold.

(i) Assume 1 <p < d. Then Wol’p(Q) C LYQ) V1 < q < p*, where p* := %.

The embedding
I: WyP(Q) — LYQ)
ur— I(u) :==u

is continuous, and
lull Loy < C [Vullini)  Yu € WoP(Q),

where the constant C' depends on p,q and §2.
Moreover, if 1 < g < p*, the injection is also compact.

(ii) Assume 1 < d < p < oo. Then Wol’p(Q) CCPYVO<p<a=1~— %.
This means, that each u € Wol’p(ﬂ) has a representative i € C%P(Q).

The embedding
Ig: Wy (Q) — C%F(Q)
[u] = I([u]) := @

s continuous, and

[@]cos < Cl|Vullzr Yu € WyP(Q), (1.14)
where the constant C' depends on p, 5 and ).

Moreover, if 8 < «, the embedding is also compact.

Proof. See lecture notes on FA or Evans. O
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Remark. If u € LP(2) N C%*(Q) then u is bounded and
sup lu(z)| < C([u]goa(a) + lullr @)

for some constant C' > 0 independent of u. Indeed we argue

uw) = 7 | wwy + g7 [ o) = uiw)a.

The result now follows from

dlam lu(x 1
< u(y)|dy + / dy < —||ul| pr(q) + diam(Q)[u]co,a.
lu(z)| < ‘Q|/ y)l |‘,E_y|7 ) |Q|%H e (@) (€)*[u]co

Two key tools to prove the above results are: convolution with mollifiers and partition of unity.

Lemma 1.9 (convolution).
Let n € C°(B1(0)) such that n >0 and [pandx = fBl ndx = ||n|| = 1.
We define e — 1. via n.(z) := e % (%x) , for e > 0. The following holds.

(i) Ve > 0 n. € CZ(B:(0);[0,00)), and [pqnedx = fB ngdx =1.
(ii) Suppose u € LP(R?), p < co. Then

(a) ne xu(z) = fRd Ne(x — y)u(y)dy for a.e. x € R4,

(b) ne+ f € LP(RY) N C=(RY) and [[ne  ullpe < ||nellpr[[ulle = [Jullze-
(c¢) lime_yq ||ne * u — ul|Lr = 0.

(d) If in addition uw € W*P(R?) it holds

0%(ne * u) = ne * (0%u)

for all multiindices o with || < k.

Hence we also have lime— [|n: * u — ul|yyr.pray = 0.

Notation The functions 7. are sometimes called mollifiers. For any sequence ¢; — 0, the
sequence j — 1), is called a standard Dirac sequence (or a sequence of mollifiers).

Proof. See lecture notes on FA. O

Definition 1.10 (Partition of unity). Let A C R? be non empty, I be a finite or countable index
set.

(i) A family of sets {Vi}icr is an open cover of A if V; C R? is open and nonempty Vi, and
AC Ui Vi

(i1) An open cover {V;}icr is locally finite if Vo € |J;c; Vi 3¢ > 0 such that

#{iel| B(x)NV; # @} < 0.

(1ii) Let {V;}ier be a locally finite open cover of A. A family of functions {x;}ier is a partition
of unity for A with respect to the cover {V;}icr if

Xi € CZ(Vi,[0,00)) VielI and sz(m) =1Ve e A
i€l
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Remarks.
e The sum ), ; x;(z) is finite V because the open cover is locally finite.
e In particular 0 < y;(z) <1 Vzx € A.

Lemma 1.11 (Existence of a partition of unity). Let {2 C R be open.
Suppose IK; C V; C V; C Q) for all j € N such that

K;,V; compact Vj, KiNnKjy=2Vj#j, {Vj}jen locally finite open cover of Q.

Then there exists a partition of unity {x;}jen for Q with respect to {V;}en.
The partition satisfies, in addition, x;(z) =1 Vz € K;.

Remark. The sets K; may be empty! In that case x;(z) <1 Vzx € Vj.

Proof. See lecture notes on FA. O

1.3 Boundary regularity and its applications

All results in the previous section need no information on 9€). Indeed most of the results there
are stated for functions in WéC P(Q) that 'take zero value’ on the boundary. To allow for nonzero
values at the boundary we need to require some regularity.

1.3.1 Boundary regularity

Let Q C R? be an open set. Informally 99 is 'regular’ (Lipschitz, C*, smooth...) if locally it
can be represented by a function «: R¥~! — R which is regular’ ( Lipschitz, C*, smooth. ..).

Definition 1.12. Let Q C RY be an open set. We say that 02 is CF, k > 1, (resp. Lipschitz)
if for all zog € Q Ir > 0 and a C*¥ (resp. Lipschitz) function v: R — R such that, after
relabelling the variables and reorienting the axes, it holds

QN By(xo) ={z = (z1,...,24) € Br(x0) | xa > v(T1,...,Ta-1)}

Remark 1 If 9Qis C', then we can define the outward normal unit vector field v: 9Q — S
Moreover, if u € CY(Q) it holds d,u(x) = v, - Vu(z) Vo € 9. If 9Q the outward normal v(x)
is still well defined for a.e. z € 9

Remark 2: flattening the boundary. Assume 09 is C'. Then we can ’locally’ flatten the
boundary in the following way.

Let 2o € 0Q, r > 0 and v: R™! — R as above. We introduce the change of coordinates
®: R - R? as follows

y=() = {

® is invertible with inverse

_ T =y Vi=1,...,d—1,
=01y = ¢
() { g =Yq+yW1,- -5 Yd-1)-

Y; ‘= Xy ViZI,...,d—l,
Yqg =g — Y(X1,. .., Tq-1).

Moreover, since v is C, the Jacobian is well defined and equals 1. In the new coordinates the
boundary is locally flat:

QN By (z0) = {y € ®(Br(v0)) |ya = 4 — ¥(21,...,79-1) > 0}
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1.3.2 Approximation by smooth functions up to the boundary

Theorem 1.13. Letp € [1,0), k € N.
(i) Let Q = {x € R¥xy > 0} be the upper half-plane. Then C*® () N WH*P(Q) is dense in
WhP(Q).
(i) Assume Q C R? is open and bounded with Lipschitz boundary. Then C°°(Q) is dense in
WHP(Q).

Proof.

Let Q C R? be open and u € W*P(Q) given. Our goal is to find a sequence of functions in
C>=(Q) N WHP(Q) converging to u in the Sobolev norm.

To construct the sequence let € — 7. be a Dirac sequence (cf. Lemma . For each € > 0 we
consider

(e * ) (@) = (ne * Lou)(z) = /

ne(@ — y) (Lou) (y) dy = / ne( — y)u(y) dy.
R4 Q

It holds 7. * u € C°(R?) N LP(RY), hence in particular 7. * u € C*(Q) N LP($). Moreover
17 * Lou — ull o) < |7 * 1ou — Loul|fprd) —re—0 0.

What about the derivatives? In general u € W*P(Q) A 1qu € W*P(R?), hence we cannot even
say if 0%(n. * u) is in LP(R?).
Note that we have 0%(n: * Lou)(x) = ne * 100%u(x) for all 2 such that B.(x) C £, i.e.

0%e * Lou)(x) = ne x 100%u(x) Vo € Q. = {z € Q|dist (z,0Q) > <}.
To go further we need to use our information on 0f2.
(4) In this case Q = {x € R x4 > 0}, hence
Q. = Q+eey,

where €4 is the normal vector in the direction d. This fact, together with Q5 C Q. Vd > &,
suggests to consider, for each €, > 0, the function u: R* — R defined by

ue5(x) :=ne * Lou(x + 6é4) = 1 * 1ou] o 75(x)

where 75: R? — R is the translation 75(z) := z + §é4. This function satisfies u. 5 € C*°(R?) in

particular u. s € C°°(§2) Ve, d > 0. Moreover
0%ue 5() = [ * 100%u] 0 75(x) = [ne * L0 ul(z + d€4) Vo € Q — (6 —€)éq.

Since Q@ C Q — (6 —e)éqg V6 > € we set §. := Ae, with A > 1 fixed and consider the family of
functions
Ueg = U,E’(;E.

We claim that u. € W*P(Q) for all ¢ > 0 and ([1e —ullyrp (@) —re—0 0. Indeed, for all 0 < [a| <k
it holds

10%ue|Lr() = [1(7e * Lad™u) 0 Tac|[Lr() < [|(1e * 100%u) © Tac| 1o (ra)

= [Ine * 100%ul| o (ra) < [10%u]| () < o0,
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hence u. € W*P(Q). Moreover
[ue — ullze(e) < llue — Loul pogay < [lue — (Lou) o Tac||pomay + [[(1ou) 0 Tae — (Lou)|[ Lo (ra)
Since limy, ¢ || f(x + h) — f(2)||zr = 0, we have
lim [[(1ou) o Toe — (Lou)l| L (re) = 0.
Finally

[ue — (1qu) o TAsHLP(Rd) = [[(ne * Lou) o Tae — (1qu) o T)\EHLP(Rd)

= |[me * 1ou — Lou| ey —e—0 0

The same argument holds for derivatives. This concludes the proof in case (7).

(ii) Assume O) is C'. In this case the boundary is locally flat and we can adapt the argument
from (7). To make this rigorous note that 0f2 is compact and therefore we can find z1,...,2y5 €
0Q and 71,...,ry > 0 such that

N
o0 c | By, ()
j=1

and B, (x;) N 0N is flat after an appropriate change of coordinates. Set Vo C Vo C Q open such
that

N
QcWvul B, ().

j=1
Then there exists a partition of unity {x;};=o,.. ~ for Q wrt the open cover. In particular
u=uy+ Z;Vﬂ uj, with u; = xju.
Since ug has compact support in Vj it holds 7. * ug — ug in Wwkp (Vo). For j > 1 we adapt the
construction from (7) (see Evans for details).
For the case of Lipschitz boundary see Lecture notes in FA. O

1.3.3 Trace
Theorem 1.14. Let Q C R¢ be open and bounded with Lipschitz boundary, p € [1,00).

(i) There exists a linear bounded operator T: WYP(Q) — LP(9%; HY™Y) such that

(a) Tu =g for allu e WHP(Q) N C(Q) and
(b) for allu € WHP(Q),0 € CH(Q),j = 1,...d it holds

/uajcp dr = / Ojup dm+/ (Tu)pv; dx
Q Q onN

(ii) ue WyP(Q) < Tu=0.

We call T'u the trace of v on 9f).

[2: 12.10.2023]
[3:16.10.2023]
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Proof of Theorem [1.1].

(i) To construct T we proceed as follows.

e For u € C'(Q) the boundary value u)p is well defined, hence we define
T: C'(Q) — {functions on 9N}
via Tu := ujpq. This map is linear. Moreover for all u € C'(Q) it holds (proof later)
Tue L2OH),  and  |Tullwon < C lullwis (115)

where the constant C' = C(€,p) > 0 is independent of w.

e For each u € WhP(Q) there is a sequence n — u, € C'(€) such that [u— wy,|lyrs) = 0. We
have
| Tun — Tum”LP(aQ) < Cllup — “mHWLP(Q)

hence n + Tu, is a Cauchy sequence in LP(9€; H?~1). Therefore the limit exists and we define

Tu:= lim Tu, = lim uy,sq.
n—oo n—oo

The limit is independent of the approximating sequence (exercise). The map T: WHP(Q) —
LP(0N2) we have defined is bounded since

[Tullzroe) = Im [ TunLeoe) < C lim|junllwrr@) = Cllullwieg)-
The operator T' we have constructed satisfies (a) and (b) (exercise, see also FA) Here we sketch
the proof of (L.15). Let u € C*(£2). our goal is to show || Tul|1s(s0) < C |lully1s(q), and hence in

particular Tw € LP(9S2; H4™1). By introducing a finite partition of unity we reduce the problem
to study a function localized on a small piece of the boundary. We distisguish two cases.
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Case 1. 9Q is C. In this case the boundary is locally flat, after an appropriate coordinate change.
Assume z¢ € 0Q and r > 0 are such that 9QN B, (zo) is flat (without need of coordinate change),
i.e.

QN Br(xg) = {x = (2, 24) € Br(x0)| 14 > 0},

where 2/ € R4™1. In particular z¢ = (2}, 0), with =, € R9~!. We define
[ := 900N B.(z0) = {(«/,0) € B(x0)}.

Assume now u € C1(Q2) has support inside B,.(z¢) (use the partition of unity). Then ||u]|

p
L7(T)
f| o/ —ah|<r |u(z’,0)|Pdx’. The idea now is to add one dimension by paying one derivative. Precisely

!
w2, 1) —u(2',0) = / Op u(’ t)dt VI >0s.t. [(2,0),(2',])] C Q.
0

Since supp u C By(zg), then for each z’ there exists a l,» > 0 such that [(2/,0), (2, /)] C © and

u(2’, 1) = 0. Therefore
p Ly p 1 Ly p
< </ Du(x',t)]dt) =1 <l/ \Du(x’,t)]dt)
0 z' JO

1 | L
< lﬁ// |Du(2,t)|Pdt < C’/ |Du(2’,t)|Pdt (1.16)
z' JO 0

1

u(a!,0) = \ Or (i, 1)
0

where in the last steps we used Jensen’s inequality and lz ot < Cand C = Cq) > 0. It follows

L
el 7oy =/ lu(z’,0)Pdz’ < C / |Du(a', t)[P dt da’
|/ —af|<r —xp|<r JO

|2’

<C [ PDua)Pds = CDulfy g,

This concludes the proof of Case 1.
Case 2 When 0 is Lipschitz, we work directly on the integral. Let o € Q r > 0 and v: R*! —
R a Lipschitz continuous function such that

QN By(z0) = {z = (2/,24) € By(w0) | g > v(2')}.

It holds 92 N B,(z¢) = ®(BI1(x})), where ¢: R4 — R? is defined via ®(z') := (2',~(2))
and is Lipschitz continuous. Assume u € C''(Q) has support inside B, () (use the partition of
unity). We argue, using the area formula,

/ () PAHE () = / () PdH (z)
ONNBr(z0)

(B (xf))

-/ 1 ANV DGR < (14 D7) /B(  fula's (@) Pda
r zq r

o
L
<o/ Du(a’ D) dtda’ < €' | |Du(@)Pde = €| Dulf g
B (xp) Jo Q

where in the last line we used ((1.16)) and we defined C’ := C(1 + || D7||1s<). This concludes th
proof of part (i).
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(i) (=) Assume u € Wy (Q).
Then there exists a sequence n — u,, € CZ°(€2), such that |[u — un[[w1p@) = 0.
Since u, € C°(Q2) c C1(Q) it holds T, = Upjaq = 0 Vn, and hence Tw = limy, 00 T'uy, = 0.

(<) (sketch) Assume Tu = 0. Since u € W1P(Q) and 99 is Lipschitz there is a sequence

n = up € C*°(Q) such that lim, o0 ||u — up ||y = 0.

Intuitively, Tu = 0 forces u to be “very small” near the boundary so we can replace u, with
Un € C°(2) without changing the limit. Precisely, assuming QN B, (z9) = {z = (2/,24) €
By (z0)| x4 > 0}, we have

1 (3
lim — / / lu(z!, zq)|dtdz’ = 0.
0P Jo Sl —ap|<r

A similar result holds for Lipschitz boundary. For more details see Evans and FA lecture notes.
O

1.3.4 Extensions

Let u € WP(Q) be a given function. Is it possible to define an extension @ of u such that @q = u
and @ € WIP(RD? If u € Wol’p(Q), it is enough to extend by zero, i.e. @ := lou € WHP(RY)
and satisfies ujq = v and Du = 1gDu.

For a general function u € WP (Q), 1qu € LP(R?), but is not weakly differentiable. The solution
is to let the function @ take non zero values on a set V' a bit larger than €.

Theorem 1.15. Let 1 < p < oo, Q C R? open and bounded with Lipschitz boundary. Then for
each V.C R? open and bounded set with Q@ C V, there exists a linear operator

E: WhP(Q) - WhP(RY)
such that, Yu € WHP(Q) it holds
(i) Eu(x) =u(x) for a.e. x € Q,
(i) supp E(u) C 'V,

(ii) [[Eullyromey < Cllullwirq), where C = Cpav > 0 is a constant. In particular this
means the operator E is bounded.

Eu is called an extension of u to RY.

Proof. Here we consider the proof in the case 2 has C'! boundary (for the general case see lecture
notes FA).

Since Q has C! boundary, the problem can be reduced (after introducing a partition of unity,
and eventually a coordinate change) to study a flat piece of boundary.

Assume xg € 09, r > 0 is such that B,(xg) N 9IS is flat i.e.

BT = B,(20) NQ = {z € B.(20)| 24 > 0}.

We also define B_ := {z € B,(zg)|xq < 0}.

Let u € W1P(Q)). We assume that suppu C B,.(zg) N Q. The strategy is to extend u first to a
function @ € W'P(R?), with support in the whole ball B,(xg). From @ we then construct an
extension Fu with support in V.
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Step 1: extension to the ball. We define

v oug(z) zeQ
) = { uJ_r(a:) reqQ’,
with
uy(z) = u(x) = u(a’, zq), u_(z) = u_(2',2q) := u(a', —xy) = uo R(2', 24),

where 2/ € R4™! and R is the reflection operator R(x/,xq) := (2, —x4).

It holds u; € W'P(Q) and u_ € WHP(Q°). Moreover trace(u, ) = trace(u_)

(Idea: In + u, € CY(Q) converging to u in WP(Q). Then n — u, o R € C1(°) and converges
to u_ in WHP(Q°). The result follows from Upjaq = (Un © R)pjaq )-

It follows (Exercise 1.2) that @ € WP(R?) with

v | Dug(x) z€9Q
Di(z) = { Du_(z) zeqQ’.
Moreover [y 1, gay = 1wt 110 () + 1u= I, ey = 2llullwre@):

Step 2: extension to V. There exists a function ¢ € C2°(V') such that ¢ > 0 and (o = 1. We
define then
Eu = (.

With this definition Eu € WP(R?), Eujq = u, and supp Eu C V. Finally

HEUHLP(Rd) < HUHLP(B+) + HCU—HLP(B*) <(1+ HCHLOO(Rd))”UHLP(Q)y
HD(EU)HLP(Rd) < HDU||LP(B+) + HD(CUJHLP(B—)
< (X + Il oo el Dul Lo g+y + 1 D€ oo ey l[ull o) < Cllullwre -

1.3.5 Sobolev embeddings

Theorem 1.16 (Rellich II). Let 2 C R? open and bounded with Lipschitz boundary, 1 < p < oo
and k > 1.
Let n v+ u, € WEP(Q) be a bounded sequence, and u € WFLP(Q) such that u, — u in
Wh=Lp(Q).

Then w, — u strongly in WF=12(Q).
Proof. See lecture notes on FA. O

Theorem 1.17 (Sobolev embedding). Let Q C R? be open and bounded with Lipschitz boundary.
The following statements hold.

(i) Assume 1 < p <d. Then W'P(Q) C LY(Q) V1 < q < p*, where p* := %.
The embedding
I: WhHP(Q) — LY(Q)
u— I(u) :==u
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18 continuous, 1i.e.
Jull o) < C llullwro@) Yu € WHP(Q),

where the constant C' depends on p,q and 2.

Moreover, if 1 < q < p*, the injection is also compact.

(i1) Assume 1 < d < p < oo. Then WHP(Q) C COP(Q)VO< < a:=1— %.

This means, that each v € W'P(Q) has a representative i € C%P(Q).

The embedding
Ig: WHP(Q) — C%F(Q)
[u] — I([u]) :=

is continuous, and
[@cos < Cllullwiag Yu e WH(Q), (1.17)

where the constant C depends on p, B and €.

Moreover, if B < «, the embedding is also compact.

Remark. In the Sobolev inequality above, the norm of the gradient ||Vu| r») (appearing

in the case of I/VO1 ") is now replaced by the Sobolev norm ||ully1s(q). Indeed the inequality
|ul| ey < Cl|Vul prq) does hold for constant functions.

Proof. Sketch in the case p < d. -
Fix V C R? open and bounded with Q C V. Since 0 is Lipschitz there exists an extension
operator E: W1P(Q) — WLP(R?), such that for all u € WP(),

Eujq =, [Eullwrp@ey < Cllullwre@),
and F(u) has support in V. Then, by Theorem and the extension theorem,

lull o () = 1Bull o () < 1Bl o gay < CID(Bu)ll porey < CllBullpioea < C lulwra).

O
3: 16.10.2023]
[4: 19.10.2023]

2 Elliptic partial differential equations of order 2

2.1 Weak formulation

In this section we always assume  C R? open and bounded with Lipschitz boundary. We will
look for solutions u: €2 — R of the system

{Lu:f in O 2.1)

U = 9
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where L is a linear partial partial differential operator of order 2
d
Z a;j(x)0;05u(x) + Z bi(z)0ju(x) + c(z)u(x),
1j=1 7j=1

f: Q — R is the non-homogeneous term, the coefficients a: Q@ — RZX¢ b: Q@ — R and c: Q — R

sym>
are matrix-valued, vector-valued and scalar-valued functions respectively. Finally g: 02 — R

gives the boundary value of u. The system (2.1)) is called a Dirichlet boundary value problem.
Regularity. In order for the PDE above to make sense we need at least u € C2(1Q).

Divergence and non-divergence form Assume a € C'!(©). We can reorganize the second
order derivatives as follows

- Z a;;j(x)0;05u( Z@ [Zal]@ u} Z {Z@iaij(m)] dju(x)
= —div (aDu)( —i—Z{Z@aZJ } u(x)

Hence we can write Lu in two ways

L(u) —Tr[ad ® Jlu+b- Du+ cu non-divergence form
u _= ~
—div (aDu) +b- Du+cu  divergence form,

where IN)j = bj + El (%aij.
Definition 2.1.

(i) L is called elliptic if a(z) > 0 for a.e. x € ).
fi.e. (€ a(x)€) > OV € R € # 0]

(ii) L is called uniformly elliptic if there exists a constant 0 > 0 such that a(x) > 01d for a.e.
x € Q.

Remark 1. a(x) € Rg;n‘i, hence a(x) is diagonalizable with real eigenvalues and an o.n. basis

of eigenvectors. In the eigenvector basis the matrix is diagonal a(z) = diag (A1 (z), ..., Aa(x)).

In this basis we have
=) N@)e
J

Therefore a(x) > 0 iff A\j(z) > 0 Vj. In particular a(z) > 0 iff a(xz) > 60,1d, where 0, =
min; \j(x) > 0.
a is umformly elliptic iff the eigevalues of a(x) are bounded away from zero uniformly in x.

Remark 2. If a = Id,b=c¢ =0 then Lu = —Au. The operator —A is then uniformly elliptic
with 0 = 1.
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Weak formulation: version 1. Assume L is in divergence form Lu = —div (aDu)+b-Du+cu

and aij,bj,c, f,ué€ COO(Q)
If Lu = f we have

/ £(z) Lu(z) da = / @) f(x)de  YE € CF(Q).
Q Q

Integrating by parts we obtain

—/Qfdiv(au)dx: —/Qdiv (éaDu) da:—{—/QDf-aDudx:/QDﬂaDud:z,

where the boundary contribution disappears since £ € C2°(2). Hence
/ [D‘f-aDud:U—i—f(boDu—kcu)}d:ﬂ:/ffdm VE € CF(Q).
Q Q

The integrals above remain well defined also when a;;,bj, ¢ € L™, u,& € WY2(Q) f € L3(Q).
The boundary of € is Lipschitz, hence C*°(Q) is dense in H!(£2). Therefore we can replace
u € C®°(Q) by u € HY(Q). Since C°(Q) is dense in H}(2), we can replace £ € C°(Q2) by
¢ € H} (D).

To properly encode the boundary value, note that, since 99 is Lipschitz, Tr : H*(Q) — L?(9Q)
is well defined. Hence, if g € L?(0Q, H4™1) we replace ujpn = g by Tru = g.

Remark. If we use £ € C*°(€Q), we obtain an additional term

/ﬂdiv (éaDu) dx = (z)(aDu)(z) - vy dHL.

£
o0

But Dujgq is not well defined for u € H L(Q2). This term disappears if instead of Dirichlet we
require homogeneous Neuman boundary conditions (aDu)(x) - v, = 0 for a.e. x € 9N.
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Definition 2.2. Assume a;j,bj,c € L®, Vi,j =1,...,d, f € L*(Q), and g € L?(00, HI™1).

(i) The bilinear form By, associated to the formal differential operator

u = —div (aDu) + b- Du + cu is defined by

Br: HY Q) x H'(Q) —» R

(u,v) = Blu,v] := [, [aDu- Dv + (b- Du+ cu)v] dx. (2:2)

(ii) A function uw € HY(Q) is called a weak solution of if
Blu,v] = (f,v)2() Vv € H(Q) 93
Tru=g. (2:3)

Remark 1: zero boundary value. Assume we have zero boundary condition g = 0. Then
u € H'(Q) is a weak solution of Lu = f in Q with ugq = 0iff Br[u,v] = (f,v)2 o) Vv e H(Q)
and Tru = 0.

By Theorem (1.14), Tru = 0 iff u € H}().
Hence u € HI(Q) is a weak solution of Lu = f in Q with ujpg = 0 iff u € H}(Q) and
Brlu,v] = (f,v)2(q) Yo € Hy ().

Remark 2: reducing to zero boundary value. Can we always reduce to the case g = 07
Consider u € H'(Q2) a weak solution of Lu = f in { with ujpn = g. Assume ug € HY(Q) is a
function satisfying Trug = g. Then the function w := u — ug € H}(Q) and solves the (formal)
equation Lw = f — Lug in © with wjpq = 0.

The non homogeneous term f has to be replaced by

f=f—Luy= f+div(aDug) — b- Dug — cug.

Note that, while b - Dug + cug € L?*(Q) for all ug € H'(2), the term div (aDug) is not well
defined. The corresponding integral formulation has to be rearranged as follows

/vadar—>/ﬂfvdx:/Q[v(f—b-Duo—cuo)—Dv-aDuo]dx:/Q[fov-l-zj:fjﬁjv]dx

where
for=f—b-Duy—cug,  fj:=—(aDup);.

Note that fo, f; € L*(Q2) for all f € L*(Q2), a,b,c € L®(Q2) and ug € H'(2). Therefore we need
to replace

d
(fsv)r20) = (fo,v) 20 +Z fi:05v) 2 (0
7j=1
This motivates the following more general definition of weak solution.
Definition 2.3. (Weak solution version 2) For f = (fo, f1,- .., fa) € L2(Q)4! we define

(f.-): Hp(Q) - R

v (f,v) = (fo,v)r2(0) + Z?:l(fj; 0;v) L2(q)- (2.4)
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We say that u € H} () is a weak solution of

{ Lu:fo—zjf)jfj i )

U'aQ =0
if
Br[u,v] = (f,v) Yo € Hy(Q). (2.5)

Note that fo —3°;0;f; is a formal expression only. In the special case f = (fo,0,...,0) we
obtain (f,v) = (fo,v)r2, hence we are back to the first version of weak formulation.

Lemma 2.4. Let f € L?(Q),g € L*(0Q, H*™1), with g € Range(Tr), i.e. Jug € H'(Q) such
that Trug = g. Consider the two systems

a{Lu:f in Q (b){Lu:f::fo—Zjajfj in Q

Ulpn = 9

)

U|QQ =0

with fo := f —b- Dug — cuo, f; :== —(aDug);. The following holds:

u € HY(Q) is a weak solution of (a) iff i := u —ug € H}(Q) is a weak solution of (b), i.e.

Tru=g and Bgrlu,v] = (f,v)r2(0) Vo € HY(Q) & Byrla,v] = (f,v) Yo € H ().

Proof. The proof follows from Trii = Tru — Trug = g — g = 0 iff 4 € H}(Q2), and

Bplu,v] = Br[u,v] — Brlug,v] = (f,v)r2(0) — /Q[Dv ~aDug + v(b- Dug + cug)| dx = (f,v).
O

Remark. Let f = (fo, f1,---,fs) € L2(Q)%L Then (f,-) € H}(Q)* = H}(Q)' (dual space)
and

2

d
1CE Mm@y < Iz = | D 1172
0 ()

=0

Notation: we often write H~1(Q) := H}(2)*. The following theorem gives the precise relation
between H~1(Q) and L?(Q)%+.

Theorem 2.5 (dual space of H}(f2)).
Let Q C R, be an open set, not necessarily bounded.
Let ~ be the equivalence relation on L*(Q)™! defined by

f~g & (fo)=(gv) YveH)(Q)
Then H}(Q)* = H71(Q) = L2(Q)¥*1/ ~, i.e.

VI e HY(Q) 3N [fle LX) )~ st T=I{g-) Vgelf]

Moreover
IT || fr-1(0) = nf{[| fll p2yer | £ € LXQTLT = (f,)}
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Proof.
We have already proved above that (f,-) € H1(Q) Vf € L?(Q)%+1.
Let now T € H(Q). Since H} ~ (H})* there exists a unique function fr € Hg () such that

T(v) = (fr,v)mi) Yo € Hy(Q).
We have

d
(fTvv) fT7 +Z 6fT,8v L2( ):<.fT>U>a
7=1

where fr = (fr,01fr,...,d4fr). Therefore T(-) = (f,-) Vf € [fr].
Finally we have
TN g-10) = I M-1@) < W fllzpars VS € [f7],

hence
1Ty < f{[|fll2(@pesr | f € LAQTT = (f,)}.
Equality is obtained notmg that

TN -1 = Il a0y = ol p2g@yen
0
where || T zr-1(0) = | /7l g1 (@) holds since the map ®: H7YQ) — H}(Q) is an isometry. O

[4: 19.10.2023]
5 23.10.2023]

Remark 1. For all f = (fo,0,...,0), with fo € L*(€2) we have (f,-) = (fo,")r2(q) € H ().
Hence H{(Q) C L*(Q) c H71(9Q).
Remark 2: coupling. The map
b LR ~ xHYQ) - R
(fy,v) = (f,v) == (fo,v) 2) + Z?:1(fjaajU)L2(Q)
defines a coupling between (f,-) € H~1(Q) and v € H}(£2). This coupling is bounded
[0l < s -1 @ 1ol o)

In the following we will use often the notation (-,-) 141 instead of (-,-) to stress the coupling
structure.

2.2 Existence of weak solutions

2.2.1 Energy estimates and first existence theorem

Remember that, given f € L2(Q)%*+!, the function u € H} () is a weak solution of
{ Lu:fo—zjajfj in Q (2.7)
ujp =0
if
BL['LL, U] = <f¢fU>H*1H(} AURS H(%(Q)

Our basic tool to investigate existence and uniqueness of solutions is Lax-Milgram.
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Theorem 2.6 (Lax-Milgram). Let H be a K— Hilbert space (with K =R or C) and B: Hx H —
K is a sesquilinear form (i.e. linear in the second variable and antilinear in the first). Suppose
in addition that there exist constants a, 8 > 0 such that

(i) (continuity) |Blu,v]| < o||lu|lglv|lg VYu,v € H;
(i3) (coercivity, positivity) Re Blu,u] > B|lul|} Vu € H.
Then VT € H* 3! up € H such that
Blup,v] =T(v) Vv e H. (2.8)
Proof. See lecture notes on FA or Evans. O

In our case we have a real Hilbert space H = H}(f2) and a bilinear form B = By,
Remark 1. Bj always satisfies (7). Indeed
|Bru,v]| = ‘/ [aDu - Dv+ (b Du+ cu)v]dx

Q

< lal| oo o [[1Dull L2y | DVl 202y + 16l oo () 1 DUl 20y [Vl £2(0) + el o @ lull 2o [Vl 220
< Cllullgyo ol o
where ||a| L) = >2i; llaijlle @), [[bllL=(0) = max; [[bj]|Lo @), and C > 0 is some constant

depending on a, b, c.

Remark 2. By, does not satisfy (i) in general! As an example consider a(x) :=1Id, bj(z) :=
bozj and c(z) := ¢, with by > 0 and ¢ := bod/4. For u € C1(Q) C H}(Q) we argue

u? u? bod, o
/ u(z)(b- Du)(z)dx = bo/ x-D(—)dx = —bgd/ —dzr = ——HuHLQ(Q),
0 0 2 o 2 2
hence we obtain b d
0
Brlu,u] = | Dul|72(q) — THUH%?(Q) Vu € Ce(9).

Given a ug € C}(Q) we can always find by > 0 large enough such that By [ug, ug] < 0.

Remark 3. Assume
e a(x) > 0Id, for a.e. x € Q with # > 0 (i.e. L is uniformly elliptic),
e ¢(x) >0 for a.e. z € Q and
e b=0.

Then

Bplu,u] = /QaDu - Dudzx —|—/QCU2 dx > 0||Du\|%2(9) + /chQda: > GHDUH%Q(Q).

By Poincaré inequality it follows By [u,u] > C’||u|]§11(m, for some C” > 0.
0
Hence, Lax-Milgram ensures that Vf € L?(Q)%*!/ ~ there exists a unique weak solution of

&2).

In the general case, we only have “almost coercivity”. This is the content of the next theorem.
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Theorem 2.7 (energy estimates).
Consider the formal differential operator Lu = —div (aDu) +b- Du+ cu with a;;,bj,c € L*(Q),
and assume a is uniformly elliptic, i.e. a(x) > 01d, for a.e. © € Q with § > 0.

Then 3, B> 0 and v > 0 such that Yu,v € H}(Q) the following inequalities hold:
(i) |Brlu, v]| < allull gy o) llvllgy o)
(1) Bolu.u] > Blully o~ ullZaqe-

Proof.
(7) see Remark 1 above.

(79) We compute

Br[u, u] :/aDu-Dud:U—l—/[ub-Du+cu2] dx
Q

Q
> 6|| Dul|72(q) — 1]l e () 1 Dull 20y lull L2y = llell o el 220
[[b]] oo [[b] oo
z@—iﬁ!ﬁwwwzm (—i¢ﬂ+umm )) Il
where in the last line we used Young’s inequality || Dul|r2(q)llullp2 ) < %HDuH%Q( ||uHL2(Q

We choose now € > 0 small enough such that

g W@ - 0

2 72-

bl L= ()

Setting v := —=5;

+ [lell Lo () = 0 we obtain

0 2 2
Brlu,u] 2 5l1Dullzaq) = llulz2)-
By Poincaré inequality it follows
Bl > Bllullls ) — Vel
for some 8 > 0. O

Theorem 2.8 (first existence theorem for weak solutions).
Consider the formal differential operator Lu = —div (aDu) 4+ b- Du+ cu with a;j,b;,c € L>(),
and assume a is uniformly elliptic, i.e. a(x) > 01d, for a.e. x € Q with 6 > 0.

Then there exists a constant v > 0 such that Yu > v, f € L*(Q)%!/ ~ there exists a unique
weak solution u € H (Q) of

{ Lu+uu:f0—zj8jfj in (29)

ujpn =0

Proof. By Theorem Ja, 8> 0 and v > 0 such that
[Brlu, v]| < allull g1 HUHHI , and
BL[u u} +’YHUHL2 Q) = ,BHU”H1 Yu,v € HO (Q)

L+ pld is the operator obtained from L by replacing the coefficient ¢(x) by ¢(z) + u. A function
u € H(Q) is a weak solution of (2.9) if Bry 4 [u, ] = (f, ") g-1H3, Where

Brt1d [u,v] = Br[u, o] + p(u, ) 12(q)-
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Then Vu,v € H(Q) u > v, we have

|Brtuta [, v]| < [Brlu, v + p|(u,v) 20y < (o + )l gy vl g1 )
By [usu) = Brfu,u] + pllulf20) 2 Bllull ) + (1 = Nllullzzqy = Bllullf -

The result now follows by Lax-Milgram. O

2.2.2 Fredholm dychotomy and second existence theorem

Inverse of L: rigorous formulation. Intuitively the equation Lu = f has a solution if L
is “invertible”. Lax-Milgram says that, if L > 0 then L is invertible. The energy estimate says
that, for L uniformly elliptic, there is a v > 0 such that L 4+ ~Id > 0, and hence L + pld is
invertible Yy > 7. To make the notion of L~! precise we need some definitions.

We can associate to the formal differential operator Lu = —div (aDu) +b- Du+ cu at least two
linear operators 77, : H} Q) — HY(Q) and Ty, H}(Q) — HE(Q). We mostly work with T,. The
second operator 17, is more convenient to define the adjoint of L.

The operator 7;,. We define

Tp: HYQ) — H Q)

u— Tr(u) := Brlu, ], (2.10)

By continuity of By, we have

IT(Wllg-10) = sup  |Brlu,v]] < aflull g q),
HUHH(%(Q)Zl
hence 77, is linear and bounded with ||T7(u)|lop < .

With these definitions, u € H(Q) is a weak solution of Lu = fy — > 0if; it Tr(u) =
Brlu, ] = (f, )y Hl- Existence of weak solutions can be now formulated as follows: for all

f € L2 Q)Y ~ there exists a unique weak solution iff the operator Ty, is invertible.

Assume 77, is invertible. The inverse satisfies the following properties.
(i) 7' HY(Q) — H(RQ) is linear and bounded (from the inverse operator theorem, FA)

(ii) The operator TL_‘lL2 : L?(Q) — L%(Q) defined via

e (F) = T () ) € HY(Q) € LP(Q), (2.11)

is compact. This follows from the fact that the operator L?(Q) — HE(Q) defined via
TN, Jr2(0)) € HZ(9) is bounded and the injection I: Hg(Q) — L?*(Q) is compact
(use weak compactness and Rellich, see FA). The compactness of TL*&Q will be crucial to
prove existence results.

The operator Tr. We define

Tp: HY(Q) — HY(Q)
u 0|—> 17, (u) ;O: O~ 1(Ty (u)), (2.12)
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where ®: H}(Q) — H1(Q) is the standard bijective isometry ®(u) := (u, ')H&(Q)- Then 77, (u)
is the unique vector uy, € H} () such that

P(ur) = (ur, ) i) = To(u) = Brlu, .

Since ® is an isometry Ty, is linear and bounded with |77 (u Mop = 1T (w)||op < . Moreover, T,
is invertible iff 77, is invertible. In this case 7} ' is linear and bounded with |77 |lop = |7 v l|op-

Adjoint operator. The adjoint of T}, : H(Q) — HE(Q) is the unique linear bounded operator
T£: H}(Q) — HE(Q) satisfying

(Tru, V) i) = (U,TzU)Hl(Q) Vu,v € H} ().

If Ty, is invertible, then the adjoint of T I L2 : L2(Q) — L?(Q) is the unique linear bounded

operator TL‘LT2 L?(92) — L?(Q) satisfying

(T[|1sz, 920 = (f, L_|1LT279)L2(Q) Vf.g € L*(Q).

The following lemma summarizes important properties of these adjoints.

Lemma 2.9.
Consider the formal differential operator Lu = —div (aDu) +b- Du+ cu with a;j,b;,c € L*>(Q).
The following holds.

(i) TT = Ty« with
L*v := —div (aDv) —b- Dv + (¢ — divb).

(ii) Br[u,v] = Br«[v,u] Yu,v € H} ().

(11i) Assume L is uniformly elliptic. Then L* is uniformly elliptic. Moreover the parameters
a, B, from the energy estimate are the same for L and L*.

(iv) Assume Tpr: HY(Q) — H~1(Q) is invertible and consider TL_1|L2: L3(Q)) — L*(Q). Then
the adjoint operator on L*(Q) satisfies

1t _

Trjpe = TL*|L2

Remark 1. For b e L>®(Q), divb is not well defined. Hence vdiv b is a formal expression, that
makes sense only after integrating by parts, just as in the case of div (aDu).

Remark 2. While a function u € H} () is a weak solution of Lu = fo — Zj 0 fj with ujg =0

! Brlu,v] = (f,v) -1 Vo € HY (), (2.13)
a function v € H} () is a weak solution of L*v = fy — >-;0;f; with vjg = 0 if

Br«[v,u] = Br[u,v] = (f,u)g-1p33 Yu € H)(Q). (2.14)

[5: 23.10.2023]

[6: 26.10.2023]

25 [FEBRUARY 12, 2024]



Proof.
(7) 4+ (4¢) By construction By [u,v] = (TLU,U)H(%(Q) = (u,Tzv)Hé(Q) = (T£”7U)H3(Q)- It is then
enough to find L* such that

Bp[v,u] = (Tpv,u) gy () = (T}, Wi = Bulu,v]  Vu,v € HY(Q).
Performing integration by parts and using a’ = a, we get

BL[u,v]:/ [aDu - Dv + (b- Du + cu)v] dz
Q

_ /Q (aDv) - Du+ (—div (bv) + cv)u] da

= / u [—div (aDv) — div (bv) 4+ cv] dx = / uL*vdx,
Q Q

where the last two integrals make sense only when aDv,bv € H((Q).
(737) We have
| Br[v, ul| = [B[u, ]| < allull gy [0l ()

Bre[u,u] +9|ull T2 () = Brlu,u] +9l|ullZzq) = Blulli o
@ = @ @

(iv) Our goal is to show that

(Ta}ﬂf’ g)L2 (fv |L29)L2( ) vag € LQ(Q)

Note that
(a) Uf = T*|1L?f satisfies ~ Brluy, | = (f,")r2(q)
(b) uy = TL}‘ng satisfies  Bp«[ug, | = BL[-,uy] = (9,")12(0)-
We argue
(Ty b f.9) ) = (ur 912 = (9.up) sz 2 Bulugu) @ (Fuf) 2oy = (£.T5) 29).
This concludes the proof. O

Theorem 2.10 (second existence theorem for weak solutions).
Consider the formal differential operator Lu = —div (aDu) +b- Du+ cu with a;;,bj,c € L*(Q),
and assume a is uniformly elliptic, i.e. a(x) > 01d, for a.e. x € Q with 6 > 0.

Then exactly one of the following holds.

(o) Ty, is invertible i.e. Yf € L2(Q)41 ) ~ 3 u € HL(Q) weak solution of the non-homogeneous

problem
(%) = { Lu= fo—=232;0;f; inQ
ujgn =0

(B) ker Ty, # {0} i.e. 3 at least one u € HE(Q), u # 0, weak solution of the homogeneous

problem
() '_{ Lu=0 1inQ
’ U|3Q =0
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This is called the Fredholm alternative or Fredholm dychotomy.

Moreover, remember that

ker T, := {u € H ()| u weak solution of Lu =0 in Q, uja0 = 0},
ker Tr+ := {u € H}(Q)|u weak solution of L*u =0 in Q, ujpo = 0}.

Then, if (B) holds, we have dimker T, = dimker Tr« < oo and (x)¢ has a weak solution iff
<f, U)Hleé =0 Yu € ker TL* .

Proof.
Case 1: v = 0. In this case we can apply Lax-Milgram to show that 77, is invertible, i.e. we are
in case ().

Case 2: v > 0.
u € H&(Q) is a weak solution of () iff Br[u, ] = (f, '>H—1H37 iff

Tpqyd (w) = Briyid[u, ] = (fs ) g2 + (s ) r2(0) = (9us Y i-1m1

where g, = (fo + yu, f1,..., fa) € L*(Q)%*!. By Theorem Tr 414 is invertible, hence
u € Hj(Q) is a weak solution of («) iff u satisfies the fixed-point equation

U= TL_iyld ((gu, ) = TL_ind ((f, ) + ’YTL_ind ((us)r2() = G + Ku

where we defined Gy := TLjyId ((f,), and K = Ky, : L*(2) — L?() is the operator defined
by

K(u) = KL,’V (u) = /YT[T-i}—yId ((U, )LQ(Q)) = /yT[T—I{yId |L2 (u)
Note that, since K(L?*(Q)) C H}(2) and Gf € H(Q) we have

u € L*(Q) solution of u = G, + Ku = u € Hy(Q).

Then
u weak solution of (x); <« (Id — K)u= Gy
u weak solution of (xx) < (Id — K)u=0.
The second line implies that
ker Ty, = ker(Id — K) = ker(Id — K, ), ker Tp» = ker(Id — Kp« ). (2.15)

Moreover, using Lemma (iv), we have
—1 -1
Kiery =I5 o) = W Y o)t = KL, = KT

Hence
ker Tr« = ker(Id — K ,) = ker(Id — KT). (2.16)

The operator K is compact, hence Id — K is a Fredholm operator of index zero (see FA or
Appendix in Evans) and therefore exactly one of the following hold

(a) Id — K is invertible (hence in particular (Id — K)~! is linear and bounded)
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(b) ker(Id — K) # {0} and Ran (Id — K) = Ran (Id — K) C L(Q).

If (a) holds, then Vf € L*(Q)%1/ ~ there is a unique weak solution u := (Id — K)~1G; of (¥,
hence we are in case («).

If (b) holds, then there is at least one function u € ker(Id — K), u # 0. Since u is also a weak
solution of (xx) we are in case (3).

Assume now () holds. Since Id — K is a Fredholm operator of index zero we have (see Appendix
in Evans)

(i) dimker(Id — K) < oo,
(ii) (ker(Id — KT))" = Ran (Id — K),
(iii) dimker(Id — KT) = dimker(Id — K).
() + (i4i) together with and imply dimker T, = dimker Ty« < oo.

Finally, let f € L*(Q)%*!, f # 0. Our goal is to show that u is a weak solution of (%) g iff
<f, ’U)H—lHé =0 Vv € ker TL*.

Indeed, for each v € ker T+, we have
(frv)g-11 = Bryya [Gy,v] = BL[Gg,v] + (G, v) 120
= Br+[v,G¢|l +v(Gf,v)2(0)
where in the first equality we used the definition of Gy. In particular, for v € ker T+ we have
Tr+(v) = Br«[v,-] =0, hence
(frv) g1y =7(Gr,0) 20 Vo € ker T (2.17)

We will use this identity to prove the two implications.
(=) Assume u is a weak solution of (x);.

Then (Id — K)u = Gy and hence G € Ran (Id — K) = (ker(Id — K1))™ = (N*)*. Hence
(Gf,’l))LZ(Q) =0 Vv € ker T+,

abd the result follows from (2.17).
(<) Assume (f,v)y-1p3 =0 Vv € ker Tp+. Then, using (2.17) and v > 0

0= (Gf, U)LQ(Q) Vv € ker T+,

and hence G € (ker T+)* = Ran (Id — K). Therefore, there exists at least one u € H}(£2) such
that (Id — K)u = Gy, i.e. u is a weak solution of (x);.
O

Remark 1 Assume (/) holds, i.e. N # {0}.

o Let v e N,v#0.If uis a weak solution of () then u + Av is also a weak solution, for
all A € R. Hence the problem (x)y has either no weak solution or infinitely many of them.

e There exists at least one f € L?(Q)9*! such that (x) 7 has no weak solution. Indeed
suppose a solution exists for all f € L*(Q)%*!, and let v € N*. Tt holds

(fio)g-1gy =0 VfeLX(Q)™!

ie. T(v) =0VT € H'(Q). This implies (u,v)p1q) = 0 Yu € Hy() and hence v = 0.
It follows N* = {0} and hence, since dim N* = dim N, N = {0} which contradicts the
assumption we are in case ().
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Remark 2 If u # 0 is a weak solution of Lu = 0 in Q, ujpg = 0, then u can be seen as
eigenvector of L for the eigenvalue zero. We will make this precise in the next subsection.

[6: 26.10.2023]
[7:30.10.2023]

2.2.3 Spectrum of L and third existence theorem

Remember (FA): let X be a complex Banach space and T € £(X). The spectrum of 7" is the set
o(T) :={X € C|T — A\Id not invertible }
We distinguish three types of spectrum:

op(T) :={ X € C| ker(T'— AId ) # {0}}

0o(T) :={X € C| ker(T' — M\Id) = {0}, Ran (T — AId) C Ran (T — A\Id) = X}

or(T) :={\ € C| ker(T — \Id) = {0}, Ran (T — AIld) € X}
In our case we are only interested in real valued weak solutions of Lu = fy — Zj 0;f; where
u = —div (aDu) + b - Du + cu.
Set A € R. A function u € H}(Q2) is a weak solution of the formal PDE Lu = Au, with b.c.
ujpn = 0, iff Brlu, | = Ay, )2 iff ker T _x1q # {0}.
Assume L is uniformly elliptic. Then L — AId is also uniformly elliptic and, by Fredholm

alternative, we have: ker Ty _ g # {0} < T1_a1q is not invertible.
This motivates the following definition.

Definition 2.11 (real spectrum of L). Consider the formal differential operator Lu = —div (aDu)+
b- Du + cu with a;j,bj,c € L>(Q), and L uniformly elliptic.

The real spectrum of L is the set

Y(L) :={X € R|Tr_x1a not invertible }
={AeR| kerTr_xia # {0}} = {) € R| X is an eigenvalue of L}.

Remark Note that Ty, € L(Hg(®)) but (L) # {\ € R| T}, — Ald not invertible }. Indeed
A € X(L) iff Tp_xiq is not invertible iff 77 _yiq is not invertible, but 77 _xiq # Tr — AId..
To see this note that

®(Tp-aa () = Tr-xia (u) = Brlu, ]+ Au, )2 # Brlu, ]+ Au, ) g = (T (u) — Au).

Theorem 2.12 (third existence theorem for weak solutions). Consider the formal differential
operator Lu = —div (aDu) + b - Du + cu with a;;,bj,c € L>(Q), and L uniformly elliptic. Let
a, 8,7 be the constants from the energy bounds.

Let (L) C R be the real spectrum of L. The following hold.
(1) X(L) C (=7,0)
(i) (L) is finite or countable.

(iii) If ¥ is infinite, then ¥ = {\}32, with —y < X\, < A1 VE > 1 and limy_,0 Ay = 00.
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Proof.
(i) By the first existence theorem the operator T ,1q4 is invertible Vi > «, hence for all
A < —. It follows ¥ C (—~, ).

(ii) + (i7i) We assume now A+ > 0. A € ¥ & A is a real eigenvalue < Ju € H}(Q), u # 0,
weak solution of Lu = Au, ujgq = 0 < Ju € Hi(Q), u # 0, such that By [u,v] = A(u,v)2(q)
Yo € H}(Q) & Ju € HY(Q), u # 0, such that

Bpy1a [u,v] = Brlu, v] +v(u, v) 12(0) = (A +7) (4, v) 12(q) Vv € Hy(9).

Since T, 414 is invertible (true by Theorem this holds iff Ju #£ 0 solution of the fixed point
equation

w= A+ NT L (()12).

We define K: L*(Q) — L?(Q2) via
K(f) =T Ly ((F)22). (2.18)

Note that K is compact and K(L?*(Q2)) C H}(2). Therefore, A € (—7, 00) is a real eiganvalue iff

Ju € L*(Q) u # 0 solution of
1

Ku=——u
A+

Y

i.e. (A\+v)~!is an eigenvalue for the operator K.

We extend K to the operator K¢ € L(L?(£%;C)) defined via K¢(u + iv) := K(u) + iK(v),
Vu,v € L*(9).

Using K¢(u + iv) = K°(u + iv) we have

A€ op(K)NR < Juc LA(Q),u # 0 st Ku = \u,

hence
rex(l) <

€ K)nR\ {0}. 2.19
o K NR (0) (2.19)
Since K is compact, K¢ is compact and therefore (see lecture notes in FA): o(K°€) \ {0} =
op(K°)\ {0}, o(K*) is finite or countable and the only accumulation point is zero. Moreover, for
all A € op(K°€) \ {0} we have dimker(K® — Ald) < oco. (i) and (i7i) now follow from (2.19). O

Remark 1. Both 7}, and 77}, are bounded operators, but the spectrum of L is unbounded.
This is not a contradiction. Indeed

T - B

u€HY(2),u#0 ||U||H3 u,wEH (Q),u,v#£0 ||U||H3HU||H3

- )

where in the last inequality we used the energy estimate. Assume (L) is infinite, so that
E(L) = {2y, with Ay < A1 VE > 1 and limy_yo0 A, = 00. Let uy, € HE(Q) be an eigenvector
associated to Ag. This means By [ug, v] = Ap(ug,v)12() Vv € Hg(Q). Inserting u = v = ug, in
the estimate for ||17,||,p we obtain

|72

el

| Br [, ug]|
Hukaq&

o> |Tellop > — A\l
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Note that the norm in the numerator differs from the norm in the denominator. If they where the
same, then we would get |\i| < a Vk which in turn would imply the real spectrum is bounded.
Now, we can for example normalize u; such that ||Uk||H3 = 1. It follows, using limg_,o A\ = 00,

lim |Jugl/z2 = 0.
k—o0
This means [ug||7. — 0 and || Dug||3, — 1, which is possible if uy, is strongly oscillating.

Remark 2. For each A € R\ ¥ the operator T;,_yiq: H}(Q) — H~1(Q) is invertible. Since
Tr—a is linear and bounded, the inverse 7} 'y, H~1(Q) — H(Q) is linear and bounded.
Moreover

lim T*l — o
dist (\,2(L))—0 I L—\Id l|op

(exercise)

Symmetric elliptic operators. Set b =0 i.e Lu = —div (aDu) 4 cu. Then L* = L and we
say the operator L is symmetric. The following hold:

e For L = L*, the bilinear form associated to L is symmetric
Brlu,v] = Br[v,u] Vu,v € Hi ().

As a consequence, if L is uniformly elliptic Br114 -, ] defines an inner product on H}(Q).

o If [ is uniformly elliptic we also have:

71 - K

_ (-1 P -1 _
K'=(T )= T(L+'yId)*|L2 = L L4y1d |12

L+~1d |L2

)

where we used (L +v)* = L* +~ = L + . It follows K/ = K¢ and hence o(K¢) C R.

Theorem 2.13.

Consider the formal differential operator Lu = —div (aDu) + cu where a;j,c € L>(Q).
Assume L is uniformly elliptic and v = 0 i.e. Brlu,u] > fllull3, Vu € Hj(Q).

The following hold. ’

(i) BL[-,"] defines an inner product on Hg(Q).
(ii) (L) = { M}y, with 0 < Ay < A1 V1 and limy, o0 Ay, = 00.

(i4i) 3 and o.n. basis {e,}°, of (H} (), Br) such that e, is a weak solution of Le, = Anen,
with ep90 =0, Vn > 1.

(iv) A1 > 0 is called principal eigenvalue and can be computed via the following variational
formula
Brlu,u
A = min Bprlu,u] = #
w€H (), [[ull 20y =1 we HY (Q),u0 [|ul|72(2)

Proof.
(i) follows from the symmetry of By, and the energy estimates.
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(7i) + (i4i) Since v = 0 we have K = TL‘1L2(Q) and X (L) is finite of countable with X(L) C (0, 00).

Since K¢ = K¢ we have, using the 3rd existence theorem,

o(K°) = o(K°) N R C [—7,00) = [0,00) = {0} U E(lL)

Moreover ker K¢ = ker K = {0} and hence, using the spectral theorem for compact self-adjoint
operators, there exists an o.n. basis {e,}>; of L?(2) such that Ke, = ien where A\, € 3(L)
for all n > 1. From dimker(K®¢ — \,,;'Id) < oo Vn it follows that ¥(L) is infinite and hence (i1)
holds.

It remains to show that {e,}2%, is also an o.n. basis for (H}(?), Br). From Ke, = ien it

follows that e, € Hj(Q) satisfies Br[en, ] = An(en, ) 12(q) and hence

By, [enu em] = )\n(erw 6m)LQ(Q) = )\nénm

_1
Therefore {\, %€, }2°; is an o.n. family in (Hg(Q), Br). To see it is also a basis note that
o0
Llu, en) Z (u, er)r2Brlek, en] = An(u, )12,
k=1

hence
Brlu,en] =0Yn = (u,en)2=0Vn = u=0,

where in the last step we used that {e,,}°2 is basis for L(Q). O

2.3 Weak solutions in unbounded domains

In this section we inquire if the above results remains valid in unbounded domain = R?. The
bilinear form associated to L becomes

By: HYRY) x HY(RY) - R

(u,v) = Blu,v] := [palaDu - Dv + (b Du + cu)v] dz, (2:20)

where we used H'(RY) = H}(R?). The mapping of H!(R%)* into L?(R?)4*! given by Thm
works also in infinite domain. Given f € L?(R%)¥+1 a function u € H'(R?) is a weak solution

of Lu = f() - Zj 8jfj if
By, [ ] <f, > ~1H1(Rd) Yu € Hl(Rd).

The energy etimates work also for = R? (exercise), but the constant v is generally worse.
Indeed while for L = —A on bounded domain we have v = 0 using Poincaré inequality, this
does not hold on R?. In this last case we argue

Bprlu,u] = HDUH%%W) = HUH%I(W) - ”UHQL2(Rd)7

hence we need v = 1. Since the energy estimates work, also the first existence theorem holds.
On the contrary, the second existence theorem does not hold in general, while the injection
I: HY(R?) — L?(R?) is not compact.

To recover compactness, we can modify the regularity of the coefficients in L. An important
example is the Schrodinger operator, constructed as follows.
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Consider V: R? — R a measurable function and assume V is bounded below i.e. V(z) > C
Va € R? for some constant C' € R. The formal differential operator Hu := —Au 4 Vu is the
Schrodinger operator with multiplicative potential V. The bilinear map

(u,0) g1, 2= (U, V) g1 (ray +/ (V-C)uvdx
% Rd
is well defined on
HY = {u e H'RY| VV — Cu € L*(RY)}.
The pair (Hy, (,) HL ) is a real Hilbert space (exercise). A function u € H{, is a weak solution of
Hu = fo - Zj 8jfj iff

(Du, Dv) 12 (ray —i—/ Vuvdx = Bylu,v] = (f,v) Yo € Hp.
Rd

Again, the energy estimates and the first existence theorem hold. Assume now lim|,|_,, V(z) =

00. Then the injection I: H{, — L*(R%) is compact and the second and third existence theorem

hold (see exercise sheet).

[7:30.10.2023]
[8: 2.11.2023]

2.4 Regularity theory
2.4.1 Preliminary definitions and estimates

Assume Q C R? open and bounded. We consider the formal differential operator Lu =
—div (aDu) 4+ b - Du + cu with a;;,bj,¢ € L>(Q), and a uniformly elliptic, i.e. a(z) > 60Id,
for a.e. x € Q with 0 > 0.

Assume u € Hi () is a weak solution of Lu = f in Q with upo =0and f € L?(2). Depending
on the regularity of a,b,c and f we will show that u may be more regular than just H'. The
key idea is to bound norms for higher order derivatives by norms of lower order ones.

Example 1.  Consider L = —A, f € L*(), and assume u € H}(Q) is a weak solution of
Lu = f in Q with ujpq = 0. The following statements hold.

(i) If in addition u € C3(Q), then —Au = f holds pointwise a.e. in Q and
I1D*ul| 20y = [|Aul|r2() = [1f [l 22(0)-
(ii) If in addition u € C2(2) and f € H(), then —Ad;ju = 9;f holds pointwise a.e. in
Vi=1,...,dand
1D?0;ull 120y = [Adullr2(0) = 10; fll L2(0)-

Proof. (i) Since u is a weak solution it holds

/Du-Dvdx:/fvdx Yo e C°(2).
Q Q
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Integrating by parts (possible since u € C?()) we obtain [, Du-Dvdx = [(—Au)vdz, (there
are no boundary contributions since v and u have compact support). Hence

/(—Au—f)vd:n:(] Yo e C° (),
Q

which implies —Au — f = 0 pointwise a.e. in 2. Moreover

HDzU”%Z)(Q) = Z ”&ajuH%Q(Q) = Z/ﬂaiaju 9;0ju dx
ij ij
= Z/ 0;[0ju 0;0;u] dx — Z/ Oju 0jAudr = — Z/ Oju 0;Audx
iy = Ja = Ja

2 2
= [ Au Aude = | &ulaigy = 11y
where in the second line we used that v € C3(2) and has compact support, and in the last
identity we used —Au = f pointwise a.e. in ).

(i) The argument is the same as above. This time we need u € C4(Q) to perform integration
by parts and get the identity for ||D2(9ju||L2(Q). O

Remark. Note that, for each u € HZ(Q) there is a sequence n — u, € C°(Q) such that
v — un|| 1) — 0. But this does not imply that the sequence n — D?u,, converges in L%(Q),
unless u € HZ(Q). In the following we will show that u € H}(Q) weak solution of Lu = f
implies (under certain conditions) u € H?(f2), and not u € HZ(f). That means we need to
prove Du € H'(Q2). Therefore in the following we will consider both u € H}(2) and u € H(Q).

Lemma 2.14 (preliminary estimates). Let Q C R? open and bounded. We consider the formal
differential operator Lu = —div (aDu) + b - Du + cu with a;j,b;,c € L*(Q), and L uniformly
elliptic. Assume f € L*(Q).

(i) There exists a constant C' = C(a,b,c) > 0 such that
[Dullr20) < Clllfll2@) + llull2 @) (2.21)

holds Yu € H () weak solution of Lu = f in Q with upo =0, i.e. Brlu,v] = (f,v)r2q
Vv € HE(Q).

(ii) For all W open with W CC Q (i.e. W is compact and W C ) There exists a constant
C =C(a,b,c, W) > 0 such that

[1Dull 2wy < CllIfll2@) + lull2@)] (2.22)

holds Yu € H'()) weak solution of Lu = f in Q (no boundary condition) i.e Bp[u,v] =
(f,v)r2() Yo € Hy(Q).

Proof.
(i) Assume u € Hg(€2) weak solution of Lu = f in Q with ujgq = 0. Then Bp[u,v] = (fs0) 20
Vv € H}(Q). Replacing v = u and using the energy bound we get

BlIDul2(0y < Bllulllyy gy < Brlu,u] +lull3zq) = (£.10) g2y + 1lull320)
< ||f||Lz<m||u||L2<m 1l 20
< Ol + lull 2oy
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(i1) Assume u € H'(Q) weak solution of Lu = f in Q. This means Brlu,v] = (f,v)12(q)
Vv € H} (). Note that now we cannot replace v = u since u ¢ Hg (). The solution is to add a
cut-off function as follows.

Let W be open with W CC €. Then there exists a function ¢ € C°(Q2) such that
0<¢<1, qw=1

This means in particular that W C supp (. We define v := ¢?u. Then v € H& (©2) and vy = wu,
hence

| Dull 2wy = [[CDul| 20wy < ICDu| 20y (2.23)

so we need to find a bound for [|(Dul|z2(q). Since u is a weak solution and v € HE(Q) it holds

(f: )20y = Br[u, ¢u] = /

(aDu) - D(C?u) dz + / (b- Du + cu)C*u dz,
Q Q

where
/(aDu) -D(C%u) dx = /(aCDu) - (CDu)dx + 2/(aCDu) - DCu dzx
Q Q Q
By uniform ellipticity we argue, using also 0 < <1,
01Dl o) < [ (aDw) - (Du)da

= Br[u, ¢%u] —/Q(b'Du+cu)42ud:U—2/Qu(DC-a§Du) dx

= (f, C2U)L2(Q) — /Q(b - ¢(Du + cCu)Cudx — 2/Qu(DC -a¢Du) dx

< fllz2@lluliz2 ) + 10l @) I¢Dull 2 @ el L2y + el oo @ llul 72 g
+ 2[[D¢all oo (o) llull L2 () 1€ Dul| 2 ()
= C1||¢CDull 20 lull 2(0) + 1 fll L2 llwll p2 ) + HCHLOOHUH%%Q)

where we defined [|b]|.0c(q) 1= >_; [|bjl| L= () and |[DCal[z(q) :== >_; (DCa);l| 1= (q), and
Cy :=2||DCal oo () + 16l Loo ()

By Young’s inequality || Dul|p2(q)l|ull r2() < %HCDUH%Q(Q)JrQ—lEHUH%Q(Q), for any € > 0. Choosing
now ¢ < #/C} we obtain

1 1
0< i”CDuH%Q(Q) < Cl%““”%%ﬁ)"‘”fHL?(Q)Hu|’L2(Q)+HCHL°°HUH%%Q) < CQ(HfHL2(Q)+HuHL2(Q))2
Inserting this in (2.23]), we conclude the proof. O

Our goal now is to extend the arguments in Example 1 to u € H&. Since now D?u is not defined
we replace it by finite difference quotients.

Definition 2.15. Let u: Q — R be a function on Q C R? open. For e > 0, consider the set
Q. = {z € Q| dist (z,00) > &}.

Note that Q. = @ if € > diam(Q).

35 [FEBRUARY 12, 2024]



(i) The i—th difference quotient of size h € R, h # 0 is the map

Dlhu QW — R

o Dhu(y) 1= ezthedu@ o0 = Lo d

z R

(ii) The difference quotient of size h is the vector DMu := (D}, ... D).

Note that Dlhu is well defined on 2. Indeed for all x € Q| it holds = + he; € Q and hence
u(z + he;) is well defined.

Lemma 2.16 (elementary properties of the difference quotient).
(i) u € CHQ) = limy_,o DPu(z) = du(x) Vr € Q.
(i) u € LP(Q) = Dhu € LP(Qp) and

2
||D£ZU||LP(QW) < EHUHLP(Q)-

(iii) DI (uyug)(x) = Dy (x) ua(z) + i (z + he;) Dius(z).

(iv) Assume u € LP(Q2) and v € L1(Q), with % + % =1 and suppv is compact. Then
/ v(z) Du(z)de = —/ D; () u(z) da.
Q Q

(v) The discrete Laplace operator Apu(x) = Zgzl D; "Dl satisfies

u(z + he;) + u(x — he;) — 2u(x)
Apu(z) == Z ) 2 (
i=1
and is well defined on Sy,

Proof. Exercise

Theorem 2.17 (connection between discrete and weak derivative). Let © C RY open.

(i) Set 1 <p < oo, u € WHP(Q), and V open with V.CC Q. It holds
1
ID"ul| Lo vy < | Dl 1o (q) V0 < |h| < idiSt (V,00).

(ii) Set 1 < p < oo, u € LP(Q), and V open with V- CC Q. Assume

sup HDhuHLp(V) =C < o0.
0<|h|< 1dist (V,09)

Then w € WHP(V) and || Dul| vy < C.
Proof. Exercise sheet. O

Note that for p = 1 (ii) does not hold (see Exercise sheet).
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2.4.2 Interior regularity

Theorem 2.18 (H? interior regularity). Assume Q C R? is open and bounded. We consider
the formal differential operator Lu = —div (aDu) + b - Du + cu with a;j,bj,¢ € L>(2), and L
uniformly elliptic.

Assume in addition a € C1(Q), f € L*(Q) and v € H'(Q) is a weak solution of Lu = f in
(no boundary condition), i.e. Brlu,v] = (f,v)12@) Yo € Hy(Q).

Then u € Hfoc(ﬂ) and YV open with V. CC Q, there is a constant C = C(2,V,a,b,c) > 0 such
that

HU”H2(V) <C [HfHLZ(Q) + ||U”L2(Q)] (2.24)
Remark 1. Since u € H(Q2) and a € C'(2), the equation Lu = f holds pointwise a.e. in Q.
Remark 2. The result above does not improve if we use u € HE(Q) instead of u € HY(Q),

unless we require some boundary regularity (later).

Proof of Theorem[2.18, We replace Au (which is not well-defined) with Apu = % | D7 Dl
Since u € H*(Q) it holds Apu € HY(V) VV open with V CC Q, and dist (V,09) > |h|.

Let us now fix V open with V' CC . We upgrade Apu to a function in H&(Q) by adding a
cut-off function as in Lemma [2.14] Precisely, there exists a W open with V CC W CC Q and a
function ¢ € CZ°(W) such that 0 < ¢ <1 and ¢y = 1. We define

d
vi=—Y DD,
=1

With this definition v € H}(Q) VO < |h| < ho := 1dist (W, 09).
Claim. If u is a weak solution of Lu = f, then 4C' > 0 such that
d
Z ||CD?3W”%2(Q) < C (Iflr2@) + lullz2@))® V0 < |h| < ho.
ik=1
We will prove this Claim below.

Consequence. Using (jy = 1 we get

sup || D}'Ogull 2y = sup  [[CDFOullrzy < sup  [[CD]Okull 20
0<|h|<ho 0<|h|<ho 0<|h|<ho

< C [ fll2) + llullze@) ki
Therefore, by Theorem Opu € HY(V) Yk and

10i0kull2(vy < C I fll2) + llull 2o)]-
It follows that u € H%(V) and

I1D%ul| 20y < Ch [I1f1lr2(e) + Il 2@,
for some constant C7 > 0. By Lemma (71) we also know that

| Dullr2vy < Co [[| fllz2(0) + 1wl 2 (o)l

37 [FEBRUARY 12, 2024]



for some constant C7 > 0. We conclude

lull 2vy < C3 [I[ fllz2(0) + [wllL2@)ls

for some constant C3 > 0. It remains to prove the Claim.
O

[8: 2.11.2023]
[9: 06.11.2023]

Proof of the Claim. Since u is a weak solution of Lu = f in Q and v € H}(2) we have By [u,v] =
(f,v)r2(q)- This can be reformulated as

/(aDu) -Dvdz = (fu,v)12(0), with fu:=f—(b- Du+ cu).
Q

Inserting the explicit for of v we get

/Q(aDu) -Dvdr = — Z/Qazu aij 8j(D,;h(C2D2u)) dr = — Z /Q Oiu ajj D;h(ﬁj(CzDZu)) dx

ikl ikl
= Z/ DZ(@ZU aij) 83(C2D,’§u) d.%’,
Q

ikl

where in the second line we used supp( C W, |h| < ho = 1dist (W,09) and Lemma (1v).
Set now
g1 ‘= DZ((%U az-j), go ‘= (%(CQDZU)

By Lemma (7i1), we have
g1(z) = Diagj(z) (Bu(z)) + aij(@ + hey) (DRdyu(z)),

where the first summand contains only a first order derivative in u, while the second summand
has a second order “derivative” in u (actually one weak and one finite derivative). In the same
way

g2 = 200;¢ (Dfw) + (*(DRoju),

where again the first summand contains only a first order “derivative” in u (actually a finite
difference) and the second summand has a second order “derivative” in u (one weak and one
finite derivative). Therefore

9192 = (CDOyu) aij(- + hex) ((Dydju)
+ 2¢0;C (DZU) aij(- + hey) (D,’gﬁju) + (Cou) DZ(IU (CD,}jﬁju)
+2¢0i¢ (Dju) Djaij (95u),
where in the first line we have two second order derivatives (weak or discrete), in the second line

one first and one second order derivative, and in the third line only first order derivatives in u.
We reorganize the integrals above as follows

/((ZDU) -Dvdr = Ay + A1 + Ao,
Q
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where As (resp. Aj, Ap) is the sum of all terms with two (resp. one, zero) second order
derivatives in u. Precisely

Ay = Z / -+ hey)(CDRO)) - (CDfOu) da
A _Z / 2Dku +hek)(CDk8u))~8C) + ((Dﬁa)gau)-(CDZau)] dz
A=Y / 2(¢ D) ((DZa)(C&u)~8C,> dz.

L Q

Putting all this together we get
Ag = (fu,v)r2(0) — Ao — Ax,

where now the left hand side contains two second order derivatives, and the right hand-side at
most one. We are now ready to prove the Claim.

Set X := ZJ w1 ICDRO; uHL2 . Our goal is to prove X < C[|| fll p2q)+lull 12()]* YO < || < hq.
By uniform ellipticity we have

Ay > 0 / (CDroju)dr = 0X,
ik 78

hence
0X < Ay = (fu,v)r2(0) — Ao — A1 < |(fu, v) 12| + Ao + A1l (2.25)

We bound the three terms separately.
Bound on |Ag|. There is a constant C; > 0 independent of u such that

40| < C1(If | 2@ + lull L2y ) (2.26)

To prove this we argue, using supp{ C W and 0 < (<1,

|4o| < ZQHDZC‘U”L‘X’(W) 1051 ooy D1 ull 2y 105wl r2 (2.27)
kij

e Since u € H'(Q) is a weak solution of Lu = f and W cC Q, by Lemma (i) we have
IDull 2wy < Cwe (I1fllz20) + Ilull2()) (2.28)

for some constant Cy > 0.

e To obtain the same bound on HDZU”LQ(W) we argue in two steps. Set W' := Bay,(W). Since
|h| < ho

1
By (W) cc W' ccQ, and |h| < hg = idist (W, 0W").
Hence, by Theorem [2.17] (i),
HD?UHLQ(W) < || Dul| 2wy < CWW’(”f”L?(Q) + Hu||L2(Q))- (2.29)

where in the second inequality we applied again Lemma m (ii).
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e Since a € CH(W’) N L>=(Q) we have

sup HDZhaHLoo(W) < sup |Da(x)| < oo, (2.30)
0<|h|<ho zeW’

and
la(- + hei)|l Loowy < llall Lo (q)- (2.31)

Inserting all these estimates in ([2.27]) we obtain (2.26]).

Bound on |A;|. There is a constant Cy > 0 independent of u such that, using also Young’s
inequality,

d

C g C d2 2

A1 < Co Y NIEDROsull 2y (I 1lz2co) + lullz2ie) < %X + 225 (11l 2 + NlullL2)) "
k=1

(2.32)
for all € > 0. To prove this we argue, using again supp( C W and 0 < { <1,

A1 < 2flaij (- + hew)l| oo 10iC oo wy 1 DRull 2w IS DR Osull L2y

+ > DR ai; | oo wy 105wl 2wy ICDROull L2 gy
kij

The result follows applying (2.28)), (2.29),(2.30) and (2.31]).

Bound on |(fu,v)r2(q)|- There are constants C3,Cy > 0 independent of u such that, using also
Young’s inequality,

d

2
|(fus ) r2(ey| < C3(1f 220y + lullrzg))” + Ca > 1€DROsull 2y (I1f 2y + lullz2()
jk=1
Cye Cyd? 2
< 5 X+ O+ ) (1 lz@ + lull ) (2:33)

for all € > 0. To prove this we argue, using again supp ( C W,

|(fu, v) 2l = [(fu, V) L2y | < N full L2y 10l 2 oy (2.34)
We bound the last two terms separately.

e We have, using ([2.28)),
| full 2wy < 1 fllz2e) + [0l oo (@) 1 Dull 2wy + llellLoo @ lull 2 ) < C<||f||L2(Q) + ||UHL2(Q)),

for some constant C' > 0.

e Finally, setting wy := CQDZu
W20y = DI " DRulZa gy = D 1D w22y
k k
Since wy, € H(2), suppwy, C W and |h| < Sdist (W, 0€2), we have
105 will 2wy < 1|Okwrll2() = 10kwill 2wy = 10k(C D) || 2wy
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Hence

[oll 2wy < Z 10 D) 2wy < [H%@kCDZUIIH(W) + 162 D oku) | 2w
k

< Z [’28k€||L°°(Q)HDkUHL2(W) + HCDZakU)HLZ(Q)}
k

< S EDkawllzz@) + € (I lz2ey + lull 2@ )
k

where in the last line we used again (2.29) and C’ > 0 is some constant. The result now follows
inserting these bounds in ([2.34)).

Final bound on X. Putting all the above estimates together we obtain

Cy C Cod? Cyd? 2
0X < (5 + 5 )X + (Cr+ o + G+ ) (Ifllzzce) + lull 2o )
The result follows choosing € > 0 small enough. This completes the proof of the Claim. O

[9: 06.11.2023]
[10: 09.11.2023]

Higher regularity Let us go back to Example 1, i.e. L =—A, u € C*(9) is a weak solution
of —Au = f in Q. We have seen that, if f € L?(Q2), then —Au = f holds pointwise a.e. in
and HD2uHL2(Q = || fllz2()- If in addition f € C*(9Q), then —Ad;u = 8;f holds pointwise a.e.
in Q and || D*9; iullzz) = 105 fllz2 @)

If feC™(), and u € CX(N) is a strong solution of —Au = f we can derive both terms and
obtain —Adfu = 0f f, Vla| < m. Then w = Jfu is a weak solution of —Aw = 97 f in Q and
hence

|1D?05ul| 2(q) = |D*w| r20) = 105 fll12(q)-

In the general case we consider Lu = f where Lu = —div (aDu) +b- Du+cu, a;;,bj,c € L>=(Q),

and f € L*(Q).

If a € CY(Q) and v € H'(Q) is a weak solution of Lu = f we know, by Theorem that
€ H? (Q), Lu = f holds pointwise a.e., and holds.

loc

Assume now in addition a € C%(2), b,c € C1(Q), f € H'(Q). Then formally
9;f = 0j(Lu) = L(9ju) + R;(u),
where the error term R;(u) is defined as
Rj(u) := —div ((0ja)Du) + (9;b) - Du + (9jc)u. (2.35)
Hence w := d;u is a formal solution of
Lw = 8, — Ry(u) = fa. (2.36)

Note that, since u € H?Z_(2) we have w = d;u € H. (). Moreover, since a € C*(Q), and

b,c € CY(Q) we have D%a, Da, Da, Dc € L3%.(Q) and hence the function R;(u) is well defined
and R;j(u) € L2 ().
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On the other hand L(0;u) is not well defined, unless v admits third order weak derivatives. We
will show below that d;u is a local weak solution of the formal PDE

L(9ju) = fu,
and hence by Theorem Oju € HE.(Q), ie. u € H}

loc
theorem.

(©2). This is the content of the next

Theorem 2.19 (higher interior regularity).

Assume Q C R is open and bounded. We consider the formal uniformly elliptic differential
operator Lu = —div (aDu) + b - Du + cu with a;;,bj,c € L>(Q).

Assume in addition a € C"™(Q), b,c € C™(Q), f € H™(Q) and v € H'(Q) is a weak solution
of Lu = f in Q (no boundary condition), i.e. Brlu,v] = (f,v)2q) Vv € Hj().

Then u € Hfotm(Q) and YV open with V. CC §, there is a constant C = C(Q,V,a,b,c) > 0 such
that
ull g2emy < C [IIflam@) + lullr2))

Proof. We argue by induction on m.

For m = 0 we have a € C*(Q) N L>®(Q), b,c € C°(Q) N L>(Q) f € L*(Q) and the result follows
from Theorem 218

We prove now the first induction step: if the statement holds for m = 0, then the statement
holds also for m = 1. Assume a € C?(2) N L>®(Q), b,c € C1(Q) N L2(Q), f € H(R). Our goal
is to show that u € H} ().

e Since u € H'(Q) is a weak solution of Lu = f, by the case m = 0 we know that v € Hf, (1),
Lu = f holds pointwise a.e. in 2, and VV open with V' CC (), there is a constant C' =
C(2,V,a,b,c) > 0 such that

lull g2ivy < C (1 f ez + lull 2] - (2.37)

Setting R;(u) as in (2.35]) above, we will show that Oju is a local weak solution of the formal
PDE

L(dju) = 0;f — Rj(u) =: fu. (2.38)
i.e. VV open with V CC Q, d;u € H (V) (since u € HZ (2)) and

BL[aju,v] = (fuaU)LZ(V) Vo € H&(V)

Indeed for v € HE(V), there is a sequence n — v, € C°(V) such that |lv,, — UHH& — 0.
Then Br[0;u,v] = lim,_,o0 Br[0ju,v,]. Moreover, since a, b, c € C1(€2), and v, € C3(V) we can
integrate by parts as follows:

Br[0ju, v, = /

(Dvn - aDOju+ valb- DOju + cdju] ) da
|4

_ / (Do - (9j0) Du+ v [(08) - Du + @y ) da
|4
- / (D(?jvn -aDu + 0jup[b- Du + cu])dz
%
= —By[u, 0jvn] — (Rj(u),vn) 20y = —(f, 05vn) 2y — (Rj(w), vn) r2(vy = (Fus Un) £2(v)
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where in the last line we used d;v, € C°(V) = Bp[u, 0jvn] = (f, 0jvn)2(vy. Finally

BL[aju’ U] = nh_{go BL[aju7Un] = Jgrrolo(fuavn)L%V) = (fmU)LQ v

Therefore d;u is a local weak solution of L(ju) = f,.

e Since 9ju € H(Q) is a weak solution of Ld;ju = fu, in V, by the case m = 0 we know that
dju € HE (V), LOju = f, holds pointwise a.e. in V, and VW open with W CC V, there is a
constant C; = C1(V, W, a,b,c) > 0 such that

0ull sy < €1 [IFull iz + 1050l

We bound now the two terms on the right separately. Since u € H'(Q2) is a weak solution of
Lu = f in Q, by Lemma [2.14{(ii), we have

105ull 2(vy < Co [IIf1IL2@) + llull 2] -

Moreover
I full 2y < 1052 + | Dall ooy I D>l 2 (v
+ 1Dull 2y (11D all e vy + 1Dl v ) + I1Dell ooyl vy
<0 fll2@) + Cs [IIflr2@) + lull 2] < Calllfllar @) + llullz@)]

where we used a, b, ¢ € C%(V), the bound (2.37) and again Lemma|2.14{(ii). Therefore u € H3(W)
and

lull 3wy < Cs [HfHHl(Q) + ”UHLZ(Q)] .

The claim for m = 1 now follows since W is arbitrary. The general step m = m + 1 is proved
in the same way (exercise).

O]

Theorem 2.20 (infinite interior regularity). Assume Q C R? is open and bounded. We consider
the uniformly elliptic formal differential operator Lu = —div (aDu) +b- Du+ cu with a;;,bj, c €
L>®(Q).

Assume in addition a,b,c, f € C*®(Q) and v € HY(Q) is a weak solution of Lu = f in Q (no
boundary condition), i.e. Br[u,v] = (f,v)r2q) Vv € H(Q).

Then u € C*(Q) and Lu = f holds pomthse in Q.
To prove this result we will need the following generalized Sobolev inequalities.

Theorem 2.21 (generalized Sobolev inequalities). Assume Q C R? is open and bounded, with
Lipschitz boundary. Let k > 1, and v € WFP(Q). The following hold.

(i) If 1 <p< < thenue LIQ) V1 < g < p* with

and there is a constant C' = Cy, 4 1. such that
lull o) < C llullwrrq)-
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(i) If% < p, we define

v::{l_@l—m) if $¢N

any number 0 < v < 1 if%EN.

|l g —
Then for all¥V0 < <~ 3Ju € Ck_l_L’J’B(Q) and a constant C = Cp g0 > 0 such that
u=1u a.e, and
1l (2.8 ) = € Illwraey:

Note: u € C™#(Q) means u € C™(Q) and 0%u € C%P(Q) V|a| = m. Moreover

lallgme == S suplo®u(@)+ 3 [0%u]cos.

0<|a|<m TEL la|=m

Proof. We will consider only the case k = 2 for simplicity. The general case is proved in the
same way.

(i) Assume 1 < p < %. Then u, Du € WHP(Q), with p < d. By standard Sobolev inequality

Theorem [L.17 it follows . L1
u, Du € LP*(Q), — ==
p p d

and [ully1.e1 ) < C1 [Jullw2r(q). Since p < % we have p; < d, hence, again by Theorem

wr 11 1 _1_2_1
UELP2(Q)W1thIT2—H—E—§—E—Fa.nd
[ull zez (@) < C2 [lullwre ) < C1C2l[ullw2r(0)-
The statement for ¢ < p* now follows since 2 is bounded.

(7i) We distiguish three cases.
Case 1. Assume p > % and p > d. In particular this means 0 < % < 1, and hence % ¢ N and

LgJ = 0. Our goal is to show that there is a & € C17(Q) with u = @ a.e., where v = 1 — g.

Indeed, since u, Du € W'P(Q) and d < p, it follows, by standard Sobolev inequality Theorem
that u, Du € C%7(Q) with y = 1 — %. Precisely, there are functions @, 9; € C%7(£2) such
that v = @, Oju = v a.e. and

[@llcor ) < C llullwie)y,  95llcor@) < C 195ullwieq)-

It follows (excercise) that @ € C*7(Q) and ||11||0M(§) < C |lullwzr)-

[\ClIsH

Case 2. Assume d > p > 5. In particular this means % ¢ N and L%J = 1. Our goal is to show

that there is a @ € C%7(Q) with u = @ a.e., where y = 2 — %.

Indeed, since u, Du € W'P(Q) and p < d, it follows, by standard Sobolev inequality Theorem

that
u, Du € LP*(Q), i;:1_17
pr p d
and ||ully1e (o) < C1 [Jullwer(q). Since p > %l we have p; > d, hence there is a 7 € C%(Q),
with u = @ a.e and'yzl—pil:2—%, such that

[allcomq) < Cr [[ullwre @) < C1C2lullwzeq)-
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It follows (excercise) that @ € C%7(Q) and ||ﬂ”00w(§) < C ullw2r@)-

Case 3. Assume p > g and p = d. In particular this means {%J =9 =1 ¢ N Our goal is to

p
show that VO < < 1 there is a @ € C%7(Q) with @ = u a.e..

Indeed, since u, Du € Wh4(Q) and Q is bounded it follows u, Du € Wh4=5(Q) V0 < ¢ < d — 1.
By Sobolev inequality we have then
d(d —e)

u, Du € L%(Q), Qe := ——,
€

Since ¢ is arbitrarily near to zero, we obtain u, Du € L4(Q2) Vd < ¢ < co. The result now follows
again by standard Sobolev inequality, as in Case 1.

The statement for 8 < - follows since 2 is bounded.

Proof of Theorem [2.20.
Since a, b, ¢, f € C*(Q), we have a,b,c € C"™T1(Q) N L2,(Q) and f € H.(Q) Ym > 1.

Since u € H'(Q) is a weak solution of Lu = f in Q we know by Theorem u e H”(Q)
Ym > 0. Fix now xg € €. Since € is open there exists r > 0 such that B,(zg) C €. Define
V := B,(xg). Then V is open and V CC Q. Hence u € H™(V) = W™2(V) Vm > 1. There
exists mg > 0 such that 2 > % Vm > myg. Since 9V is C! it follows by generalized Sobolev
inequality Theorem M(zz) that u € Cm_l_L%J”(V) Vm > mg and hence u € C*(V). Since
xo is arbitrary u € C*°(Q). O

Remark. Note that we can repeat all the proofs above in unbounded domain 2 since we only
work locally.

[10: 09.11.2023]
[1: 13.11.2023]

2.4.3 Regularity up to the boundary

Remember that if u € LP(Q) then Dl'u € LP(Qp)) Vi=1,...d, where

Qe = {z € Q| dist (x,00) > e}, e > 0.

In the special case Q = B[ (xg) := {z € B,(z0)| #q4 > 0}, the finite difference quotients in
directions i = 1,...,d — 1 are well defined up to lower boundary of Q i.e. Diu € LP(BJ(z))

V0 < s <r—|h|,and i = 1,...,d — 1. This remark motivates the following lemma, that extends
Theorem

Lemma 2.22. Let Q = B (zg) = {z € B,(xo)|zq > 0} be the half-ball and
I' :=={z € By(z0)| xq = 0} the corresponding lower boundary.

(i) Set 1 <p < oo, u € WYP(BF(z0)) and i € {1,...,d — 1}. It holds
1
||D?U||Lp(3j(mo)) = ||amiu||Lp(B;r($0)) V0 < [h| < 5(7 —s).

(ii) Set 1 < p < oo, u € LP(B; (x9)). Assume i € {1,...,d — 1} and

h
sup || D; uHLp(B;r(xo)) =C < oo.
0<|hl<552

< C.

Then u admits a weak derivative in direction i and Haa:iuHLP(BQL(xO)) =
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Proof. Exercise (argue as in the proof of Theorem [2.17)) O

Theorem 2.23 (H? regularity up to the boundary). Assume Q C R? is open and bounded. We
consider the formal differential operator Lu = —div (aDu) +b- Du+ cu with a;;,bj,c € L>(Q),
and L uniformly elliptic.

Assume in addition 0 is C?, a € CY(Q), f € L*(Q) and u € H}(Q) is a weak solution of
Lu = f in Q with ujpg = 0.

Then u € H*(Q) and there is a constant C = C(2,a,b,c) > 0 such that

lull g2y < C [II1fl2e) + llull 2] -

Remark 1. Compared to Theorem the additional requirements are: 99 is C?, a € C*(Q)
and ujpo = 0 (i.e. u € Hj(Q)). Note that for u € Hj(Q) weak solution of Lu = f we already

know, by Lemma (z), that
[ Dullr2) < Clllfll2) + llull 2]

holds for some constant C' > 0, without requiring any boundary regularity for 2. We also know,
by Theorem that u € H2 (€2). The problem is to replace ||D2u|]L2(V) with ||D2UHL2(Q).

Remark 2. Since the boundary is C? we can flatten it locally via a coordinate change. Assume
the boundary is already flat near zop € 9 i.e. Ir > 0 such that QN B,.(zo) = B (x) = {z €
B, (x0)|xq > 0}. Let T' := {x € B,(xg)|xq = 0} be the corresponding lower boundary. Since
u € Hi(Q) we have u € H'(B;f (x0)) and Twp = 0. The main idea is to show that the boundary
condition T'ujr = 0 allows to extend the first and second derivative norm down to the lower
boundary.

Proof. As noted in remark 1 above, we already know, by Theorem that u € H? () and
the PDE Lu = f holds pointwise a.e. in 2. We argue in two steps.

Step 1. Assume Q = B[ (z0) := {z € B.(20)|xq > 0}, b,c € L®(Q), a € C*(Q) (hence in
particular a, Da € L>®(Q)), f € L*(Q), and u € H'(Q) is a weak solution of Lu = f satisfying
Tujp = 0, where I' := {z € B,(70)| 74 = 0} (i.e. u is zero on the lower boundary of €2, but not
necessarily on the upper one).

Let W be an open set such that W CC B,(zg) and define V := W N B, (x(). There exists a
constant C' = Cy 4 > 0 such that

(i) 1Dull20ry < C [ flz2) + lull 2]
(i) [|1D%ull2cvy < C [Iflez) + llull @) -
In particular this means u € H*(V) and [Jul| g2(vy < C" [ fllr2e) + llull 2] -

Proof of (i) Since u is a weak solution of Lu = f we have Br[u,v] = (f,v)r2 Yo € H}(Q).
Take ¢ € C2°(B,(z0);[0,1]) with ¢y = 1, then, since Tup = 0, it holds v := (?u € H(Q) is a
possible test function. The result follows arguing as in the proof of Lemma [2.14

Proof of (ii) Let W' be open with W CC W’ CC B(z), and set hg := ydist (W', 0B, (z0)) and
V' := W'NQ. Let now ¢ € C°(W';[0,1]), such that (- = 1 and define v := — 3¢ D;"¢2D}u.
Then argue as in the proof of Theorem [2.18]to deduce that 9;Du € L?(V) Vi =1,...,d — 1 and

10iDull 20y < C [I1f2(0) + Nlull 20 ] (2.39)

46 [FEBRUARY 12, 2024]



(cf. also Lemma above).
Finally use that Lu = f holds pointwise to argue

add(ﬁu = Lu+ Z(ajajk)aku + Z Z ajk0j0ku — b - Du — cu

ik j<d k
=f+ Z(Gjajk)aku + Z Z ajk0j0ku — b - Du — cu.
ik j<d k
Since agq > 6 > 0 we have
d—1
0l107ull L2vy < I fllz2ev) + (llDaHoo+ Hblloo> IDull 22y + lellool[ull 22y + llalloo > 10:Dul| 2.
j=1

The bound now follows from (i) and (2.39)).

Step 2. We consider now the general case.

Since 92 is C2, for all 29 € O there exists r = 7, > 0 sucht that (eventually after relabelling
and rotation of the variables)

QN Br(zo) = {z = (2, 2a) € By(wo)|za > 7(z")},
where v € C2(R4"L; R).

To flatten the boundary near xy we introduce the coordinate change

y=®(x) := (2',2q — y(2)).

Then the function ® is invertible with x = ®~!(y) = (v/,ya + 7(v')), both ® and ®~! are C?
and

(2N By (20)) = {y = (v, ya) € ®(Br(0))|ya > 0}.

Define yg := ®(x¢). The set ®(B,(x()) is open, hence Is > 0 such that Bs(yo) C ®(B,(z0)) and
in particular Bf (yo) C ®(22 N B,(xg)). We define now

U= B (yo), Vo= B:/Q(yo), I:=0oUnN 0d(Q),

U:=3o Y4B (y)), V:= @‘1(3:/2@0)), [:=0UnNoN.

e We show now that u € H?(V) holds and

lull g2y < C (1 lezwy + lull 2] -

To prove this result we translate the problem in the new coordinates y.
Since u € HJ (), we have u € H'(U) and Tupunan = 0 in the trace sense. Moreover u is a weak
solution of Lu = f in U, hence Br[u,v] = (f,v) 2@ Yv € H(U), which can be reformulated as

/Dv-(aDu) dx = /U[f—b-Du—cu] dx Yo € HY(U).
U U

We change into the y coordinates in both integrals. For any function F(z) we denote by F(y) :=
F o ®71(y) the same function in the new coordinates. The Jacobian of this coordinate change
is 1, hence

/m-(aﬁu) dy = [6[f—5'm—5ﬂ] dy  Vve H)(U). (2.40)
U U
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Since @, ®~! are C? it holds (exercise)
uw e HY(U), & ae HND),
we H'(U), Tup =0 i€ H'(U), Tup=0
we HL(U), <«  aecH, ().
Moreover u € H'! (U) is a weak solution of Lu = f in U & @ € HY(U) is a weak solution of
Li = f in U, where Lii := —div (AD) 4+ B - Dii + C, with (exercise)
A::lfi{;dlfi{;t, B::BTI)B, C:=c.

Written explicitely in components

Ay (y(2)) = Ayjr 0 B(a Zé‘ B0 (@) aij(2) 0, @5 ()

By(y(2)) = By o ¥z Zm ().

Hence we are reduced to consider @ € H'(BF (yo)) weak solution of La = f in B (yo) and
satisfying Tﬂ‘f = 0, so we are in the setting of Step 1. To apply the corresponding result we

must ensure that A € Cl(U) B,C € L>*(U), f € L*(U) and A is uniformly elliptic.
Since b,c € L®(U), and ® € C(U) we have b,é e L>(U).
Since f € L*(Q), ® € CY(U) and the Jacobian equals 1, we have HfHLQ(U) = | fllz2@

Since a € C1(2), and ® € C?(U) we have A € CI(E).
It remains to prove that A is uniformly elliptic. We compute, for any ¢ € R%,
' Aly(2))¢ = €' D () a(x) D' (2)¢ = n'a(z)n > Oln(z)|,
where n(x) := D®!(x)¢. We have (D®)~! = (D@ 1)o®, hence ¢ = (D®(z)) !n(x) = (DO~ (y(x)))n(z),

and
€] = [(D®(2)) " ()| < (D™ Y)| oo 7y In(2)] = Cln(2)].
It follows,

EAy()E = Oln(x)* > 5 0P,

a.e. in U which implies, since ® is invertible, that A is uniformly elliptic in U.

Step 1 now ensures @ € H2(V) and ]| g7y < © [HfHL2 + llall 2 } Changing coordinates
in each integral we obtain [ullg2n,| < C HuHHQ(V HuHLz vy = HuHLQ(V and || fllz2qvy =

IFdl L2(77y> from which the result follows. This completes the proof inside V.
. F1nally we show that u € H?(2) and

lull g2y < C [IIfll2@) + llull2@)] -

For each = € 9Q we construct V; := (B, 2(®(z))) as above (but this time we map the whole
ball back, not only half of it). Then V is an open neighborhood of z, and 0Q C J,csq V- By
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compactness of 0S there are N € N, z1,...,xy € 09 such that 0Q C Ujvzl Vx'j. Finally we add
an open subset Vy CC 2 such that Q = VU Ujvzl Va;, where V, := <I>*1(B:/2(Q>(:U))).

By the arguments above, we know that u € H*(V,,) Vj = 1,..., N. Moreover, u € H*(Vy), by
interior regularity, hence

N
HU||H2(Q) < HUHH?(VO) + Z ||U||H2(V1j) <C [||f||L2(Q) + HUHL?(Q)] .
j=1
This concludes the proof of the theorem. O

Remark. Suppose 0 is not in the real spectrum of L, 0 ¢ 3(L). Then the equation Lu = f has
a unique weak solution u € H}(Q2) for all f € L?(Q2), and the operator T].j}:Q(Q) : L2(Q) — H(Q)
is well defined and bounded. It follows |Ju|| 2y < |77 |op | ]I 12(0) and hence

lull 2y < [I1fln2) + llullrz] < CNfll2)-

This means the operator T~ is bounded as a map from (L2(Q), | - ||52) to (H2(Q), ] - || g2)-

[11: 13.11.2023]
[12: 16.11.2023]

Theorem 2.24 (higher regularity up to the boundary). Assume Q C R? is open and bounded.
We consider the formal differential operator Lu = —div (aDu) + b - Du + cu with L uniformly
elliptic.

Assume in addition 9 is C**™, a € C1T™(Q), b,c € C™(Q), f € H™(Q) and u € H(Q) is a
weak solution of Lu = f in Q.

Then u € H>T™(Q) and there is a constant C = C(Q, a,b,c,m) > 0 such that

ul| g24m@y < C [1flam @) + lull 2] -
Proof. We argue by induction on m.

For m = 0 we have a € C1(Q), b,c € C°(Q), 9N is C?, f € L?(2) and the result follows from
Theorem

We prove now the first induction step: if the statement holds for m = 0, then the statement
holds also for m = 1. Assume a € C?(2), b,c € C1(Q2), 9Q is C3 and f € H'(2). Our goal is to
show that u € H3(Q).

e Since u € H}(R) is a weak solution of Lu = f with ujpn = 0, by the case m = 0 we know
that w € H*(Q), Lu = f holds pointwise a.e. in Q, and |lullg2q) < C[lfllr2@) + llull 2]
Moreover, by Theorem u € H} (), and the PDE

loc
L(Gju) = fj = (%f + div [(Oja)Du] — ((%b) - Du — (ajc)u, (2.41)

holds pointwise a.e. Note that since a € C?(Q), b,c € C1(Q), f € HY(Q) and u € H2(Q), it
holds f; € L%(2), and not just L2 (f2), as was the case in the proof of Theorem m Therefore

loc

dju € HY(Q) is a weak solution (not just local weak solution) of (2.41)) in .

e Suppose in addition that 9ju € H} (). In this case Theorem implies that d;u € H?(Q),
and | 9ull g2y < C [IIfjll2(e) + [10jullL2()]; which would then provide the desired estimate.

49 [FEBRUARY 12, 2024]



e In general dju & HJ(Q), but the statement is true if we consider only derivatives in the
direction parallel to the boundary. Indeed, as in the proof of Theorem [2.23] Step 1, we consider

U := B (z0), V::Bf/z(O), I':={z € dU|zq4 =0},

and u € HY(U) is a weak solution of Lu = f in U satisfying Tur = 0 in the trace sense. Our
problem can be locally reduced to the above setting by restricting to a small neighborhood of
some point zg € 9 and performing a coordinate chance ®: R* — R?, that flattens locally the

h

boundary. The PDE Lu = f will be transformed into La = f, (cf. proof of Theorem
where, since 9Q and hence also ® is C3, the new coefficients satify A, B,C € C?(f2). Moreover,
since ® € C3(Q) it holds u € H3(Q) < 4 € H3(®(Q)).

Claim. It holds 9ju € H' (V) and TOjup=0foralli=1,...,d—1.
Consequence. Since Oju € H'(V) is a weak solution of L(dju) = f; in €, with TOjur = 0, it
follows (cf Step 1. in the proof of Theorem [2.23) that d;u € H?(V) and

I1D*05ull r2(vy < C Il fill 2@y + 105ull 2(e)] < ClIf L) + lull 2]

Finally, since u € H} () and hence the equation L(d;u) = f; holds pointwise a.e. for all

j=1,...d, we deduce the same result also for af’;u.
Proof of the Claim. 1f u € CY(U) we have Tup = u(2/,0) = 0 V|z/| < r. It follows Tdjur =
ﬁxg_u(O,x’) =0forj=1,...,d—1. Since u € H?>(V) and V has Lipschitz boundary, there is a

sequence n — u, € C1(V) such that |lu — Ul gr2(vy = 0. It follows [[Tw — Tup| 129y — 0 and
|T0ju—T0jun| r29v) — 0. Therefore T is weakly differentiable along T' with 9;T'u = T'9ju = 0
for j=1,...,d—1.

O

Theorem 2.25 (infinite regularity up to the boundary). Assume Q C R? is open and bounded.
We consider the formal differential operator Lu = —div (aDu)+b-Du+cu with a;j, b, c € L*(8),
and L uniformly elliptic.

Assume in addition a,b,c, f € C®(Q), 9Q is C*° and u € HE(Q) is a weak solution of Lu = f
in 2 with boundary condition ujpg = 0.

Then v € C*°(Q) and Lu = f holds pointwise in €.

Proof. By Theorem it holds u € H™(2) Vm € N. It follows, by generalized Sobolev in-
equality, u € C*(Q) Vk € N.
O

2.5 Maximum principles

Assume Q C R? is open and bounded, and u € C%(Q) N C(Q).
(i) If 2o € Q is a local maximum of u, then Du(xg) = 0 and D?*u(zg) < 0 as a quadratic form,
ie. Yf ) &0,05u(x0)g; < 0 VE € RY
(i) If D?u(z) > 0 (as a quadratic form) Vo € Q then there is no local maximum in Q—
The following two results were shown in Introduction to PDE.
Weak mazimum principle: if —Au <0 on 2, then maxg v = maxyq u.

Strong maximum principle: if —Au < 0 on € and 2 is connected, then exactly one of the
following holds:
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(a) u(r) < maxggu Vo € Q, or
(b) w is constant on £.

Our goal is to derive these results with —Aw replaced by Lu uniformly elliptic operator. In this
section it will be convenient to switch to non-divergence formulation: Lu = —Tr (aD?u) + b -

Du + cu. Since we want to derive pointwise estimates, we will assume below a, b, c € C(Q2) and
u e C?(Q)NCQ).
Since we work with Tr (aD?u) the followig result will be useful.

Lemma 2.26. (comparing matrices) Let A € Ry such that A > 0 as a quadratic form. The
following statements hold.

(i) Tr A > 0.
(ii) VB,C € R™" such that B > C (i.e. B—C >0 as a quadratic form) we have

Tr AB > Tr AC.
Proof.
(¢) Since A > 0 we have Aj; = (e;, Ae;) >0Vj=1,...,n, and hence Tr A > 0.

(ii) Since AT = A we can write A = VT DV, where V € R" " is orthogonal VIV = Id,
D = diag (A1,...,Ay) and Aq,... )\, € R are eigenvalues of the matrix A. Since A > 0 we have
Aj > 0Vj=1,...,n. Hence the matrix

VA :=VTDY2y,  DY?.=diag (VALs- .., VAn)
is well defined and symmetric. Using the decomposition A = v/Av/A, we compute
Tr(B - C)A=Tr(B - C)VAVA=TrVAB - C)VA.

Since B — C > 0 it follows v/ A(B — C)v/A > 0 and hence, by (i), Tr vVA(B — C)v/A > 0. Indeed
for any vector v € R™ we have

(v, VA(B — )V Av) = (VAv, (B — C)VAv) = (8, (B — C)8) > 0,

where we used o := v Av and \/ZT = VA. O

2.5.1 Weak maximum principle

Theorem 2.27 (weak maximum principle I). Assume Q C R? is open and bounded. We consider
the differential operator Lu = —Tr (aD?u) + b - Du+ cu with a;j,bj,c € C(Q), and L uniformly
elliptic. Assume u € C?(Q2) N C(). Then the following statements hold.

(i) (a) If Lu <0 on Q and ¢ = 0, then u has no local mazimum in .

(b) If Lu > 0 on Q and ¢ = 0, then u has no local minimum in .

(ii) Assume Lu <0 on €.

c=0 or

(a) If 6> 0 andu>0 then maxg u = maxyo u.
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(b) If ¢ > 0 then maxgu < maxpq uy, where uy (x) := max{0,u(x)} > 0.

(i1i) Assume Lu >0 on €.

c=0 or . .
(a) If 6> 0 andu<0 then ming v = mingq u.
(b) If ¢ > 0 then mingu > mingo(—u—), where u_(x) := —min{0, u(zx)} > 0.

Notation. If Lu < 0 on €, u is called a subsolution of Lu = 0 on Q. If Lu > 0 on 2, u is
called a supersolution of Lu = 0 on {2.

Proof. The idea is that at a maximum (minimum) point o € Q Lu(zo) = —Tr aD?u(zo), since
Du(z) = 0. Then uniform ellipticity garantees that Lu(xg) is “equivalent to” D?u(zo).

(i)(a) Since ¢ = 0 we have Lu = —TraD?u + b- Du. By contradiction, assume Lu < 0 on  and
zo € 2 is a local maximum. Then Du(zo) = 0 and D?u(zo) < 0. Therefore
Lu(xo) = —Tra(zo)D*u(xo) + b(xo) - Du(wg) = —Tra(ze) D*u(xg) = Tr AB,
where A := a(xg) > 01d, B := —D?u(x) > 0 and BT = B. It follows (cf. Lemma below)
0> Lu(xg) = Tr AB > 60Tr B > 0,

which gives a contradiction.
(7)(b) Use (i)(a) on the function —u.

(ii)(a) Case 1: ¢ =0 and Lu < 0. We will construct below a function v € C%(Q) N C(Q2) such
that Lv(z) < 0 on €. Define u, := u + ev, with € > 0. Then, since Lu(z) < 0 and Lv(x) < 0 we
have

Luc(z) = Lu(z) + eLv(x) <0 Vr € Q,

hence by (i) u. admits no local maximum. In particular this means wu.(z) < maxggu. Vo €
Q, Ve > 0. The result follows taking the limit ¢ — 0.

Construction of v. In the special case Lu = —Auw is suffices to take v(x) := |z|?/2. Indeed by
direct computation —Av = —d < 0.
Consider now the general case Lu = —Tr (aD?u) + b - Du. We take v to be a function of only
one variable, say x1, and of the form v(x) := e’ where A € R is a parameter to choose. We
compute

Dv(x) = AeMleq, D%u = \2eMie; @ ey,

Lo(z) = [—a11 () A2 + by (z)\] M.
Therefore Lv(z) < 0 iff [—a11(2)A? + b1 ()] < 0. By uniform ellipticity

—a11(2)A? + by (2)A < =007 + by (z)A < —ON + ||b1] Lo | Al

l|b1]] Lo
R

= [N =01+ [baflze] <O VA >

This concludes the proof of Case 1.

Case 2: ¢ >0, u >0 and Lu < 0. We can write Lu = Lou + cu, where

Lou := —Tr (aD*u) +b- Du = Lu — cu.
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Since u, ¢ > 0 we have —cu < 0 and hence, using Lu < 0,

Lou(z) = Lu(x) — c(z)u(z) < 0.
The result follows from Case 1. This concludes the proof of (ii)(a)
(73)(b) Apply (i7)(a) to the function —u.

(73i)(a) Assume Lu < 0 and define V := {x € Q|u(x) > 0}.
If V=g, then u <0 on Q, utjpn = 0 and the statement holds.

Assume now V' # @&. Then uy = ug |y, and since u is continuous, the set V' is open. Therefore
uypy =upy € C*(V)NC(V) and, since u > 0 on V we have

Louy(x) = Lu(z) — e(x)u(x) <0 Ve eV.
By (ii)(a) we have maxy; uq = maxgy uy. Since u(z) < uy(z) Vo € Q and uy gy = 0, it follows

maxu < max U4 = Mmax U4 = maxuy.
0 Q v v

We have 9V = (9V N Q) U (OV NIN). Since uyjgyno = 0 and uygynan = 0 it follows

maxu < maxu4 = maxU.
Q oV Q

This concludes the proof of (iii)(a).
(747)(b) Apply (i7i)(a) to the function —u. O

Remark 1. If upg <0 and Lu <0 it follows maxgu < maxgg uq = 0, i.e. u(z) <0 Vo € Q.
Remark 2. If Lu =0 and ¢ > 0 in Q it follows
max |u| = max |ul.
Q o0
Indeed

Lu < 0= u(r) < maxus < max |ul,
o0 [2}9)

Lu>0= —max|u| < —maxu_ < u(x).
o0 o0

The result follows.

[12: 16.11.2023]
[13: 20.11.2023]

2.5.2 Strong maximum principle

Theorem 2.28. Assume Q C R? is open, bounded and connected.
We consider the differential operator Lu = —Tr (aD?u) + b+ Du+ cu with a;j,bj,c € C(Q), and
a uniformly elliptic. Assume u € C?(2) N C(Q) and define

M := maxu, m 1= min u.
Q Q
Then the following statements hold.

53 [FEBRUARY 12, 2024]



(i) Assume one of these conditions holds.

(a) c=0 and Lu <0 in Q, or
(b) ¢>0, Lu <0 inQ and M > 0.

Then either u(z) < M Yz € Q or w= M is constant on €.
(ii) Assume one of these conditions holds.

(a) c=0 and Lu >0 in §, or
(b) ¢>0, Lu>0 in Q and m < 0.

Then either u(z) > m Yz € Q or u = m is constant on Q.

Strategy of the proof To prove (i) we define V := {z € Q|u(z) < M}, C :={x € Qu(z) = M}.
Then Q2 = V UC and, since u is continuous, V is open. Our goal is to show that, if V # &, then
V=

By contradiction, assume V # @ and V' C . In particular this means 0V N # @. Note also
that AV N Q C C, hence every point in this set is a local maximum. The strategy is to show
that there must be a point 1 € OV N with Du(x1) # 0, which contradicts the fact that this
is a local maximum. To understand how this works we consider first a simple example.

Example Assume d = 1, V = (a,b) such that [a,b] C Q, and a € OV NQ or b € IV N Q.

Assume in addition Lu = —u".

If b € OV NQ, then u(x) < u(b) = M Vz € (a,b). It follows, that there exists a point = € (a,b)
with u/(z) > 0. Hence, since —u” < 0 on 2, we have

' (y) >/ (z) >0 Yy € [z, ],

and therefore u/(b) > 0, which is impossible since b is a maximum point inside (2.
In the same way we argue that «/(a) < 0 if a € 9V NQ, which again contradicts the fact that a
is a maximum point.

In the general case, we need to find a point 21 € 9V N Q satisfying the requirements of the
following lemma.

Theorem 2.29 (Hopf’s lemma). Assume Q C R? is open, bounded and connected.

We consider the differential operator Lu = —Tr (aD?*u) +b - Du + cu with a;;,bj,c € C(Q), and
a uniformly elliptic.

Assume u € C%(Q) N CL(Q), and there is a point x¢ € OQ such that

o O satisfies interior ball reqularity at xq, i.e. Jy € Q, r > 0 with B,(y) C Q and oy €
9B (y), and

o u(x) < u(xg) Vo € Q.

We consider O,u(xg) = va, - Du(zg), where vy, is the outward unit normal to 0B, (y) in xo.
Then the following statements hold.

(i) If c =0 and Lu <0 in Q, then d,u(zo) > 0.

(i) If ¢ >0, Lu <0 in Q and u(zo) > 0, then d,u(xo) > 0.
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Remark 1. From u(z) < u(zp) it follows that d,u(zg) > 0. The non trivial part is to prove
that the inequality is strict d,u(zg) > 0.

Remark 2. If 9Q is C?, interior ball regularity holds in every point = € 9S.

We will prove this theorem below. Now, using Hopf’s lemma, we can prove the strong maximum
principle.

Proof of Theorem[2.28.

(i) We define V := {z € Qu(x) < M}, C :={x € Qu(x) = M}. Then Q =V UC and, since u
is continuous, V' is open. Our goal is to show that, if V # &, then V = Q.

By contradiction, assume V' # @ and V C Q. In particular this means 0V N Q # @. We look
for a point 1 € 9V N Q with Du(z1) # 0, which contradicts the fact that this must be a local
maximum.

Indeed, since OV N Q # & there is some point z9 € OV N L. Since xg € IV, for each £ > 0
there is y. € V such that |y. — x| < e. Set now gy := w and y := y.,. We have
dist (y, 0V N Q) < |y — zg| < gp and dist (y, Q) > dist (xg, IN) — |y — x¢| > 3o and therefore

dist (y, 0V N Q) < dist (y, 0%2). (2.42)
Since V' is open, B,(y) C V for some r > 0. We define

R :=sup{r > 0| B;(y) C V}.

From (2.42)) it follows that Br(y) C  and 3z, € OV N OBR(y).

Then u € C?(Bgr(y)) N CY(Bgr(y)), Lu < 0 on Br(y), u(z) < u(z1) = M Va € Bg(y), and, if
¢ > 0 we have assumed M = u(x;) > 0. Finally the set Br(y) satisfies interior ball regularity
and all boundary points, hence in particular at x;.

The result now follows from Hopf’s lemma applied to the set Br(y).

(i) Apply () to the function —u.

We now prove Hopf’s lemma.

Proof of Theorem [2.29.

The case of d =1 The ball B,(y) is replaced by I = (y — r,y + r). Performing a translation we
can reduce to the case I = (—r,+r). To make the formulas more readable, in the following we
write a = —r, b =r.

We distinguish three cases.

Case 1. Assume 1 = b and a € V ie. [a,b) C V and hence u u(z) < u(b) Vz € [a,b). We
assume one of the following two conditions holds:

() ¢ =0, and Lu = Lou = —a(z)u” (x) + b(x)u(x) <0, or
(B8) ¢>0, Lu = Lou + ¢(z)u(x) <0 and u(b) > 0.

Our goal is to prove that u/(b) > 0.
Idea. Note that if u/(b) > 0 and u(z) < u(b) Ya < z < b then, there exists a function @ € C1(T)
such that

w(z) < a(x) <u(b)Vzel, and 0<u'(b) <u'(b).
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We can reformulate this statement by defining w := @ —u. Then 0 < w(z) < u(b) —u(z) Vz € I,
in particular w(b) = 0, and w’'(b) = @’(b) — u/(b) < 0.

Rigorous argument. Inspired by the idea above, assume Jw € C(I) such that
0<w<u)—u, and w'(b)<0.

We claim that then u/(b) > 0. Indeed, setting @ := u + w, we have a(x) < u(b) Vz € [a,b] and
a(b) = u(b). It follows that @'(b) > 0. We compute now

u'(b) +w'(b) =d' (b)) >0 = u'(b) > —w'(b) >0,

where in the last inequality we used w’(b) < 0.

Construction of w. It is not difficult to construct a function w satisfying w > 0, w(b) = 0 and
w'(b) < 0. The hard part is to satify the constraint w < u(b) — .
Remember that, by weak maximum principle, and using u(a) < u(b), we have:

ifc=0, Lu<O0 = max u = max{u(a), u(b)} = u(b),
T

ife>0, Lu<0, u(b)>0 = max u < max{uy(a),us(b)} = u(b).
T

Claim. Jv € C*(I) N CY(I), such that

v >0, v(b) =0, v'(b) <0, Lv <0.
Proof. Take the ansatz v(z) := (e7* — =), with X\ > 0 a parameter to choose later.
Since A > 0 we have v(z) > 0 Vo < b and v(b) = 0. Moreover v/(z) = —Ae™* < 0 Vz € [a, b].
Finally, using ¢(x) > 0 and a(z) > 61d, we get
Lv = —a(z)v" (z) + b(z)v'(z) + c(x)v(z) = [—a(@)A? — b(2)\ + c(z)]e ™ — ¢(z)e
< [~a(@)A? = (@)X + c(2)]e ™ < [N + [[bllzoo A + [Jel| o)™ < 0

for A large enough. This concludes the proof of the Claim.

Set now w := ev, with € > 0 a parameter to choose later. Then w € C?(I)n C*(I), w > 0,
w(b) =0, w'(b) < 0. It remains to check that w < u(b) — u.
Set @ := u + w. Using Lw < 0 we have

Lu= Lu+ Lw < 0.

Note that @(b) = u(b) and

I~

(@) = u(a) +ev(a) < u(b), for ¢ small enough.
Hence, by weak maximum principle, if («) or (f) holds we have
u(z) < u(b) Vz € [a,b].

It follows w(z) = u(zr) — u(x) < u(b) — u(x). This concludes the proof in Case 1.

Case 2. Assume z1 = a and b € V i.e. (a,b] C V. Using the function v(z) := e’ — e’ we can
repeat the above arguments to prove u/(a) < 0.
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Case 3. Assume both a,b € OV ie. u(—r) = u(+r) = M and u(z) < M V—r <z < r. The
argument above cannot work because u(—r) + ev(—r) > u(—r) = M for any € > 0. Hence we
need a function v such that v(—r) = v(r) = 0. We take the ansatz

This function satisfies v € C*°([—r,r]), v(z) < 0 for |z| < r and v(£r) = 0. Moreover setting
21 = r we argue v/(z1) = v/(r) = —2\re~*’ < 0 for any A > 0. By direct computation

Lv(xz) = [—4362)\2a(a:) + 2a(z)\ — 2b(z)zA + c(z)] e c(x)e_)‘TQ.
Note that Lv < 0 cannot hold on (—r, 7). Indeed for x = 0 we compute
Lv(0) = 2a(0)A + ¢(0)(1 — e ) > 20 + ¢(0)(1 — e ") > 20\ > 0.
The solution is to consider v only on the set {§ < |z| < r}. On this set we have
Lo < [-12220 + 2]jallaA + 2[[b]|oorA + [|cloc] €% < 0
for A > 0 large enough. The price to pay is that we have additional points on the boundary

x = £r/2. Since on these points we have u(z) < M we can argue as in case 1 and 2.

The case of d > 1. By rotating and translating we can reduce to the case y = 0, and x¢ = re;.
Set

B:=B.(y) = B;(0),  R:=B,(0)\B,(0).

In the same spirit as d = 1 Case 3, we look for a function v € C%(R) N C'(R), and a parameter
€ > 0, such that

v(z) > 0on R,

Oyv(zg) = d1v(rer) <0

Lv <0on R,

v(wg) =0, and (u + ev)jpr < u(wo).

We take the ansatz , ,
v(z) = (e N — =7,

with A > 0 a parameter to choose later. Then v € C*°(B), v > 0 on B and vjgp = 0. Hence

U+ ev =u = u(xg). Moreover d,v(xg) = d1v(re1) = —92)\re~ > < 0. Tt remains to check
( )loB = Wap = u(Zo)
that Lv < 0 and (u + €v)jap, ,(0) < u(zo). We compute

8j7) = —2)\.%‘j€_)\|z|2, 82-8]-1) = [4)\2$i$j - 2)\(5ij]€—)\|ml2,
hence, using a > 6, and /2 < |z| < r, we get

Lo(z) = [-4)\*(z,a(x)z) + 2ATra(z) — 2\b(z) - = + c(m)]e*)"”’“"‘2 - c(a:)&f”2
< [—4)\2($, a(z)r) + 2ATra(z) — 2)\b(z) - x + c(x)]e’)‘h’“"‘2

[—4526]2* + 2X\(d]lall Lo + a][|b]| o) + [le]| oo

[

o7 [FEBRUARY 12, 2024]



for A large enough. Finally for x € 9B, 5(0), we have

7‘2
(z) = u(z) + (e T — e_M2) < max u+ea.
8B'r'/2(0)

|

,A% o 6_)\7,2)

where a := (e > 0. Since maxpp, ,,(0) v < u(zo) there exists € satisfying

ma.XaBT/2(0) u

a

O<e<

For this choice of €, we have u5p_ 12(0) < u(zg). This concludes the construction of v and hence
the proof of the theorem.
O

[13: 20.11.2023]
[14: 23.11.2023]

2.6 Harnack’s inequality

Theorem 2.30 (Harnack’s inequality on balls). Assume Q C R? is open and bounded. We
consider the formal differential operator Lu = —div (aDu) with a;; € L>(Q), and a uniformly
elliptic.

Then 3C = C(a,d) > 1 such that for all u € H'(Q) weak solution of Lu = 0 in Q with u > 0
a.e. in Q) we have

sup v <C inf w, VR > 0,29 € Q s.t. Byg(xg) C Q, (2.43)

BR(CCo) BR(IO)

where by sup and inf we mean the essential sup and essential inf .

Remark 1 Harnack’s inequality is a quantitative version of the strong maximum principle.
Indeed, assuming a € C1(Q) and u € C?(1, [0, 00))NHE(Q) is a weak solution of —div (aDu) = 0,
we have Lu = —TraD?*u — Da - Du = 0. Since infp, ;o) u > 0 and Bag(zg) is connected, the
strong maximum principle ensures that either u(z) > 0 for all x € Bagr(zg) or u = 0 on the ball
hence

min 4 =0 = max u = 0.

Br(zo) Br(zo)

Harnack inequality provides a more quantitative estimate of the relation between sup and inf.

Remark 2 Remember that if u € C?(1) is a solution of Au = 0 then

1
u(z) = ][ u(y)dy = ——— u(y)dy VBg(x) CC Q. (2.44)
Br(z) |Br(z)| J B, (z)
Assume u > 0 and Bsg(zo) CC . Then Va,y € Bgr(xg) we have
uw = [ wd < [ (e = W) g,

|Br(2)| J Bp(a) [Br(2)| J By (y) ~ |Br(=)]

which implies u(z) < 2%u(y) Va,y € Br(zo) and hence Harnack’s inequality holds with C' = 29,
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Proof of Harnack’s inequality in the case of smooth coefficents (sketch).
Assume a;; € C®(Q2) and u € H} () is a weak solution of Lu = —div (eDu) = 0. By improved
regularity u € C°°(Q2). Our goal is to find a constant C' = C(a,d) > 1 such that

u(z) < C u(y) Va,y € Br(xo). (2.45)

For € > 0 consider the function u, := u + ¢. Since u > 0 we have u. := u + ¢ > ¢ > 0 and since
Du = Du,, we have div (aDu.) = div (aDu) = 0. We argue, for each x,y € Br(xo)

ue(z) = Zig; ue(y) = @ Wy, (y) < OOy (y),

where we defined v := Inwu,. Since u. > 0 and u. € C*°(Q) the function v is well defined and
v € C°(N). Note that

1
lv(z) —v(y)| = | /0 Du(y +7(z —y)) - (x —y)dr| < |z -y BSlZp ) | Du.

The hard part is to show that suppg,
main trick is to remark that

o) |Dvl is bounded by a constant independent of u.. The

Z

Lu=0 = Lv =Dv-aDv.

Indeed Dv = u%_Du and hence, using also Lu = 0,

1 1 1 1
Lv = —div (aDv) = —div (uEaDu> = —%Lu—%; ajkakuﬁju—a = %;ajkakuajuug = Dv-aDw.

Extracting information on Dv from the nonlinear PDE above requires some work (see Evans).
Here we consider directly the more general case a € L>(Q).
O

We will see the proof Harnack’s inequality only for d > 3 (for d = 1,2 there are simpler

1
arguments, see exercise sheet). The idea is to replace in (2.45) u.(z) with (fBzR(xo) up) " for
1

some p > 0, u.(y) with (me(xO) u*p> ? and sup |D Inu| with ||DInul|p2(p,, @) We will need
the following results and definitions.

Definition 2.31 (sub and supersolution). Assume Q C R? is open and bounded. We consider
the formal differential operator Lu = —div (aDu) with a;; € L*(Q), and a uniformly elliptic.

(i) uw € HY(Q) is a weak subsolution of Lu = 0 if

Brlu,v] <0 Yo € HY(Q) with v > 0.

(ii) w € HY(Q) is a weak supersolution of Lu = 0 if

Brlu,v] >0 Vo € HY(Q) with v > 0.
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Theorem 2.32 (weak Harnack inequality). Assume Q2 C R? is open and bounded, d > 3. We
consider the formal differential operator Lu = —div (aDu) with a;; € L>(Q2), and a uniformly
elliptic. The following hold.

(i) ¥p > 0 3C; = Cy(a,p,d) > 0 such that Yu € H'(Q;[0,00)) weak subsolution of Lu = 0 in
Q it holds

P
sup u < Cy <][ up> VByr(zo) C Q. (2.46)
Br(zo) Bar(x0)

(ii) Yq > 0 3Cy = Co(a, q,d) > 0 such that Vu € H(Q;[0,00)) weak supersolution of Lu = 0
in ) it holds

Br(wo)

T q
inf u>0Cy ][ u ! VByr(zo) C Q. (2.47)
Bar(20)

Remark. Assume u € C?(Q;[0,0)).
If —Au <0, then u(z) < fBr(x) u(y)dy VB, (z) CC Q. Assuming Bop(zg) CC 2, we argue for

all x € Bg(x),
u(z) < ][ udy < 2d][ udy,
Br(z) Bar(20)

which gives the weak Harnack’s inequality (i) for p = 1.

Assume now u > & > 0 on €, and —Au > 0. Then 1/u € C?(£;(0,00)) and —A(1/u) < 0.

Indeed A )
Al _Au_,|Dyl

U u2 u3

Hence
1

sup — < 2d][ u_ldy.
Bpr(zo) U Bagr(xo)

-1
inf u>27¢ ][ u”tdy )
Br(zo) Bar(zo)

which gives the weak Harnack’s inequality (i7) for ¢ = 1.

It follows

Theorem 2.33 (bound on log variation). Assume Q C R? is open and bounded. We consider
the formal differential operator Lu = —div (aDu) with a;; € L*(8), and a uniformly elliptic.
The following hold.

For all d > 1 there exists a constant C3 = C3(a,d) > 0 such that, if u € H'(Q;[0,00)) is a weak
solution of Lu = 0 we have

/ |IDIn(u + ¢)?dz < C3RI2 VByr(xo) C Q,Ve > 0. (2.48)
Bag(wo)
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Definition 2.34 (functions of bounded mean oscillation).
Assume Q C R? is open. We say that f has bounded mean oscillation f € BMO(S) if
feLYQ) and

[flBMo() = sup ][ |f — fol dz < o0, (2.49)
QcO;Qcube’Q
where
fo ::][ f dz.
Q
Remark []gyo(n) is @ seminorm since [f]gmo() = 0 = f = const. The space BMO({2) is a
Banach space with the norm || f|lgmo(e) = [1fllz2 @) + [f]BMo@)-

Theorem 2.35 (John-Nierenberg). Let Qo C R? be a cube. Therere exist three contants
A,0,Cy > 0 independent of Qo such that Vf € BMO(Q) the following hold.

ot

< Ae Ulsmo()

Hz€Qo| |f(z)—fqql>t}
|Qol

(i) Vt > 0 we have

(ii) fo, eV Iolde <C1 o VO <y < gt

BMO(Q)

(iti) fo, fo, VT dedy < Cy - VO <y < Jt—

BMO(Q)

Remark With some work one can replace the cubes with balls (see also Sheet 9)

Proof.
(7) see chapter 6 in the book by M. Giaquinta, L. Martinazzi.

(74) Using (i) we argue

1
][ eV ooldy = o Z/ eﬂfifQOlllffo €[nn+1)dT
0 ‘QO’ ~ 0 0
1 ___on
< mZeV(n—H)Hx € Qo |f(x) = fy)| >n} < Azev(n—l-l)e TBMO®) < oo

for all v < 7]

BMO(Q)

(i@) Use (ii) together with f(z) — f(y) < |f(z) = f(y)| < |f(z) = fool + F(y) = fQul
U

Proof of Harnack’s inequality Thm[2.30. Fix € > 0 and consider u. := u + €. Since Du = Du,
the function ue. € H(£;[e,00)) is a weak solution of Lu = 0, hence it is also a weak subsolution
and by weak Harnack’s inequality (i) we have

P
sup u. < Cq (7[ up> Vp >0
Br(o) Bar(z0)

Moreover u, is a weak supersolution of Lu = 0, and hence by weak Harnack’s inequality (ii) we

have
T
inf wue > Cy ][ T Vg > 0.
BR(IO) BQR(JJ())
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Set v :=Inwu. and ¥ := fBzR(xo) vdz. Using Poincaré inequality and Thm we get

/ v —T*dx < CPRQ/ |Dv|? dz < CpC3RY.
BQR(I()) BZR(xO)

It follows

/ d/2
7[ ”U—m dl’ = |32R1(960)|/ "U—m dl’ S 71H’U ’UHLz B2R(370)) CPC R C/
Bar(zo) ' Bar(z0) |B2r(z0)2 ’B2R(950)|

for some constant C’ independent of R and zg. It follows that v € BMO(£2) with [vlBMmo(Q) < C’,
and hence, using Thm there exists v > 0 such that

][ ][ @90 gy < 2
Bar(z0) Y B2r(wo)

for some constant C4 > 0 independent of v, R, x¢. This can be also written as

1 1
vy vy vy
][ wlde | = ][ @y | < C’i/V ][ e Wy = C’i/7 ][ u;”’dy)
Bag(zo) Bap(zo) Bar(xo) Bar(zo)

Putting all this together we argue

1 1
Bt K] 2/
sup ue < C ][ u? < Cch/’y ][ u;'ydy < 0104 inf e,
BR("EO) BZR("EO) BQR((.EO) 02 BR(a:O)

which completes the proof of Harnack’s inequality. O

2|~

Proof of the bound on |DInu.| Theorem[2.35

Remember that, if u € C*°(£2; [0, 00)) is a strong solution of Lu = 0 then v := Inu. = In(u + ¢)
is a strong solution of Lv = Dv - aDwv.

To obtain some kind of weak formulation set ¢ € C2°(Bar(z0); [0, 1]) with (|, (z,) = 1. Then

/ C?Lv dz = / ¢2Dv - aDv dx.
Q Q

The second integral can be written as
D
/ ¢2Dv - aDv dx = / CQ—u a— dx = / C2— aDu dx.

Integrating by parts in the first integral we obtain

/C2Lvdac—/D§ aDud:c—/Dg a—d:c

Putting all this together we get

1 D D ¢2
0= /Q <UEDC2 - C2u§> au—j dr = /QD <u€> aDu dx = Br[u, ¢ /u.).

This suggests to try use in the general case (2/u. as test function.
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Remember that u. := u+¢, satisfies u. € H(£2;[e,00)) and is a weak solution of Lu. = 0. Since
ue > & > 0, the function v := Inwu, is well defined and v € H'(2), with Dv = u—lsDu. In addition

uzl € HY(Q) with Duzt = —uz?Du.
Therefore w := (?uz! € H} () is a possible test function and hence By [ue, (2uzt] = 0. It follows

/(CDU) ~a(¢Dv))dx = 2/ D¢ - a(¢Dv)dz.
Q Q
By uniform ellipticity and Young’s inequality, it follows
01D < [ (D) (Do) < 2al [ 1DC](CIDede
<2 \cDoll L b2
< 2|lallse | ICDVIT2(0) + 55 I1DCN72(0) | -

Choosing § = 0/(2]|al|«) we get

lallo

J

0
§HCDUH%2(Q) < 1D¢I[7 20

Since (g, ,(z,) = 1 and supp ¢ C Byg(wo) we can choose the function such that sup |D¢| < 2/R.
Hence

|Duf? o 2alleey e Slallee oo o
/BzR(xo) dwﬁHCDUHL?(Q)STHDCHLZ(Q)S I R™*|Bygr(zo)| = C3R*™=.

(u-+¢)?

This concludes the proof. Note that, since the constant C3 is independent of €, by monotone
convergence we have

Dul? Dul?
/ | 1;‘ dr = lim/ | Dul sdr < C5R%2.
Bagr(zo) U €70/ Byg(wo) (u+te)

O]

[14: 23.11.2023]
[15: 27.11.2023]

The key tools to prove the weak Harnack’s inequality in dimension d > 3 are Sobolev inequality
and Moser iteration. Remember that if f € H}(Q) = Wol’2(Q) and d > 3 we have f € L (Q)
with
11
2* 2 d 2
and there exists a constant Csg = Cg(d, 2) > 0 such that

1fll 2 () < CslIDfll 2 (- (2.50)

1 d-2

Theorem 2.36 (Moser iteration). Assume Q C R is open and bounded, d > 3. We consider the
formal differential operator Lu = —div (aDu) with a;; € L>(Q), and a uniformly elliptic. Let
u € HY(Q;[0,00)) be a weak subsolution of Lu = 0. Fiz xg € Q. For r > 0 such that B,(z¢) C

and p > 0 we define
O(p,r) = / uf | . (2.51)
Br(xo)
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Set
2% d

=g a2
where 2* is the Sobolev exponent associated to p = 2. Note that > 1. Then there is a constant
C = C(a,d) > 0 such that

Cp ,
O(up, s) < " O (p,r) Vo< s<r Vp>2. (2.52)

— S

Note that ®(p,r) is well defined and non negative VB, (zg) C 2, but it may take value +oo. We
show now how weak Harnack’s inequality follows from Moser’s iteration.

Proof of weak Harnack’s inequality Thm. () for p> 2.
Let u € H'(2;]0,00)) be a weak subsolution of Lu = 0. Our goal is to prove

P
sup u < C ][ uP VBag,(z9) C Q.
Brg(z0) Barg (z0)

Note that for p > 2 we only need to require Bag,(zo) C Q.
Fix p > 0 such that B,(x¢) CC Q. We have (exercise, see also FA)

sup u = lim / uP ] = lim ®(p,p). (2.53)
By (o) proo ( By (z0) ) pmreo
Take now R > p > 0 such that Br(xzo) C € (possible since B,(xg) CC ). We interpolate

between R and p as follows: for each n € N we define

p
g D= D

R—
R,:=p+

Then Pn+1 = UPn, Po = D, Ry =R, Rn-l—l < Ry, limy 00 Ry = 2 and Rn_Rn+l = (R_p)z—n—l'
We argue, using Moser iteration (2.52]),

Cpn o
(D(pn+1aRn+1) = (I)(Mpann—i—l) = 5 (I)(pnaRn)
R - Rn-i—l
2
Cp2ntiym\ e 2Cp = 2n
= B —— (b ny n) — 2 n @ mn»y n
( R ) (Pns Rn) R (2p) 7 @ (pn, Ry)
n QCp i 2j 20}9 22?:0 é 2 7}70 J
S r:[ < ) 2”)1’] @(po,Ro) (R—p) (2#) 1=V p; (I)(p, R)
Note that
" 1en 1 1 1 1 d
g pjouf p(l—3)"  prtt p(l—3) 2p
~j 1g T | 1 [ 1 n+1 1
= L =-Ep N = = 1— - (1-2)
]z;pj P w p “; W pp(l— )2 prttpn p
1 ld—2d* dd-2

_> - - - — )
o pu(l—%)Q p d 4 p 4
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hence

20p \2Xi=07; 2C P 25" L d—2d od=2d
(R—pp> ] e <R—pp> ’ (24) 250 Pi —rnsoo (20) T P =(27) 2 .

Using this results together with (2.53|) we argue

1 1

pn pn
sup u = lim / uPm < limsup / uPm
Br(zo) "0\ J By (o) n—00 Bry, (z0)
1 d 1
! P e p
= limsup ®(p,, R,,) < Ld / uP | < C” <R> ! ][ u?
n—00 (R _ p)E Bgr(zo) R — P Br(zo)

1
= (20p25")", "= ('Blzf(’)')p .

The result now follows setting p = Ry and R = 2Ry. O

where

IS

Proof of Moser iteration Thm[2.36. Remember the definition of ®(p,r) (2.51)). Our goal is to
prove that there is a constant C' = C(a, d) > 0 such that

Cp
r—S

D(up,s) < < )p O (p,r) YO < s <. (2.54)

for all B,.(z¢) C © and u > 0, such that u € H(Q) is a subsolution of Lu = 0, i.e.
/ Dv-aDu dx <0 Yo € HY(€;]0,00))
Q

We construct now an appropriate test function v. For this we distinguish two cases.

Case 1. Assume 0 < € < u < M for some fixed M > e > 0.
Then the function u® satisfies u® € H(Q) Va € R with Du® = au®~! Du. We will assume from
now on « > 0.

For 0 < s < r take ¢ € C2°(B;(z0); [0,1]) such that (|, (s, = 1 We define
vi= G,
The function v satisfies v € H}(€2;[0,00)), hence we can use it as test function. We compute
0 > Br[u,v] = /QDU -aDu dr = /Q(aua_ICQDu + 2u*¢DC() - aDu dx,
and hence
a/QuO‘_IC2 Du-aDu dx < Q/QUO‘C D¢ - aDu dz < 2|a||oo/9ua |DC| ¢|Du| dex.
By uniform ellipticity a > 01Id, we get

—1

16" Dl = [ w1 ¢|Dufdo <
Q

2|jalloo
ab

/uaC |D¢| |Du| dax.
Q
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a—1 a+1

Inserting the decomposition u® =u 2 u 2 , we get

6w Dulfaey < 2= [ (¢ w1l (077D do
o Q
2||la
< o0 045 Duj gy 0% DCll iz
and hence 2|| H
a L‘H
I¢u"" Dul| 2 5 llw = D2 (2.55)
It follows, using u*s Du = %HD(uaTH),
o' —|— 1 a+1||al atl
ICDu"E || 2y = I¢u"%" Dul| 2 —— llu = DIy

We assume in the following o > 1, therefore QTH < 2. We will also set
p:=a+12>2.
Inserting this above we obtain

2||a 2

I¢Du5 | o) < =2
and hence
ID(Cu)|| p2ey < ICDUS || 20 + [u® DC|l L2

2 0 p
[1+ l] Mu‘SDcuLm)

< o 2] Dl < 14 250 ( L )up|DC!2> .

Since u?/2 € H'(Q) and ¢ € C°(), it holds Cu? € H(£2), hence, by Sobolev inequality (2.50))
we have Cu? € L2 () and

%
. w
CslID(Cud) gy > 1Cuf [ = ( e ud) . (2.56)

It follows

1 1
up . p 2
®(pup, s) = (/B( )u“p> < (/Q ¢? u“p> ||Cu2||L2* < CPHD( )Hz?(g)
s(Zo
9 2
P
ke ([ )
r(Z0o

Since (g, (z,) = 1 and supp ¢ C B;(z9) we can choose ( such that [D{| < 2/(r — s) hence

VR b, N
P DC)? " _ o ‘
</BT($0)U | C’ ) = (T—s) </;r(a:o)u ) (T—S) (p,r)
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Finally we obtain

D (up, s) < (T(f >; ®(p, )

S

with

2||a||co
C =204 {H e ]

0

Note that there is no p factor next to C. The p factor will appear when we consider the general
case u > 0. This completes the proof in the case ¢ < u < M.

Case 2. Assume now u > 0. Then u € HY(Q) # u® € H* () so we need to modify our strategy.

Note that, since we assumed « > 1 we never needed the assumption u > ¢ and we used the
assumption v < M only in two steps:

o u® € HY(Q) = u®¢?H}(Q;[0,00)) is an admissible test function, and hence (2.55) holds.

a+1 a+1
2

e u 2 € H(Q) = (uz €H}Q) and we can apply Sobolev inequality to get (2.56).

We distinguish now three cases:

For p = 2, we have o = 1, hence u = u* = s € H'(Q), so the arguments used in Case 1 hold.

For p > 2, if u? ¢ L'(B,(x)), then ®(r, p) = co and the (2.52)) holds trivially.

Assume now p > 2 and v? € L'(B,(xg)). Set a := p — 1. We will prove the following two
statements:

a+1

a—1 alleo a+1 00
(a) a2 Dull 29y < 251> Dl 12(0) V¢ € C2(By (0)).

D a+1
2

(b) u2 =wu2" € Hjypo(Br(wo)).

Note that the inequality in (a) differs from (2.55) by a factor .

We see first how Moser iteration follows from (a) and (b).
Since u? € H} (B(%0)) and ¢ € C2°(B,(z0)) we have Cu? € H(Q) and by Sobolev inequality
we obtain (2.56). Putting this together with (a) we obtain the result. Note that instead of 112
we have (1 + a) = p, which accounts for the additional factor p in the final bound.

O

Proof of (b), assuming (a) holds .

Since u? € L'(B,(x)) we have u? € L2(B,(z0)).

We show that D(u?) = %uLEQDu = gu%Du € L} (B (o))

For this let K be a compact set with K C B,(zg), and let ( € C°(B,(x¢); [0, 1]) such that
(x = 1. We argue, using (a),

Y
2

p D a1
D)2y < 16D ()l 220 = SlICu"2 Dullr2(0)

< Cllu? D¢| 20y < ClIDE poo 1 || 25, (20)) < 0°-
Hence D(u?) € L? (Br(wo)) and (b) follows. O

[15: 27.11.2023]
[16: 30.11.2023]
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Proof of (a) .
For M > 0 we introduce the cut-off function hps: (0,00) — (0, 00) defined as

har(£) = te if0<t<M
MU= Mo+ aMo (t— M) ift>M

where o = p—1 > 1. This function satisfies hyy € C*([0,00)), 0 < by, (t) < aM*~1 Vt > 0, and
R (0) = 0. We have |hps(u)]? = 1+u? € L1(Q) since  is bounded and Dhyy(u) = by, (u)Du €
L%(Q) since R, is bounded. Hence hps(u) := hprou € HY() and v := (Phpr(u) € HE (2 ]0,00))
is an admissible test function for all { € C2°(B,(zp)). Since u is a subsolution of Lu = 0 we
have

0 > Br[u,v] = / Dv-aDu dx = /(thM(u)Du + 2hp(u)CDCQ) - aDu dux.
Q Q
Using ¢2 >0, hy; > 0 and uniform ellipticity, we argue
9/(%’ ) | Dul? dx</§2h’ ) Du-aDu dx<2|]a”oo/ || Du| has(u)|DC| da.

The function hj,; satisfies
0 < har(t) < (D),

hence
1 2|lal|oo 1 1
P ) D30y < ”9” 0l Dul (utiy (0)10¢])
2 a 1 1
2o bty ()3 Dl o Nkl ()3 D
It follows,
h/ lD < QHGHOO h/ lD
ICHyr ()5 Dul sy < 20t ()3 D)

The function h/, satisfies
Ry (1)t < at® Tt = at?,

hence |u|h§w(u)% < \ﬂuaTH and the inequality becomes
2||a!|oo\f atl
¢y ()2 D 2 w5 D]l

Note that [Ju“z 2 DCHL2(Q) < ||DC]| oo |Juz 2 HL2 @ = [|1DC]| L= |[uP||L1(q) < 0o hence by dominated
convergence it follows, using limps_,o0 b, (t) = at®™1,

lim [ w?h)y,(u)|D¢|Pdr = a/ uP|D¢Pda < oo.
M—oo Jo Q

Finally we obtain

2aflocy/a, o

atl atl
Val[¢u 2 Dul[ 2y < gl Dillrxa),

which proves (a).

O]

Until now we have proved, using Moser iteration, the weak Harnack’s inequalty (i) for p > 2.
We consider now the case 0 < p < 2.
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Proof of weak Harnack’s inequality Thm. (1) for 0 <p < 2.
Let u € H'(£2;]0,00)) be a weak subsolution of Lu = 0. Our goal is to prove

P
sup u < C} ][ uP VBy(xo) C Q.
Br(z0) Bzr(z0)

From the proof of weak Harnack inequality for p = 2 we know

2
sup u < Ld (/ u2) = LdHuHLz(Q) < 0 VBRr(zo) CQ, 0<p<R.
By(zo)  (R—p)2 \/Br(zo) (R—p)2
(2.57)
Assume Bapg,(x0) C 2 and define ¢: [0, Ry] — R by
o(r) := sup u.
Br(x0)

From (2.57)) ¢ is well defined. Moreover 0 < ¢(p) < ¢(Rp). Using (2.57)) again we have

D=

¢(p) = sup u§0d</ u2daz> V0 < p < R < Ryp.
B,(z0) (R — p)§ Br(zo)

We compute, using 2 — p > 0,

2-p
u? = uPu* P <P | sup u =uP ¢(R)*7P.
Br(zo)

Hence, using the inequality ab < da? + Csb? with 0 < 4, 1/g=1—p/2, and 1/¢ = p/2, we get

1 ) 1
2 o P

Ld (/ upda:> < 0 ¢(R) + %pd (/ updx>

(R—p)§ BR(wo) (R—p); BR($0)

s5¢<R>+C‘*CZ</ updx) — 6 G(R)+ —
(R—p)r \/Bro(z0) (R—p)»

1
p
A= C5Ch / wPdz | < oco.
BRQ(:EO)

Claim. Let ¢: [0, Ry] — R be a function satisfying: ¢ > 0, ¢ is bounded and

[

o(p) < $(R)'~

3=

where

d
with 0 < 0 < min{1,2" 7 }. Then there exists a constant C’ > 0 independent of A, such that
C'A
(R—p)

o(p) < V0 < p < R < Ry.

(A

69 [FEBRUARY 12, 2024]



Consequence. We argue

setting p := Ry/2 R = Ry we obtain the result.
Proof of the Claim. Fix 0 < p < R < Ry, and set

(R —p)
po = P, Pn+1 ‘= Pn + on+1 , n > 0.

This sequence is increasing and

1

n+1

1

/?n+1=P+(R—P)Z§:P+(R—P)(1—W)'
=1

In particular lim,,_,o pr, = R. We argue

A i &7
3(p) = d(po) < 6 d(p1) + 7 <0 (pny) + A J
(p1 — po)® j=0 (pj+1—pj)?
_5n+1¢(pn+1)+fmzdzn:<52$)j.
(R—p)7 j=0

Since ((52%) < 1 we have 2?20(52%)j —nsoo ——. Hence, using that ¢ is bounded, we obtain
1-627
in the limit n — oo 4
A2» 1 C'A
Qb(p) < d 4
(R—p)»r1-020 (R—p)

This completes the proof of the claim. O

Tl

Proof of weak Harnack’s inequality Thm. (14).

Assume u € H'() is a weak supersolution of Lu = 0 and u > 0.

Then u. := u + ¢ is also a weak supersolution of Lu. = 0, u. > ¢, and hence 1/u. € H*(Q) and
1/u? € HY(Q).

We will show now that 1/u. is a weak subsolution. Indeed, let ¢ € C2°(£2;]0, 00)). We compute

1 1
/D<)-aDgodx:—/2Du-aDg0da::—/Du-aD<gp2> dx—2/(Du-aDu)(p3dm.
Q Ue O Uz Q uzg Q Ug

By uniform ellipticity, and since ¢ > 0, we have
/(Du -aDu) % dz > 0.
Q Ug

Moreover, 1/u. € H1(Q) and hence ¢/u. € H}(£2;[0,00)) is a possible test function. It follows,
since u. is also a weak supersolution,

/ Du-aD (g) dx = Br[u, %] >0,
Q Ug Ug
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and hence 1
/D<> caDp dr <0 VYo e C(Q;0,00)).
Q

Ug

This implies 1/u. is a weak subsolution of Lu = 0. By weak Harnack’s inequality Thm. m (1)
we have Vp > 0,

Hence
inf (u+te) > ][ (u+ )P VBan(wo) CC Q.
Br(zo) Bap(zo)
The result now follows taking € — 0. O

[16: 30.11.2023]
[17: 4.12.2023]

Until now we have seen Harack’s inequality on balls. We can prove the same result on any
compact subset of 2. This is the content of the next corollary.

Corollary 2.37 (Harnack’s inequality on compact subsets). Assume Q C R? is open and
bounded. We consider the formal differential operator Lu = —div (aDu) with a;; € L>(Q),
and a uniformly elliptic.

For all V' open and connected with V. CC € there exists a constant Cy = C(a,d,V) > 1 such
that

supu < Cy infu, (2.58)
v \%4

for all uw € H () weak solution of Lu = 0 in  with u > 0 a.e. in Q.

Remember that by sup and inf we mean the essential sup and essential inf .

Proof. Since V is compact and V CC Q we can find N > 0, z1,...2y € Qand r1,...,ry > 0
such that

° B4rj (acj) C QVj.

Since V' is connected we can also choose the balls such that |B, (z;) N By, (7j41)] > 0 Vj =
1,...,N —1. Set Bj := By, (z;). Harnack’s inequality on balls Thm. ensures that

supu < Cy infu Vi=1,...,N, (2.59)
B; B

where the constant Cp > 1 is independent on r; and x;.

We show
sup u < CY inf w. (2.60)

N .
Ué\;lBj Uj:lB]

Indeed, by (2.59), we can write Ué\f:lBj = Qo U N where |N| =0 and

igfu < u(z) < sup Vz € Bj N Q, Vj=1,...,N. (2.61)
4 B;
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Assume now N = 2. Since |B; N Ba| > 0 there is a point z; € B; N By Ny and using (2.61) we
have

infu < u(z1) < supu.
B1 By

For any two points € B1 Ny and y € Bs Ny we argue

u(x) <supu < Cpinfu < Cou(z1) < Cosupu < 03 inf u.
B1 Bi Bo Ba

The same holds exchanging the roles of By and B». If z,y € B; N Qy we have
u(z) < Couly) < Ciuly),
where in the last step we used Cy > 1. Putting these results together we get (2.60) in the case
N = 2. The case N > 2 is proved in the same way.
Finally we argue, since V C Ué-V:lBj

supu < sup u < Cév Ai]nf u < C’(])Vinfu,
Vv Uévlej Uj:lBj v

which completes the proof.
O

Corollary 2.38 (de Giorgi). Assume Q C R? is open and bounded. We consider the formal
differential operator Lu = —div (aDu) with a;; € L*>(2), and a uniformly elliptic.
Le w € HY(Q) be a weak solution of Lu = 0 in Q. The following hold.

(i) we L2 ()

loc

(i) Ja € (0,1), and uw € C’&?(Q) such that u =1 a.e. in Q.

Remark. © € C’lOOCa(Q) means for all V' CC  there is a constant Cy > 0 and a coefficient
a > 0 such that B B
T =T _
r#YyeV ’(IJ - y|a

Not that (i7) = (7). We will prove first (7) and use the result to prove (ii).
Proof. For d = 1,2 we can prove (ii) directly.
Indeed, for d = 1 u € H}(Q2) implies, by Sobolev embedding, u € C’O’%(ﬁ).

For d = 2, any weak solution of Lu = 0 satisfies, by interior H? regularity, v € H, fOC(Q) In par-
ticular u € H?(B,(z¢)) for all B,(zo) CC Q. By Sobolev embedding we have u € W14(B,(z0))
V1l < ¢ < oo and hence, again by Sobolev embedding, u € C%Y(B,(z)) for some v > 0,
independent of B, (xg). It follows u € C&Z(Q) In the following we consider the case d > 3.

(i) If uw > 0 is a weak subsolution of Lu = 0, weak Harnack’s inequality ensures

2
sup u < C ][ wldr | < oo VBap(z9) C Q2
Br(zo) Bar(2o)

72 [FEBRUARY 12, 2024]



and hence u € L7 (2). The problem is that here v may be negative. The most natural idea

would be to consider |u| € H}(£2). But u weak solution of Lu = 0 % |u| weak subsolution. To
avoid this problem we will use an approximation of |u| constructed as follows.

Consider the function f: R — R defined via f(¢) := v/t2+ 1. It holds f € C%(R), |f’| < 1 and
0 < f"” < 1. Therefore, since u € H'(Q2), we have f(u), f'(u) € H'(Q) with

D(f(w)) = f'(w)Du, D(f'(w) = f"(u) Du
We show now that f(u) is a weak subsolution of Lu = 0. For this, it is sufficent to show
Bi[f(u), ] <0 Ve € C(2;]0,00)). We argue
Bulf(w.¢l = [ D(f(w)-aDgdz = | f')Du-aDyda.
Q Q

Since f'(u) € HY(Q) and ¢ € C°(Q) the function f'(u)p € HI(Q) is a possible test function
for u. We write
f'(w)p = D(f'(u)p) = f"(u)Du ¢.

Hence
Brlf(u), ] = /Qf'(u)DuaDgo dx = Bp[u, f’(u)cp]—/Q f"(u)Du-aDudzx = — /Q f"(u)Du-aDu dz,

where we used that By [u, f'(u)g] = 0 since u is a weak solution of Lu = 0. Finally, since f” > 0,
© >0 and Du-aDu > 6|Du|? > 0 we have

Bi[f(u),¢] <0.

which proves that f(u) is a non-negative subsolution of Lu = 0 and hence f(u) € L75.(€2). The
result now follows from |u| < f(u) a.e. in Q.

(73) For z €  and r > 0 such that B,(z) CC Q we define the oscillation of w on B,(z¢) by:

w(x,r):= sup u— inf wu.
(@.7) Br(z0) Br(z0)

This function is well defined since u € L35 (£2). We show now that there exists 0 < o < 1 such
that
w(z, R/4) < ow(z, R) VBpr(z) CC . (2.62)

This inequality implies local Holder continuity (see exercise sheet).

Fix z € Q and assume Bg(z) CC Q. For each p < R we define

M(p) := sup u, m(p):= inf w.
By(x) By (z)

Consider the two functions u; := M(R) —u, us := u—m(R). For each j = 1,2, u; > 0 on Bg(x)
and u; € H'(Bg(z)) is a weak solution of Lu; = 0 in Bg(x). Then, by Harnack inequality, there
is a constant Cy > 1 such that

sup u; < Cp inf wy, V0 < p < R/4,
By() By(x)
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which gives the two inequalities, for 0 < p < R/4,

M(p) —m(R)
Summing both terms we obtain w(R) + w(p) < Cp [w(R) — w(p)] and hence

Co—1
<
wip) < Co+1w

(R) = v w(R) V0 < p < R/4,

where 0 < v < 1. O

3 Semilinear ellipic PDEs

We consider PDEs of the form —div (aDu) + g(u, Du) = f, where a is uniformly elliptic.

3.1 Weak formulation

Definition 3.1. Let Q C R? be open and bounded, a € LOO(Q;ngXn%), g: R — R given functions
and f € H-Y(Q) a given operator.
We say that u is a weak solution of the Dirichlet boundary value problem

{ —div (aDu) + g(u) = f in Q
U|3Q =0

/ Dv-aDu dzx + / vg(u) de = F(v) Yo € H}(Q).
Q Q

as long as the integral above are all well defined.

Remark. The only problem is to ensure that g(u)v € L(Q2) for all u,v € HZ (). This is the
content of the next lemma.

Lemma 3.2. Let Q C R? be open and bounded.

(i) Assume d > 3 and f € L™() with m > %.
Then fv € LY(Q) for allv € H} () and 3ey = ¢1(Q, m,d) > 0 such that

[fvllzie) < e [[fllom@llvll e

(ii) Assume g: R — R satisfies |g(t)| < C|t|* Vt € R, with C > 0 some constant and

e 0<a<xifd=1,2,
e 0<a< 2 ifd>3.

Then there exists m = m(d,a) > 1 and constants C1,Cy > 0 depending on Q, «,d, such
that

(a) u € HY(Q) = gu) € L™(Q) and |lg(w)]|z@) < Cillullgy o

() llg()vllzie) < Callg()llLm@llvllmy) < CLlallullfy o) 1wl i) Yu. v € Hg ().
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Proof.
(i) Assume d > 3. Since v € H}(£2), we have, by Sobolev embedding, v € L?" () with 2* = dQ—_dQ
and hence

vl < I fllza@llvllize @) < Cs 1o llvllm e

where ¢ := 2% = < m. By Holder inequality,

= &5
11
[ fllzay < 1917 ™[ fllLm @)

and the result follows.

(ii) Assume first d > 3. Using (i), g(u)v € LY(Q) if g(u) € L™(), for some m > d2+d2 Since
lg(u)| < C|u|®, that means we need |u|¥™ € L'(€).

Since u € HE(Q), by Sobolev inequality we have |u|?>" € L1(Q).

Therefore, vg(u) € L'(Q), if there exists m > 0 such that ma < 2* and m > didQ’ ie.

2d < < 2d
— <m< ———.
d+2 -~ T ald-2)
Since a < d+2 we have d%g < =2y d 5 and hence a solution m exists always. Moreover
2d d—2
> ——=14+4—>1 Yd >3
L A =
and
11 11
lg()llm@) < Clllul*llLm@) = C [[ullzamq) < ClQam ™2 [[u]|72r ) < CCs|Qam 727 ||ul|F ),

which proves (a). Finally we argue
HQ(U)UHLI(Q) < lg(u )||Lq(Q)HUHL2* < Cs |lg(u )HLq(Q)HUHHl(Q)
< CS’Q\‘] mHg w)|| (o) 10l 21 (02)5
which proves (b) in the case d > 3.

Assume d = 2. We argue u € WH2(Q) = v € WH27¢(Q) V0 < ¢ < 1. By Sobolev embedding we
obtain u € L4(Q) V1 < ¢ < oo and

[ull oy < Csgllulla o)
Setting m = 2 we argue
o)z < Cllulllza@) = C lulsuiay < CC%aallulg
which proves (a). Finally \g(u vl[p1) < Hg(u)HLQ(Q)HUHL2(Q) which proves (b).
Assume d = 1. We argue u € W12(Q) = u € C%¥(Q) by Sobolev embedding. It follows

1 .
z)| < ]{2 u(y)ldy + ]é u(x) —u(y)|dy < FHUHLQ(Q) + (diam ©)*[u]co.e (@)
2
and hence u € L*(£2) with [[ul| e () < C'HuHH1 . Setting m = 2 we argue
lg(w)|[r2(0) < C|Q\§HUH%00(Q)
which proves (a). Finally [g(u)v|[z1q) < [lg(w)ll 2@@)llvl £2(@) Which proves (b). O

[17: 4.12.2023]
[18: 7.12.2023]
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3.2 Stampacchia’s theorem and some applications

Theorem 3.3 (Stampacchia). Let H be a real Hilbert space, and

a: HxH —R
(z,y) —alr,y)

such that
(i) Vx € H the map a(x,-): H — R is linear and continuous i.e. a(zx,-) € H*,
(i) Ja > 0 such that |a(z1,y) — a(ze, y)| < allzr — x2|| ||ly|| Y1, 22,y € H,
(i4i) 3B > 0 such that a(w1, 11 — 12) — a(z2, 11 — T2) > Bllv1 — 22||* Vo1,22 € H.
Then VT € H* Alur € H such that
T(v) = a(ur,v) Vv e H.
Proof. The result follows from the following Claim (cf Ex 1.4)
Let H be a Hilbert space, and A: H — H a map (in general nonlinear) satisfying
(i) Jo > 0 such that |A(z) — A(y)| < allz —y|| Va,y € H,
(i) 38 > 0 such that (A(z) — A(y),z —y) > 8|l — y||2 Yo,y € H.
Then A is invertible i.e. Vf € H Jluy € H such that A(uy) = f.

We will see now two applications of this result.

Theorem 3.4. Let Q@ C R? be open and bounded, a € L"O(Q;Rg;,ﬁ) uniformly elliptic and
g: R — R Lipschitz continuous and non-decreasing.

Then VF € HY(Q)* u = up € HF(Q) weak solution of

{ —div (aDu) + g(u) = F in Q, (3.1)

U|BQ =0.

Remark. Note that if ¢ is linear and non-decreasing we have g(u) = Cu, with C < 0. By the
first existence theorem the linear PDE —divaDu 4+ Cu = F' has a unique weak solution for
all F € H-(Q). The theorem above extends this result to nonlinear g.

Proof.
e The weak formulation for (3.1]) is well defined. Indeed, since g is Lipschitz continuous,

9O — g <Ly lt—s|  ViseR,
where Ly > 0 is the Lipschitz constant. Hence, using also |Q| < oo,

l9(u)| < lg(0)] + lg(u) = 9(0)] < lg(O)] + Lglul € L*(Q)  Vu € L*(Q).
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e We define

B: H}Q)x HYQ) —R
(u,v) — Blu,v] := [ Dv-aDu dzx + [vg(u) d.

Then u € H () is a weak solution of (3.1)) iff Blu,v] = T'(v) Vv € H}().
We prove now that B satisfies the assumptions of Stampacchia’s theorem, and hence the weak
solution exists and is unique.

For this purpose we write Blu,v] = By|u,v] + Bi[u,v] where

Bylu,v] := /QDU -aDu dz, Biu,v] := /Qvg(u) dzx.

We check now that B satisfies (¢)(4¢)(4i7) in the assumptions of Theorem

(i) By is bilinear and continous, while B is linear in the second variable. It remains to check
that Bilu, -] is also continuous. Since v — Bj[u,v] is linear we only need to check the map is
bounded:

| Bi[u, v]| < /Qfg(u)’ | dz < lg(u)|l2@llvliz2@) < lg(w)ll2@o) vl a )

and hence the map v — Bi[u,v] € H™1(Q) with || Bi[u,]|lop < [lg(w)| 2(0) < o0

(ii) Set u1,ug, v € H}(2). We compute, using |g(u1) — g(uz)| < Cluy — uz|,

| Blu1,v] — Blug,v]| <

/ Dv-aD(u; — ug) dx
Q

n /Q o] lg(ur) — gluz)]| da

< lallzoe (@) I1Dur — Duz| 20 | Dv||p2(0) + Cllur — w2l 2o lvl L2 (o)
<

o flur — UZHH&(Q)H”HH&(Q)a
for some o > 0.

(iii) Set u1,us € H} (). We compute

Blui,u; — ug] — Blug,u; — ug] = /QD(ul —u2) - aD(u; —ug) dx + /Q[g(ul) — g(u2)(ug — ug) dz.

Since g is non-decreasing we have

/[g(m) — g(u2)](uy — ug) dx > 0.
Q

By uniform ellipticity a > 6Id, and Poincaré inequality, we conclude
Blui,u1 — ug] — Blug,u; — ua] > / D(uy —u2) - aD(u; — ug) dz
Q
> 0| D(ur — u2)l72() = Bllus — w2l g
for some 3 > 0. Hence B satisfies the assumptions of Theoremwhich garantees VF € H}(Q)*

Jlu = up € HE(Q) weak solution of (3.1)). This concludes the proof of the theorem.
O
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This can be extended to the case when ¢ is just locally Lpischitz continuous. To prove it, we
will need the following result from Functional Analysis.

Theorem 3.5 (Vitali). Let (2, F, ) be a measure space with p(2) < oo, and n — f, € LP(Q),
with 1 < p < 00, a sequence of functions satisfying:

(i) fn — f pointwise a.e.,

(i) Ye > 0 36 = 0. > 0 such that the following holds:

/ | fulPdx < & Vn € N,VE C Q measurable set with p(E) < 6.
E

Then f € LP(Q) and f, — f in LP(Q).
Proof. See for example Boccardo-Croce, or Brezis. O

Theorem 3.6. Let Q@ C R? be open and bounded, a € LOO(Q;]Rg;;,iL) uniformly elliptic and
g: R — R locally Lipschitz continuous and non-decreasing.

Then VF € H}(Q)* lu = up € HF(Q) weak solution of

{ —div (aDu) + g(u) = F in Q, (3.2)
U|3Q =0. '
in the following sense: g(u) € L'(Q) and
/ Dv - aDu dz +/ vg(u) de = F(v) Yo € HY () N L2(Q). (3.3)
Q Q

Remark. We need v € L™(2),g(u) € L'() to ensure that [, |vg(u)| dz < oo holds and
hence the weak formulation makes sense.

Proof. We can assume ¢(0) = 0. Indeed, if g(0) # 0 we can write
g(t) = g(t) — g(0) + 9(0) = g(t) + 9(0),

where §(t) := g(t) — ¢g(0) is locally Lipschitz continuous, non-decreasing and satisfies §(0) =
Moreover u € HE(Q) is a weak solution of (3.1)) iff it is weak solution of —div (aDu) + §(u)
F —g(0) in © with ujgq = 0.

0.

Ezxistence. We construct a weak solution by approximation. In order to make g Lipschitz
continous, we introduce the cut-off function

k s>k
T ?:1]5&7(8) ’ Tk(S) = S |5’ <k
g ~k s< -k,
and define
glk) s>k
gp=goT, e gi(s)=4¢ g(s) |[s|<k
g(—k) s<—k.
Note that gx(0) = 0 Vk and
klim gL =g pointwise.
—00
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Since g is locally Lipschitz continuous and non-decreasing, it follows (exercise) that gy is Lipschitz
continuous and non-decreasing. By Theorem H, for all F € H}(Q)* and k > 1 there exists a
unique function uy, € H}(Q) weak solution of —divaDuy, + gk(ug) = F, i.e.

/ Dv - aDuy, dx +/ vgk(ug) de = F(v) Vv € Hy(9).
Q Q

Claim. Ju € Hg(2) and a subsequence j — uy,; such that
(a) ug, — u weakly in Hg(9Q),
(b) g(u) € L*(Q2) and gx, (ux;) — g(u) strongly in L'(Q).
Consequence. It follows from (a) that
lim [ Dv-aDuy, dv = / Dv - aDu dz, Vo € HY(Q).
J—00 9] 9]
It follows from (b) that
lim [ vgg,(ug;) dv = / vg(u) dx Yo € L>(Q).
J—00 ) 0
Hence, since uyg; is a weak solution of —divaDuy; + gk, (ux;) = F, it holds, Vv € H(Q)NL>=(9Q),
/ Dv-aDu dx + / vg(u) dv = lim [ [Dv-aDuy, +vgy,(ug,)] dz = lim F(v) = F(v),
Q Q I JO Jj—o0
and therefore u is a weak solution for (3.2)).

Proof of Claim (a). We show that the sequence n +— wy, is bounded in H}(f2), and hence (since
H(9) is reflexive) there exists a weakly convergence subsequence.

Indeed, since uy, € H} () we can take as test function v = uy. We obtain, using also the uniform
ellipticity of a,

0| Dul|72(qy < (Dug, aDug) 2y = F(uy,) — /Qukgk(uk) dx.

Note that uggr(ur) = (ux — 0)(gr(ur) — gr(0)) > 0, since g is non-decreasing. It follows, using
also Poincaré inequality, that there exists a constant ¢; > 0 such that

a2 ) < Ol Duk 220y < Flur) /Q wrgk(ur) dz < F(ur) < [ Fllop el o)

and hence
sup [ ug| g1y < £ op < o0.
& 0 (@) = c1

This concludes the proof of Claim (a).

Proof of Claim (b). By (a) we have uy, — u in Hg(£2) and hence, by Rellich, uy, — u in L*(Q).
It follows that there is a subsequence [ — U, such that Up;, — U pointwise a.e. in 2. Since
gi(s) = g(s) Vk > [s| we have gi; (ug; ) — g(u) pointwise a.e. in Q.

We want to apply Vitali’s Theorem with p = 1 to the sequence f,, := g, (u,), where we write,
to simplify the notation, u, instead of uy, . Since gn(un) — g(u) pointwise a.e., we already have
condition (7) in Theorem We check now the validity of condition (7).
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Let E C €2 be a measurable set and € > 0. Our goal is to find J. > 0 independent of E such that
B <4, = / (g () |dz < & ¥n.
E

For any M > 1 note that
il <M = [gaua)| < max{g(M), lg(—M)|} = Carg.
Indeed, using that g, is nondecreasing, g, (t) < g(t) Vt > 0 and g,(t) > g(t) Vi < 0 we argue

0 < gn(up) < gn(M) <g(M) V0 <u, <M,
g(—M) < gn(—M) < gn(up) <0 V—M <u, <0.

Inserting this bounds in the integral we obtain

/ (g () dz = / (g () + / g ()|
E En{|un|<M} En{|un|>M}

< ChiglEl + / g (1)
En{jun|>M}

When |u,| > M we have 1 < % and hence

1 1
/ an(un)ldz < [ g )z = < Ui ()
En{|un|>M} En{|un|>M} En{|un|>M}

where we used that g, is non-decreasing and ¢,,(0) = 0, and hence g(uy)u, > 0. Since u, is a
weak solution for —div aDu,, + gn(u,) = F and also a possible test function, we compute

[RalF
/ ungn(un)dﬂj‘ = F(Un) - (Dun,aDun)m(Q) < F(un) < ||FH0p HunHHS(Q) < Top’
Q
and hence 2
B - M ¢

For € > 0 choose M = M, such that

1FR -

ME C1 4
and choose . such that .

CM57955 = Z

‘We obtain
Bl<s. = /|gn(un)|daz<5 Wn e N,
E

i.e. condition (ii) in Theorem holds too. It follows g(u) € L*(Q) and g,(u,) — g(u) in
L'(€2). This completes the proof of existence.

O

[18: 7.12.2023]
[19: 11.12.2023]
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Proof of uniqueness. Assume uy,us € H}(Q) satisfy g(u1), g(uz) € LY(Q) and
(Du1,aDU)L2(Q)+/ﬂ g(ur)vde = F(v) = (DuQ,aDv)Lz(Q)—k/Qg(uQ)vdx Vv € Hy (Q)NL®(Q).
It follows

(Dl = wa),aDv) 2oy + [ falw) = glua)lode = 0 Vo € HY(2) NL¥(©).

We cannot replace as test function v = u; — ug since this function is not necessarily in L>(€2).
Instead set

k uy —uz >k
Ve ;:TkO(U1—U2): Uy — U2 |U1—U2‘ Sk‘l
—k up —ug < —k.

It holds (exercise) vy € L®(Q) N HY () Vk, and
ka = 1‘u1—uz|<k2D(u1 - UQ).

Inserting v = v; above and using

/D(U1 —ug) - aDvg = / Ljyy o<k D(ur — u2) - aD(uy — uz) = / Dy - aDuwy,
Q Q Q

we argue
¢9||ka||%2(9) < / D(uy —u2) - aDvy, dz
Q

=~ | fo(un) = g2 Ty s~ wa)de <0,

where in the last step we used that 7T} and g are non-decreasing. It follows that vy = 0 holds a.e.
in Q and hence u; = us a.e. in ). This concludes the proof of unicity and of the theorem. [

Example 1. Set g(t) := t[t|P~2, with p > 2. This function is locally Lipschitz and non-
decreasing. Hence the unique weak solution u € Hg () of (3.2) must satisfy g(u) € L*(Q), i.e.
u € HE(Q) N LP7L(Q).

Example 2. Set g(t) := e’ — 1. This function is locally Lipschitz and non-decreasing. Hence
the unique weak solution u € Hg () of (3.2]) must satisfy e* — 1 € L1(€Q).

3.3 Subsolution and supersolution method

Let Q € R? be open and bounded. We consider now the linear operator Lu := —divaDu and
the nonlinear PDE

{ Lu=g(u)+F inQ (3.4)

U|aQ =0
with FF € H'(Q)* and g: R — R non-decreasing,.
Note that, contrary to the previous chapter, we study Lu—g(u) = F. For g linear this corresponds
to study Lu — Cu = F, with C' > 0. This equation is not always solvable (cf Section 2.2.3). We
will see that, in some cases, we can at least garantee existence, though not uniqueness, of a

weak solution. The idea is to compare the PDE with the solutions of some appropriately chosen
linearized equation. To make this rigorous we will use sub and supersolutions.
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Definition 3.7. Let Q C R? be open and bounded.
Remember that Br[u,v] = (Dv,aDu)2q) = [o Dv-aDu dx Yu,v € HE(Q).

(i) The function u € H}(Y) is a (weak) subsolution for (3.4) if

Bylu,v] < /Q vg(u) dz+ F(v) Vv e H'(:[0,00)).

(ii) The function w € H(Q) is a (weak) supersolution for (3.4) if

B, v] > /Q vg(@) dz+ F() Vo€ H'(Q:]0,00)).

Here we assume g is reqular enough to ensure the weak formulation above is well defined.

Remark. If u,u € C?(Q), a € CY(Q;R¥*4) and F = (f, Jr2(Q), with f € C(Q) N L?(9), then

sym
we can replace the integrals above with pointwise inequalities

g(u) + f (3.5)
g

Theorem 3.8. Let Q C R? be open and bounded, a € LOO(Q;ngxTﬁ) uniformly elliptic,
F € H}(Q)* and g: R — R a function satisfying:

e g is continuous and g(0) = 0,

e [g(t)] < C |t|* Vt € R, where C > 0 is some constant and « € [0,00) for d = 1,2, while

a € [0,%2] for d > 3.

Assume u € HY(Q) is a weak subsolution for (3.4), and w € H} () is a weak supersolution for

(3-4), satisfying
u < u a.e. in €,

and at least one of the conditions below holds.
(i) g is non-decreasing.
(ii) g is Lipschitz continuous.
(ii1) gjr, is non-decreasing and 0 < u < U a.e. in Q.

(iv) g is locally Lipschitz continuous, g, s non-decreasing and IM > 0 such that

—-M< u < 7w a.e in .

Then Fu € HE(Q) weak solution of (3.4)) satisfyingu < u < U a.e. in Q.

Remark 1. The assumptions on « garantee, using Lemma that the weak formulation is
well defined.
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Remark 2. The weak solution obtained from the theorem above is not unique in general (cf.

Lemma below).
Proof. Sketch (cf Ex 10.1 and 10.2)

Case 1. Assume g is non-decreasing. We approximate u by a sequence k +— uy € H(9Q)
constructed as follows.
Set ug := u. For k > 1 take uy € HZ () to be the unique weak solution of the linear PDE

{ Lugp=F, in)
ugn =0

where

Fp:=F+ (g(uk—l) ;o )LQ(Q) € Hy ()",

The function wuy exists and is unique by the first existence theorem Moreover (exercise)
usup Sup < --- S,

and ur — u in some appropriate sense, where u € Hg(Q) is a weak solution of (3.4) satisfying
u < u < wa.e. in .

Case 2. Assume g is Lipschitz continuous. Then 3C' > 0 such that |g(t) — g(s)] < C|t — 5|
Vt,s € R. It follows h(t) := g(t) + Ct is non-decreasing. We use then Case 1 to construct a weak
solution of Lu+ Cu = h(u) + F and from there a weak solution of (3.4)) satisfyingu < u < @
a.e. in

Case 3. Use the same strategy as in Case 1.

Case 4. Use the same strategy as in Case 2 and 3.
O

Lemma 3.9 (Example 1). Let Q C R, @th d < 6, be open, bounded and connected, with smooth

boundary. Assume in addition f € C*°(€;[0,00)) and Jzg € Q such that f(xg) > 0.
Then the nonlinear PDE

{ —Au=u>—f inQ (3.6)

uppq =0
has at least one non-positive weak solution u € H}(€2; (—o0,0]).

[19: 11.12.2023]
[20: 14.12.2023]

Proof.

e The weak formulation is well defined. Indeed g(s) = s2

,i.e. =2 and
< d+ 2

9< 2 Z
—d—2

V3 <d <6.

e The map s — g¢(s) satisfies g(0) = 0, is non-decreasing on R, and locally Lipschitz on R.
Moreover we look for a non-positive solution, hence we need to use Case (iv) of Theorem
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e We look for a supersolution satisfying @ < 0. The choice w := 0 works. Indeed, using f > 0
and ¢g(0) =0, we get

/ Dv-Dudx=0> —/ vf de = / v[g(u) — f] duz, Vo € HY(;]0,00)).
Q Q Q
Equivalently we can argue pointwise

—AT=0>—f=u—f.

e We look for a subsolution u € H}() satisfying u < u = 0. Note that u? — f > —f so we
consider the linear PDE
{ —AyYy=—f inQ

Yaa = 0.

By the first existence theorem this PDE has a unique weak solution v € H}(Q2). Since f €
C°°(Q2) and 99 is smooth, by Theorem we have 1 € C*°(f2) and the equation —Ay) = —f
holds pointwise. Hence we have

—AYp=—-f<0 in €, and — AYp(zg) = —f(zo) < 0.

Therefore, by the strong maximum principle (since 2 is connected) ¥ < 0 in .

We define u := ). This is a subsolution. Indeed

—Au=—f<—f+u’

Moreover this function satisfies u < 0 = w. Finally, since u € C(2), there exists M > 0 such that
—M < u(x) Yz € Q, and by Case (iv) of Theorem there exists at least one weak solution
u € H}(Q) such that u <u <0.

L]

Lemma 3.10 (Example 2). Let Q C R? with d < 6, be open, bounded and connected, with
smooth boundary. Assume in addition 0 < 0 < 1.
Then the nonlinear PDE

{ —Au=[ul? inQ (3.7)

ujp =0

has at least one strictly positive weak solution u € H}(£2; (0, 00)).

Remark. Since u = 0 is also a weak solution, the PDE above has at least two different
solutions.

Proof.
e We have g(s) = |s|?, with 0 < 6 < 1 hence the weak formulation is well defined in any
dimension.

e Since ¢ is non decreasing on Ry it is enough to find a sub and supersolution such that
0 < u < uw. We note that, if 8 = 0 we have —Awu = 1 which is a linear non-homegeneous PDE.
If =1 and u > 0 we have —Au = |u| = u which is a linear homegeneous PDE. Since ujgq = 0
we expect 0 < u < 1 near 92 and hence

u1§u9§u0:1.
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Therefore we will use the case 8 = 0 to look for a supersolution w and the case 8 = 1 to look for
a subsolution u.

e Supersolution: consider the PDE

{ —Au=1 nQ
u‘(gQ:O.

By the first existence tEeoremm this PDE has a unique weak solution 1) € H é(Q) By Theorem
we have 1) € C*°(Q), Yj9q = 0, and the equation —A1) = 1 holds pointwise. Hence we have

~AYp=1>0 inQ,

and by the strong maximum principle (since 2 is connected) ¥ > 0 in .

We define w := ¢4, where ¢; > 0 is some constant to be chosen later. 7 is a supersolution if

c1 = —Au > c?zpe.

0
For this it is enough to choose ¢; > ||¢]|;S .

e Subsolution: consider the PDE

{ —Au=u In{
U,|aQ:O.

The spectrum of —A is at most countable and strictly positive (cf. Theorem and the
remarks after it)
E:{)‘H}HENa 0< A <A< A3

Claim. Jp € H}(€;(0,00)) strictly positive eigenvector for A1, i.e. ¢ is a weak solution of
—Ap = Aigp.

Proof. Cf Evans for the general case. In the special case d = 1 and §2 = (—1, 1) one can construct
explicitely all eigenvalues and eigenvectors for —A (exercise).

We define u := cot), where co > 0 is some constant to be chosen later. u is a subsolution if

1
Mu = —Au <o, it wf <A it Jullpe <A 0
_1
For this it is enough to choose co < A\, "7 ||¢]| .

e We have now a super and a subsolution. We still need to check that u < w. We define

w =7 — u. Then w € C*°(2) and wypq = 0. We compute
—Aw = (=AT) — (—Au) = ¢1 — 2 A1 .

We choose ¢; > Aiea||¢l|pe. Then —Aw > 0 and by the strong maximum principle w > 0 on §2
and hence ©w > u.

e We have constructed a subsolution and a supersolution such that 0 < u < w. Since g is non-
decreasing on R, by Case (iii) of Theorem there exists at least one strictly positive weak
solution u € HE(Q). O
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4 Fixed point methods
Existence of solutions for NLPDEs can be sometimes proved by finding a fixed point. The
following theorems summarize the most important fixed point results.

Theorem 4.1 (Banach-Cacciopoli).
Let (X, d) be a complete metric space, and F: X — X a contraction, i.e. 30 < X\ < 1 such that

d(F(z), F(y) < Ad(z,y)  Vo,ye€X.
Then there erists a unique fived point for F, i.e. xg € X such that F(xy) = xo.
Proof. Cf Analysis 2. O

Theorem 4.2 (Brouwer).
Let K C R? be convez, closed and bounded.
Let F': K — K be a continuous function.

Then F admits a fixed point, i.e Ixg € K such that F(xg) = xg.

Theorem 4.3 (Schauder I).
Let X be a real Banach space, K C X convex and compact.
Let F': K — K be a continuous function.

Then F admits a fixed point, i.e Ixg € K such that F(xg) = xg.

Theorem 4.4 (Schauder II).
Let X be a real Banach space, A C X convex, closed and bounded.
Let F: X — X be a function satisfying

e [ is continous and compact (cf Def. below),
e F(A) C A
Then F admits a fixed point in A, i.e Ixg € A such that F(xy) = xy.

Theorem 4.5 (Schaefer).
Let X be a real Banach space and F': X — X a function satisfying

e F is continous and compact (cf. Def. below),
o the set A:={zx € X |x=AF(x) for some 0 <\ <1} is bounded.
Then F admits a fized point, i.e Ixg € X such that F(xg) = xg.
The rest of this section is devoted to prove these fixed point theorems. We start with some

remarks and preliminary results.

Remarks.

Banach-Cacciopoli is the only result that garantees not only existence but also uniqueness
of the fixed point.

Brouwer is a special case of Schauder I, since K C R? is compact iff K is closed and
bounded.

The advantage of Schaefer is that we do not need to look for a convex subset of X

The assumptions in Schauder I and II are all important: see the examples below.
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Example 1. Let X = [*(R) = g2l 2255 3:]2 < 00}

We consider K := B;(0) and F': X — X defined as

1—|z|?
F(x) := {QHH,xl,xg,...}.

The set K is convex, closed and bounded, but not compact. The function F' is well defined,
continuous, and satisfies F'(K) C K but is not compact (exercise).

This function has no fixed point. Indeed, we have F(z) = x iff

_ e _ _
x1=F(x); = 5 zp = F(z)r = x5—1 Yk > 2.
This holds iff 2, = 21 Yk > 1, and hence z; = 0 (since the sequence must be square summable).
It follows 0 = 21 = % = 1/2 which gives a contradiction.

Example 2. Let X =R? K := By(0) \ B1(0), and F': R? — R? be defined as
F(x1,x9) = (—x2,21).

The set K is compact, but not convex. The function F' is well defined and continuous (actually
it is the rotation by 7 /2).

This function has the unique fixed point x = (0,0) which does not belong to K.

[20: 14.12.2023]
[21: 18.12.2023]

To prove Brouwer’s fixed point theorem we will need the following result from FA.

Lemma 4.6 (projection on a convex and closed subset). Let (H,(-,-)) be a real Hilbert space.
Let A C H be a closed and convex subset with A # @.
Then 3! map Pa: H — A such that ||Pa(z) — z||g = dist (z, A). Moreover Py satisfies

(i) Py is the unique map such that (x — Pa(z),y — Pa(x)) <0Vy € A,x € H.

(ii) Pa is Lipschitz continuous with Lipschitz constant Lp, = 1.

Remark. In general P4 is not a linear function, unless A is a linear subspace of H.

Proof. Existence/uniqueness of Py, as well as (i) have been seen in Functional Analysis.
(79) Fix z1,x9 € H. It follows from (i) that
(w1 — Pa(21),y — Pa(w1))
(w2 — Pa(w2),y — Pa(w2))
Setting y = P(z2) in the first inequality and y = P(x1) in the second, we obtain
(1 — Pa(x1), Pa(z2) — Pa(z1)) <0,
(Pa(x2) — x2, Pa(x2) — Pa(x1)) <0.
Summing the two lines we get
(w2 — 21, Pa(w2) — Pa(w1)) > |[Pa(z2) — Pa(z1)|%

and hence ||Pa(z2) — Pa(z1)||g < ||lz2 — 21| g V1,22 € X.

Yy € A,

<0
<0 Vy € A.

O]
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Proof of Brouwer’s fized point theorem[{.3. Let K C RY be convex, closed and bounded. Let
F: K — K a continuous function. Our goal is to show that there exists o € X such that
F (.ro) = Xy-

e We can assume K = Bpg(0). Indeed, suppose K # Bg(0).

Since K is bounded, 3R > 0 such that K C Bg(0).
Since K is convex and closed, by Lemma 1Py : RY — K such that | Py (z) —z| = dist (2, K).
We define F': Br(0) — K C Bg(0) by

F(z) := F(Pg(z)).

This function is continuous, since both I and Px are continuous.

Assume the theorem holds for the case K = Br(0). Then F admits a fixed point, i.e. Jzq €
Br(0) such that F(zq) = zo.

Since F(BR(O)) C K we must have zg € K. Therefore Px(xz9) = xo and zp = F(a:o) =
F(Pg(x0)) = F(xp), hence z is a fixed point for F'.

e We can assume R = 1. Indeed, suppose R # 1.
We define F': B;(0) — B1(0) by

~ 1
F = —F(Rzx).
() i= F(Ra)
This function is well defined and continuous.

Assume the theorem holds for the case K = Bj(0). Then F admits a fixed point, i.e. Jz¢ € B; (0)
such that F(zg) = xg. Therefore Rxy = F(Rxo) and hence z1 := Rz is a fixed point for F.

e We can assume F': R? — B1(0). Indeed, set B := B;1(0) and suppose F: B — B. We define
F:R?* = B by .
F(z) := F(Pg(x)),

where Pg is well defined since B is convex and closed. Since F and Py are continous, I is
continuous.

Assume the theorem holds for the case F': R? — B. Thenf’ admits a fixed point i.e. Jzg € R4
such that F(xg) = xo. Since F(R?) C B it follows zy € B, Pg(z¢) = z¢ and hence F(zg) =
F(xo) = xg. Therefore xg is a fixed point for F.

e We can assume F': R? — B is smooth. Indeed, assume F' is continuous and define F; := p.x F)
where {p.}e0 is a family of standard mollifiers, i.e. p. := e 9p(e~ ), with p € C°(B; [0, 0))
and [ pdx =1.

It holds F. € C®(R% B) Ve and F. — F uniformly on B.

Assume the theorem holds for the case F': R? — B smooth function. Then for each ¢ > 0
Jr. € B such that F.(z.) = z.. The family {x.}.~0 is bounded hence there is a sequence
n — &, with ¢, — 0 and 2., — = € B. By uniform convergence we get F. (v.,) — F(z), and
hence F(z) = z.

e We assume now F: R? — B is a smooth function. Our goal is to prove that there exists a
point xg € B such that F(x¢) = zo.

By contradiction assume F(x) # z Vo € B. Then we can construct a function g: B — 0B,
where g(x) is the unique intersection with 0B of the half-line starting in F'(x) (the starting
point is not included) and passing through x. This function has the following properties.
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e g(z) =z iff x € 9B, by construction.

e g € C(B;0B). Indeed g(z) = F(z) + A(z)[r — F(z)], where \(z) is the unique positive
solution of

|F(x) 4+ A\x)[z — F(z)]]* =1, ie. Ma(x) 4 2\b(z) — c(z) = 0,
with
a(x) := |z — F(z)]?, b(z) == F(x) - [x — F(z)], c(x) :=1—|F(z)*
Note that a(x) > 0 on B, since x # F(x) Vo € B, and ¢(x) > 0 since F(R?) C B. Hence

_ b{a) + v/b()? + a(@)e()
a(x) ’

It holds a, b, ¢ € C*°(B) and b(z)?+a(z)c(z) > 0 on B (exercise), therefore A\ € C*°(B; (0, 00)),
which implies g € C°*°(B;0B).

A(z)

The claim below states that no such function exists, hence providing a contradiction.
Claim 1. There exists no function g € C*°(B;dB) such that g(z) =z < r € 9B.

Proof. We could use topological arguments. Here we use a different proof, using Banach fixed
point theorem. By contradiction, assume 3g € C*°(B;0dB) such that g(z) =z < = € IB. We
will show that g satisfies the following statements:

(a) det Dg(z) = 0 Vz € B.
(b) g satisfies [Fdet Dg da = |B].

But these two statements are incompatible, which gives the contradiction.

Proof of (a). Since g(B) C OB we have |g(z)|* = 1 and hence Dg(z)tg(x) = 0 Vz € B. It follows
that ker Dg(z)* # {0} and hence det Dg(z) = 0 Vz € B.

Proof of (b). Note that if we had g(z) = «, then Dg = Id and [gdet Dg do = [51 dz = |B|.
We will show that ¢ is not far from the identity. For this purpose we define, for ¢ € [0,1] the
map
O E — E
x = @(x) = (1 —t)x + tg(x).

o ¢, is well defined since |p(z)] < (1 —t)|z| +tlg(x)| <1 —t+t = 1. Morever po(x) = x and
v1(x) = g(x), hence ¢, interpolates between x and g(z).

e ©; € C®(B; B), since both g and the identity are smooth. Moreover
det Dy = det[Id 4+ t(Dg —1d)] = 1 4 a1 (x)t + - - - + agq(x)t?,
where a; € C*(B;R), therefore

d

/ det Dy, dx = |B| + thozj, with o := / a; dx.
B st B
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e det Dyg = 1 and t — det Dy is continuous, hence 3¢; > 0 such that det Dy, > 0 Vt € [0, 11].
Therefore

d
/ | det Dy dx:/ det Dy, dx = |§H—thaj, vt € [0,t1].
B B =
Claim 2. 3t > 0 such that ¢, is bijective V¢ € [0, to].
Consequence. Set § := min{ty,t2}. Then, Vt € [0, ] we have

d
| B —i—thozj = /deth&t dr = /\dethptl dx :/ _dz = |p(B)| = |B],
j=1 B B wt(B)

where we used ¢;(B) = B by surjectivity. Hence a; =0Vj =1,...,d and
/det Dy dz = |B], vt € [0,1].
B

Proof of Claim 2. Here we use Banach fixed point theorem. Fix some t < 1, y € B. Our goal is
to show that, if t < t9 there exists a unique = € B such that ¢;(z) = y.

We have ¢ (z) =y iff (1 —t)x + tg(x) = y iff x = ¢(x), where
Y: B—R?
v $(z) 1= 1y — (o).
To apply Banach fixed point theorem, we extend this function to ¢¥: RY — R? defined by

P(x) :==(P(x)), where P = Pg.
This function is a contraction if to is small enough. Indeed

[9(2) ~ 9] = = lg(P(@)) — 9P| < 1Dl o ) |P(2) ~ P

1—1t
t / 12
< 7 1P9ll e @le — 2l < 5 -

HDQHLOO(E)"T — 2| = 0lz — 2|,

where § < 1 if ¢, is small enough. It follows that 3z € R¢ such that 1;(:5) = z. We distinguish
now two cases.

e If z € B, then P(x) = z and hence z = (P (z)) = ¥(z).
e If z € B, then P(x) € B and hence g(P(z)) = P(z), by the assumptions on g. It follows
y= (1=t +tg(P() = (1 — )z + tP(x) ¢ B,
since z ¢ B and P(x) € OB. This contradicts y € B. Hence this case cannot occur.

This completes the proof of Claim 2 and of the theorem.
O

[21: 18.12.2023]
[22: 21.12.2021]
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Proof of Schauder I, Theorem[{.3 Let X be a real Banach space, K C X convex and compact,
F: K — K a continuous function. Our goal is to show that Jz¢ € K such that F'(z¢) = xo.

Claim. Ve > 0 dK. C K and F.: K — K such that

e K. convex, bounded and closed, and K. C V. where V. is a finite dimensional linear
subspace of X,

e [ is continuous, F.(K.) C K. and sup,cg || Fz(z) — F(x)| < e.

Consequence. By Brouwer’s fixed point theorem, there exists a point . € K, such that F.(z.) =
Zs. Since K is compact, we can find x € K and a sequence n — &, such that ¢, — 0 and z., — =.
We claim that x is a fixed point for F. Indeed we argue

e = F(o)| <l = 2o, || + [l2e, = F(ae,)|| + [ F(2e,) = F(2)].-

Since z., — x and F is continuous we have ||z — z., || = 0 and || F(z.,) — F(x)|| — 0. Finally,
using F. (z., ) = x., we argue

[ze,, — F(xe, )|l = [[Fe, (we,,) — Fze,)|| < sup [Fe,, (x) = F(z)|| < en — 0,
xe

and hence F(x) = .

Proof of the Claim.
e We construct K.. Since K is compact Ve > 0 3N, > 1, 5, . .. zfy_ € K such that

Ne

K c | B(a5).
j=1

We define V; := span {z§,...2%_} and

Ne Ne
K. :=conv{zi,. .2} ={y =D _Na§| \; >0, ) =1},
j=1 J=1

It holds dim V. < N. < oo. Moreover K. C K, since K is convex, K. C V. by construction, K,
is closed (exercise) and bounded since |y| < Zj\/:al Ajlz5| < max; [25] Vy € K.

e We construct F.. The easiest choice F. := F' does not work since F'(K.) ¢ K. in general.

It is enough to find a continuous function J.: K — K. such that

sup ||Je(x) — z|| < e.
reK

Indeed, given such a function, we define F.(z) := J.(F(z)). Then F. is continuous, F.(K.) C K.
and

sup || Fz(z) — F(z)|| = sup [|[J-(F(z)) — F(z)|| < sup [|[Je(z) —z| <e.
zeK zeK reK

To contruct J. it is enough to find N, continuous functions Aj: K — [0, 1] such that:
Yo Aj(@) =1 Ve € K and Xj(x) = 0 Vo & Be(x5).

Indeed, set J.(z) := Z;Vil Aj(@)z

€
Iz
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By construction, J.(x) € K. Yz € K. Moreover J. is continous and

[PA —a:H—HZ)\ x—x\|<Z)\ )||z5 —xH<gZ)\

where we used \;j(z) = 0 if [[25 — zf| > e.

To construct the functions A; we argue as follows. Consider a;(z) = dist (z, B-(25)¢). This
function is continuos and satisfies

aj(x) =0 Va ¢ Bg(xj), 0<aj(x)<e Vxe Ba(xi), a;(z5) =e.

We define now

a;(z)
Ai(x) = J .
@) Egi1 ar(z)

This function is well defined, since Vo € K 3j such that 2 € B.(z5), and hence Zk L ak(x) > 0.
Moreover \; has all the required properties (exercise). This concludes the proof of the claim
and of the theorem.

O]

To prove the second version of Schauder’s theorem, we need some preliminary definitions and
results.

Definition 4.7. Let X be a Banach space, F': X — X a map.
F is compact if F(B) is precompact VB C X bounded set.

Reminders from Functional Analysis. Let X be a Banach space, A C X a subset.

e A is precompact if Ve > 0 AN > 1 and x1,...,zn € A such that

N
Ac | Belz;) ={a1,..., 25} + B:(0),
Jj=1

ie. Ve Adje{l,...,N} and y € B.(0) such that v = z; + y.
e A is precompact < A is compact.

e The convex hull of A is the set

conv A := y—zx\jy]|n>1 Aj >0, Z)\ =1, y1,...,yn € A
7=1
Lemma 4.8. Let X be a Banach space, A C X a subset.

A is precompact = conv A is precompact.

Proof.
e A is precompact, then Ve > 0 3N > 1 and z1,...,2y € A such that A C {z1,...,2n}+ B:(0).
We show that conv A C conv{zy,...,zn} + B:(0) holds.
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Indeed, set z € conv A. By definition 3k > 1, 2z1,...,2r € A, A1,..., A\x > 0 with Ele N =1
such that z = Zle YER
Since z; € A we can write z; = x;, + y;, for some j; € {z1,...,zn5} and y; € B-(0). It follows

k k k
z= Z Nz = Z Nz, + Z Ay € conv{xy,...,zn} + B:(0),
=1 =1 =1

and hence conv A C conv{zy,...,zn} + B:(0).

e We show that conv A is precompact.

Indeed conv{zi,...,zy} is compact, since it is bounded, closed and
conv{zy,...,zy} C span{z1,...,ZN}, with dim span {z1,...,zy} < N.
Therefore Im > 1, &1, ..., Ty, € conv{zy,...,xy}, such that

conv{zi,...,zn} C{Z1,...,Zn} + B:(0).

It follows
conv A C conv{zy,...,xn}+ B:(0) C {Z1,...,Zn} + B2:(0).

This concludes the proof of the lemma.
O

Proof of Schauder II, Theorem[{.4 Let X be a real Banach space, A C X convex, closed and
bounded, F': X — X satisfying

e F'is continous and compact.
e F(A) C A

Our goal is to show that F' admits a fixed point in A.

The idea is to reduce to Schauder I. Indeed it is enough to find K C A such that K is convex
and compact, and F(K) C K. Then, by Schauder’s theorem I, 3z € K C A such that F(z) = x.

To construct K we proceed as follows. Since F' is compact and A is bounded, F'(A) is precompact
and hence, by Lemma conv F'(A) is precompact and convex. We define

K :=conv F(A).

Then K is convex and compact. We show now: K C A and F(K) C K.
Since F(A) C A and A is convex it follows that conv F'(A) C A. Since A is closed we get

K =convF(A) Cc A=A,

and hence K C A. Finally, since K C A, we have F(K) C F(A) C conv F(A) C K. O
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Proof of Schaefer’s fized point theorem[].5 Let X be a real Banach space, F': X — X satisfy
e F'is continous and compact,
o the set A:={x € X |z =AF(z) for some 0 <\ < 1} is bounded.

Our goal is to prove that F' admits a fixed point. For this purpose we reduce to Schauder II.
A natural candidate for the set K is Bjs(0), since this set is convex, bounded and closed. But
in general F(By(0)) ¢ Ba(0). We consider instead a regularized version of F' constructed as
follows.

Since the family A is bounded, we have My := sup,¢c 4 ||z|| < co. Set now M > Mjy. We define
the function Fir: X — X as Fiy := T (F(z)) where Tps: X — X is given by

() T if ||| < M
x) = .
M ﬁx if ||z|| > M.
ie.

F(z) if |F(z)|| <M M

Fu(z) == { \F(z) if ||z| > M. where A, NEGI <01,

e Slnce T is continuous (exercise) and F' is continuous by assumption, Fjs is continuous too.

e F)/(X) C By(0) by construction, and hence Fy; (B (0)) € By (0).

e F) is compact. Indeed let n — x,, € X be a bounded sequence in X. Since the function F' is
compact there exists a subsequence j +— x,; and a point y € X such that F'(z,;) — y. Since T
is continuous we have Fi(wy,) = T(F(xn;)) — T(y).

Therefore, by Shauder’s theorem |4 E 3o € By (0) such that Fy(zg) = zo.
We distinguish now two cases

If |F(x0)|| < M then F(zg) = Far(zo) = xo.
If || F(zo)|| > M then \yy F'(z0) = Fp(xo) = xo, where A\yy = M/||F(z0)| < 1. Therefore g € A
and hence ||zo|| < My < M. Using again F(z) = A} 'z, we argue

[E2 0||

1 (o) || = Ail!afoH = [[F(zo) | =7 < [1F (o)

which gives a contradiction. Therefore this case cannot occur.
O

The fixed point theorems above can be used to prove existence (thought not uniqueness) of
several nonlinear PDEs. Three examples (see Sheet 11) are

o —Au(z) = f(z,u(zx)),

e —div (a(u)Du) = f where a : R — R is a scalar function,

o —Au(z)+ pu(x) = f(x, Du(x)).

In all these cases the main trick is to construct a function F' : X — X, where X = L?(Q) or H} ()
where v = Fu is defined as the unique weak solution of the linear PDE —Av(x) = f(z,u(z)),

(resp. —div (a(u)Dv) = f, —Av(z) + pv(z) = f(z, Du(x))).
To prove continuity of the function F' we need some continuity of the operator u — f(z,u(x)).
This is the content of the next theorem.
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Lemma 4.9 (Nemitski composition theorem). Let Q C R? be open and bounded.
Set 1 <p,g< oo, and f: Q2 xR — R a function with the following properties.

e f is a Carathéodory function i.e. = — f(x,s) is measurable Vs € R and s — f(x,s)
continuous for a.e. x € Q.

e Jb >0, a function g € L1(Q;[0,00)) and 0 < 5 < %’ such that

|f(x,5)] < g(zx) +b|s|® Vs € R, for a.e. x € Q.

Then the Nemitski operator

F: LP(Q) — LY(Q)
u = Fu)(z) = f(z,u(z))

is well defined and continuous.

Proof. Sheet 11. O

[22: 21.12.2021]
[23:08.01.2024]

5 Quasilinear elliptic PDEs

Let © € R? be open and bounded. A quasilinear PDE of second order has the (non-divergence)
form

— Tr [M(z,u, Du)D*u] = f(z,u, Du) (5.1)
where
M: QxRxR? — R f: OxRxRY =R
(z,8,p) — M(z,s,p) ’ (z,8,p) = f(z,,p).

To write the corresponding divergence formulation, which is more practical to study weak solu-
tions, we need first some notation.

Consider a function F: Q x R x R? — R". We will denote by 0/9z;F the derivative of the
function x +— F'(x,s,p) and by d/dz;F the derivative of the function x — F(z, u(z), Du(x)).

For a: Q x R x R? — R? differentiable we define

[]=
&\
a

diva(z,u, Du) : = aj(z,u, Du)
xj
10

<
Il

d
Or,0;(z, u, Du) + Osa;(z, u, D)y u+ Y _ Ipaj(x,u, Du)d2, u
1 =1

[A(z,u, Du)D*u] + B(x,u, Du) = Tr [(ReA)D?u] + B,

I
M=~

=}

where

A: QxR xR — Rdxd

(z,s,p) — Aij(x,s,p) == 0p,a;(x,s,p) ’
B: OxRxRY R
(x,s,p) — B(z,s,p) = Zj [(%cjaj(x,u, Du) + 0saj(x, u, Du)(?xju] ,
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and we used ReAd = $(A+ A*) = 2(A+ A?) and (D*u)! = (D?u).
Hence, u is a solution of —div a(z, u, Du) = f(z,u, Du) iff u is a solution of —Tr [M (z, u, Du)D?u] =
f(x,u, Du) with M := ReA and f(z,u, Du) := f(x,u, Du) + B(z,u, Du).

Note that, performing integration by parts directly in (5.1) we do not obtain an expression of
the form diva(z,u, Du) + B(x,u, Du) in general:

d
—Tr [M(z,u, Du)D*u] = —div (M (2, u, Du)Du) +  _ Opu div M.,
k=1
d d )
= —div (M (z,u, Du)Du) + Z Oku Z Opy M (x,u, Du) j.(D*u) j + B(z,u, Du).
k=1 ji=1

In the following we consider the boundary value problem:

{ —diva(z,u, Du) = f(z,u,Du) in (5.2)

U‘QQ =0
where a: @ x RxR? - R? and f: Q x R x R — R are nonlinear functions. If a is differentiable

in the third variable we define Aj(x,s,p) := Op,a;(x, s, p).

5.1 Ellipticity and weak formulation

Definition 5.1 (ellipticity version I). Assume the function a: Q x R x R* — R is C! in the
third variable. In particular A: Q x R x R — R4 s well defined. We say that the (formal)
differential operator u — —div a(x,u, Du) is

o clliptic, if ReA(x,s,p) > 0 as a quadratic form ¥(s,p) € R x R? and a.e. x € Q,
e uniformly elliptic, if ReA(x,s,p) > 01d, for some 0 > 0, ¥(s,p) € R x R? and a.e. = € Q.

The next lemma summarizes some important properties of vector fields. Since A is constructed
from the derivative of a in p, we can neglect the x, s dependence for the moment.

Lemma 5.2 (properties of vector fields). Fizn € N, n > 1.

(i) Consider a function F: R® — R, C? and convex. Set a(p) := DF(p) and A;j := d;a;.
Then A is well defined, At = A and A > 0.

(ii) Assume the vector field a: R™ — R™ is differentiable and monotone i.e.

[a(p) —alg)] - (p—¢) >0 Vp,g€R™
Set Al‘j = 8Z~aj.
Then A is well defined and ReA > 0.
(i1i) (zeros of a vector field) Let v: R™ — R™ be a vector field satisfying

(a) v is continous and
(b) 3R > 0 such that v(x) - x > 0 Yz € IBR(0).

Then 3xg € Br(0) such that v(xg) = 0.
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Proof.

(i) Since p — F(x,s,p) is C?, the hessian matrix H;j := 0,0y, F = 8,0, F is well defined and
symmetric. Hence A;; = 0p,a; = H;; is well defined and symmetric.

Since p — F(p) is convex we have H = A > 0.

(ii) Set p := q + h¢, with h € R\ 0 and &€ € R Then p — ¢ = h¢ and monotonicity gives
0 < a(p) — alq)] - (p — q) = hla(g + h&) — a(q)] - €,

hence, since h? > 0,

ih[a(xvqu"i_hé)_a(xa87Q)]'§ - [a(x787Q+h§)_a(x737Q)]'520 Vh € R.

h2
Taking the limit h — 0 we get
0< Z(?plaj(a;, 5,)§& =& AL = £ - ReA€.

gl

S| =

The result follows since £ is arbitrary.

(7i7) By contradiction assume v(x) # 0 Va € Bgr(0). We define

w: Bpgr(0) — dBgr(0) C Br(0)
x = w(x) = — v@n (x).

Since v is continous and v # 0 the function w is also continous. Moreover Br(0) C R"™ is convex,
bounded and closed. By Brouwer’s fixed point theorem, it follows 3xg € Br(0) such that
R

@)l

|v(ﬂ:0)|v($0)’ hence  v(zo) = R

xo = w(xg) = —

Since w(Br(0)) C 0BR(0), we have xg € dBg(0), and hence, since v(xg) # 0,

v\
0 <0+ v(ro) = — a2 = po(ag) R <0,

which gives a contradiction. O

We can use monotonicity to define ellipticity also when a is not differentiable
Definition 5.3 (monotone vector field). A vector field v: R™ — R"™ is
(i) monotone, if [v(p) —v(q)] - (p —q) > 0 Vp,q € R",
(i) strictly monotone if [v(p) —v(q)] - (p —¢q) >0 Vp # g € R,
(i4i) uniformly monotone if 30 > 0 such that [v(p) —v(q)] - (p — q) > 0lp — q|* Vp,q € R™.

Definition 5.4 (ellipticity version II). Let a: 2 x R x R? — R? be a given function. The
(formal) differential operator u — —div a(z,u, Du) is

e clliptic if p — a(z,s,p) is a monotone vector field Vs € R and a.e. x € Q.
o strictly elliptic if p — a(x, s,p) is a striclty monotone vector field Vs € R and a.e. x € Q.
e uniformly elliptic if p — a(x,s,p) is a uniformly monotone vector field Vs € R and a.e.

x € Q, with constant 0 independent of (x,s).
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Example Assume 3F: Q x R x R? — R, such that F is differentiable and convex in the third
variable and @ = 0,F. Then p — a(z, s, p) is a monotone vector field and the (formal) differential
operator u — —div a(z,u, Du) is elliptic (exercise).

Definition 5.5 (weak formulation). Let Q C RY be open and bounded, a: Q x R x RY — R and
f: QxR xRY—= R two functions. We consider the (formal) PDE

{ —diva(z,u, Du) = f(z,u, Du) in (5.3)

ujpq =0

A function u € H}(Q) is a weak solution of (5.3)) if
/ Dv - a(x,u, Du) dz = / vf(z,u, Du) dx Yo € HY(Q),
Q Q
provided the integrals above are well defined and finite Vu,v € H}(S2).

Regularity requirements.

e Consider first [, Dv-a(x,u, Du) dz. Since Dv € L*(Q2) we need z +— a(z, u(z), Du(z)) € L*(Q)
Vu € H}(2). Assume the function is measurable in all variables and 3C, o, 3 > 0 such that

la(z,5,p)] < C[L+|s|* +[pl?]  V(z,s,p).

Therefore we need u?® € L'(Q) and Du?? € L}(Q) Yu € H} (). Since Du € L?(Q2) we must have

B < 1. On the contrary, any o < co works for d = 1,2 while for d > 3 we need 2a < 2* = %.

e Consider now [, vf(z,u, Du) dz. Since v € Hj(2) we have v € L1(Q) V1 < g < oo ind =1,2
and v € L2 (Q) in d > 3. Therefore we need x + a(x,u(x), Du(x)) € L™(Q) with m > 1 for
d=1,2 andm:(Q*)’:ﬁd2 for d > 3.

Assume f is measurable in all variables and 3C’, o/, 3’ > 0 such that

|f(z,8,p)| < C'[L+[s|* +[pl”]  Y(z,s,p).

Arguing as above we need: 3’ < % <2ford>1,0<a <ooford=1,2and o/ < (22:)/ = %

for d > 3 (exercise).

e In the following we will assume |a(z,s,p)| < C[1 + |s| + |p|] and |f(x,s,p)| < |g(z)| where
g € L%*(Q). These assumptions garantee the weak formulation is well defined in any dimension.

5.2 Monotonicity and existence of weak solutions

Theorem 5.6 (Leray-Lions). Let 2 C R? be open and bounded.
Leta: Q x Rx R* - R? and f: Q x R x R* = R satisfy the following properties.

(i) Both a and f are Carathéodory functions

[i.e. they are continuous in (s,p) for a.e. x € Q and they are measurable in x VY(s,p) €
R x R%.]

(ii) 3C > 0 and g € L*(Q) such that

la(z, s,p)| < C[1+]s|+]|p]], If(z,s,p)] < lg(x)] Y(s,p) € RxR? for a.e. x € Q.
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(117) a is strictly monotone in the third variable i.e

[a(x, s,p) —a(z,s,9)] - (p—q) >0 Vs eR,p#qeRe forae xeQ.

(iv) (coercivity) 35 > 0 such that

a(zx,s,p)-p> Blp? Vs eR,p e RY, for a.e. z € Q.

Then there exists a function u € HE(Q) weak solution of (5.3)).

Remarks.

e Condition (i) garantees the weak formulation is well defined.

e The weak solution is not unique in general but we will see that if we replace strict mono-
tonicity with uniform monotonicity, the solution is unique.

We will not see the general proof of Leray-Lions theorem (too long). Instead we will see the
proof in the simpler case, stated in the theorem below.

Theorem 5.7. Let Q C R? be open and bounded.
Let a: R* = R? and f: Q — R satisfy the following properties.

(i) a is continuous and f is measurable.

(ii) f € L*(Q) and 3C > 0 such that |a(p)| < C[1+ |p|], Vp € R%
(i4) a is a monotone vector field i.e [a(p) — a(q)] - (p — ¢) > 0 Vp,q € R%.
(iv) 3B > 0,7 > 0 such that a(p)-p > Blp|> —~ Vp € R%
Then there exists a function u € HZ(Q) weak solution of

{ —diva(Du)(z) = f(z) in Q (5.4)

U\BQ = 0.

Moreover, if a is uniformly monotone, then the weak solution is also unique.

Remark. Note that in (ii7) and (iv) we need weaker conditions than in Leray-Lions.

Proof of Thm[5.7: unicity. Assume a is uniformly monotone, i.e [a(p) —a(q)]- (p—q) > 0|p—q|*
Vp,q € R?, with 6 > 0. Our goal is to show that the weak solution, in case it exists, is unique.
By contradiction, let ui,us € Hg () be two weak solutions. Since f = f(x) is independent of
s, p, we have

- a u Xr = v X xr = V-a u X v 1
[ po-aDu) o= [ o f@) da= [ Do-a(Dw) dz voe H(@),

and hence [[a(Duy) — a(Dup)] - Dv dz = 0 Vv € Hj(f2). Setting v = u1 — uz we obtain, by
uniform monotonicity,

0= / [a(Duy) — a(Dug)] - (Duy — Dug) dz > 0||D(u; — u2)||%g(m > 0.
Q
Therefore D(u; — uz) = 0 and hence, since u; — ug € H}(£2), it holds u; = us a.e. in . O
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[23: 08.01.2024]
[24: 11.01.2024]

Strategy for the existence proof: Galerkin’s method. Let X be a reflexive and separable
Banach space. Consider A: X — X™* a given map and F' € X* a given element in the dual
space. We look for a solution u € X of the equation

A(u) = F, ie. A(u)(v) = F(v) Vv € X.

In our specific case, X = H} (),

A(u)(v) == /QD’U -a(Du) dz, F(v) = /Qvf(x) dx.

Galerkin’s method can be organized in three steps.
Step 1: restriction to a finite dimensional problem.

Since X is separable, there exists {wy};2, dense subset. We define V;, := span {w1,...,wy,}.
Then d,, := dim V,, < n < oco. We say that u € V,, is a solution of the restricted problem (in V},)
if

A(u)y, = Fy, ie. A(u)(v) = F(v) Yv € Vj,.

Step 2: solving the restricted problem.

We have d,, equations and d,, unknowns. In some cases one can prove that for each n Ju, € V,
solution of the restricted problem.

Step 3: convergence to a solution of the starting problem.

The idea is to prove that n — u, is a bounded sequence in X, hence, since X is reflexive, there
exists u € X and a subsequence j — uy; such that u,; — u weakly in X.

The hard part is to show that the limit function is a solution of A(u) = F. Indeed, since u — A(u)
is nonlinear, u,, — u % A(u,) — A(u) in any sense. Here we will use monotoniticy.

Proof of Thm[5.7: existence. Set X := H}(Q), A: X — X*, and F € X* defined as

A(u)(v) == /QD’U -a(Du) dz, F(v) = /Qvf(x) dx.

Our goal is to find u € X solution of A(u) = F. We use Galerkin’s method.

Step 1: restriction to a finite dimensional problem. Hol(Q) is a separable Hilbert space so there
exists an o.n. countable basis. To construct such a basis consider the differential operator
L:=—-A.
By Theorem [2.13] the real spectrum of L has the form

E(L>:{/\1,)\2,...} with O< A< <A< and lim A\, = oco.

k—o0

Moreover there exists an o.n. basis of L?(£2) {wp }n>1 such that —Aw, = A,u, Vn. It follows

(exercise) that {ep}n>1 with e, := \/%wn is an o.n. basis of (H&(Q), B[, ]) where By [u,v] :=

Jo Du - Dv dx. Hence {ey, }n>1 is an orthogonal basis of (H&(Q), (-, )Hg) with

1
leallzy = llenllzz + 1Denllzs = = + 1.
n
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We define now V,, := span{ey,...,e,}. Then dimV,, = n.

Step 2: solving the restricted problem. We show that Vn > 1 Ju,, € V,, solution of the restricted
problem A(u)y, = Fly,.

Fix n > 1. For a € R set u® := >_"_, aje;. We look for a € R™ solution of

/Dv-a(ua) dr = A(u®)(v) = F(v) = /vf(:z:) dx Yv e V.
Q Q

We have A(u)y, = Fy, iff A(u®)(er) = Flex) V& = 1,...,n, iff A(u®)(ex) — Fer) = 0
Vk=1,...,n,iff v(a) = 0 where

v: R" —R"
a = o(a)g =AY (ex) — Fex), k=1,...n.

Therefore the problem is reduced to finding a zero for the vector field v. By Lemma (131)
above, it is sufficient to check that v is continous and 3R > 0 such that v(«)-a > 0 Va € 0Bg(0).
Continuity. The map p — a(p) is continous and |a(p)| < C'[1 + |p|], therefore the function

d: L2 — L*(Q)¢
U — ®U) :=a(U)

is well defined and continous (proof: use Nemitski composition Lemma[4.9)). It follows (exercise)
that o — A(u®)(eg) is continuous Vk and hence v is continous.

Positivity on the boundary of a sphere. We compute
n
a)-a= Zakv ) = Z ai[A(u®)(ex) — F(er)] = A(u®)(u®) — F(u®).
k=1

Since a(p) - p > B|p|*> — v we have

"= [ pue )dz > BIDu 20 — 21,

and hence
0(@) - a > DU 2y — 119 — F®) > [Du® 2200y — 6] 20y |1 £l z20) — 119

Since {en}n>1 is 0.n. with respect to B[, -] and orthogonal with respect to (-, )12(q) we obtain

n

|Du 22y =Bulu®,u®] = 3 a2 = |af?

j=1
w2y =(u Zajuwgnm(m Za; y |o42

Therefore, using |a| =

v(a)-a>laf® — — 70 = R? || £l 12(0) =R — 7|2 = 0

1
VA
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for R large enough.

By Lemma (131) it follows that v admits a zero and hence there exists a solution w,, € V;, of
the restricted problem A(u)y, = Fjy,.

Step 3: convergence to a solution of the starting problem.

Let n + u, € V,, the family of solutions we constructed in Step 2. Since A(u)y, = Fly,, we
have
Aup)(un) = F(up) Vn > 1. (5.5)

e We show that the sequence n + u,, is bounded in Hg (). Indeed

A(un)(ug) = /QDun -a(Duy,) dx = /Qunf dx = F(uy) Vn.
Using (iv) and Poincaré inequality we have
/QDun -a(Duy) dx > 5”DunH%Q(Q) -7 = BHUNH?{%(Q) — 719,
with 8 > 0. By Cauchy-Schwarz and then Young inequality we have
\/Qunf dz| < Junllz2@) 1 fllz2@) < llunll g2 o)l fllz2@) < gHunHZg(Q) + Q%WH%Z(Q)-

Putting all this together and setting ¢ < 3 we obtain
sup a3y 0y < 5 [ 210+ 5 1 B | =
n>1 0 B 2¢e
Therefore the sequence n > u,, is bounded.
e We show that the sequence n — A(u,) is bounded in HE(Q)*. Indeed using (i),

JA@)llop = sup |A(un)(®)] < sup /Q D] |a(Duy)| de

vl g =1 ol g3 =1
< lla(Dun)lla() < C 11+ |Dun |20y < C (V12 + 1Dunll 2@y ) < C(VI00 + 1)

where in the last step we used sup,,>; [[un| 1) < C1-

e We have proved that the sequence n + u, (resp. n +— A(u,)) is bounded in HZ(Q) (resp in
H(Q)*). Therefore, since X is reflexive, 3 j — n; subsequence, u € H}() and T € H}(Q)*
such that

—u, in H} (), A(un,) =T, in Hy(Q)*.

It remains to show that 7'= F and T' = A(u), which then implies A(u) = F.
e We show that 7' = F. Since A(uy,,) — T we have

un].

lim A(up;)(v) = T(v) Yu e X.

Jj—0o0
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By construction we have A(uy,)(ex) = F(ex) Vn; > k, therefore

T(ex) = ]lggo A(un;)(ex) = F(ex) Vk > 1,

and hence T'(ex) = F'(ex) Vk. The assertion now follows since {ej}r>1 is a basis for X.

e We show that 7' = A(u). By monotonicity of a we get
[A(un,;) — A()|(un; —v) = /Q[a(Dunj) —a(Dv)] - (Duyp; — Dv) dv >0 YveX,j>1

We compute
[A(ttn;) = A@)](ttn; = 0) = Altn,) (1)) = Alttn)(0) = A©) (tn; — v).

By we have
Aun; ) (un;) = Fup,) = T(un,;) — T(u)

where we used 7' = F and uy,; — u.
up; — u also implies A(v)(un; —v) — A(v)(u — v).
Finally, A(uy,) — T implies A(uy,)(v) — A(u)(v) and hence

[T — A(v)|(u—wv) >0 Yo e X.

We take v 'near’ u as follows. Set v := u — Aw, with A > 0 and w € X. The inequality above
becomes
[T — A(u — Aw)](w) >0 Yw € X.

Since A — A(u — Aw)(w) is continuous, we can take the limit A — 0 :

)l\iLI%)[T — A(u — 2w)|(w) = [T — A(u)](w) >0 Vw € X,

which implies T' = A(u). O

6 Calculus of variations

A powerful tool to solve nonlinear PDEs is calculus of variations. The idea is to replace the
problem of solving a PDE with the problem of minimizing some functional. The latter is
sometimes easier.

Example. Let Q C R? open and bounded, with Lipschitz boundary.
We look for solutions of the PDE

{ ;({)Agu::gf in (6.1)

where f € L?(Q) and g € L?(92) are given functions. A function u € H'(f2) is a weak solution
if Tru = ¢ and

/[Dv-Du—vf] dr=0 Yvc H}Q).
Q
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Assume Ju, € H'(2) such that Tru, = g (otherwise there can be no solution). We have seen
(cf. Lemma [2.4) that u € H(2) is a weak solution of (6.1)) iff w :=u —u, € H}(Q) is a weak

solution of .
{ —Aw=f->"1f; inQ
wipn =0
where f; := —0;f € L*(Q). By Lax-Milgram the weak solution exists and is unique.

We reformulate now the problem as a functional minimization. Set X := H'(Q) and Y := {u €
X| Tru =g}. We have Y # & and Y = uy + H}(§2). Define

I X—-R
w = I(u) = [, [‘Dg‘z—uf] dz.

This map is well defined since u, d;u, f € L*(1).

Claim. Assume ug € Y is a minimizer for I on Y, i.e. I(v) > I(ug) Yv € Y. Then ug is a weak
solution for (6.1)).

Proof. up € Y hence up + 7w € Y V7 € R and Yw € HJ(Q). Therefore, since ug is a minimizer,
we have I(ug + T7w) > I(up) V7 € R and Vw € H}(2). For a fixed w € H(Q) define

lw: R—R
T = iy (T) 1= I(up + Tw).

By direct computation, this function is a polynome is 7 :
i(r) = T;HDwH%g(Q) +r /Q[Dw  Dug — w] dz + I(ug).
Since wug is a minimizer, 7 = 0 is minimizer for i,,(7) and hence
/Q[Dw -Dug —wf] dz =i,(0)=0  VYw € HYQ).

Therefore ug is a weak solution of (6.1]). O

The general strategy is to construct, if possible, a functional associated to the PDE we consider
and instead of solving the PDE to look for a minimizer of the functional.

[24: 11.01.2024]
[25: 15.01.2024]

6.1 Characterization of minimizers: Euler-Lagrange equation
In this section we look for the PDE associated to the mininimizer of a functional.

Definition 6.1 (minimizer). Let X be a real Banach space, I: X — R a given map.

(i) ugp € X is a minimizer for I over X (or I attains its minimum at ug, or ug is a global
minimizer) if
I(u) > I(up) Vu € X.
(ii) LetY C X a subset. ug € Y is a minimizer for I over'Y (or restricted to'Y ) if

I(u) > I(up) Yu €Y.
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Remark. In the Example above, X = H{(Q) and Y = u, + HJ(Q), with uy, € H'(2), and
I(u) := [ PD;F - uf} dz. Note that ug is a minimizer for I over Y iff ug — uy € H}(Q) is a

global minimizer of I: H}(Q) — R defined via I(v) := I(uy + v).

Lemma 6.2 (characterization of minimizers). Let X be a real Banach space, I: X — R a map,
and ug € X fized. For each w € X we define the map

lw: R—=R
T = iy (T) := I(up + Tw).
Then the following hold.

(i) ug is a minimizer < i, attains its minimum at 7 = 0 Yw € X, i.e. iy(7) > iy (0) VT € R
and Yw € X.

(i1) Assume iy, is differentiable in 7 = 0. Then if ug is a minimizer we have i,,(0) = 0.
(iii) Assume iy, is C2. Then if ug is a minimizer we have i.,(0) = 0 and i (0) > 0.
Proof. Exercise O

Notation. i/,(0) is called “first variation of I at ug in the direction w”.

i (0) is called “second variation of I at ug in the direction w”.

Definition 6.3. Let X be a real Banach space, I: X — R a map.

(i) I is Gateauz differentiable at uw € X in the direction w € X if the map T — I(u + Tw) is
differentiable at T = 0.

1 is Gateaux differentiable at v € X if I is Gateaux differentiable at w in all direction
w € X. In this case we denote by

I'(u) (w) = tim L) = I(W)

T—0 T

the Gateauz derivative at u in the direction w. In this case the function I'(u): X — R is
called the Gateauz derivative of I at u.

(i) I is Fréchet differentiable at w € X if 3A, € X* such that

[T(u+w) — I(u) — Ay(w)]

1
|| x—0 l|lwl| x

=0.

I is Fréchet differentiable if it is Fréchet differentiable at each u € X. In this case I'(u) =
Ay Vu and I': X — X*.

(iii) I is in CY(X) if I is Fréchet differentiable and the map I' is continuous.
Remarks.

e [ Fréchet differentiable at v = I Gateaux differentiable at u and I'(u) = A,.

The inverse implication does not hold.
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e The Gateaux derivative is not necessarily additive or continuous. As an axample con-
3

sider F: R? — R defined via F(r,y) = —%— for (x,y) # (0,0) and F(0,0) = 0. Then

x;fi-y
F'(0,0)(a,b) = F(a,b) and is not linear in (a, b).

e Below we mostly need Gateaux differentiability, but our Gateaux derivatives I'(u): X — R
will satify I'(u) € X*.

o If u— I'(u) is well defined and continuous in a neighborhood U of ug, and I'(u) € X* for

all u € U, then I is Fréchet differentiable at uy with A,, = I’ (ug).

Lemma 6.4 (Euler-Lagrange equation). Let X be a real Banach space, I: X — R a map.
Assume ug € X is a minimizer for I on X and I is Gateauz differentiable at ug.
Then ug is a solution of

I'(up)(w) =0  Vwe X.
This is called the Fuler-Lagrange equation associated to I.
Proof. Since I is Gateaux differentiable at ug the map 7+ i,,(7) := I(up + Tw) is differentiable

at 7 = 0. Since ug is a minimizer, it follows 0 = 4/,(0) = I’ (ug)(w) Vw € X. O

Remark. In some cases the Euler-Lagrange equation corresponds to a PDE in weak formula-
tion. In the example above we can set X := H{(Q),

I(u) ::/Q[W—(ugﬂ)f da,

with u, € H'(Q) fixed. This functional is Gateaux differentiable everywhere and the Euler-
Lagrange equation is

O:I'(uo)(w):/Q[Dw-D(ug—i—uo)—wf] dx =0 Yw € HY ().

ug is a solution iff u := ugy + up is a weak solution of the PDE

{ —Au=f inQ
Ujpn = 9.
Note that I is even Fréchet differentiable since
I —I(uw) =T Duwl|? ||w]| g1
lim sup [ (u+w) = I(u) = I'(u)(w)] _ lim sup [ Dwl|7» < limsup oo
] =0 llwll ] 13 0 2[|w| g ] 0
Moreover

() (w) — I () (w) = /Q [Dw - D(us — u)] da,

hence
11 (ur) — I'(u2)llop < [[Dur — Dus|r2 < [ur — uzl| g

and therefore I € C(X).
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PDE associated to the Euler-Lagrange equation We will consider functionals of the form

I: X—)R
u— I(u) == [ L( x), Du(x)) dx,

where Q C R? is open and bounded, X = W14(Q), with 1 < ¢ < oo and
L: QxRxRI =R
(x,s,p) — L(x,s,p).

Remark 1. In the example above L(z,s,p) = % — f(x)s.

Remark 2. We perform a non rigorous computation, to derive the expected expression for the
Euler-Lagrange equation. We assume L is differentiable in (s, p) for all z, and we can exchange
limits and integrals. We compute

' (u)(w) = lim I(u+ Tw) — I(u) — lim L(z,u + Tw, Du+ 7Dw) — L(z,u, Du)

70 T 70 Jo T

dzx

= /Q [(wOs L(z,u, Du) + Dw - 0, L(z,u, Du)| dz Vw e X

where we used the abbreviated notation

8SL(:B7 u, D’LL) = asL(xa 5)p)|s:u(ac),p:Du(x)7 8pL($7 U, Du) = apL($a svp)|s:u(:c),p:Du(a:)'
(6.2)
The Euler-Lagrange equation is then

/Q [(wOsL(z, u, Du) + Dw - O, L(x,u, Du)] dx =0 Yw e X. (6.3)

Remark 3.(PDE in weak formulation) Assume L and u above are smooth functions. Then
we obtain the quasi-linear second order PDE

—div [a(z,u, Du)] = —0sL(x, u, Du) (6.4)
with a;(z,s,p) := Op, L(z,s,p) and OsL(x,u, Du) = OsL(z,u, Du) = OsL(%, 8, P)|s—u(z),p=Du(z)-
u € WH4(Q) is a weak solution of if holds Yw € Wol’p(Q).

Note that the weak formulation above is well defined if Yu € W14(Q) it holds
o 2 = 0 L(z,u(x), Du(z)) € L7 (Q) with & =11,
o v — OsL(x,u(zx), Du(z)) € L*(Q)

where ¢* is the Sobolev number

1h1<a<oomthecased<qanda>( )it d > q,
1_1 _1_ 1
6 (q*)/_]- q*-

L
q
We look now for sufficient regularity conditions on L such that

o [: X — R is well defined,

e I is Gateaux differentiable with I’(u) € X* and the EL equation is of the form (6.3)).
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Theorem 6.5. Let Q C R? be open and bounded.
Set X := WhH(Q), with 1 < q < oo and let

L: OxRxR* >R
(x’s7p) HL(:I:?S?p)

be a map satisfying the following two properties.

C1) L is Carathéodory, i.e. x — L(xz,s,p) is measurable ¥(s,p) and (s,p) — L(z,s,p) is
continuous for a.e. x.

Moreover 3f; € LY(;1]0,00)) and Cy > 0 such that

[L(z,5,p)] < fi(z) + Crlls|* + Ipl]

C2) L is differentiable in (s,p) for a.e. x € Q, ;L and 0,L are Carathéodory functions, and
3fo, f3 € LY (Q;]0,00)) and Cy, C3 > 0, with % =1- %, such that

aq
7

fal@) + Ca [l + |pI7 | = falw) + Ca [Js]7" + |pl*~"]

| = fat@) + Cs [1sl=" + 1pl71].

|0sL(x, s,p)|

IN

L2

a
Lz, 5,9 < o)+ Cs [ls]7 +p|s
Then the following holds.

(i) The map I: X — R defined by I(u) := [, L(x,u(z), Du(z)) dx is Gateaux differentiable
everywhere in X and

I'(u)(w) = /Q [wOsL(x,u, Du) + Dw - OpL(z,u, Du)] dz, Vu,w € X. (6.5)

where we used the notation introduced in (6.2]). Moreover I'(u) € X* with
17 (W) llop < 1|05 L(z, u, Du)HLq’(Q) + [|0p Lz, u, Du)HLq’(Q)-
(i) Assume O is Lipschitz continuous and g € T(WH9(Q)) C LI(0Q, HI™1).

Define Xy :={u € X| Tru = g}. In particular Xo = W&’q(ﬂ).

Then, if ug € X4 is a minimizer for I on X4, ug is a weak solution of

{ —div 0, L(z,u, Du) = —0sL(z,u, Du) in
Uon — 9

i.€e.

/Q [wOs L(x, up(x), Dug(x)) + Dw - 0, L(z, up(z), Dug(x))] dx =0 Yw € Wol’q(Q).

Proof.
(4)
C1) = z+ L(z,u(x), Du(z)) € L' () Yu € WH4(Q) and hence I is well defined.
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C2) = = v OsL(x,u(x), Du(z)),dpL(x,u(x), Du(z)) € LY (Q) Vu € WH9(Q) and hence the
integral in (6.5]) is well defined.
We study

I'(u)(w) = lim Iu+ 7w) = I(w) =lim [ L™(x) dz,

T—0 T =0 JO

where
L(z,u+ Tw, Du+ 7Dw) — L(x,u, Du)

T

L7(z) =
Since L is differentiable in (s, p) for a.e. = we have

lim L"(z) = wOsL(z,u, Du) + Dw - 0pL(x, u, Du)

T7—0

pointwise a.e. in §2. Moreover, using C2) again, we obtain V|7| <1

1
L7 (2)] = ‘/0 [(wds + Dw - 8,)L(x, u + trw, Du + trDw)] dt‘

9

1
< [lwlf2 + |Dw|fs] + (Calw|+ Cs|Dw|) / [\u—f—tﬂuﬁ + |Du+trDwl|d | dt
0

4 9
7 7

< [lwlfa+[Dwlfs] + (Colw|+ CslDwl) [(jul + |w])7" + (|Dul + | Dw|)«'] =: F(x),

where F € L1(2). The result now follows by dominated convergence.

Finally I'(u) is linear and

[T (u)(w)] < /Q [|lw| [0sL(z,u, Du)| + |Dw| |0pL(z, u, Du)|] dz

< lwllzall0s Lz, w, Du)| ot + [|Dwl|Lal|Op Lz, u, Du)|| Lo
< llwllwra (105 L@, u, Du)|| o + [9pL(x, u, Du)|l ] -

The result follows.

1) exercise. OJ
(44)

Remark. We can always restrict ourselves to the case g = 0. Indeed u € X, is a mininizer for
I on X, < u— ug is a minimizer for I: Xo — R defined by I(u) := I(ug + u).
[25: 15.01.2024]
[26: 18.01.2024]

6.2 Existence of minimizers: direct method of calculus of variations

As a preparation, consider the following result from Analysis 1.
Lemma 6.6. Assume f € C(R) satisfies
(i) f is bounded below, i.e. IM € R such that f(x) > M Vz € R.
(ii) f is coercive, i.e. f(x) — 00 as |x| — oo.

Then f admits a minimizer, i.e. Jxg € R such that f(xg) = infyer f(x).
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The proof is elementary, but very instructive.

Proof.
Step 1. (i) = m := inf, f € R and hence 3 a sequence n — x,, € R such that f(z,) — m.

Step 2. (ii) = the sequence n +— x,, is bounded. Indeed otherwise there would be a subsequence
J = xp,; with |z,,| — co and hence m = lim; o f(2y;) = +o00 which gives a contradiction.

Step 3. Since n — w;, is bounded, there exists a convergent subsequence x,; — . By continuity
of f it follows m = lim; o0 f(zn,) = f(2).
O

We must extend now this strategy to I: X — R.

Definition 6.7. Let X be a real Banach space, I: X — R a map.

e [ is bounded below if AM € R such that I(u) > M Yu € X.

o [ is coercive if I(u) — oo as ||ul|x — oo.
Assume now I: X — R is bounded below and coercive. We try repeating the steps in the proof
of Theorem [6.6

Since [ is bounded below it holds m := inf,cx I(u) € R and hence 3 a sequence n +— u, € X
such that I(u,) — m.

Since [ is coercive, the sequence n — u, € X is bounded.

Problem 1: n — u, bounded #- there is a convergent subsequence. If X is reflexive, then there
exists a subsequence j — uy;, and u € X such that u,; — u weakly.

Problem 2: [ is not weakly continuous in general, i.e. u, — u % I(uyn) — [(u). We will see that
we only need weak lower semicontinuity.

Definition 6.8. Let X be a real Banach space, I: X — R a map.
I is weak lower semicontinuous (w.l.s.c. in short) if

up, = u = liminf I'(uy,) > I(u).

n—0o0

Theorem 6.9 (Weierstrass). Let X be a real reflexive Banach space.
Let I: X — R be bounded below, coercive and weakly lower semicontinuous.
Then I admits a minimizer i.e. Jug € X such that I(up) < I(u) Yu € X.

Proof.
Step 1. I bounded below = m := inf,cx I(u) € R and hence 3 a sequence n — u, € X such

that I(u,) — m.

Step 2. I is coercive = the sequence n +— u, is bounded in X. It follows, since X is reflexive,
there exists a subsequence j — uy,, and u € X such that up; = v in X.

Step 3. I is weakly lower semicontinuous =

m = lim I(up;) = liminf I(u,,) > I(u) > m.

J—00 J—00

It follows I(u) = m.
O
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The hard part is to prove weak lower semicontinuity. The next result shows that it is sufficient
that p — L(z,s,p) is convex.

Theorem 6.10 (convex L). Let Q C R? open and bounded with Lipschitz boundary.
Set X := Whi(Q) with 1 < q < oo.
We consider the map

I: X—>]R
w— I(u) == [, L( x), Du(x)) dx,

where L: Q x R x R? is such that
(i) (C1) and (C2) from Theorem [6.5 hold,

(ii) p— L(x,s,p) is conver Vs € R and a.e. x € Q.

Then I is weakly lower semicontinuous.

Remark. p+— L(z,s,p) differentiable and convex = the Euler-Lagrange equation is an elliptic
second order PDE.

Proof. Let n — u, € X be a sequence with u, — u € X.
Our goal is to show that liminf, o I(u,) > I(u) holds.

e Since u,, — u, it follows that the sequence is bounded.
Moreover WH4(Q) cC LI(Q) V1 < g<ood > 1.
Therefore, since n +— u,, is bounded and u,, — v in Wl’q(Q), it follows w,, — w in L9(2).

e Assume first L = L(z, s) is independent of p. By (C1) and Nemitski composition theorem it

follows that the function
o LY )—>L1(Q)
u— ®(u) == L(z,u(r))

is well defined and continuous. Hence u,, — w in L9(Q) implies I(u,) — I(u), i.e. I is weakly
continuous.

e Assume L is linear in p, i.e I(u) = [, f( () dz. In this case

Duy, = Du = I(up) = /Qf(x) - Duy(x) doe — /Qf(x) - Du(z) dx = I(u),

i.e. I is weakly continuous.

e Consider now the general case L = L(x, s,p). We only know Du,, = Du, hence we cannot use
continuity. We will use convexity to compare I(u,) with an expression linear in Du,,.
Ineed, since L is convex and differentiable in the p variable, it holds

L(z,s,p+p') > L(z,s,p) +p - 0,L(x,s,p) Vp,p' e R s e R and ae. z € Q.

It follows
L(z,un, Duy,) > L(z, up, Du) + (Du,, — Du) - OpL(z, up, Du)

and hence

liminf I (u,) = lim inf/ L(z,up, Duy,) dx
Q

n—oo n—o0

> lim inf [/ L(z,up, Du) dz + / (Duy, — Du) - 0,L(x, up, Du) dx| .
Q

n—oo Q
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Fix u € W4(Q) and consider the function L(z,s) := L(x,s, Du(x)). By (C1) and Nemitski
composition theorem again it follows that the function

o LN — Ll((})
v ®(v) = L(z,v(x))

is well defined and continuous. Hence u,, — w in L(2) implies

lim [ L(z,up, Du)dz = lim [ L(z,u,)ds= / L(x,u) dr = I(u).
)

Finally we show limy,_,o [o(Dun — Du) - 9pL(x, un, Du)dx = 0, which concludes the proof.
Indeed

/(Dun — Du) - 0pL(z, up, Du) dz = /(Dun — Du) - [0pL(x, up, Du) — 0, L(x,u, Du)| dz
Q Q

+ / (Duy, — Du) - 0pL(x,u, Du) dx.
Q

Since u, — u we have lim,,_, fQ(Dun — Du) - 0pL(z,u, Du) dz = 0. Since n — Du, — Du is a
bounded sequence in L4(2) and 8,L(x,un, Du) — 8,L(x,u, Du) in L7 () (which holds again
by Nemitski), it follows

lim [ (Duy — Du) - [0pL(z, up, Du) — OpL(x,u, Du)] dx = 0.

n—00 Q

O]

Example 1. Set X := W, *(Q), with 1 < ¢ < co and consider I(u) := || Du||%, = [, |Dul%dz.
This functional is weakly lower semicontinuous (exercise).

Example 2. Set X := Wol’q(Q), with 1 < ¢ < co. We consider the map

I X—-R
u I(u) == [ L(x,u(x), Du(x)) du.

Assume L satisfies the assumptions of Theorem and in addition dJo > 0,3 € Lq'(Q; [0,00)),
with é + % =1, such that
L(z,s,p) = alp|! — B(z)]s|.

This functional admits a minimizer.

Proof. By Theorem|[6.10] I is weakly lower semicontinuous. It remains to prove that I is bounded
below and coercive. We compute

I(u) :/L(x,u(w),Du(m)) d:):Za/ | Dul? dm—/ﬁ(x)\u(x)\ da
Q Q Q
> al|Dull T = 181l o lullze > dHUH%,q — 1Bl Lo lullyy.as

for some constant & > 0. In the last line we used Poincaré inequality. It follows by Young’s
inequality

. € q 1 q
M2 [a= £ fulfp — 11,
and hence 3y;,72 > 0 such that Yu € W, ()
) 2 el —

Therefore I is bounded below and coercive. O
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6.3 Regularity of minimizers

Let Q  R? be open and bounded and consider the map

I: HYQ) >R
u— I(u) == [, F(Du(z)) dz,

with F € C*®°(R%) and such that |F(p)| < a|p|? for some a > 0 and Vp € R
Define a := DF € C*(R%;RY) and assume 33,6 > 0 such that |a(p)| < B|p| and Da(p) > 61d
Vp. The following hold.

e I is Gateaux differentiable and I'(u)(w) = [, Dw - a(Du(z)) dz Vu,w € Hg ().

o If u € H}(Q) is a minimizer for I it follows that u is a weak solution of

{ —diva(Du) =0 in Q
ugn =0
Since A := Da > 01d this is a quasi-linear second order uniformly elliptic PDE.

We investigate now regularity of the solution.

26: 18.01.2024]
27 22.01.2024]

In the case of a linear PDE —div M (x)Du(x) = 0 with M € L>®(Q;REXd) and M > 01 a.e. we

sym
have seen the following results: assume u € H'(Q) is a weak solution.

e By the lemma of de Giorgi we have u € CZOO’Z(Q) for some 0 < o < 1.

e If in addition M € CH’“(Q;R%"%) we have u € Hk+2((2).

loc

We will need the following generalization of de Giorgi (see Giaquinta-Martinazzi Sec. 5.4):

M € CPO(QUR¥) = y e CFI(Q) Wk > 0. (6.6)

loc sym loc

Theorem 6.11. Let Q C R¢ be open and bounded.
Let a € C®(R%LRY) be a function satisfying Vp € RY

(1) la(p)| < Cilpl,
(it) Da(p) = Da(p)' and Da(p) > 01d, where Da(p)ij = Oy, ai,
(iii) |Da(p)| < Co,
for some constants C1,Ca,0 > 0. Assume u € H'(Q) is a weak solution of
—diva(Du) =0, in Q. (6.7)

Then v € C*(2) and Vj = 1,...,d the function vj := O;u is a solution of the linear elliptic
PDE
—div (ADv;) =0 (6.8)

where the matriz-valued function A € C*®(Q; R is defined via A(z) := Da(Du(z)).
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Proof.

Step 1. We show that u € H? (). Since u € H'(Q) we need to show that Du € H'(V) holds
for all V open V CC Q.

Let V' CC Q be fixed. We can construct U open such that V-.CC U cC Q and ( € C°(U; [0, 1])
such that (jy = 1. Set

dist (U, 092)
ho = —

To prove Du € H'(V) it is sufficient to find a constant C' = Cyy¢ > 0 such that (cf. Thm
and proof of Thm [2.18)

sup ||CD§‘1DUHL2(Q) <C Vj=1,...,d (6.9)
0<|h|<ho

Since u is a weak solution of , it holds
/ Dw - a(Du)dx Vw € Hy(9).
Q

For w € HJ(U) we have D;hw € H}(Q) Y0 < |h| < ho and hence, using DD;?w = D;?Dw and
partial integration, we get

0 :/ —D!'Dw - a(Du)dz = / Dw-D"a(Du)) dz  Vw € Hy(U),0 < |h| < ho.  (6.10)

Q Q

We compute
1

D! (a(Du))(x)) = %[a(Du(x—l—hej))—a(Du(x))] - /0 Da(Up(x)) D (Du)(x) dt = Ap(2)D"Duz),
where

Upy(z) == Du(z) + thD"Du(z) e RY,  Ay(z) = / 1 Da(Uy,4(x))dt € R4,

0

Since Da(p) > 0Id and |Da(p)| < Cy we have
Ap(z) > 601d and |Ap(z)| < Co fora.exz € V. (6.11)

Inserting these formulas in (6.10) we obtain
/ Dw- 4,D'Dudr =0 Yw e HYU),0 < k] < hy. (6.12)
Q

We consider w := CQD;-‘u. This function is well defined and satisfies w € H}(U) VO < |h| < hg
and hence (6.12)) holds. Using

Dw = ¢*D}Du + 2¢D}uDC,
(6.11) and (6.12) we argue
0[[¢ D} (D)7 < / ¢*> D}Du- Ay D Dudx = —2 / ¢ Dl D¢+ AyD)Dudx
Q Q

< 2||ApDC| (o) 1D ull 2oy ICDF (D)l 220
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Since u € H'(), by Thm there is a constant C3 > 0 such that
IDMul| 2y < Csl|Dull2) VO < |h] < ho.

Inserting this bound above we obtain (6.9). Therefore u € HZ () and v; := dju € H} ().

Step 2. We show that v; := O;ju is a local weak solution for —div (ADv;) = 0, where A(z) =
Da(Du(x)) = Ap—o(z). We need to show

/ Dw - AgDOjudx =0 Vw € HY (V).
Q
We claim there is a sequence n — h,, with h, — 0 and

lim Dw - Ay, Dh”Du dx = / Dw - AgDOju dx,
Q

n—oo Q

so that the result follows from (6.12). We proceed now to prove the claim.

e By Step 1 we have HD;TLDuHLz < HCDhDuHLz < C||Dul|g2(qy for all 0 < |h| < hg and
hence (L%(V) is reflexive) there is a sequence n h with h, — 0 and v € L?(V) such that
D;-‘" Du — v in L*(V). Using the definition of weak derivative we obtain v = Ddju.

e Since n +—> D;L" Du is a bounded sequence we have lim,, hD;L” Du = 0 and hence Uy, ; — Du
strongly in L?(V). Since a is continuous it follows, by Nemitski composition theorem, A;, Dw —
AoDw strongly in L3(V).

e Putting these results together we argue

/ Dw - Ay, D" Du da = / Dw - AgD" Du dx + / Dw - (Ap, — Ag)D}"Du dx = I, + Ip .
Q Q Q

Since D" Du — 9;Du in L*(V) we have

n—oo

lim [1n/Dw Ap0;Du dx.

Since n — D;-‘” Du is bounded and Ay, Dw—AgDw — 0 strongly in L?(V') we have lim,, oo Iy, =
0, which concludes the proof of the claim.

Step 3. We show that v; is smooth.

By Step 2, v; = 0ju € H\ () is a local weak solution of —div ADv; = 0, with A uniformly
elliptic and x A( ) € L*™(Q2). Hence, by Corollary v; is locally Hoélder continuous, i.e
v; € CY7(Q) for some 0 < o < 1 and for all j = 1,...,d.

Since Du € C’O () and a € C™ we have A;; € C&Z(Q) Applying we obtain vj € Cllog(Q)
which implies A;; € Cl 27(€2). Repeating this argument we obtain smoothness.

O

Remark. Note that even if a € C°°, the map =z — A(z) := Da(Du(x)) is only as regular as the
function Du. Therefore we cannot argue as in the case of linear PDEs with smooth coefficients.
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6.4 Constrained minimizers

Let X = Wh(Q), I: X — R be a given map, A a subset of X. We say that ug € A is a
constrained minimizer for I on A if

I(up) = uuelif(u)

We have already seen the case when A = {u € X|Tru = g} for some g € L9(99). We will
consider now two important types of constraint:

1. integral contraint in this case A = {u € X|J(u) = 0} where J: X — R is of the form
= [ G( ) da;

2. unilateral constraint: in this case A = {u € X|u > h a.e.} where h € C®(Q) is the
‘obstacle’.

Example 1. Set d =3, Q C R3 open and bounded. We consider

I: H&(Q)—HR J: H&(Q)%R
wis I(u) ==L [ |Dul? da, wir 1) i= f, [1+ %] do,

Note that J is well defined since d = 3 and hence H}(Q) C L3(9).
The unique global minimizer for I on X is v = 0. But 0 € A, hence it cannot be a constrained
minimizer on A.

Example 2. Set Q = B,(0) C R and X = H{(R2). Consider h € C°(€2; [0, 1]) with hyp, (o) = 1,
and I(u) := 3 [, |Du|? dz. Once again the unique global minimizer for I on X is u = 0. But

0 ¢ A, hence it cannot be a constrained minimizer on A.

[27: 22.01.2024]
[28: 25.01.2024]

Theorem 6.12 (existence of constrained minimizers).
Let Q C R be open and bounded, X = Wol’q(Q) with 1 < ¢ < oo.

We consider
I: X - R

u— I(u) == [, L( Du(z))dz,
and we assume I s bounded below, coercive and weakly lower semicontinuous.

(i) (integral constraint) Let 1 < p < oo such that Wol’q(Q) CC LP(Q2) and consider

I IP(Q) —> R
u— J(u) == [, G( ) dz,

such that J is continuous. Let A:= {u € X|J(u) =0} and assume A # 2.
Then Jug € A such that I(ug) = infyca I(u).
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(ii) (unilateral constraint) Define A := {u € X|u > h a.e. in Q}, where h € C*®(Q) is a given
function and assume A # .

Then Jug € A such that I(ug) = inf,ca I(u).

Moreover, if (s,p) — L(x,s,p) is strictly convez for a.e. x € ), the minimizer ug is also
UNIQUE.

Proof.

(1) Set my = infyea I(u).

I is bounded below and A # @, hence m4 € R and In — u,, € A such that I(u,) — m4. Since
1 is coercive, the sequence u — u,, is bounded, and therefore, since X is reflexive, there exists a
weakly convergent subsequence u,; — u € X. Since I is weakly lower semicontinuous it follows
ma = liminf; ;o0 I(upn;) > I(u).

We show now u € A, and hence my = I(u).
Indeed, u,, — u and Wol’q(Q) CC LP(S2), imply that u,; — u in LP(Q2) and hence, since J is
continuous, lim; e J(un,) = J(u).
Since uy,; € A we have J(u,,) = 0 Vj, and hence
J(u) = lim J(up,) = 0.

J—00

Therefore u € A.

(73) (existence) Set m 4 := infye 4 [(u). Arguing as in (i), In — u, € A and a function u € X
such that u, — u in X and m4 > I(u).

It remains to prove that u € A. We argue as follows.

Since up, — u € X and Wol’q CC L%(Q) it follows u,, — w in L(Q2), and therefore there is a
subsequence j — uy,; such that u,, — u pointwise a.e. in €2, i.e 3Q ¢ Q with |Q\ Q| = 0 and
Up,; — u pointwise in Q.

un,; € A for all j, hence for each j 3Q; C Q such that [\ ;| = 0 and uy, (v) > h(z) Vo € Q;.
We define now  :=Qn M, ©; We have 1\ Q| =0, un,; (z) > h(x) Yo € Q and Vj, and u,; = u

pointwise in Q. Therefore u(z) > h(x) Vr € Q and hence u € A. This completes the proof of
existence.

(79) (unicity) By contradiction assume uy, ug € A are two different minimizers over A, i.e u; # us
and I(uj) = I(ug2) = ma. The set A is convex (exercise), therefore Au; + (1 — A)uz € A and
hence I(Auj + (1 — Nug) > my VA € (0,1). Since (s,p) — L(x, s,p) is strictly convex we have

L(x, \up + (1 — Nug, ADuy + (1 — X\)Dug) < AL(z,u1, Duy) + (1 — N) L(x, ug, Dug)

and hence
ma < I(Aup + (1 — XNug) < AM(u1) + (1 — A)I(u2) = my,

which gives a contradiction.
O

Remark. Note that the set A := {u € X|J(u) = 0} is not convex in general (unless J is
linear) hence the argument above does not apply for integral constraints.

We investigate now the PDE associated to a constrained minimizer.
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Theorem 6.13 (Euler-Lagrange equation for constrained minimizers). Let Q C R? be open and
bounded, X = W&’Q(Q) with 1 < ¢ < o0.

We consider
I: X—R

u— I(u) == [o L(x,u(x), Du(x)) d,
and we assume I is bounded below, coercive, weakly lower semicontinuous and C1(X) i.e. I is
Fréchet differentiable and the map I': X — X* is continuous (cf. Def.
(i) (integral constraint) Let 1 < p < oo such that Wol’q(ﬂ) CC LP(Q2) and consider

T LP(Q) SR
u— J(u) = [ Gz, u(x))d,

such that J is C*(X). Let A := {u € X|J(u) = 0} and assume A # @. Let ug € A be a
constrained minimizer (whose existence is ensured by Thm. .
Assume in addition v = vy, € X, v # 0 such that J'(ug)(v) # 0.

Then ug is a solution of

I’ (up)(w) = Aug)J' (o) (w) Vw € X. (6.13)
where
Mug) = L0)(Wuo)
YT Two)(vu)

s called the “Lagrange multiplier for the integral constraint J”.

(i) (unilateral constraint) Define A := {u € X|u > h a.e. in Q}, where h € C*°(Q) is a given
function and assume A # &. Let ug € A be a constrained minimizer (whose existence is

ensured by Thm. .

Then ug is a solution of

I’ (uo)(w) > I'(ug) (uo) Vw € A. (6.14)

Proof.

() Without constraint we would study the function 7 — I(up + 7w). The problem is that
u,w € A does not imply ug + 7w € A. The solution is to “shift” 7w back onto A. Precisely,
Vw € X, 30 = 6y > 0 and ¢ = ¢y n: R — R such that

e ¢ € CYR) and ¢(0) = 0,
o uy+ 1w+ @(T)v e AV|T| < 4.
To prove this consider

j: RxR—=R
(1y0) — j(1,0) := J(up + Tw + ov).

Since J € C! we have j € C'(R x R) and

{BTj(T, o) =J'(uo + 1w+ ov)(w)
0yj(1,0) = J (ug + 7w + 0oV) (V).
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In particular 9,,5(0,0) = J'(ug)(v) # 0. Therefore, by the implicit function theorem, there exists
a function ¢ € C*(R) and a parameter 6 > 0 such that ¢(0) = 0 and j(7,¢(7)) = 0 V|7| < 6.
We define now

1=1y: R—R
T i(7) = I(up + w(r)),
where w(7) := 7w + ¢(7)v.
Since I € C1(X) and 7 — w(7) € C*(R; X) we have i € C*(R). Moreover, since ug + w(7) € A
V|r| < 6, and up is a constrained minimizer on A, we have i(7) > i(0) V|7| < ¢ and hence
i'(0) = 0. We compute

I(ug +w(7)) — I(up)

(0 = iy 1010
o o b w(r)) — L) ~ M) (w(r) fulr)llx . Fuo)(w(r)
70 llw ()| x T 70 T ’
Note that lim,_ow(7) = 0 and
wlix _ o), D=6

Inserting these results above and using that I is Fréchet differentiable we get

0= 7/(0) — lim I/(UO)(w(T)) .

T7—0 T

(uo)(w) + ¢'(0)I' (uo) (v). (6.15)

We use now the relation J(u) =0 VYu € A to derive a formula for ¢/(0).
Indeed up + w(r) € A V|7| < 4, hence J(ug + w(r)) = 0 V|7| < 4. In particular, arguing as for
T+ I(ug + w(7)), we obtain

0= iJ(uo +w(7))|r=0 = lim (o + w(r)) = J(uo)

dr 70 T

and hence, since J'(ug)(v) # 0

= J'(uo)(w) + ¢/(0)J'(uo) (v),

Inserting in (6.15]) we obtain the result.

(74) As in (7), the main problem is that ug,w € A % up + 7w € A.
Since A is convex it holds

(1 =7)ug+ 7w =1ug+7(w—1uy) € A Yw € A,V € [0,1].

Fix now w € A and let i: [0,1] — R be the map defined via i(7) := I(ug + 7(w — up)). Then
i(t) >i(0) VO < 7 < 1 and therefore

0 < lim 71— (0)
740 T

This concludes the proof of the theorem. O

[28: 25.01.2024]
[29: 29.01.2024]
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Example 1. Set d =3, Q) C R? open and bounded, X = X, = H}(2). We consider again

I(u) ::;/Q|Du]2d:c, () ::/Q [H’ﬂ da.

e It holds H{(Q) cC L3(Q).

e [ > 0 hence [ is bounded below.

e By Poincaré, I(u) = %HDUHLZ(Q) > C||Du|\§{é(ﬂ),
convex and hence I is weakly lower semicontinuous (cf. Thm

e J: L3(Q) — R is continous. Moreover A = {u € H}(Q)|J(u) = 0} # @. Indeed take
u € HE(Q;]0,00)), u # 0 and consider u, := au, for a € R to choose. We compute

2
hence I is coercive. Moreover p > % is

Jua) = Jew) = 0] + ot L [ = joy + o2 12
(1) = J(ew) = |92+ 0¥ [ 0= ]+ ¥ 1522,

where in the last step we used u > 0. We obtain J(u,) = 0 for « := —(3|Q|)%/||uHL3

Hence, by Theorem there exists ug € A such that I(ug) = inf 4 I. We look now for the
corresponding Euler-Lagrange equation.

o I € CY(X). Indeed we have I(u + w) — I(u) = (Du, Dw)r2(q) + %HDwHQLQ(Q). Therefore
(exercise) I is Fréchet differentiable with

I'(u)(w) = (Du, Dw)p2(q) = / Du - Dw dzx.
Q
Finally

1’ (u) = I'(v)[lop = sup

lwll =1

/(Du — Dv) - Dw dzx
Q

< sup ||[Du— Dvl|2|[Dwl|rz < [[Du — Dvl[g2 < |lu—v|[g.
llwll ry =1
Therefore I’: X — X* is continuous.

e J € C}(X). Indeed we have J(u+w) — J(u) = [u?wdz + 5 [, w*dz. Therefore (exercise) .J
is Fréchet differentiable with

J (u)(w) = /Q w?w da.

Finally

17 (u) = J'(0)llop = sup

lwl =1

/Q(u2 —vHwdx

< lu? = 0?2 = [[(u = v)(u+ )2 < llu—vlgallu + vl| s

< Cllu =vlgyllu+ollgy < Cllu = ol gg (el gg + lollmg)-

Therefore J': X — X* is continuous.

e Ju # 0 such that J'(ug)(v) # 0. Indeed, by contradiction, assume J'(up)(v) = 0 Vv € X. Then

/ugv =0 VvelCr(Q)
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and hence ug = 0 a.e. in Q. But this is impossible since 0 ¢ A.

By Theorem it follows that ug is a weak solution of the nonlinear eigenvalue equation

Dug - Dvdx
—Aug = Aug)ud h Aug) = Jo Do Dudz
uQ (up)ug, where (up) fQ ugv T

Example 2. Let Q C R? be open and bounded. Set X = H} (). We consider again

1
I(u) :== 2/Q |Dul? da.

Let h € C2°(€2) be a given function and set A := {u € X|u > h a.e. in Q}.

With this choice A # @ since h € A.

I is bounded, coercive and w.l.s.c. and the map p — L(p) = |p|?/2 is strictly convex.
Then, by Theorem Alug € A such that I(up) < I(u) Yu € A.

In addition I € C'(X), hence, by Theorem ug satisfies

I'(ug)(w —up) >0 Vw € A

In particular we have w = ug + 7v € A V1 > 0,v € HJ(Q;[0,0)), since w > ug > h a.e. in .
Hence
I’ (uo)(w — ug) = 71" (ug)(v) >0 Vr > 0,v € H}(Q;]0,00)).

Dividing by 7 we obtain
/ Dug- Dvdz = T'(ug)(v) >0 Yo € HY(: [0, 50))
Q
and hence ug is a weak sub-solution for —Au = 0.

6.5 Critical points
As an illustrative example let d = 3, X = H}(Q), f € L*(2) and consider the functional

I(u) == /Q <|D2“|2 - ”33 + fu> dz. (6.16)

This functional is well defined and in C'(X) (exercise) with

I'(u)(w) = /Q (Du- Dw — v?w + fw) dz.

If I'(u) = 0 then u is a weak solution of —Au = u? — f.

Note that the functional I is not coercive. Indeed take v € H}(£2;]0,00)) and consider uy := v
with A > 0. Then I(uy) — —oco as A — oco. This shows also that I admits no global minimizer.
We will see that we can still find ug solution of I'(ug) = 0. This will be a critical point, but not
necessarily a local minimizer.

Definition 6.14 (critical points). Let X be a real Banach space and I: X — R a functional
satisfying I € C1(X).

(i) The point ug € X is a critical point for I if I'(ug) = 0.

In this case co := I(ug) is called a critical value for I.
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(ii) A real number ¢ € R is called a regular value for I if ¢ is not a critical value, i.e I'(u) # 0
for all w € X such that I(u) = c.

Remark 1. If ¢ is a critical value then Jup € X solution of the E-L equation I'(ug) = 0 i.e.
ug is a weak solution for the corresponding PDE.

Remark 2. When proving existence of minimizers we start with a minimizing sequence I (u,,) —
infx I. Coercivity implies that the sequence n — wu, is bounded. If in addition X is reflexive,
there exists then a weakly convergent subsequence.

When proving existence of critical points we replace coercivity+reflexivity with the so-called
Palais-Smale condition.

Definition 6.15 (Palais-Smale condition). Let X be a Banach space and I € C*(X).
We say that
(i) I satisfies Palais-Smale condition at level ¢ € R if Vn +— u,, € X such that
I(up) — ¢ inR, and  I'(up) =0 in X*,
there exists a strongly convergent subsequence up,; — u € X,
(ii) I satisfies Palais-Smale condition, if I satisfies Palais-Smale condition at all level ¢ € R.
Example. The function f: R — R defined via f(x) := e” does not satisfy PS.

Indeed take x, := —n. It holds f(z,) — ¢ = 0 and f/'(z,) — 0. But the sequence admits no
convergent subsequence.

Topological characterization of the critical points.

We will often use the notation
{I<ey:={uecX|I(u) <c} =T"((~o0,c).

In the same way we define {I = ¢}, {a < I < b}, ecc.

Informal statement: ¢ € R is a critical point for I if there exists no continuous deformation
O: {I(u) <c+0} = {I(u) <c— 6}, where § > 0. This means the two sets {I(u) < ¢+ 4} and
{I(u) < ¢— 4§} are topologically different. Lemma below makes this statement precise.

Example. Let X = R and I(z) := 2 — 3x. This function has two critical points 1 = —1,
x9 = 1 with critical values ¢; = I(z1) = 2, and ¢o = I(x2) = —2. We investigate now the set
{I < ¢} for different values of ¢. We have

c< 2= {I < ¢} =(—00,q]
—2<c<2={I<c}=(—00,a]]U[ag,as]
2<c= {I <c} = (—00,a]].

Therefore passing through a critical value the number of connected components changes.

Note that this topological characterization is a sufficient but not necessary condition for existence
of a critical point. Consider for example the function I(z) := 2. Then x = 0 is a critical point
but both {I(u) < ¢} and {I(u) < —d} have only one connected component.
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Lemma 6.16 (Deformation lemma). Let X be a Banach space.
Assume

e [ € CY(X) and satisfies Palais-Smale condition,
e ¢ € R is a reqular value for I.

Then the following hold.
(i) 30 <o <1 and 0 < o <1 such that

I (u)||x+ >0 >0, VYueBs:={c—056<I(u)<c+d}, VO0<4<d.

(ii) Let o and oy be the constants introduced above. Then Y0 < € and 0 < ¢ < min{do, %2,5}
In =n.5 € C([0,1] x X;X) such that

(a) n(0,u) =u Vu € X,

(b) vt € ]0,1] the function n(t,-): X — X is a homeomorphism
(i.e continuous and invertible with continuous inverse),

(c) ueAc:={c—e<I<c+e}=n(tu) =uVtelll]

(d) the map t — I(n(t,u)) is non-increasing Vu € X,

(e) n(0,u) =ue{l <c+d} = n(l,u) € {I <c—d}.

Proof.

(i) By contradiction assume there are three sequences d,, — 0, 0, — 0 and n — wu,, such that
up € Bs, ={c—0, <I<c+6,} and ||I'(up)||g < opn Vn.

From 4, — 0 and ¢ — 6, < I(uy) < ¢+ &y, it follows I(uy,) — c. Since ||[I'(un)||g < o, and
on — 0 we also have I'(u,) — 0.

By Palais-Smale, there exists a convergent subsequence u,;, — u in X. Since I and I' are
continuous we have

I(u) = lim I(up,) =c, I'(u)= lim I'(up,) =0,

J—00 J—00

which is impossible since ¢ is a regular value for 1.

(7i) We will see the proof only in the special case X = H is a Hilbert space and hence we can
identify X and X* via I'(u)(w) = (vp (), w)r. By abuse of notation we will sometimes write
I'(u) instead of vy (y)- ) )

We will assume in addition the map I": H — H defined via I’(u) := vy, is locally Lipschitz-
continuous, i.e. Lipschitz-continuous on bounded sets.

In the general case of a Banach space, we need to replace the map I''H —» H by a pseudo-
gradient vector field, i.e. a map W: X, — X, with X, := {u € X|I'(u) # 0} satisfying

e W is locally Lipschitz-continuous,

e W “approximates” I'(u).
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One can prove that such a function always exists. See the book by S. Kesavan (“Nonlinear
functional analysis”) for more details.

Assume now X = H is a Hilbert space and u + vy, is locally Lipschitz-continuous. To
construct 1 we look for a vector field V: H — H such that the ODE

{aﬂ](t,u) = V(n(tvu)) (617)

n(0,u) = u

has a unique solution n € C([0,1] x X; X) satisfying (i) — (v).

Note that, if the potential V is bounded and locally Lipschitz, then for each u € H has
a unique solution n(-,u) € C1(R; H) (by adapting the proof of Picard-Lindelsf). Moreover, the
solution satisfies n € C([0,1] x H; H).

The rest of the proof was not discussed in class

Part 1: construction of V.. Assume 7 is the unique solution of (6.17)), and satisfies (i) — (v). We
will use now (i) — (v) to impose restrictions on the choice of V.

Step 1. By (iv), the function ¢ — I(n(t,u)) must be non-increasing Vu € X, i.e

0> S Itn(t,w) = I'n(t, ) @en(t, ) = (T'nlt,w), aun(t, ) = (Pt ), V)

where in the last identity we used (6.17). Therefore we define

H

V(u) = —@(u)I'(u),
where ®: H — [0, 00) will be chosen later. With this choice

(1’(u), V(u))H = o) I'W)|% <0 Vue H. (6.18)

Step 2. We want V' to be bounded i.e.

sup |V (u)|| i = sup ®(u)||I'(u)]|#r < oo.
ueH ueH

The map u +— ||I'(u)|| g is not bounded in general hence we neet ® to compensate. We introduce
the cut-off function

= 1<

T

h: [0,00) > R 1 0<7<1
T — h(r) h(r) : {1

This function is Lipschitz continuous and satisfies sup, >, 7h(7) < 1. We define now
®(u) = S(u) h(| ' (u)l|n)
where ®: H — [0, 00) is a bounded function to be chosen later. With this choice

sup ®(w)||1'(w)llzr = sup ®(u) k(|1 ()| m)||IT'(w)llzr < sup @ (u) < oo
ueH ueH ueH

Step 3. We have now V(u) = —®(u) h(|| I (w)|| g) I’ (u).
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Let u € Ac = {c—e < I < c+¢e}° By (iit), we have n(t,u) = u Vt € [0, 1], hence
0= dun(tyu) = Vinlt,w) = V() Vi€ [0,1]

Therefore we need V(u) =0 Vu € A..

Assume now ¢—9 < I(u) < c+96. By (v) we have I(n(1,t)) < c¢—3d < I(u) = I(n(0,u)). Therefore
n(1,u) # n(0,u) and hence V(n(t,u)) = On(t,u) # 0 is some time interval.

Putting these two conditions together we look for ®: H — [0, 00) such that
e @ is bounded and locally Lipschitz,
e d=0o0n A, :={c—e<I<c+e),
e ®=1o0nBs:={c—0<I<c+0}

Since I is continuous, both A, and Bj are closed sets. Since § < € we have A. N Bs = @ and
hence dist (Ag, Bs) > 0. We define then

~ dist (u, A;)

P(u) := .
(u) dist (u, Ac) + dist (u, By)

With this choice 0 < ® < 1, ®(u) is locally Lipschitz, ® = 0 on A, and ® = 1 on Bs. This
concludes Part 1.

Part 2: construction of n. Let us define V' as above. Then V is bounded and locally Lipschitz,
and hence for each u € H (6.17)) has a unique solution n(-,u) € C*(R; H). Moreover, the solution
satisfies n € C([0,1] x H; H). We check now that the solution satisfies (i) — (v).

e (i) holds since n(0,u) = u by construction.

e We have n(t+s,u) = n(t,n(s,u)) Vt, s, u. In particular n(—t,n(t,u)) = n(t—t,u) = n(0,u) = u.
Therefore n(t,-): X — X is invertible with n(t,-)~! = n(—t,-), and hence (4i) holds.

e To check (iii) take u € A, and consider the constant function 7(¢) = u. Since V' (u) = 0 this
function is a solution of (6.17)). By unicity of the solution it follows 7 = n(-, u).

e (iv) follows directly from (/6.18)).

e It remains to check (v). Note that until now § < € are free parameters. O ur goal is to choose
them such that u € {I < c+d} = n(l,u) € {I <c—4§}. We distinguish two cases.

Case 1. If I(u) < ¢ — 0, we also have I(n(1,u)) < ¢ — 0, since t — I(n(t,u)) is non-increasing.

Case 2: Let ¢ — 6 < I(u) < c+ 9, i.e u € Bs. By contradiction assume ¢ — ¢ < I(n(1,u)). Then
n(t,u) € Bs ¥Vt € [0,1] and hence, using ® =1 on Bj

V(n(t,w) = =h(|[I'(n(t, W) a)I'(n(t,u)) Yt [0,1].

Therefore

o w2 i / w
100t 0) = (T ) )l e ) = { T =

By (i) 30 < §p < 1 and 0 < o < 1 such that ||I'(u)|| > o Vu € Bs with 0 < ¢ < dy9. We have

—o? i | (n(t,w)l| <1

&I(n(tvu)) < { -1 if ||I/(n(tau))” > 1, } < _02 vt e [07 1]'
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Therefore

1 d 9
I(n(l,u))z[(n(o,u))—i-/o £I(n(s,u))ds§c+5—a <c—39,

if we take 0 < § < %2 This contradicts ¢ — § < I(n(1, u)), hence the result holds.
O

[29: 29.01.2024]
[30: 01.02.2024]

Existence of critical points.

Example. Consider f € C'(R% R) satisfying
e f(0)=0,
e Jr,a > 0 such that f(z) > a V|z|=r,
e Jzy € RY such that || > r and f(xg) < 0.

Then 37 € R such that 0 < |Z| < |zg|, f(Z) > a and Df(z) = 0.
The next theorem extends this result to general Banach spaces.

Theorem 6.17 (Mountain Pass Theorem). Let X be a Banach space, and I € C*(X) a func-
tional satisfying Palais-Smale condition. Assume in addition

e I(0) =0,
e Jr,a > 0 such that I(v) > a V|v|x =,
e Jug € X such that ||upl|x > r and I(up) < 0.

Let T := {v € C([0,1]; X)|v(0) = 0,7(1) = uo} be the set of continuous paths starting in 0 and
ending in ug. Then
:= inf I((t
¢i= inf max (v(#))

is a critical value for I, i.e. 3u € X such that I(w) = ¢ and I'(u) = 0.
Remark 1. We are looking for the path from the valley containing 0 to the valley contining

ug with the lowest altitude (the mountain pass). The point @ may be a saddle, a local max or
a local min.

Remark 2. v must cross the mountain range ||v|| = , therefore max,c(g 1) [(v(t)) > a Vy €T
and hence ¢ > a.

Remark 3. Since I(u) = ¢ > a > 0 it holds u # 0 and u # ugp. In particular, if we already

know that 0 or ug is a critical point, the theorem implies there are at least two solutions for the
Euler-Lagrange equation of I.
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Proof.
By Remark 2, ¢ > a > 0. By contradiction, assume c is a regular value. We will show that in
this case 35 € I' such that maxycp 1) I(7(¢)) < ¢ which contradicts the definition of c.

e We construct a candidate for 7.
¢ is a regular point, then, by the Deformation Lemma, Ve > 0 30 < é < ¢ and 7: X — X
(7 =mn(1,-)) such that

e 7 is a homeomorphism,
o HNu)=uVue A. ={c—e <1 <c+e}"
e i({I <ctd)) C{I<c—a).
In particular we can choose € < 1 small enough s.t.
c—e>0=1(0) > I(uo)
and hence 7(0) = 0 and 7j(ug) = up. Since ¢ = inf,er maxycp1) [(7(t)), 3o € I' such that

max I(y(t)) < c+ 4. (6.19)
te(0,1]

We define 4 := 1 0 yp.

e We check 7 is the correct choice.
Indeed, 7 € C(]0, 1]; X) since both 77 and 7y are continuous. Moreover

7(0) = 1(70(0)) = 7(0) = 0, (1) =(10(1)) = 7(uo) = uo,

hence 7 € I'.
By construction vo(t) € {I < ¢+ d} Vt € [0,1] hence (t) = 7(10(t)) € {I < c— 4§} Vt € [0,1],
and therefore

¢ < max I(5(t))

Iy <c-— 57
te(0,1]

which gives a contradiction.
O

Example. Set d = 3, Q C R? open and bounded, X := H}(Q), f € L?(Q) and consider the
functional (6.16)), i.e.

I'(u)(w) = /Q (Du- Dw —vw + fw) dz.

We show now that I satisfies Palais-Smale condition. Let n — u, € H(Q) be a sequence such
that
I(up) = c€R, I'(ug) — 0.

Our goal is to find a strongly convergent subsequence. For this purpose we show first that the
sequence is bounded, and hence, since X is reflexive, there is a weakly convergent subsequence
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Un; — u. Since Hj(Q) cC L*(Q2) this implies u,; — u strongly in L*(€2). The last step is to
prove that also Du,; — Du strongly in L2(9).

e We prove that the sequence n — u, is bounded. Since I is not coercive, we will use instead
the exact expressions for I(u,) and I'(u,). We have, by direct computation

1 1
) =5 1Dz = 5 [ wbdo + (Fu)pe (6.20)

() ) =Dz~ [ b+ (Foa)r (6.21)
Q
From the first equation we get
3 1 2
_/ bde = 3 [I(un) — S IDulZ: — (7, un)LQ] .
Q
Inserting this into (6.21]) we get

() () = — 3 | D32 + 31 () — 2(f ) .2

and hence, using Poincaré,

Cllun By < 21D = 3T0) — 1) (o) — 210
< 31 (un) + 17" (un)llopllunll g + 211 £l 2 unll 22
< 31T (un)| + lunll gz [ (wn)llop + 211/ 2]
Since I(uy) — c and I'(uy,) — 0 the two sequences n — |I(uy)| and n +— ||I'(uy)||op are bounded

and therefore
Clhunllys < @+ Bl -

where a = 3sup,, |I(u,)| and 8 = 2| f||z2 +sup,, [|[I'(un)||op- It follows that the sequence n — w,,
is bounded ad hence, since X is reflexive, there is a weakly convergent subsequence u,, — wu.
Since Hg(€2) cC LP() Vp < 6 this implies u,, — u strongly in LP(2) Vp < 6. In particular
Un; — u in L?(Q)

e We prove Du,; — Du strongly in L*(12).
Remember that

I/(unj)(w) = (Duy,, Dw)r2 — /Quijw dx + (f,w) 2.

Since I'(un;) — 0 we have I'(u,,)(w) — 0. Since Du,, — Du we have (Duy,;, Dw)p> —
(Du, Dw) 2. Finally since up; — u in L*(Q) we have

/Q up, — w?| fw| do < Jun — wll pallun + ul| pafJw] 2 — 0.
Putting all this together we obtain

0= (Du, Dw)2 — / w*wdzr + (f,w)p2 Vw € H}(Q). (6.22)
Q
In particular, setting w = u,

0= || Dul|7: — / ud dr + (f,u) pe. (6.23)
Q
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From ([6.21)) we obtain, for all j,
| Dt 22 = I'(utn ) (1) + /Q w3, do — (£, un,) 2.

Since I'(un,;) — 0 and the sequence j — u,; is bounded we have I'(uy; ) (un,) — 0. Since u,; — u
in L3(Q) we have |, uf’l]_ dz — [ u®dz. Since Up; — u in L?(Q) we have (f, Un, )2 — (fyu).
Putting all this together,and using (6.23)) we obtain

tim 1D 2 =0+ | u¥da = (£,) = [ Dulf. (6.24)
J—00 QO
Since X is a Hilbert space Duy,; — Du and ||Duy, || ;2 — || Dul| 2 implies Du,; — Du in L*(),

which concludes the proof.

As an example of application consider the equation

A — 2 - 3
{ Au=uv*—f imnQCR (6.25)

ujgn =0

with f € L2(€2). In weak formulation this PDE becomes
/[Du-Dw—u2w+fw]da::O Yw € HY(Q).
Q

Therefore a weak solution of (6.25) is a critical point for the functional I defined in (/6.16]).

Assume now, Q is connected, f € C*®(£;[0,00)) and Jzg € Q such that f(zg) > 0. By
Lemma (sub-supersolution method) there exists at least one non-positive weak solution
ug € H} (9 (—00,0]). We will use now the Mountain Pass theorem to show that there is at least
a second weak solution.

In order to apply the Mountain Pass theorem, we replace u = 0 with uy (point in the first valley)
and 1(0) = 0 with the value of I(up).

Claim. Ir,a > 0 and uy € HE(Q) such that
(i) V||u— ’LLOHH(% = r it holds I(u) > I(up) + a,
(i) [lur — uollgg > r and I(u1) < I(uo).

Consequence. By the Mountain Pass theorem, there exists u € H& critical point for I such that
I(u) > I(up) + a. Therefore @ # up and hence there are at least two weak solutions for ([6.25]).

Proof of the Claim.
o If |lu— “OHHg = r then u = ug + rw with ||w||H5 = 1. We have

I(u) = I(ug) = I(up + rw) — I(ug) =7 [(Duo,Dw)Lz — /ngw dx + (f,w)Lz]

1 1
+ r? [2||Dw|]%2 —/u0w2 dz:] - 37’3/ w? de.
Q Q

Since ug is a critical point we have (Dug, Dw)z2 — [o udwdz + (f,w)z2 = 0 hence
1 1
I(u) — I(ug) =12 [||Dw||%2 - / upw? dm} - 1”3/ w? dx.
2 Q 3 Jo
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Since ug < 0 a.e we have — fQ uow? dz > 0 and hence

1 1
I(u) = I(ug) = 7‘2§HDw||%2 - g?“gllwlli3

By Poincaré and Sobolev inequality we have
2 2 3 3 _
2 = HY — ) 3 = HY — )
[Dwlzz = Cillwlz = Cr [wllzs < Caflwllzz = Co
where C1,C2 > 0, and we used ||wHHé = 1. Therefore
I(u) — I(ug) > r 56’1 — gr Co>r ZCI >0

for r small enough. So () holds.

e We construct u;. Set v := ug +tp where ¢ € H}(;[0,00)) is a given function satisfying ¢ > 0
on a set of positive measure, and ¢ > 0 is a parameter to choose. We have

s = woll sy = tllellgy > r

ift > 7“/Hg0HHé. Finally

1 1
I(ur) = I(ug) = t* [QHDSOH%z - /9160302 dl’] - §T3 /Q 0’ dr = tPay — tay,

where a; € R and ag > 0. It follows (u1) — I(ug) < 0 if ¢ is large enough. Hence (i) holds.
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