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[1: 9.10.2023]

1 Preliminary definitions

1.1 Introduction

A partial differential equation of order k is an equation involving an unknown function u : Ω→
Rm, with Ω ⊂ Rd, and its partial derivatives up of order k :

F
(
{∂αu(x)}0≤|α|≤k, x

)
= 0 ∀x ∈ Ω.

Here α = (α1, . . . , αd) ∈ Nd is a multi-index and we used the notation ∂αu =
∏k
j=1 ∂

αj
xj u. We

always assume the function is regular enough so that partial derivatives commute.

A linear PDE of order k can be written as∑
0≤|α|≤k

aα(x)∂αu(x) + f(x) = 0, (1.1)

where the coefficients aα : Ω → R may depend on x, and f : Ω → Rm is the non homogeneous
term.

There are several levels of nonlinearity, depending of the behavior of the highest order derivatives.
A semilinear PDE of order k takes the form∑

|α|=k

aα(x)∂αu(x) + F
(
{∂βu(x)}0≤|β|≤k−1, x

)
= 0. (1.2)

This equation is linear in the highest order derivatives, with coefficients aα independent of u.

A quasilinear PDE of order k takes the form∑
|α|=k

aα(
(
{∂βu(x)}0≤|β|≤k−1, x

)
∂αu(x) + F

(
{∂βu(x)}0≤|β|≤k−1, x

)
= 0. (1.3)

This equation is linear in the highest order derivatives, with coefficients aα depending on u and
derivatives of order less than k.

A fully nonlinear PDE of order k is nonlinear in the k−th order derivatives.

The most famous examples of linear second order PDEs are:

• Laplace equation ∆u(x) = 0, u : Ω→ R, with Ω ⊂ Rd,

• heat equation ∂tu(t, x)−∆u(t, x) = 0, u : R× Ω→ R,

• wave equation ∂2
t u(t, x)−∆u(t, x) = 0, u : R× Ω→ R.

Examples of semilinear PDEs are:

• nonlinear heat equation: ∂tu(t, x)−∆u(t, x) = f(u(t, x)), with u : R× Ω→ R;

• incompressible Navier-Stokes equation: ∂tuj(t, x)−∆uj(t, x)+u ·∇uj(t, x)+∂jp(t, x) = 0,

with p a given function, u : R× Ω→ Rd, and u · ∇ :=
∑d

j=1 uj∂j .
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An example of quasilinear PDEs is the incompressible Euler equation

∂tuj(t, x) + u · ∇uj(t, x) + ∂jp(t, x) = 0,

while the Hamiltion-Jacobi equation

∂tu(t, x) +H(∇u(t, x)) = 0

is fully nonlinear.

Some tools we have seen to study these equations are:

• linearization: approximate the solution of the nonlinear PDE by solving a linearized ver-
sion;

• fixed point in some Banach space (used for example for nonlinear heat and Navier-Stokes
equation)

• minimization (calculus of variations): reformulate the problem of solving the PDE into
finding a minimizer for some functional I(u).

Here we will develop systematically these and other tools.

1.2 Sobolev spaces: definition and some properties

Definition 1.1. Let Ω ⊂ Rd be open, f ∈ L1
loc(Ω), i.e. f ∈ L1(K) ∀K ⊂ Ω compact.

(i) f is weakly differentiable if there exist d functions g1, . . . , gd in L1
loc(Ω) such that

ˆ
Ω
f ∂iϕdx = −

ˆ
Ω
gi ϕdx ∀ϕ ∈ C∞c (Ω). (1.4)

In this case, gi is called the weak derivative of f in the direction i.

(ii) f is k times weakly differentiable if, for all multiindices α ∈ Nn with |α| ≤ k, there exist
g(α) ∈ L1

loc(Ω) such that

ˆ
Ω
f ∂αϕdx = (−1)|α|

ˆ
Ω
gα ϕdx ∀ϕ ∈ C∞c (Ω). (1.5)

Notation The functions gi and gα are called weak derivatives and are still denoted by ∂if and
∂αf , respectively.

Remarks

• The weak derivative is unique up to a null set, i.e. {g ∈ L1
loc(Ω) | g = ∂αf} is a single

equivalence class in L1
loc(Ω).

• The weak derivative and the usual derivative agree if g ∈ Ck(Ω).

• In the following, we will usually make no notational distinction between functions and
their equivalence classes.
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Definition 1.2. Let Ω ⊂ Rd be open, 1 ≤ p ≤ ∞ and k ∈ N \ {0}.
The Sobolev space W k,p(Ω) consists of all f ∈ Lp(Ω) which are k times weakly differentiable with
all weak derivatives in Lp(Ω).

W k,p(Ω) := {f ∈ Lp(Ω) | f k times weakly differentiable with ∂αf ∈ Lp(Ω)∀|α| ≤ k}

We define ‖ · ‖Wk,p(Ω) : W k,p(Ω)→ [0,∞) by

‖f‖Wk.p(Ω) :=


(∑

0≤|α|≤k ‖∂αf‖
p
Lp(Ω)

) 1
p

p <∞∑
0≤|α|≤k ‖∂αf‖L∞(Ω) p =∞

(1.6)

Theorem 1.3. Let Ω ⊂ Rd be open, 1 ≤ p ≤ ∞ and k ∈ N \ {0}.

(i) (W k,p(Ω), ‖ · ‖Wk,p(Ω)) is a Banach space.

(ii) W k,2(Ω) is a Hilbert space with the scalar product

(f, g)Wk,2(Ω) :=
∑

0≤|α|≤k

(∂αf, ∂αg)L2(Ω), (1.7)

where (f, g)L2(Ω) :=
´

Ω fg dx ∀f, g ∈ L
2(Ω).

We will often use the notation Hk(Ω) := W k,2(Ω).

Proof. See lecture notes for FA or the book by Evans.

Remark. Let d = 1 and I = (a, b) ⊂ R an open bounded interval. Then f ∈ W 1,1(I) ⇒
∃c ∈ R such that the function

f̃(x) := c+

ˆ x

a
f ′(t) dt ∀x ∈ [a, b] (1.8)

satisfies f̃ ∈ [f ]. Note that f̃ ∈ C([a, b]), and f̃ is differentiable a.e. with f̃ ′ = f ′ a.e..
If f ∈W 1,p(I) with 1 < p ≤ ∞, then we have in addition f̃ ∈ C0,α(Ī) with α := 1− 1

p and

[f̃ ]α := sup
t6=t′∈I

|f(t)− f(t′)|
|t− t′|α

≤ ‖f ′‖Lp(Ω).

Definition 1.4. Let Ω ⊂ Rd be open, 1 ≤ p <∞ and k ∈ N \ {0}. We define the space

W k,p
0 (Ω) := {f ∈W k,p(Ω) | ∃j 7→ fj ∈ C∞c (Ω) such that fj → f in W k,p(Ω)}. (1.9)

This is therefore the completion of C∞c (Ω) in the Sobolev norm. For p = 2 we will write

Hk
0 (Ω) := W k,p

0 (Ω).

Remarks The space W k,p
0 (Ω) corresponds to the set of Sobolev functions “with zero boundary

value”. We will make this more precise later after we introduce the trace. W k,p
0 (Ω) is a closed

linear subspace of W k,p(Ω). Moreover, W k,p
0 (Rd) = W k,p(Rd), but W k,p

0 (Ω) ( W k,p(Ω) when

Ω ( Rd. For k = 0 we have W 0,p(Ω) = Lp(Ω) = W 0,p
0 (Ω) since C∞c (Ω) is dense in LP (Ω).
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Theorem 1.5 (approximation by smooth functions). Let Ω ⊂ Rd be open, p ∈ [1,∞), k ∈ N.
Then

(i) C∞(Ω) ∩W k,p(Ω) is dense in W k,p(Ω),

(ii) C∞c (Rd) is dense in W k,p(Rd),

(iii) C∞c (Ω) is dense in W k,p
0 (Ω).

Proof. (i), (ii) See lecture notes on FA or the book by Evans.

(iii) Follows directly from the definition of W k,p
0 (Ω).

Theorem 1.6 (Rellich). Let Ω ⊂ Rd open and bounded, 1 ≤ p <∞ and k ≥ 1.

Let n 7→ un ∈ W k,p
0 (Ω) be a bounded sequence, and u ∈ W k−1,p

0 (Ω) such that un ⇀ u in

W k−1,p
0 (Ω).

Then un → u strongly in W k−1,p
0 (Ω).

Proof. See lecture notes on FA.

[1: 9.10.2023]
[2: 12.10.2023]

Theorem 1.7 (Sobolev inequalities in Rd).

(i) Let 1 ≤ p < d and let

p∗ :=
dp

d− p
or, equivalently,

1

p∗
=

1

p
− 1

d
. (1.10)

Then it holds

‖u‖Lp∗ (Rd) ≤
p∗(d− 1)

d
‖∇u‖Lp(Rd) ∀u ∈W 1,p(Rd). (1.11)

(ii) Let 1 ≤ d < p <∞ and let

α := 1− d

p
. (1.12)

Then every u ∈W 1,p(Rd) has a Hölder continuous representative ũ ∈ C0,α(Rd), and there
exist a constant Cp,d > 0 such that

[ũ]C0,α := sup
x 6=y

|ũ(x)− ũ(y)|
|x− y|α

≤ Cpd‖∇u‖Lp ∀u ∈W 1,p
0 (Rd). (1.13)

Proof. See lecture notes on FA or Evans.
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Remark. If u ∈ Lp(Rd) ∩ C0,α(Rd) then u is bounded and

sup
x∈Rd

|u(x)| ≤ C([u]C0,α(Rd) + ‖u‖Lp(Rd))

for some constant C > 0 independent of u. Indeed we have, for each x ∈ Rd and r > 0,

u(x) =
1

|Br(x)|

ˆ
Br(x)

u(y)dy +
1

|Br(x)|

ˆ
Br(x)

(u(x)− u(y))dy.

The result now follows from

|u(x)| ≤ 1

|Br(x)|

ˆ
Br(x)

|u(y)|dy+
rα

|Br(x)|

ˆ
Br(x)

|u(x)− u(y)|
|x− y|γ

)dy ≤ 1

|Br(0)|
1
p

‖u‖Lp(Rd)+r
α[u]C0,α

and optimizing in r > 0.

Theorem 1.8 (Sobolev embedding). Let Ω ⊂ Rd be open and bounded. The following statements
hold.

(i) Assume 1 ≤ p < d. Then W 1,p
0 (Ω) ⊂ Lq(Ω) ∀1 ≤ q ≤ p∗, where p∗ := pd

d−p .

The embedding
I : W 1,p

0 (Ω)→ Lq(Ω)
u 7→ I(u) := u

is continuous, and
‖u‖Lq(Ω) ≤ C ‖∇u‖Lp(Ω) ∀u ∈W 1,p

0 (Ω),

where the constant C depends on p, q and Ω.

Moreover, if 1 ≤ q < p∗, the injection is also compact.

(ii) Assume 1 ≤ d < p <∞. Then W 1,p
0 (Ω) ⊂ C0,β(Ω) ∀0 < β ≤ α := 1− d

p .

This means, that each u ∈W 1,p
0 (Ω) has a representative ũ ∈ C0,β(Ω).

The embedding
Iβ : W 1,p

0 (Ω)→ C0,β(Ω)
[u] 7→ I([u]) := ũ

is continuous, and
[ũ]C0,β ≤ C‖∇u‖Lp ∀u ∈W 1,p

0 (Ω), (1.14)

where the constant C depends on p, β and Ω.

Moreover, if β < α, the embedding is also compact.

Proof. See lecture notes on FA or Evans.
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Remark. If u ∈ Lp(Ω) ∩ C0,α(Ω) then u is bounded and

sup
x∈Ω
|u(x)| ≤ C([u]C0,α(Ω) + ‖u‖Lp(Ω))

for some constant C > 0 independent of u. Indeed we argue

u(x) =
1

|Ω|

ˆ
Ω
u(y)dy +

1

|Ω|

ˆ
Ω

(u(x)− u(y))dy.

The result now follows from

|u(x)| ≤ 1

|Ω|

ˆ
Ω
|u(y)|dy +

diam(Ω)α

|Ω|

ˆ
Ω

|u(x)− u(y)|
|x− y|γ

)dy ≤ 1

|Ω|
1
p

‖u‖Lp(Ω) + diam(Ω)α[u]C0,α .

Two key tools to prove the above results are: convolution with mollifiers and partition of unity.

Lemma 1.9 (convolution).
Let η ∈ C∞c (B1(0)) such that η ≥ 0 and

´
Rd ηdx =

´
B1(0) ηdx = ‖η‖L1 = 1.

We define ε 7→ ηε via ηε(x) := ε−dη
(

1
εx
)
, for ε > 0. The following holds.

(i) ∀ε > 0 ηε ∈ C∞c (Bε(0); [0,∞)), and
´
Rd ηεdx =

´
Bε(0) ηεdx = 1.

(ii) Suppose u ∈ Lp(Rd), p <∞. Then

(a) ηε ∗ u(x) =
´
Rd ηε(x− y)u(y)dy for a.e. x ∈ Rd.

(b) ηε ∗ f ∈ Lp(Rd) ∩ C∞(Rd) and ‖ηε ∗ u‖Lp ≤ ‖ηε‖L1‖u‖Lp = ‖u‖Lp .
(c) limε→0 ‖ηε ∗ u− u‖Lp = 0.

(d) If in addition u ∈W k,p(Rd) it holds

∂α(ηε ∗ u) = ηε ∗ (∂αu)

for all multiindices α with |α| ≤ k.
Hence we also have limε→0 ‖ηε ∗ u− u‖Wk,p(Rd) = 0.

Notation The functions ηε are sometimes called mollifiers. For any sequence εj → 0, the
sequence j 7→ ηεj is called a standard Dirac sequence (or a sequence of mollifiers).

Proof. See lecture notes on FA.

Definition 1.10 (Partition of unity). Let A ⊂ Rd be non empty, I be a finite or countable index
set.

(i) A family of sets {Vi}i∈I is an open cover of A if Vi ⊂ Rd is open and nonempty ∀i, and
A ⊂

⋃
i∈I Vi.

(ii) An open cover {Vi}i∈I is locally finite if ∀x ∈
⋃
i∈I Vi ∃ε > 0 such that

#{i ∈ I | Bε(x) ∩ Vi 6= ∅} <∞.

(iii) Let {Vi}i∈I be a locally finite open cover of A. A family of functions {χi}i∈I is a partition
of unity for A with respect to the cover {Vi}i∈I if

χi ∈ C∞c (Vi, [0,∞)) ∀i ∈ I and
∑
i∈I

χi(x) = 1 ∀x ∈ A.
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Remarks.

• The sum
∑

i∈I χi(x) is finite ∀x because the open cover is locally finite.

• In particular 0 ≤ χi(x) ≤ 1 ∀x ∈ A.

Lemma 1.11 (Existence of a partition of unity). Let Ω ⊂ Rd be open.
Suppose ∃Kj ⊂ Vj ⊂ V̄j ⊂ Ω for all j ∈ N such that

Kj , V̄j compact ∀j, Kj ∩Kj′ = ∅ ∀j 6= j′, {Vj}j∈N locally finite open cover of Ω.

Then there exists a partition of unity {χj}j∈N for Ω with respect to {Vj}j∈N.
The partition satisfies, in addition, χj(x) = 1 ∀x ∈ Kj .

Remark. The sets Kj may be empty! In that case χj(x) < 1 ∀x ∈ Vj .

Proof. See lecture notes on FA.

1.3 Boundary regularity and its applications

All results in the previous section need no information on ∂Ω. Indeed most of the results there
are stated for functions in W k,p

0 (Ω) that ’take zero value’ on the boundary. To allow for nonzero
values at the boundary we need to require some regularity.

1.3.1 Boundary regularity

Let Ω ⊂ Rd be an open set. Informally ∂Ω is ’regular’ (Lipschitz, Ck, smooth. . . ) if locally it
can be represented by a function γ : Rd−1 → R which is ’regular’ ( Lipschitz, Ck, smooth. . . ).

Definition 1.12. Let Ω ⊂ Rd be an open set. We say that ∂Ω is Ck, k ≥ 1, (resp. Lipschitz)
if for all x0 ∈ Ω ∃r > 0 and a Ck (resp. Lipschitz) function γ : Rd−1 → R such that, after
relabelling the variables and reorienting the axes, it holds

Ω ∩Br(x0) = {x = (x1, . . . , xd) ∈ Br(x0) |xd > γ(x1, . . . , xd−1)}.

Remark 1 If ∂Ω is C1, then we can define the outward normal unit vector field ν : ∂Ω→ Sd−1.
Moreover, if u ∈ C1(Ω) it holds ∂νu(x) = νx · ∇u(x) ∀x ∈ ∂Ω. If ∂Ω the outward normal ν(x)
is still well defined for a.e. x ∈ ∂Ω

Remark 2: flattening the boundary. Assume ∂Ω is C1. Then we can ’locally’ flatten the
boundary in the following way.
Let x0 ∈ ∂Ω, r > 0 and γ : Rd−1 → R as above. We introduce the change of coordinates
Φ: Rd → Rd as follows

y = Φ(x) :=

{
yi := xi ∀i = 1, . . . , d− 1,
yd := xd − γ(x1, . . . , xd−1).

Φ is invertible with inverse

x = Φ−1(y) :=

{
xi := yi ∀i = 1, . . . , d− 1,
xd := yd + γ(y1, . . . , yd−1).

Moreover, since γ is C1, the Jacobian is well defined and equals 1. In the new coordinates the
boundary is locally flat:

Ω ∩Br(x0) = {y ∈ Φ(Br(x0)) | yd = xd − γ(x1, . . . , xd−1) > 0}.
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1.3.2 Approximation by smooth functions up to the boundary

Theorem 1.13. Let p ∈ [1,∞), k ∈ N.

(i) Let Ω = {x ∈ Rd|xd > 0} be the upper half-plane. Then C∞(Ω) ∩W k,p(Ω) is dense in
W k,p(Ω).

(ii) Assume Ω ⊂ Rd is open and bounded with Lipschitz boundary. Then C∞(Ω) is dense in
W k,p(Ω).

Proof.
Let Ω ⊂ Rd be open and u ∈ W k,p(Ω) given. Our goal is to find a sequence of functions in
C∞(Ω) ∩W k,p(Ω) converging to u in the Sobolev norm.
To construct the sequence let ε 7→ ηε be a Dirac sequence (cf. Lemma 1.9). For each ε > 0 we
consider

(ηε ∗ u)(x) := (ηε ∗ 1Ωu)(x) =

ˆ
Rd
ηε(x− y)(1Ωu)(y) dy =

ˆ
Ω
ηε(x− y)u(y) dy.

It holds ηε ∗ u ∈ C∞(Rd) ∩ Lp(Rd), hence in particular ηε ∗ u ∈ C∞(Ω) ∩ Lp(Ω). Moreover

‖ηε ∗ 1Ωu− u‖Lp(Ω) ≤ ‖ηε ∗ 1Ωu− 1Ωu‖Lp(Rd) →ε→0 0.

What about the derivatives? In general u ∈W k,p(Ω) 6⇒ 1Ωu ∈W k,p(Rd), hence we cannot even
say if ∂α(ηε ∗ u) is in Lp(Rd).
Note that we have ∂α(ηε ∗ 1Ωu)(x) = ηε ∗ 1Ω∂

αu(x) for all x such that Bε(x) ⊂ Ω, i.e.

∂α(ηε ∗ 1Ωu)(x) = ηε ∗ 1Ω∂
αu(x) ∀x ∈ Ωε := {x ∈ Ω|dist (x, ∂Ω) > ε}.

To go further we need to use our information on ∂Ω.

(i) In this case Ω = {x ∈ Rd|xd > 0}, hence

Ωε = Ω + εêd,

where êd is the normal vector in the direction d. This fact, together with Ωδ ⊂ Ωε ∀δ > ε,
suggests to consider, for each ε, δ > 0, the function u : Rd → R defined by

uε,δ(x) := ηε ∗ 1Ωu(x+ δêd) = [ηε ∗ 1Ωu] ◦ τδ(x)

where τδ : Rd → Rd is the translation τδ(x) := x+ δêd. This function satisfies uε,δ ∈ C∞(Rd) in
particular uε,δ ∈ C∞(Ω) ∀ε, δ > 0. Moreover

∂αuε,δ(x) = [ηε ∗ 1Ω∂
αu] ◦ τδ(x) = [ηε ∗ 1Ω∂

αu](x+ δêd) ∀x ∈ Ω− (δ − ε)êd.

Since Ω ⊂ Ω − (δ − ε)êd ∀δ > ε we set δε := λε, with λ > 1 fixed and consider the family of
functions

uε := uε,δε .

We claim that uε ∈W k,p(Ω) for all ε > 0 and ‖uε−u‖Wk,p(Ω) →ε→0 0. Indeed, for all 0 ≤ |α| ≤ k
it holds

‖∂αuε‖Lp(Ω) = ‖(ηε ∗ 1Ω∂
αu) ◦ τλε‖Lp(Ω) ≤ ‖(ηε ∗ 1Ω∂

αu) ◦ τλε‖Lp(Rd)

= ‖ηε ∗ 1Ω∂
αu‖Lp(Rd) ≤ ‖∂αu‖Lp(Ω) <∞,
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hence uε ∈W k,p(Ω). Moreover

‖uε − u‖Lp(Ω) ≤ ‖uε − 1Ωu‖Lp(Rd) ≤ ‖uε − (1Ωu) ◦ τλε‖Lp(Rd) + ‖(1Ωu) ◦ τλε − (1Ωu)‖Lp(Rd)

Since limh→0 ‖f(x+ h)− f(x)‖Lp = 0, we have

lim
ε→0
‖(1Ωu) ◦ τλε − (1Ωu)‖Lp(Rd) = 0.

Finally

‖uε − (1Ωu) ◦ τλε‖Lp(Rd) = ‖(ηε ∗ 1Ωu) ◦ τλε − (1Ωu) ◦ τλε‖Lp(Rd)

= ‖ηε ∗ 1Ωu− 1Ωu‖Lp(Rd) →ε→0 0

The same argument holds for derivatives. This concludes the proof in case (i).

(ii) Assume ∂Ω is C1. In this case the boundary is locally flat and we can adapt the argument
from (i). To make this rigorous note that ∂Ω is compact and therefore we can find x1, . . . , xN ∈
∂Ω and r1, . . . , rN > 0 such that

∂Ω ⊂
N⋃
j=1

Brj (xj)

and Brj (xj)∩ ∂Ω is flat after an appropriate change of coordinates. Set V0 ⊂ V̄0 ⊂ Ω open such
that

Ω ⊂ V0 ∪
N⋃
j=1

Brj (xj).

Then there exists a partition of unity {χj}j=0,...,N for Ω wrt the open cover. In particular

u = u0 +
∑N

j=1 uj , with uj = χju.

Since u0 has compact support in V0 it holds ηε ∗ u0 → u0 in W k,p(V0). For j ≥ 1 we adapt the
construction from (i) (see Evans for details).
For the case of Lipschitz boundary see Lecture notes in FA.

1.3.3 Trace

Theorem 1.14. Let Ω ⊂ Rd be open and bounded with Lipschitz boundary, p ∈ [1,∞).

(i) There exists a linear bounded operator T : W 1,p(Ω)→ Lp(∂Ω;Hd−1) such that

(a) Tu = u|∂Ω for all u ∈W 1,p(Ω) ∩ C(Ω) and

(b) for all u ∈W 1,p(Ω), ϕ ∈ C1(Ω), j = 1, . . . d it holds

ˆ
Ω
u∂jϕ dx = −

ˆ
Ω
∂juϕ dx+

ˆ
∂Ω

(Tu)ϕνj dx

(ii) u ∈W 1,p
0 (Ω) ⇔ Tu = 0.

We call Tu the trace of u on ∂Ω.
[2: 12.10.2023]
[3: 16.10.2023]
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Proof of Theorem 1.14.
(i) To construct T we proceed as follows.

• For u ∈ C1(Ω) the boundary value u|∂Ω is well defined, hence we define

T : C1(Ω)→ {functions on ∂Ω}

via Tu := u|∂Ω. This map is linear. Moreover for all u ∈ C1(Ω) it holds (proof later)

Tu ∈ Lp(∂Ω;Hd−1), and ‖Tu‖Lp(∂Ω) ≤ C ‖u‖W 1,p(Ω) (1.15)

where the constant C = C(Ω, p) > 0 is independent of u.

• For each u ∈W 1,p(Ω) there is a sequence n 7→ un ∈ C1(Ω) such that ‖u−un‖W 1,p(Ω) → 0. We
have

‖Tun − Tum‖Lp(∂Ω) ≤ C‖un − um‖W 1,p(Ω)

hence n 7→ Tun is a Cauchy sequence in Lp(∂Ω;Hd−1). Therefore the limit exists and we define

Tu := lim
n→∞

Tun = lim
n→∞

un|∂Ω.

The limit is independent of the approximating sequence (exercise). The map T : W 1,p(Ω) →
Lp(∂Ω) we have defined is bounded since

‖Tu‖Lp(∂Ω) = lim
n→∞

‖Tun‖Lp(∂Ω) ≤ C lim
n→∞

‖un‖W 1,p(Ω) = C‖u‖W 1,p(Ω).

The operator T we have constructed satisfies (a) and (b) (exercise, see also FA) Here we sketch
the proof of (1.15). Let u ∈ C1(Ω). our goal is to show ‖Tu‖Lp(∂Ω) ≤ C ‖u‖W 1,p(Ω), and hence in

particular Tu ∈ Lp(∂Ω;Hd−1). By introducing a finite partition of unity we reduce the problem
to study a function localized on a small piece of the boundary. We distisguish two cases.
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Case 1. ∂Ω is C1. In this case the boundary is locally flat, after an appropriate coordinate change.
Assume x0 ∈ ∂Ω and r > 0 are such that ∂Ω∩Br(x0) is flat (without need of coordinate change),
i.e.

Ω ∩Br(x0) = {x = (x′, xd) ∈ Br(x0)|xd > 0},

where x′ ∈ Rd−1. In particular x0 = (x′0, 0), with x′0 ∈ Rd−1. We define

Γ := ∂Ω ∩Br(x0) = {(x′, 0) ∈ Br(x0)}.

Assume now u ∈ C1(Ω) has support inside Br(x0) (use the partition of unity). Then ‖u‖pLp(Γ) =´
|x′−x′0|<r

|u(x′, 0)|pdx′. The idea now is to add one dimension by paying one derivative. Precisely

u(x′, l)− u(x′, 0) =

ˆ l

0
∂xdu(x′, t) dt ∀l > 0 s.t. [(x′, 0), (x′, l)] ⊂ Ω.

Since suppu ⊂ Br(x0), then for each x′ there exists a lx′ > 0 such that [(x′, 0), (x′, lx′)] ⊂ Ω and
u(x′, lx′) = 0. Therefore

|u(x′, 0)|p =

∣∣∣∣ˆ lx′

0
∂xdu(x′, t)dt

∣∣∣∣p ≤ (ˆ lx′

0
|Du(x′, t)|dt

)p
= lpx′

(
1

lx′

ˆ lx′

0
|Du(x′, t)|dt

)p
≤ lpx′

1

lx′

ˆ lx′

0
|Du(x′, t)|pdt ≤ C

ˆ lx′

0
|Du(x′, t)|pdt (1.16)

where in the last steps we used Jensen’s inequality and lp−1
x′ ≤ C and C = CΩ,p > 0. It follows

‖u‖pLp(Γ) =

ˆ
|x′−x′0|<r

|u(x′, 0)|pdx′ ≤ C
ˆ
|x′−x′0|<r

ˆ lx′

0
|Du(x′, t)|p dt dx′

≤ C
ˆ

Ω
|Du(x)|pdx = C‖Du‖pLp(Ω).

This concludes the proof of Case 1.

Case 2 When ∂Ω is Lipschitz, we work directly on the integral. Let x0 ∈ Ω r > 0 and γ : Rd−1 →
R a Lipschitz continuous function such that

Ω ∩Br(x0) = {x = (x′, xd) ∈ Br(x0) |xd > γ(x′)}.

It holds ∂Ω ∩ Br(x0) = Φ(Bd−1
r (x′0)), where Φ: Rd−1 → Rd is defined via Φ(x′) := (x′, γ(x′))

and is Lipschitz continuous. Assume u ∈ C1(Ω) has support inside Br(x0) (use the partition of
unity). We argue, using the area formula,

ˆ
∂Ω∩Br(x0)

|u(x)|pdHd−1(x) =

ˆ
Φ(Bd−1

r (x′0))
|u(x)|pdHd−1(x)

=

ˆ
Bd−1
r (x′0)

|u(x′, γ(x′))|p
√

1 + |Dγ(x′)|2dx′ ≤ (1 + ‖Dγ‖L∞)

ˆ
Bd−1
r (x′0)

|u(x′, γ(x′))|pdx′

≤ C ′
ˆ
Bd−1
r (x′0)

ˆ lx′

0
|Du(x′, t)|pdtdx′ ≤ C ′

ˆ
Ω
|Du(x)|pdx = C ′‖Du‖pLp(Ω)

where in the last line we used (1.16) and we defined C ′ := C(1 + ‖Dγ‖L∞). This concludes th
proof of part (i).
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(ii) (⇒) Assume u ∈W 1,p
0 (Ω).

Then there exists a sequence n 7→ un ∈ C∞c (Ω), such that ‖u− un‖W 1,p(Ω) → 0.

Since un ∈ C∞c (Ω) ⊂ C1(Ω) it holds Tun = un|∂Ω = 0 ∀n, and hence Tu = limn→∞ Tun = 0.

(⇐) (sketch) Assume Tu = 0. Since u ∈ W 1,p(Ω) and ∂Ω is Lipschitz there is a sequence
n 7→ un ∈ C∞(Ω) such that limn→∞ ‖u− un‖W 1,p = 0.
Intuitively, Tu = 0 forces u to be “very small” near the boundary so we can replace un with
ũn ∈ C∞c (Ω) without changing the limit. Precisely, assuming Ω ∩ Br(x0) = {x = (x′, xd) ∈
Br(x0)|xd > 0}, we have

lim
ε→0

1

εp

ˆ ε

0

ˆ
|x′−x′0|<r

|u(x′, xd)|dtdx′ = 0.

A similar result holds for Lipschitz boundary. For more details see Evans and FA lecture notes.

1.3.4 Extensions

Let u ∈W 1,p(Ω) be a given function. Is it possible to define an extension ũ of u such that ũ|Ω = u

and ũ ∈ W 1,p(Rd)? If u ∈ W 1,p
0 (Ω), it is enough to extend by zero, i.e. ũ := 1Ωu ∈ W 1,p(Rd)

and satisfies ũ|Ω = u and Dũ = 1ΩDu.

For a general function u ∈W 1,p(Ω), 1Ωu ∈ Lp(Rd), but is not weakly differentiable. The solution
is to let the function ũ take non zero values on a set V a bit larger than Ω.

Theorem 1.15. Let 1 ≤ p <∞, Ω ⊂ Rd open and bounded with Lipschitz boundary. Then for
each V ⊂ Rd open and bounded set with Ω ⊂ V, there exists a linear operator

E : W 1,p(Ω)→W 1,p(Rd)

such that, ∀u ∈W 1,p(Ω) it holds

(i) Eu(x) = u(x) for a.e. x ∈ Ω,

(ii) suppE(u) ⊂ V,

(iii) ‖Eu‖W 1,p(Rd) ≤ C‖u‖W 1,p(Ω), where C = Cp,Ω,V > 0 is a constant. In particular this
means the operator E is bounded.

Eu is called an extension of u to Rd.

Proof. Here we consider the proof in the case Ω has C1 boundary (for the general case see lecture
notes FA).
Since Ω has C1 boundary, the problem can be reduced (after introducing a partition of unity,
and eventually a coordinate change) to study a flat piece of boundary.
Assume x0 ∈ ∂Ω, r > 0 is such that Br(x0) ∩ ∂Ω is flat i.e.

B+ := Br(x0) ∩ Ω = {x ∈ Br(x0)|xd > 0}.

We also define B− := {x ∈ Br(x0)|xd < 0}.

Let u ∈ W 1,p(Ω). We assume that suppu ⊂ Br(x0) ∩ Ω. The strategy is to extend u first to a
function ũ ∈ W 1,p(Rd), with support in the whole ball Br(x0). From ũ we then construct an
extension Eu with support in V.
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Step 1: extension to the ball. We define

ũ(x) =

{
u+(x) x ∈ Ω

u−(x) x ∈ Ω
c
,

with

u+(x) := u(x) = u(x′, xd), u−(x) = u−(x′, xd) := u(x′,−xd) = u ◦R(x′, xd),

where x′ ∈ Rd−1 and R is the reflection operator R(x′, xd) := (x′,−xd).
It holds u+ ∈W 1,p(Ω) and u− ∈W 1,p(Ω

c
). Moreover trace(u+) = trace(u−)

(Idea: ∃n 7→ un ∈ C1(Ω) converging to u in W 1,p(Ω). Then n 7→ un ◦R ∈ C1(Ωc) and converges
to u− in W 1,p(Ω

c
). The result follows from un|∂Ω = (un ◦R)n|∂Ω ).

It follows (Exercise 1.2) that ũ ∈W 1,p(Rd) with

Dũ(x) =

{
Du+(x) x ∈ Ω

Du−(x) x ∈ Ω
c
.

Moreover ‖ũ‖p
W 1,p(Rd)

= ‖u+‖pW 1,p(Ω)
+ ‖u−‖pW 1,p(Ω

c
)

= 2‖u‖W 1,p(Ω).

Step 2: extension to V . There exists a function ζ ∈ C∞c (V ) such that ζ ≥ 0 and ζ|Ω = 1. We
define then

Eu := ζũ.

With this definition Eu ∈W 1,p(Rd), Eu|Ω = u, and suppEu ⊂ V. Finally

‖Eu‖Lp(Rd) ≤ ‖u‖Lp(B+) + ‖ζu−‖Lp(B−) ≤ (1 + ‖ζ‖L∞(Rd))‖u‖Lp(Ω),

‖D(Eu)‖Lp(Rd) ≤ ‖Du‖Lp(B+) + ‖D(ζu−)‖Lp(B−)

≤ (1 + ‖ζ‖L∞(Rd))‖Du‖Lp(B+) + ‖Dζ‖L∞(Rd)‖u‖Lp(Ω) ≤ C‖u‖W 1,p(Ω).

1.3.5 Sobolev embeddings

Theorem 1.16 (Rellich II). Let Ω ⊂ Rd open and bounded with Lipschitz boundary, 1 ≤ p <∞
and k ≥ 1.
Let n 7→ un ∈ W k,p(Ω) be a bounded sequence, and u ∈ W k−1,p(Ω) such that un ⇀ u in
W k−1,p(Ω).

Then un → u strongly in W k−1,p(Ω).

Proof. See lecture notes on FA.

Theorem 1.17 (Sobolev embedding). Let Ω ⊂ Rd be open and bounded with Lipschitz boundary.
The following statements hold.

(i) Assume 1 ≤ p < d. Then W 1,p(Ω) ⊂ Lq(Ω) ∀1 ≤ q ≤ p∗, where p∗ := pd
d−p .

The embedding
I : W 1,p(Ω)→ Lq(Ω)

u 7→ I(u) := u
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is continuous, i.e.
‖u‖Lq(Ω) ≤ C ‖u‖W 1,p(Ω) ∀u ∈W 1,p(Ω),

where the constant C depends on p, q and Ω.

Moreover, if 1 ≤ q < p∗, the injection is also compact.

(ii) Assume 1 ≤ d < p <∞. Then W 1,p(Ω) ⊂ C0,β(Ω) ∀0 < β ≤ α := 1− d
p .

This means, that each u ∈W 1,p(Ω) has a representative ũ ∈ C0,β(Ω).

The embedding
Iβ : W 1,p(Ω)→ C0,β(Ω)

[u] 7→ I([u]) := ũ

is continuous, and
[ũ]C0,β ≤ C‖u‖W 1,p(Ω) ∀u ∈W 1,p(Ω), (1.17)

where the constant C depends on p, β and Ω.

Moreover, if β < α, the embedding is also compact.

Remark. In the Sobolev inequality above, the norm of the gradient ‖∇u‖Lp(Ω) (appearing

in the case of W 1,p
0 ) is now replaced by the Sobolev norm ‖u‖W 1,p(Ω). Indeed the inequality

‖u‖Lq(Ω) ≤ C‖∇u‖Lp(Ω) does hold for constant functions.

Proof. Sketch in the case p < d.
Fix V ⊂ Rd open and bounded with Ω ⊂ V. Since ∂Ω is Lipschitz there exists an extension
operator E : W 1,p(Ω)→W 1,p(Rd), such that for all u ∈W 1,p(Ω),

Eu|Ω = u, ‖Eu‖W 1,p(Rd) ≤ C‖u‖W 1,p(Ω),

and E(u) has support in V. Then, by Theorem 1.7, and the extension theorem,

‖u‖Lp∗ (Ω) = ‖Eu‖Lp∗ (Ω) ≤ ‖Eu‖Lp∗ (Rd) ≤ C ‖D(Eu)‖Lp(Rd) ≤ C‖Eu‖W 1,p(Rd) ≤ C ′ ‖u‖W 1,p(Ω).

[3: 16.10.2023]
[4: 19.10.2023]

2 Elliptic partial differential equations of order 2

2.1 Weak formulation

In this section we always assume Ω ⊂ Rd open and bounded with Lipschitz boundary. We will
look for solutions u : Ω→ R of the system{

Lu = f in Ω
u|∂Ω = g

(2.1)
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where L is a linear partial partial differential operator of order 2

Lu(x) = −
d∑

ij=1

aij(x)∂i∂ju(x) +

d∑
j=1

bj(x)∂ju(x) + c(x)u(x),

f : Ω→ R is the non-homogeneous term, the coefficients a : Ω→ Rd×dsym, b : Ω→ Rd and c : Ω→ R
are matrix-valued, vector-valued and scalar-valued functions respectively. Finally g : ∂Ω → R
gives the boundary value of u. The system (2.1) is called a Dirichlet boundary value problem.

Regularity. In order for the PDE above to make sense we need at least u ∈ C2(Ω).

Divergence and non-divergence form Assume a ∈ C1(Ω). We can reorganize the second
order derivatives as follows

−
d∑

ij=1

aij(x)∂i∂ju(x) = −
∑
i

∂i

[∑
j

aij∂ju
]
(x) +

∑
j

[∑
i

∂iaij(x)
]
∂ju(x)

= −div (aDu)(x) +
∑
j

[∑
i

∂iaij(x))
]
∂ju(x)

Hence we can write Lu in two ways

L(u) =

{
−Tr [a∂ ⊗ ∂]u+ b ·Du+ cu non-divergence form

−div (aDu) + b̃ ·Du+ cu divergence form,

where b̃j = bj +
∑

i ∂iaij .

Definition 2.1.

(i) L is called elliptic if a(x) > 0 for a.e. x ∈ Ω.

[i.e. (ξ, a(x)ξ) > 0∀ξ ∈ Rd ξ 6= 0]

(ii) L is called uniformly elliptic if there exists a constant θ > 0 such that a(x) ≥ θ Id for a.e.
x ∈ Ω.

Remark 1. a(x) ∈ Rd×dsym, hence a(x) is diagonalizable with real eigenvalues and an o.n. basis
of eigenvectors. In the eigenvector basis the matrix is diagonal a(x) = diag (λ1(x), . . . , λd(x)).
In this basis we have

(ξ, a(x)ξ) =
∑
j

λj(x)ξ2
j .

Therefore a(x) > 0 iff λj(x) > 0 ∀j. In particular a(x) > 0 iff a(x) ≥ θxId , where θx =
minj λj(x) > 0.
a is uniformly elliptic iff the eigevalues of a(x) are bounded away from zero uniformly in x.

Remark 2. If a = Id, b = c = 0 then Lu = −∆u. The operator −∆ is then uniformly elliptic
with θ = 1.
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Weak formulation: version 1. Assume L is in divergence form Lu = −div (aDu)+b·Du+cu
and aij , bj , c, f, u ∈ C∞(Ω).
If Lu = f we have

ˆ
Ω
ξ(x)Lu(x) dx =

ˆ
Ω
ξ(x)f(x) dx ∀ξ ∈ C∞c (Ω).

Integrating by parts we obtain

−
ˆ

Ω
ξdiv (au) dx = −

ˆ
Ω

div (ξaDu) dx+

ˆ
Ω
Dξ · aDudx =

ˆ
Ω
Dξ · aDudx,

where the boundary contribution disappears since ξ ∈ C∞c (Ω). Hence

ˆ
Ω

[Dξ · aDudx+ ξ(b ·Du+ cu)] dx =

ˆ
Ω
ξfdx ∀ξ ∈ C∞c (Ω).

The integrals above remain well defined also when aij , bj , c ∈ L∞, u, ξ ∈W 1,2(Ω) f ∈ L2(Ω).
The boundary of Ω is Lipschitz, hence C∞(Ω) is dense in H1(Ω). Therefore we can replace
u ∈ C∞(Ω) by u ∈ H1(Ω). Since C∞c (Ω) is dense in H1

0 (Ω), we can replace ξ ∈ C∞c (Ω) by
ξ ∈ H1

0 (Ω).
To properly encode the boundary value, note that, since ∂Ω is Lipschitz, Tr : H1(Ω)→ L2(∂Ω)
is well defined. Hence, if g ∈ L2(∂Ω,Hd−1) we replace u|∂Ω = g by Tru = g.

Remark. If we use ξ ∈ C∞(Ω), we obtain an additional term

ˆ
Ω

div (ξaDu) dx =

ˆ
∂Ω
ξ(x)(aDu)(x) · νx dHd−1.

But Du|∂Ω is not well defined for u ∈ H1(Ω). This term disappears if instead of Dirichlet we
require homogeneous Neuman boundary conditions (aDu)(x) · νx = 0 for a.e. x ∈ ∂Ω.
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Definition 2.2. Assume aij , bj , c ∈ L∞, ∀i, j = 1, . . . , d, f ∈ L2(Ω), and g ∈ L2(∂Ω,Hd−1).

(i) The bilinear form BL associated to the formal differential operator

Lu = −div (aDu) + b ·Du+ cu is defined by

BL : H1(Ω)×H1(Ω)→ R
(u, v) 7→ B[u, v] :=

´
Ω [aDu ·Dv + (b ·Du+ cu)v] dx.

(2.2)

(ii) A function u ∈ H1(Ω) is called a weak solution of (2.1) if{
B[u, v] = (f, v)L2(Ω) ∀v ∈ H1

0 (Ω)

Tru = g.
(2.3)

Remark 1: zero boundary value. Assume we have zero boundary condition g = 0. Then
u ∈ H1(Ω) is a weak solution of Lu = f in Ω with u|∂Ω = 0 iff BL[u, v] = (f, v)L2(Ω) ∀v ∈ H1

0 (Ω)
and Tru = 0.
By Theorem (1.14), Tru = 0 iff u ∈ H1

0 (Ω).
Hence u ∈ H1(Ω) is a weak solution of Lu = f in Ω with u|∂Ω = 0 iff u ∈ H1

0 (Ω) and
BL[u, v] = (f, v)L2(Ω) ∀v ∈ H1

0 (Ω).

Remark 2: reducing to zero boundary value. Can we always reduce to the case g = 0?
Consider u ∈ H1(Ω) a weak solution of Lu = f in Ω with u|∂Ω = g. Assume u0 ∈ H1(Ω) is a
function satisfying Tru0 = g. Then the function w := u − u0 ∈ H1

0 (Ω) and solves the (formal)
equation Lw = f − Lu0 in Ω with w|∂Ω = 0.
The non homogeneous term f has to be replaced by

f̃ = f − Lu0 = f + div (aDu0)− b ·Du0 − cu0.

Note that, while b · Du0 + cu0 ∈ L2(Ω) for all u0 ∈ H1(Ω), the term div (aDu0) is not well
defined. The corresponding integral formulation has to be rearranged as follows

ˆ
Ω
fv dx→

ˆ
Ω
f̃v dx =

ˆ
Ω

[v(f − b ·Du0 − cu0)−Dv · aDu0] dx =

ˆ
Ω

[f0v +
∑
j

fj∂jv] dx

where
f0 := f − b ·Du0 − cu0, fj := −(aDu0)j .

Note that f0, fj ∈ L2(Ω) for all f ∈ L2(Ω), a, b, c ∈ L∞(Ω) and u0 ∈ H1(Ω). Therefore we need
to replace

(f, v)L2(Ω) → (f0, v)L2(Ω) +

d∑
j=1

(fj , ∂jv)L2(Ω).

This motivates the following more general definition of weak solution.

Definition 2.3. (Weak solution version 2) For f = (f0, f1, . . . , fd) ∈ L2(Ω)d+1 we define

〈f, ·〉 : H1
0 (Ω)→ R

v 7→ 〈f, v〉 := (f0, v)L2(Ω) +
∑d

j=1(fj , ∂jv)L2(Ω).
(2.4)
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We say that u ∈ H1
0 (Ω) is a weak solution of{

Lu = f0 −
∑

j ∂jfj in Ω

u|∂Ω = 0

if
BL[u, v] = 〈f, v〉 ∀v ∈ H1

0 (Ω). (2.5)

Note that f0 −
∑

j ∂jfj is a formal expression only. In the special case f = (f0, 0, . . . , 0) we
obtain 〈f, v〉 = (f0, v)L2 , hence we are back to the first version of weak formulation.

Lemma 2.4. Let f ∈ L2(Ω), g ∈ L2(∂Ω,Hd−1), with g ∈ Range(Tr ), i.e. ∃u0 ∈ H1(Ω) such
that Tru0 = g. Consider the two systems

(a)

{
Lu = f in Ω
u|∂Ω = g

(b)

{
Lu = f̃ := f0 −

∑
j ∂jfj in Ω

u|∂Ω = 0
,

with f0 := f − b ·Du0 − cu0, fj := −(aDu0)j . The following holds:

u ∈ H1(Ω) is a weak solution of (a) iff ũ := u− u0 ∈ H1
0 (Ω) is a weak solution of (b), i.e.

Tru = g and BL[u, v] = (f, v)L2(Ω) ∀v ∈ H1
0 (Ω) ⇔ BL[ũ, v] = 〈f̃ , v〉 ∀v ∈ H1

0 (Ω).

Proof. The proof follows from Tr ũ = Tru− Tru0 = g − g = 0 iff ũ ∈ H1
0 (Ω), and

BL[ũ, v] = BL[u, v]−BL[u0, v] = (f, v)L2(Ω) −
ˆ

Ω
[Dv · aDu0 + v(b ·Du0 + cu0)] dx = 〈f̃ , v〉.

Remark. Let f = (f0, f1, . . . , fd) ∈ L2(Ω)d+1. Then 〈f, ·〉 ∈ H1
0 (Ω)∗ = H1

0 (Ω)′ (dual space)
and

‖〈f, ·〉‖H1
0 (Ω)∗ ≤ ‖f‖L2(Ω)d+1 =

 d∑
j=0

‖f‖2L2(Ω)

 1
2

.

Notation: we often write H−1(Ω) := H1
0 (Ω)∗. The following theorem gives the precise relation

between H−1(Ω) and L2(Ω)d+1.

Theorem 2.5 (dual space of H1
0 (Ω)).

Let Ω ⊂ Rd, be an open set, not necessarily bounded.
Let ∼ be the equivalence relation on L2(Ω)d+1 defined by

f ∼ g ⇔ 〈f, v〉 = 〈g, v〉 ∀v ∈ H1
0 (Ω).

Then H1
0 (Ω)∗ =: H−1(Ω) = L2(Ω)d+1/ ∼, i.e.

∀T ∈ H−1(Ω) ∃! [f ] ∈ L2(Ω)d+1/ ∼ s.t. T = 〈g, ·〉 ∀g ∈ [f ].

Moreover
‖T‖H−1(Ω) = inf{‖f‖L2(Ω)d+1 | f ∈ L2(Ω)d+1, T = 〈f, ·〉}
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Proof.
We have already proved above that 〈f, ·〉 ∈ H−1(Ω) ∀f ∈ L2(Ω)d+1.
Let now T ∈ H−1(Ω). Since H1

0 ' (H1
0 )∗ there exists a unique function fT ∈ H1

0 (Ω) such that

T (v) = (fT , v)H1(Ω) ∀v ∈ H1
0 (Ω).

We have

(fT , v)H1(Ω) = (fT , v)L2(Ω) +

d∑
j=1

(∂jfT , ∂jv)L2(Ω) = 〈f̃T , v〉,

where f̃T = (fT , ∂1fT , . . . , ∂dfT ). Therefore T (·) = 〈f, ·〉 ∀f ∈ [f̃T ].

Finally we have

‖T‖H−1(Ω) = ‖〈f, ·〉‖H−1(Ω) ≤ ‖f‖L2(Ω)d+1 ∀f ∈ [f̃T ],

hence
‖T‖H−1(Ω) ≤ inf{‖f‖L2(Ω)d+1 | f ∈ L2(Ω)d+1, T = 〈f, ·〉}.

Equality is obtained noting that

‖T‖H−1(Ω) = ‖fT ‖H1
0 (Ω) = ‖f̃T ‖L2(Ω)d+1

where ‖T‖H−1(Ω) = ‖fT ‖H1
0 (Ω) holds since the map Φ: H−1(Ω)→ H1

0 (Ω) is an isometry.

[4: 19.10.2023]
[5: 23.10.2023]

Remark 1. For all f = (f0, 0, . . . , 0), with f0 ∈ L2(Ω) we have 〈f, ·〉 = (f0, ·)L2(Ω) ∈ H−1(Ω).
Hence H1

0 (Ω) ⊂ L2(Ω) ⊂ H−1(Ω).

Remark 2: coupling. The map

〈·, ·〉H−1H1
0

: L2(Ω)d+1/ ∼ ×H1
0 (Ω)→ R

(f, v) 7→ 〈f, v〉 := (f0, v)L2(Ω) +
∑d

j=1(fj , ∂jv)L2(Ω)

(2.6)

defines a coupling between 〈f, ·〉 ∈ H−1(Ω) and v ∈ H1
0 (Ω). This coupling is bounded

|〈f, v〉| ≤ ‖〈f, ·〉‖H−1(Ω)‖v‖H1
0 (Ω).

In the following we will use often the notation 〈·, ·〉H−1H1
0

instead of 〈·, ·〉 to stress the coupling
structure.

2.2 Existence of weak solutions

2.2.1 Energy estimates and first existence theorem

Remember that, given f ∈ L2(Ω)d+1, the function u ∈ H1
0 (Ω) is a weak solution of{

Lu = f0 −
∑

j ∂jfj in Ω

u|∂Ω = 0
(2.7)

if
BL[u, v] = 〈f, v〉H−1H1

0
∀v ∈ H1

0 (Ω).

Our basic tool to investigate existence and uniqueness of solutions is Lax-Milgram.
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Theorem 2.6 (Lax-Milgram). Let H be a K−Hilbert space (with K = R or C) and B : H×H →
K is a sesquilinear form (i.e. linear in the second variable and antilinear in the first). Suppose
in addition that there exist constants α, β > 0 such that

(i) (continuity) |B[u, v]| ≤ α‖u‖H ‖v‖H ∀u, v ∈ H;

(ii) (coercivity, positivity) ReB[u, u] ≥ β‖u‖2H ∀u ∈ H.

Then ∀T ∈ H∗ ∃! uT ∈ H such that

B[uT , v] = T (v) ∀v ∈ H. (2.8)

Proof. See lecture notes on FA or Evans.

In our case we have a real Hilbert space H = H1
0 (Ω) and a bilinear form B = BL.

Remark 1. BL always satisfies (i). Indeed

|BL[u, v]| =
∣∣∣∣ˆ

Ω
[aDu ·Dv + (b ·Du+ cu)v] dx

∣∣∣∣
≤ ‖a‖L∞(Ω)‖Du‖L2(Ω)‖Dv‖L2(Ω) + ‖b‖L∞(Ω)‖Du‖L2(Ω)‖v‖L2(Ω) + ‖c‖L∞(Ω)‖u‖L2(Ω)‖v‖L2(Ω)

≤ C‖u‖H1
0 (Ω)‖v‖H1

0 (Ω)

where ‖a‖L∞(Ω) :=
∑

ij ‖aij‖L∞(Ω), ‖b‖L∞(Ω) := maxj ‖bj‖L∞(Ω), and C > 0 is some constant
depending on a, b, c.

Remark 2. BL does not satisfy (ii) in general! As an example consider a(x) := Id , bj(x) :=
b0xj and c(x) := c0, with b0 > 0 and c0 := b0d/4. For u ∈ C1

c (Ω) ⊂ H1
0 (Ω) we argue

ˆ
Ω
u(x)(b ·Du)(x)dx = b0

ˆ
Ω
x ·D(

u2

2
)dx = −b0d

ˆ
Ω

u2

2
dx = −b0d

2
‖u‖2L2(Ω),

hence we obtain

BL[u, u] = ‖Du‖2L2(Ω) −
b0d

4
‖u‖2L2(Ω) ∀u ∈ C1

c (Ω).

Given a u0 ∈ C1
c (Ω) we can always find b0 > 0 large enough such that BL[u0, u0] < 0.

Remark 3. Assume

• a(x) ≥ θId , for a.e. x ∈ Ω with θ > 0 (i.e. L is uniformly elliptic),

• c(x) ≥ 0 for a.e. x ∈ Ω and

• b = 0.

Then

BL[u, u] =

ˆ
Ω
aDu ·Dudx+

ˆ
Ω
cu2 dx ≥ θ‖Du‖2L2(Ω) +

ˆ
Ω
cu2dx ≥ θ‖Du‖2L2(Ω).

By Poincaré inequality it follows BL[u, u] ≥ C ′‖u‖2
H1

0 (Ω)
, for some C ′ > 0.

Hence, Lax-Milgram ensures that ∀f ∈ L2(Ω)d+1/ ∼ there exists a unique weak solution of
(2.7).

In the general case, we only have “almost coercivity”. This is the content of the next theorem.
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Theorem 2.7 (energy estimates).
Consider the formal differential operator Lu = −div (aDu) + b ·Du+ cu with aij , bj , c ∈ L∞(Ω),
and assume a is uniformly elliptic, i.e. a(x) ≥ θId , for a.e. x ∈ Ω with θ > 0.

Then ∃α, β > 0 and γ ≥ 0 such that ∀u, v ∈ H1
0 (Ω) the following inequalities hold:

(i) |BL[u, v]| ≤ α‖u‖H1
0 (Ω)‖v‖H1

0 (Ω),

(ii) BL[u, u] ≥ β‖u‖2
H1

0 (Ω)
− γ‖u‖2L2(Ω).

Proof.
(i) see Remark 1 above.

(ii) We compute

BL[u, u] =

ˆ
Ω
aDu ·Dudx+

ˆ
Ω

[ub ·Du+ cu2] dx

≥ θ‖Du‖2L2(Ω) − ‖b‖L∞(Ω)‖Du‖L2(Ω)‖u‖L2(Ω) − ‖c‖L∞(Ω)‖u‖2L2(Ω)

≥
(
θ − ε‖b‖L∞(Ω)

2

)
‖Du‖L2(Ω) −

(
‖b‖L∞(Ω)

2ε + ‖c‖L∞(Ω)

)
‖u‖2L2(Ω)

where in the last line we used Young’s inequality ‖Du‖L2(Ω)‖u‖L2(Ω) ≤ ε
2‖Du‖

2
L2(Ω)+ 1

2ε‖u‖
2
L2(Ω).

We choose now ε > 0 small enough such that

θ − ε‖b‖L∞(Ω)

2 ≥ θ

2
.

Setting γ :=
‖b‖L∞(Ω)

2ε + ‖c‖L∞(Ω) ≥ 0 we obtain

BL[u, u] ≥ θ

2
‖Du‖2L2(Ω) − γ‖u‖

2
L2(Ω).

By Poincaré inequality it follows

BL[u, u] ≥ β‖u‖2H1
0 (Ω) − γ‖u‖

2
L2(Ω),

for some β > 0.

Theorem 2.8 (first existence theorem for weak solutions).
Consider the formal differential operator Lu = −div (aDu) + b ·Du+ cu with aij , bj , c ∈ L∞(Ω),
and assume a is uniformly elliptic, i.e. a(x) ≥ θId , for a.e. x ∈ Ω with θ > 0.

Then there exists a constant γ ≥ 0 such that ∀µ ≥ γ, f ∈ L2(Ω)d+1/ ∼ there exists a unique
weak solution u ∈ H1

0 (Ω) of {
Lu+ µu = f0 −

∑
j ∂jfj in Ω

u|∂Ω = 0
(2.9)

Proof. By Theorem 2.7, ∃α, β > 0 and γ ≥ 0 such that
|BL[u, v]| ≤ α‖u‖H1

0 (Ω)‖v‖H1
0 (Ω), and

BL[u, u] + γ‖u‖2L2(Ω) ≥ β‖u‖2
H1

0 (Ω)
∀u, v ∈ H1

0 (Ω).

L+µId is the operator obtained from L by replacing the coefficient c(x) by c(x)+µ. A function
u ∈ H1

0 (Ω) is a weak solution of (2.9) if BL+µId [u, ·] = 〈f, ·〉H−1H1
0
, where

BL+µId [u, v] = BL[u, v] + µ(u, v)L2(Ω).
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Then ∀u, v ∈ H1
0 (Ω) µ ≥ γ, we have

|BL+µId [u, v]| ≤ |BL[u, v]|+ µ|(u, v)L2(Ω)| ≤ (α+ µ)‖u‖H1
0 (Ω)‖v‖H1

0 (Ω),

BL+µId [u, u] = BL[u, u] + µ‖u‖2L2(Ω) ≥ β‖u‖
2
H1

0 (Ω) + (µ− γ)‖u‖2L2(Ω) ≥ β‖u‖
2
H1

0 (Ω).

The result now follows by Lax-Milgram.

2.2.2 Fredholm dychotomy and second existence theorem

Inverse of L: rigorous formulation. Intuitively the equation Lu = f has a solution if L
is “invertible”. Lax-Milgram says that, if L > 0 then L is invertible. The energy estimate says
that, for L uniformly elliptic, there is a γ ≥ 0 such that L + γId > 0, and hence L + µId is
invertible ∀µ ≥ γ. To make the notion of L−1 precise we need some definitions.

We can associate to the formal differential operator Lu = −div (aDu) + b ·Du+ cu at least two
linear operators TL : H1

0 (Ω)→ H−1(Ω) and T̂L : H1
0 (Ω)→ H1

0 (Ω). We mostly work with TL. The
second operator T̂L is more convenient to define the adjoint of L.

The operator TL. We define

TL : H1
0 (Ω)→ H−1(Ω)

u 7→ TL(u) := BL[u, ·], (2.10)

By continuity of BL we have

‖TL(u)‖H−1(Ω) = sup
‖v‖

H1
0(Ω)

=1
|BL[u, v]| ≤ α‖u‖H1

0 (Ω),

hence TL is linear and bounded with ‖TL(u)‖op ≤ α.

With these definitions, u ∈ H1
0 (Ω) is a weak solution of Lu = f0 −

∑
j ∂jfj iff TL(u) =

BL[u, ·] = 〈f, ·〉H−1H1
0
. Existence of weak solutions can be now formulated as follows: for all

f ∈ L2(Ω)d+1/ ∼ there exists a unique weak solution iff the operator TL is invertible.

Assume TL is invertible. The inverse satisfies the following properties.

(i) T−1
L : H−1(Ω)→ H1

0 (Ω) is linear and bounded (from the inverse operator theorem, FA)

(ii) The operator T−1
L|L2 : L2(Ω)→ L2(Ω) defined via

T−1
L|L2(f) := T−1

L ((f, ·)L2(Ω)) ∈ H1
0 (Ω) ⊂ L2(Ω), (2.11)

is compact. This follows from the fact that the operator L2(Ω) → H1
0 (Ω) defined via

f 7→ T−1
L ((f, ·)L2(Ω)) ∈ H1

0 (Ω) is bounded and the injection I : H1
0 (Ω)→ L2(Ω) is compact

(use weak compactness and Rellich, see FA). The compactness of T−1
L|L2 will be crucial to

prove existence results.

The operator T̂L. We define

T̂L : H1
0 (Ω)→ H1

0 (Ω)

u 7→ T̂L(u) := Φ−1(TL(u)),
(2.12)
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where Φ: H1
0 (Ω) → H−1(Ω) is the standard bijective isometry Φ(u) := (u, ·)H1

0 (Ω). Then T̂L(u)

is the unique vector uL ∈ H1
0 (Ω) such that

Φ(uL) = (uL, ·)H1
0 (Ω) = TL(u) = BL[u, ·].

Since Φ is an isometry T̂L is linear and bounded with ‖T̂L(u)‖op = ‖TL(u)‖op ≤ α. Moreover, TL
is invertible iff T̂L is invertible. In this case T̂−1

L is linear and bounded with ‖T̂−1
L ‖op = ‖T−1

L ‖op.

Adjoint operator. The adjoint of T̂L : H1
0 (Ω)→ H1

0 (Ω) is the unique linear bounded operator

T̂ †L : H1
0 (Ω)→ H1

0 (Ω) satisfying

(T̂Lu, v)H1
0 (Ω) = (u, T̂ †Lv)H1

0 (Ω) ∀u, v ∈ H1
0 (Ω).

If TL is invertible, then the adjoint of T−1
L|L2 : L2(Ω) → L2(Ω) is the unique linear bounded

operator T−1†
L|L2 : L2(Ω)→ L2(Ω) satisfying

(T−1
L|L2f, g)L2(Ω) = (f, T−1†

L|L2 , g)L2(Ω) ∀f, g ∈ L2(Ω).

The following lemma summarizes important properties of these adjoints.

Lemma 2.9.
Consider the formal differential operator Lu = −div (aDu) + b ·Du+ cu with aij , bj , c ∈ L∞(Ω).
The following holds.

(i) T̂ †L = T̂L∗ with
L∗v := −div (aDv)− b ·Dv + (c− div b).

(ii) BL[u, v] = BL∗ [v, u] ∀u, v ∈ H1
0 (Ω).

(iii) Assume L is uniformly elliptic. Then L∗ is uniformly elliptic. Moreover the parameters
α, β, γ from the energy estimate are the same for L and L∗.

(iv) Assume TL : H1
0 (Ω) → H−1(Ω) is invertible and consider T−1

L |L2 : L2(Ω) → L2(Ω). Then

the adjoint operator on L2(Ω) satisfies

T−1†
L|L2 = T−1

L∗|L2 .

Remark 1. For b ∈ L∞(Ω), div b is not well defined. Hence vdiv b is a formal expression, that
makes sense only after integrating by parts, just as in the case of div (aDu).

Remark 2. While a function u ∈ H1
0 (Ω) is a weak solution of Lu = f0−

∑
j ∂jfj with u|Ω = 0

if
BL[u, v] = 〈f, v〉H−1H1

0
∀v ∈ H1

0 (Ω), (2.13)

a function v ∈ H1
0 (Ω) is a weak solution of L∗v = f0 −

∑
j ∂jfj with v|Ω = 0 if

BL∗ [v, u] = BL[u, v] = 〈f, u〉H−1H1
0

∀u ∈ H1
0 (Ω). (2.14)

[5: 23.10.2023]
[6: 26.10.2023]
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Proof.
(i) + (ii) By construction BL[u, v] = (T̂Lu, v)H1

0 (Ω) = (u, T̂ †Lv)H1
0 (Ω) = (T̂ †Lv, u)H1

0 (Ω). It is then
enough to find L∗ such that

BL∗ [v, u] = (T̂L∗v, u)H1
0 (Ω) = (T̂ †Lv, u)H1

0 (Ω) = BL[u, v] ∀u, v ∈ H1
0 (Ω).

Performing integration by parts and using aT = a, we get

BL[u, v] =

ˆ
Ω

[aDu ·Dv + (b ·Du+ cu)v] dx

=

ˆ
Ω

[(aDv) ·Du+ (−div (bv) + cv)u] dx

=

ˆ
Ω
u [−div (aDv)− div (bv) + cv] dx =

ˆ
Ω
uL∗v dx,

where the last two integrals make sense only when aDv, bv ∈ H1(Ω).

(iii) We have

|BL∗ [v, u]| = |BL[u, v]| ≤ α‖u‖H1
0 (Ω)‖v‖H1

0 (Ω)

BL∗ [u, u] + γ‖u‖2L2(Ω) = BL[u, u] + γ‖u‖2L2(Ω) ≥ β‖u‖
2
H1

0 (Ω).

(iv) Our goal is to show that

(T−1
L|L2f, g)L2(Ω) = (f, T−1

L∗|L2g)L2(Ω) ∀f, g ∈ L2(Ω).

Note that

(a) uf := T−1
L|L2f satisfies BL[uf , ·] = (f, ·)L2(Ω)

(b) u∗g := T−1
L∗|L2g satisfies BL∗ [u

∗
g, ·] = BL[·, u∗g] = (g, ·)L2(Ω).

We argue

(T−1
L|L2f, g)L2(Ω) = (uf , g)L2(Ω) = (g, uf )L2(Ω)

(b)
= BL[uf , u

∗
g]

(a)
= (f, u∗g)L2(Ω) = (f, T−1

L∗|L2g).

This concludes the proof.

Theorem 2.10 (second existence theorem for weak solutions).
Consider the formal differential operator Lu = −div (aDu) + b ·Du+ cu with aij , bj , c ∈ L∞(Ω),
and assume a is uniformly elliptic, i.e. a(x) ≥ θId , for a.e. x ∈ Ω with θ > 0.

Then exactly one of the following holds.

(α) TL is invertible i.e. ∀f ∈ L2(Ω)d+1/ ∼ ∃! u ∈ H1
0 (Ω) weak solution of the non-homogeneous

problem

(∗)f :=

{
Lu = f0 −

∑
j ∂jfj in Ω

u|∂Ω = 0

(β) kerTL 6= {0} i.e. ∃ at least one u ∈ H1
0 (Ω), u 6= 0, weak solution of the homogeneous

problem

(∗∗) :=

{
Lu = 0 in Ω
u|∂Ω = 0

26 [February 12, 2024]



This is called the Fredholm alternative or Fredholm dychotomy.

Moreover, remember that

kerTL := {u ∈ H1
0 (Ω)|u weak solution of Lu = 0 in Ω, u|∂Ω = 0},

kerTL∗ := {u ∈ H1
0 (Ω)|u weak solution of L∗u = 0 in Ω, u|∂Ω = 0}.

Then, if (β) holds, we have dim kerTL = dim kerTL∗ <∞ and (∗)f has a weak solution iff

〈f, v〉H−1H1
0

= 0 ∀v ∈ kerTL∗ .

Proof.
Case 1 : γ = 0. In this case we can apply Lax-Milgram to show that TL is invertible, i.e. we are
in case (α).

Case 2 : γ > 0.
u ∈ H1

0 (Ω) is a weak solution of (∗)f iff BL[u, ·] = 〈f, ·〉H−1H1
0
, iff

TL+γId (u) = BL+γId [u, ·] = 〈f, ·〉H−1H1
0

+ (γu, ·)L2(Ω) = 〈gu, ·〉H−1H1
0
,

where gu := (f0 + γu, f1, . . . , fd) ∈ L2(Ω)d+1. By Theorem 2.8, TL+γId is invertible, hence
u ∈ H1

0 (Ω) is a weak solution of (∗)f iff u satisfies the fixed-point equation

u := T−1
L+γId (〈gu, ·〉) = T−1

L+γId (〈f, ·〉) + γT−1
L+γId ((u, ·)L2(Ω)) = Gf +Ku

where we defined Gf := T−1
L+γId (〈f, ·〉), and K = KL,γ : L2(Ω) → L2(Ω) is the operator defined

by
K(u) = KL,γ(u) := γT−1

L+γId ((u, ·)L2(Ω)) = γT−1
L+γId |L2(u).

Note that, since K(L2(Ω)) ⊂ H1
0 (Ω) and Gf ∈ H1

0 (Ω) we have

u ∈ L2(Ω) solution of u = Gg +Ku⇒ u ∈ H1
0 (Ω).

Then

u weak solution of (∗)f ⇔ (Id −K)u = Gf

u weak solution of (∗∗) ⇔ (Id −K)u = 0.

The second line implies that

kerTL = ker(Id −K) = ker(Id −KL,γ), kerTL∗ = ker(Id −KL∗,γ). (2.15)

Moreover, using Lemma 2.9 (iv), we have

KL∗,γ = γT−1
L∗ |L2(Ω) = γ(T−1

L |L2(Ω))
† = K†L,γ = K†.

Hence
kerTL∗ = ker(Id −KL∗,γ) = ker(Id −K†). (2.16)

The operator K is compact, hence Id − K is a Fredholm operator of index zero (see FA or
Appendix in Evans) and therefore exactly one of the following hold

(a) Id −K is invertible (hence in particular (Id −K)−1 is linear and bounded)
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(b) ker(Id −K) 6= {0} and Ran (Id −K) = Ran (Id −K) ( L2(Ω).

If (a) holds, then ∀f ∈ L2(Ω)d+1/ ∼ there is a unique weak solution u := (Id −K)−1Gf of (∗)f ,
hence we are in case (α).
If (b) holds, then there is at least one function u ∈ ker(Id −K), u 6= 0. Since u is also a weak
solution of (∗∗) we are in case (β).

Assume now (β) holds. Since Id −K is a Fredholm operator of index zero we have (see Appendix
in Evans)

(i) dim ker(Id −K) <∞,

(ii)
(
ker(Id −K†)

)⊥
= Ran (Id −K),

(iii) dim ker(Id −K†) = dim ker(Id −K).

(i) + (iii) together with (2.15) and (2.16) imply dim kerTL = dim kerTL∗ <∞.

Finally, let f ∈ L2(Ω)d+1, f 6= 0. Our goal is to show that u is a weak solution of (∗)f iff
〈f, v〉H−1H1

0
= 0 ∀v ∈ kerTL∗ .

Indeed, for each v ∈ kerTL∗ , we have

〈f, v〉H−1H1
0

= BL+γId [Gf , v] = BL[Gf , v] + γ(Gf , v)L2(Ω)

= BL∗ [v,Gf ] + γ(Gf , v)L2(Ω),

where in the first equality we used the definition of Gf . In particular, for v ∈ kerTL∗ we have
TL∗(v) = BL∗ [v, ·] = 0, hence

〈f, v〉H−1H1
0

= γ(Gf , v)L2(Ω) ∀v ∈ kerTL∗ . (2.17)

We will use this identity to prove the two implications.
(⇒) Assume u is a weak solution of (∗)f .
Then (Id −K)u = Gf and hence Gf ∈ Ran (Id −K) =

(
ker(Id −K†)

)⊥
= (N∗)⊥. Hence

(Gf , v)L2(Ω) = 0 ∀v ∈ kerTL∗ ,

abd the result follows from (2.17).
(⇐) Assume 〈f, v〉H−1H1

0
= 0 ∀v ∈ kerTL∗ . Then, using (2.17) and γ > 0

0 = (Gf , v)L2(Ω) ∀v ∈ kerTL∗ ,

and hence Gf ∈ (kerTL∗)
⊥ = Ran (Id −K). Therefore, there exists at least one u ∈ H1

0 (Ω) such
that (Id −K)u = Gf , i.e. u is a weak solution of (∗)f .

Remark 1 Assume (β) holds, i.e. N 6= {0}.
• Let v ∈ N, v 6= 0. If u is a weak solution of (∗)f then u + λv is also a weak solution, for

all λ ∈ R. Hence the problem (∗)f has either no weak solution or infinitely many of them.

• There exists at least one f ∈ L2(Ω)d+1 such that (∗)f has no weak solution. Indeed
suppose a solution exists for all f ∈ L2(Ω)d+1, and let v ∈ N∗. It holds

〈f, v〉H−1H1
0

= 0 ∀f ∈ L2(Ω)d+1

i.e. T (v) = 0 ∀T ∈ H−1(Ω). This implies (u, v)H1(Ω) = 0 ∀u ∈ H1
0 (Ω) and hence v = 0.

It follows N∗ = {0} and hence, since dimN∗ = dimN, N = {0} which contradicts the
assumption we are in case (β).
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Remark 2 If u 6= 0 is a weak solution of Lu = 0 in Ω, u|∂Ω = 0, then u can be seen as
eigenvector of L for the eigenvalue zero. We will make this precise in the next subsection.

[6: 26.10.2023]
[7: 30.10.2023]

2.2.3 Spectrum of L and third existence theorem

Remember (FA): let X be a complex Banach space and T ∈ L(X). The spectrum of T is the set

σ(T ) := {λ ∈ C|T − λId not invertible }

We distinguish three types of spectrum:

σp(T ) := {λ ∈ C| ker(T − λId ) 6= {0}}
σc(T ) := {λ ∈ C| ker(T − λId ) = {0}, Ran (T − λId ) ( Ran (T − λId ) = X}
σr(T ) := {λ ∈ C| ker(T − λId ) = {0}, Ran (T − λId ) ( X}

In our case we are only interested in real valued weak solutions of Lu = f0 −
∑

j ∂jfj where
u = −div (aDu) + b ·Du+ cu.
Set λ ∈ R. A function u ∈ H1

0 (Ω) is a weak solution of the formal PDE Lu = λu, with b.c.
u|∂Ω = 0, iff BL[u, ·] = λ(u, ·)L2 iff kerTL−λId 6= {0}.
Assume L is uniformly elliptic. Then L − λId is also uniformly elliptic and, by Fredholm
alternative, we have: kerTL−λId 6= {0} ⇔ TL−λId is not invertible.
This motivates the following definition.

Definition 2.11 (real spectrum of L). Consider the formal differential operator Lu = −div (aDu)+
b ·Du+ cu with aij , bj , c ∈ L∞(Ω), and L uniformly elliptic.

The real spectrum of L is the set

Σ(L) := {λ ∈ R|TL−λId not invertible }
= {λ ∈ R| kerTL−λId 6= {0}} = {λ ∈ R|λ is an eigenvalue of L}.

Remark Note that T̂L ∈ L(H1
0 (Ω)) but Σ(L) 6= {λ ∈ R| T̂L − λId not invertible }. Indeed

λ ∈ Σ(L) iff TL−λId is not invertible iff T̂L−λId is not invertible, but T̂L−λId 6= T̂L − λId .
To see this note that

Φ(T̂L−λId (u)) = TL−λId (u) = BL[u, ·] + λ(u, ·)L2 6= BL[u, ·] + λ(u, ·)H1
0

= Φ(T̂L(u)− λu).

Theorem 2.12 (third existence theorem for weak solutions). Consider the formal differential
operator Lu = −div (aDu) + b ·Du + cu with aij , bj , c ∈ L∞(Ω), and L uniformly elliptic. Let
α, β, γ be the constants from the energy bounds.

Let Σ(L) ⊂ R be the real spectrum of L. The following hold.

(i) Σ(L) ⊂ (−γ,∞)

(ii) Σ(L) is finite or countable.

(iii) If Σ is infinite, then Σ = {λk}∞k=1, with −γ < λk ≤ λk+1 ∀k ≥ 1 and limk→∞ λk =∞.
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Proof.
(i) By the first existence theorem 2.8, the operator TL+µId is invertible ∀µ ≥ γ, hence for all
λ ≤ −γ. It follows Σ ⊂ (−γ,∞).

(ii) + (iii) We assume now λ + γ > 0. λ ∈ Σ ⇔ λ is a real eigenvalue ⇔ ∃u ∈ H1
0 (Ω), u 6= 0,

weak solution of Lu = λu, u|∂Ω = 0 ⇔ ∃u ∈ H1
0 (Ω), u 6= 0, such that BL[u, v] = λ(u, v)L2(Ω)

∀v ∈ H1
0 (Ω) ⇔ ∃u ∈ H1

0 (Ω), u 6= 0, such that

BL+γId [u, v] = BL[u, v] + γ(u, v)L2(Ω) = (λ+ γ)(u, v)L2(Ω) ∀v ∈ H1
0 (Ω).

Since TL+γId is invertible (true by Theorem 2.8) this holds iff ∃u 6= 0 solution of the fixed point
equation

u = (λ+ γ)T−1
L+γId

(
(u, ·)L2

)
.

We define K : L2(Ω)→ L2(Ω) via

K(f) := T−1
L+γId

(
(f, ·)L2

)
. (2.18)

Note that K is compact and K(L2(Ω)) ⊂ H1
0 (Ω). Therefore, λ ∈ (−γ,∞) is a real eiganvalue iff

∃u ∈ L2(Ω) u 6= 0 solution of

Ku =
1

λ+ γ
u,

i.e. (λ+ γ)−1 is an eigenvalue for the operator K.
We extend K to the operator Ke ∈ L(L2(Ω;C)) defined via Ke(u + iv) := K(u) + iK(v),
∀u, v ∈ L2(Ω).
Using Ke(u+ iv) = Ke(u+ iv) we have

λ ∈ σp(Ke) ∩ R⇔ ∃u ∈ L2(Ω), u 6= 0 st Ku = λu,

hence

λ ∈ Σ(L) ⇔ 1

λ+ γ
∈ σp(Ke) ∩ R \ {0}. (2.19)

Since K is compact, Ke is compact and therefore (see lecture notes in FA): σ(Ke) \ {0} =
σp(K

e)\{0}, σ(Ke) is finite or countable and the only accumulation point is zero. Moreover, for
all λ ∈ σp(Ke) \ {0} we have dim ker(Ke − λId ) <∞. (i) and (iii) now follow from (2.19).

Remark 1. Both TL and T̂L are bounded operators, but the spectrum of L is unbounded.
This is not a contradiction. Indeed

‖TL‖op = sup
u∈H1

0 (Ω),u6=0

‖TL(u)‖H−1

‖u‖H1
0

= sup
u,v∈H1

0 (Ω),u,v 6=0

|BL[u, v]|
‖u‖H1

0
‖v‖H1

0

≤ α,

where in the last inequality we used the energy estimate. Assume Σ(L) is infinite, so that
Σ(L) = {λk}∞k=1, with λk ≤ λk+1 ∀k ≥ 1 and limk→∞ λk =∞. Let uk ∈ H1

0 (Ω) be an eigenvector
associated to λk. This means BL[uk, v] = λk(uk, v)L2(Ω) ∀v ∈ H1

0 (Ω). Inserting u = v = uk, in
the estimate for ‖TL‖op we obtain

α ≥ ‖TL‖op ≥
|BL[uk, uk]|
‖uk‖2H1

0

= |λk|
‖uk‖2L2

‖uk‖2H1
0

.
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Note that the norm in the numerator differs from the norm in the denominator. If they where the
same, then we would get |λk| ≤ α ∀k which in turn would imply the real spectrum is bounded.
Now, we can for example normalize uk such that ‖uk‖H1

0
= 1. It follows, using limk→∞ λk =∞,

lim
k→∞

‖uk‖L2 = 0.

This means ‖uk‖2L2 → 0 and ‖Duk‖2L2 → 1, which is possible if uk is strongly oscillating.

Remark 2. For each λ ∈ R \ Σ the operator TL−λId : H1
0 (Ω) → H−1(Ω) is invertible. Since

TL−λId is linear and bounded, the inverse T−1
L−λId : H−1(Ω) → H1

0 (Ω) is linear and bounded.
Moreover

lim
dist (λ,Σ(L))→0

‖T−1
L−λId ‖op =∞.

(exercise)

Symmetric elliptic operators. Set b = 0 i.e Lu = −div (aDu) + cu. Then L∗ = L and we
say the operator L is symmetric. The following hold:

• For L = L∗, the bilinear form associated to L is symmetric

BL[u, v] = BL[v, u] ∀u, v ∈ H1
0 (Ω).

As a consequence, if L is uniformly elliptic BL+γId [·, ·] defines an inner product on H1
0 (Ω).

• If L is uniformly elliptic we also have:

K† = (T−1
L+γId |L2)† = T−1

(L+γId )∗|L2 = T−1
L+γId |L2 = K,

where we used (L+ γ)∗ = L∗ + γ = L+ γ. It follows Ke† = Ke and hence σ(Ke) ⊂ R.

Theorem 2.13.
Consider the formal differential operator Lu = −div (aDu) + cu where aij , c ∈ L∞(Ω).
Assume L is uniformly elliptic and γ = 0 i.e. BL[u, u] ≥ β‖u‖2

H1
0
∀u ∈ H1

0 (Ω).

The following hold.

(i) BL[·, ·] defines an inner product on H1
0 (Ω).

(ii) Σ(L) = {λn}∞n=1, with 0 < λn ≤ λn+1 ∀n and limn→∞ λn =∞.

(iii) ∃ and o.n. basis {en}∞n=1 of (H1
0 (Ω), BL) such that en is a weak solution of Len = λnen,

with en|∂Ω = 0, ∀n ≥ 1.

(iv) λ1 > 0 is called principal eigenvalue and can be computed via the following variational
formula

λ1 = min
u∈H1

0 (Ω),‖u‖L2(Ω)=1
BL[u, u] = min

u∈H1
0 (Ω),u 6=0

BL[u, u]

‖u‖2
L2(Ω)

.

Proof.
(i) follows from the symmetry of BL and the energy estimates.
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(ii)+(iii) Since γ = 0 we have K = T−1
L|L2(Ω)

and Σ(L) is finite of countable with Σ(L) ⊂ (0,∞).

Since Ke† = Ke we have, using the 3rd existence theorem,

σ(Ke) = σ(Ke) ∩ R ⊂ [−γ,∞) = [0,∞) = {0} ∪ 1

Σ(L)
.

Moreover kerKe = kerK = {0} and hence, using the spectral theorem for compact self-adjoint
operators, there exists an o.n. basis {en}∞n=1 of L2(Ω) such that Ken = 1

λn
en where λn ∈ Σ(L)

for all n ≥ 1. From dim ker(Ke − λ−1
n Id ) <∞ ∀n it follows that Σ(L) is infinite and hence (ii)

holds.
It remains to show that {en}∞n=1 is also an o.n. basis for (H1

0 (Ω), BL). From Ken = 1
λn
en it

follows that en ∈ H1
0 (Ω) satisfies BL[en, ·] = λn(en, ·)L2(Ω) and hence

BL[en, em] = λn(en, em)L2(Ω) = λnδnm.

Therefore {λ−
1
2

n en}∞n=1 is an o.n. family in (H1
0 (Ω), BL). To see it is also a basis note that

BL[u, en] =
∞∑
k=1

(u, ek)L2BL[ek, en] = λn(u, en)L2 ,

hence
BL[u, en] = 0 ∀n ⇒ (u, en)L2 = 0 ∀n ⇒ u = 0,

where in the last step we used that {en}∞n=1 is basis for L2(Ω).

2.3 Weak solutions in unbounded domains

In this section we inquire if the above results remains valid in unbounded domain Ω = Rd. The
bilinear form associated to L becomes

BL : H1(Rd)×H1(Rd)→ R
(u, v) 7→ B[u, v] :=

´
Rd [aDu ·Dv + (b ·Du+ cu)v] dx,

(2.20)

where we used H1(Rd) = H1
0 (Rd). The mapping of H1(Rd)∗ into L2(Rd)d+1 given by Thm 2.5

works also in infinite domain. Given f ∈ L2(Rd)d+1, a function u ∈ H1(Rd) is a weak solution
of Lu = f0 −

∑
j ∂jfj if

BL[u, v] = 〈f, ·〉H−1H1(Rd) ∀v ∈ H1(Rd).

The energy etimates 2.7 work also for Ω = Rd (exercise), but the constant γ is generally worse.
Indeed while for L = −∆ on bounded domain we have γ = 0 using Poincaré inequality, this
does not hold on Rd. In this last case we argue

BL[u, u] = ‖Du‖2L2(Rd) = ‖u‖2H1(Rd) − ‖u‖
2
L2(Rd),

hence we need γ = 1. Since the energy estimates work, also the first existence theorem holds.
On the contrary, the second existence theorem does not hold in general, while the injection
I : H1(Rd)→ L2(Rd) is not compact.

To recover compactness, we can modify the regularity of the coefficients in L. An important
example is the Schrödinger operator, constructed as follows.
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Consider V : Rd → R a measurable function and assume V is bounded below i.e. V (x) ≥ C
∀x ∈ Rd for some constant C ∈ R. The formal differential operator Hu := −∆u + V u is the
Schrödinger operator with multiplicative potential V. The bilinear map

(u, v)H1
V

:= (u, v)H1(Rd) +

ˆ
Rd

(V − C)uv dx

is well defined on
H1
V := {u ∈ H1(Rd)|

√
V − Cu ∈ L2(Rd)}.

The pair (H1
V , (, )H1

V
) is a real Hilbert space (exercise). A function u ∈ H1

V is a weak solution of

Hu = f0 −
∑

j ∂jfj iff

(Du,Dv)L2(Rd) +

ˆ
Rd
V uv dx = BH [u, v] = 〈f, v〉 ∀v ∈ H1

V .

Again, the energy estimates and the first existence theorem hold. Assume now lim|x|→∞ V (x) =

∞. Then the injection I : H1
V → L2(Rd) is compact and the second and third existence theorem

hold (see exercise sheet).
[7: 30.10.2023]
[8: 2.11.2023]

2.4 Regularity theory

2.4.1 Preliminary definitions and estimates

Assume Ω ⊂ Rd, open and bounded. We consider the formal differential operator Lu =
−div (aDu) + b · Du + cu with aij , bj , c ∈ L∞(Ω), and a uniformly elliptic, i.e. a(x) ≥ θId ,
for a.e. x ∈ Ω with θ > 0.

Assume u ∈ H1
0 (Ω) is a weak solution of Lu = f in Ω with u|∂Ω = 0 and f ∈ L2(Ω). Depending

on the regularity of a, b, c and f we will show that u may be more regular than just H1. The
key idea is to bound norms for higher order derivatives by norms of lower order ones.

Example 1. Consider L = −∆, f ∈ L2(Ω), and assume u ∈ H1
0 (Ω) is a weak solution of

Lu = f in Ω with u|∂Ω = 0. The following statements hold.

(i) If in addition u ∈ C3
c (Ω), then −∆u = f holds pointwise a.e. in Ω and

‖D2u‖L2(Ω) = ‖∆u‖L2(Ω) = ‖f‖L2(Ω).

(ii) If in addition u ∈ C4
c (Ω) and f ∈ H1(Ω), then −∆∂ju = ∂jf holds pointwise a.e. in Ω

∀j = 1, . . . , d and
‖D2∂ju‖L2(Ω) = ‖∆∂ju‖L2(Ω) = ‖∂jf‖L2(Ω).

Proof. (i) Since u is a weak solution it holds

ˆ
Ω
Du ·Dv dx =

ˆ
Ω
fv dx ∀v ∈ C∞c (Ω).
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Integrating by parts (possible since u ∈ C2(Ω)) we obtain
´

ΩDu ·Dv dx =
´

Ω(−∆u)v dx, (there
are no boundary contributions since v and u have compact support). Henceˆ

Ω
(−∆u− f)v dx = 0 ∀v ∈ C∞c (Ω),

which implies −∆u− f = 0 pointwise a.e. in Ω. Moreover

‖D2u‖2L2(Ω) =
∑
ij

‖∂i∂ju‖2L2(Ω) =
∑
ij

ˆ
Ω
∂i∂ju ∂i∂ju dx

=
∑
ij

ˆ
Ω
∂i[∂ju ∂i∂ju] dx−

∑
j

ˆ
Ω
∂ju ∂j∆u dx = −

∑
j

ˆ
Ω
∂ju ∂j∆u dx

=

ˆ
Ω

∆u ∆u dx = ‖∆u‖2L2(Ω) = ‖f‖2L2(Ω),

where in the second line we used that u ∈ C3(Ω) and has compact support, and in the last
identity we used −∆u = f pointwise a.e. in Ω.

(ii) The argument is the same as above. This time we need u ∈ C4
c (Ω) to perform integration

by parts and get the identity for ‖D2∂ju‖L2(Ω).

Remark. Note that, for each u ∈ H1
0 (Ω) there is a sequence n → un ∈ C∞c (Ω) such that

‖u − un‖H1(Ω) → 0. But this does not imply that the sequence n → D2un converges in L2(Ω),
unless u ∈ H2

0 (Ω). In the following we will show that u ∈ H1
0 (Ω) weak solution of Lu = f

implies (under certain conditions) u ∈ H2(Ω), and not u ∈ H2
0 (Ω). That means we need to

prove Du ∈ H1(Ω). Therefore in the following we will consider both u ∈ H1
0 (Ω) and u ∈ H1(Ω).

Lemma 2.14 (preliminary estimates). Let Ω ⊂ Rd open and bounded. We consider the formal
differential operator Lu = −div (aDu) + b · Du + cu with aij , bj , c ∈ L∞(Ω), and L uniformly
elliptic. Assume f ∈ L2(Ω).

(i) There exists a constant C = C(a, b, c) > 0 such that

‖Du‖L2(Ω) ≤ C [‖f‖L2(Ω) + ‖u‖L2(Ω)] (2.21)

holds ∀u ∈ H1
0 (Ω) weak solution of Lu = f in Ω with u|∂Ω = 0, i.e. BL[u, v] = (f, v)L2(Ω)

∀v ∈ H1
0 (Ω).

(ii) For all W open with W ⊂⊂ Ω (i.e. W is compact and W ⊂ Ω) There exists a constant
C = C(a, b, c,W ) > 0 such that

‖Du‖L2(W ) ≤ C [‖f‖L2(Ω) + ‖u‖L2(Ω)] (2.22)

holds ∀u ∈ H1(Ω) weak solution of Lu = f in Ω (no boundary condition) i.e BL[u, v] =
(f, v)L2(Ω) ∀v ∈ H1

0 (Ω).

Proof.
(i) Assume u ∈ H1

0 (Ω) weak solution of Lu = f in Ω with u|∂Ω = 0. Then BL[u, v] = (f, v)L2(Ω)

∀v ∈ H1
0 (Ω). Replacing v = u and using the energy bound we get

β‖Du‖2L2(Ω) ≤ β‖u‖
2
H1

0 (Ω) ≤ BL[u, u] + γ‖u‖2L2(Ω) = (f, u)L2(Ω) + γ‖u‖2L2(Ω)

≤ ‖f‖L2(Ω)‖u‖L2(Ω) + γ‖u‖2L2(Ω)

≤ C(‖f‖L2(Ω) + ‖u‖L2(Ω))
2.
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(ii) Assume u ∈ H1(Ω) weak solution of Lu = f in Ω. This means BL[u, v] = (f, v)L2(Ω)

∀v ∈ H1
0 (Ω). Note that now we cannot replace v = u since u 6∈ H1

0 (Ω). The solution is to add a
cut-off function as follows.

Let W be open with W ⊂⊂ Ω. Then there exists a function ζ ∈ C∞c (Ω) such that

0 ≤ ζ ≤ 1, ζ|W = 1.

This means in particular that W ⊂ supp ζ. We define v := ζ2u. Then v ∈ H1
0 (Ω) and v|W = u,

hence
‖Du‖L2(W ) = ‖ζDu‖L2(W ) ≤ ‖ζDu‖L2(Ω), (2.23)

so we need to find a bound for ‖ζDu‖L2(Ω). Since u is a weak solution and v ∈ H1
0 (Ω) it holds

(f, ζ2u)L2(Ω) = BL[u, ζ2u] =

ˆ
Ω

(aDu) ·D(ζ2u) dx+

ˆ
Ω

(b ·Du+ cu)ζ2u dx,

where ˆ
Ω

(aDu) ·D(ζ2u) dx =

ˆ
Ω

(aζDu) · (ζDu) dx+ 2

ˆ
Ω

(aζDu) ·Dζudx

By uniform ellipticity we argue, using also 0 ≤ ζ ≤ 1,

θ‖ζDu‖2L2(Ω) ≤
ˆ

Ω
(aζDu) · (ζDu) dx

= BL[u, ζ2u]−
ˆ

Ω
(b ·Du+ cu)ζ2u dx− 2

ˆ
Ω
u(Dζ · aζDu) dx

= (f, ζ2u)L2(Ω) −
ˆ

Ω
(b · ζDu+ cζu)ζu dx− 2

ˆ
Ω
u(Dζ · aζDu) dx

≤ ‖f‖L2(Ω)‖u‖L2(Ω) + ‖b‖L∞(Ω)‖ζDu‖L2(Ω)‖u‖L2(Ω) + ‖c‖L∞(Ω)‖u‖2L2(Ω)

+ 2‖Dζa‖L∞(Ω)‖u‖L2(Ω)‖ζDu‖L2(Ω)

= C1‖ζDu‖L2(Ω)‖u‖L2(Ω) + ‖f‖L2(Ω)‖u‖L2(Ω) + ‖c‖L∞‖u‖2L2(Ω)

where we defined ‖b‖L∞(Ω) :=
∑

j ‖bj‖L∞(Ω) and ‖Dζa‖L∞(Ω) :=
∑

j ‖(Dζa)j‖L∞(Ω), and

C1 := 2‖Dζa‖L∞(Ω) + ‖b‖L∞(Ω).

By Young’s inequality ‖ζDu‖L2(Ω)‖u‖L2(Ω) ≤ ε
2‖ζDu‖

2
L2(Ω)+

1
2ε‖u‖

2
L2(Ω), for any ε > 0. Choosing

now ε < θ/C1 we obtain

0 ≤ 1

2
‖ζDu‖2L2(Ω) ≤ C1

1

2ε
‖u‖2L2(Ω)+‖f‖L2(Ω)‖u‖L2(Ω)+‖c‖L∞‖u‖2L2(Ω) ≤ C2(‖f‖L2(Ω)+‖u‖L2(Ω))

2

Inserting this in (2.23), we conclude the proof.

Our goal now is to extend the arguments in Example 1 to u ∈ H1
0 . Since now D2u is not defined

we replace it by finite difference quotients.

Definition 2.15. Let u : Ω→ R be a function on Ω ⊂ Rd open. For ε > 0, consider the set

Ωε := {x ∈ Ω|dist (x, ∂Ω) > ε}.

Note that Ωε = ∅ if ε > diam(Ω).
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(i) The i−th difference quotient of size h ∈ R, h 6= 0 is the map

Dh
i u : Ω|h| → R

x 7→ Dh
i u(x) := u(x+hei)−u(x)

h

, i = 1, . . . d.

(ii) The difference quotient of size h is the vector Dhu := (Dh
1u, . . .D

h
1u).

Note that Dh
i u is well defined on Ω|h|. Indeed for all x ∈ Ω|h| it holds x + hei ∈ Ω and hence

u(x+ hei) is well defined.

Lemma 2.16 (elementary properties of the difference quotient).

(i) u ∈ C1(Ω)⇒ limh→0D
h
i u(x) = ∂iu(x) ∀x ∈ Ω.

(ii) u ∈ Lp(Ω)⇒ Dh
i u ∈ Lp(Ω|h|) and

‖Dh
i u‖Lp(Ω|h|) ≤

2

h
‖u‖Lp(Ω).

(iii) Dh
i (u1u2)(x) = Dh

i u1(x)u2(x) + u1(x+ hei)D
h
i u2(x).

(iv) Assume u ∈ Lp(Ω) and v ∈ Lq(Ω), with 1
p + 1

q = 1 and supp v is compact. Then

ˆ
Ω
v(x) Dh

i u(x) dx = −
ˆ

Ω
D−hi v(x) u(x) dx.

(v) The discrete Laplace operator ∆hu(x) :=
∑d

i=1D
−h
i Dh

i u satisfies

∆hu(x) :=
d∑
i=1

u(x+ hei) + u(x− hei)− 2u(x)

h2

and is well defined on Ω|h|.

Proof. Exercise

Theorem 2.17 (connection between discrete and weak derivative). Let Ω ⊂ Rd open.

(i) Set 1 ≤ p <∞, u ∈W 1,p(Ω), and V open with V ⊂⊂ Ω. It holds

‖Dhu‖Lp(V ) ≤ ‖Du‖Lp(Ω) ∀0 < |h| ≤ 1

2
dist (V, ∂Ω).

(ii) Set 1 < p <∞, u ∈ Lp(Ω), and V open with V ⊂⊂ Ω. Assume

sup
0<|h|≤ 1

2
dist (V,∂Ω)

‖Dhu‖Lp(V ) = C <∞.

Then u ∈W 1,p(V ) and ‖Du‖Lp(V ) ≤ C.

Proof. Exercise sheet.

Note that for p = 1 (ii) does not hold (see Exercise sheet).
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2.4.2 Interior regularity

Theorem 2.18 (H2 interior regularity). Assume Ω ⊂ Rd is open and bounded. We consider
the formal differential operator Lu = −div (aDu) + b · Du + cu with aij , bj , c ∈ L∞(Ω), and L
uniformly elliptic.

Assume in addition a ∈ C1(Ω), f ∈ L2(Ω) and u ∈ H1(Ω) is a weak solution of Lu = f in Ω
(no boundary condition), i.e. BL[u, v] = (f, v)L2(Ω) ∀v ∈ H1

0 (Ω).

Then u ∈ H2
loc(Ω) and ∀V open with V ⊂⊂ Ω, there is a constant C = C(Ω, V, a, b, c) > 0 such

that
‖u‖H2(V ) ≤ C

[
‖f‖L2(Ω) + ‖u‖L2(Ω)

]
(2.24)

Remark 1. Since u ∈ H2(Ω) and a ∈ C1(Ω), the equation Lu = f holds pointwise a.e. in Ω.

Remark 2. The result above does not improve if we use u ∈ H1
0 (Ω) instead of u ∈ H1(Ω),

unless we require some boundary regularity (later).

Proof of Theorem 2.18. We replace ∆u (which is not well-defined) with ∆hu =
∑d

i=1D
−h
i Dh

i u.
Since u ∈ H1(Ω) it holds ∆hu ∈ H1(V ) ∀V open with V ⊂⊂ Ω, and dist (V , ∂Ω) > |h|.

Let us now fix V open with V ⊂⊂ Ω. We upgrade ∆hu to a function in H1
0 (Ω) by adding a

cut-off function as in Lemma 2.14. Precisely, there exists a W open with V ⊂⊂W ⊂⊂ Ω and a
function ζ ∈ C∞c (W ) such that 0 ≤ ζ ≤ 1 and ζ|V = 1. We define

v := −
d∑
i=1

D−hi ζ2Dh
i u.

With this definition v ∈ H1
0 (Ω) ∀0 < |h| ≤ h0 := 1

4dist (W,∂Ω).

Claim. If u is a weak solution of Lu = f, then ∃C > 0 such that

d∑
i,k=1

‖ζDh
i ∂ku‖2L2(Ω) ≤ C [‖f‖L2(Ω) + ‖u‖L2(Ω)]

2 ∀0 < |h| ≤ h0.

We will prove this Claim below.

Consequence. Using ζ|V = 1 we get

sup
0<|h|≤h0

‖Dh
i ∂ku‖L2(V ) = sup

0<|h|≤h0

‖ζDh
i ∂ku‖L2(V ) ≤ sup

0<|h|≤h0

‖ζDh
i ∂ku‖L2(Ω)

≤ C [‖f‖L2(Ω) + ‖u‖L2(Ω)] ∀k, i.

Therefore, by Theorem 2.17, ∂ku ∈ H1(V ) ∀k and

‖∂i∂ku‖L2(V ) ≤ C [‖f‖L2(Ω) + ‖u‖L2(Ω)].

It follows that u ∈ H2(V ) and

‖D2u‖L2(V ) ≤ C1 [‖f‖L2(Ω) + ‖u‖L2(Ω)],

for some constant C1 > 0. By Lemma 2.14 (ii) we also know that

‖Du‖L2(V ) ≤ C2 [‖f‖L2(Ω) + ‖u‖L2(Ω)],
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for some constant C1 > 0. We conclude

‖u‖H2(V ) ≤ C3 [‖f‖L2(Ω) + ‖u‖L2(Ω)],

for some constant C3 > 0. It remains to prove the Claim.

[8: 2.11.2023]
[9: 06.11.2023]

Proof of the Claim. Since u is a weak solution of Lu = f in Ω and v ∈ H1
0 (Ω) we have BL[u, v] =

(f, v)L2(Ω). This can be reformulated as

ˆ
Ω

(aDu) ·Dv dx = (fu, v)L2(Ω), with fu := f − (b ·Du+ cu).

Inserting the explicit for of v we get

ˆ
Ω

(aDu) ·Dv dx = −
∑
ikl

ˆ
Ω
∂iu aij ∂j(D

−h
k (ζ2Dh

ku)) dx = −
∑
ikl

ˆ
Ω
∂iu aij D

−h
k (∂j(ζ

2Dh
ku)) dx

=
∑
ikl

ˆ
Ω
Dh
k(∂iu aij) ∂j(ζ

2Dh
ku) dx,

where in the second line we used supp ζ ⊂ W, |h| ≤ h0 = 1
4dist (W,∂Ω) and Lemma 2.16 (iv).

Set now
g1 := Dh

k(∂iu aij), g2 := ∂j(ζ
2Dh

ku).

By Lemma 2.16 (iii), we have

g1(x) = Dh
kaij(x) (∂iu(x)) + aij(x+ hek) (Dh

k∂iu(x)),

where the first summand contains only a first order derivative in u, while the second summand
has a second order “derivative” in u (actually one weak and one finite derivative). In the same
way

g2 = 2ζ∂jζ (Dh
ku) + ζ2(Dh

k∂ju),

where again the first summand contains only a first order “derivative” in u (actually a finite
difference) and the second summand has a second order “derivative” in u (one weak and one
finite derivative). Therefore

g1g2 = (ζDh
k∂iu) aij(·+ hek) (ζDh

k∂ju)

+ 2ζ∂iζ (Dh
ku) aij(·+ hek) (Dh

k∂ju) + (ζ∂iu) Dh
kaij (ζDh

k∂ju)

+ 2ζ∂iζ (Dh
ku) Dh

kaij (∂ju),

where in the first line we have two second order derivatives (weak or discrete), in the second line
one first and one second order derivative, and in the third line only first order derivatives in u.
We reorganize the integrals above as follows

ˆ
Ω

(aDu) ·Dv dx = A2 +A1 +A0,
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where A2 (resp. A1, A0) is the sum of all terms with two (resp. one, zero) second order
derivatives in u. Precisely

A2 :=
∑
k

ˆ
Ω

(
a(·+ hek)(ζD

h
k∂u)

)
· (ζDh

k∂u) dx

A1 :=
∑
k

ˆ
Ω

[
2Dh

ku
(

(a(·+ hek)(ζD
h
k∂u)) · ∂ζ

)
+
(
(Dh

ka)ζ∂u
)
· (ζDh

k∂u)
]
dx

A0 :=
∑
k

ˆ
Ω

2(ζDh
ku)

(
(Dh

ka)(ζ∂u) · ∂ζ,
)
dx.

Putting all this together we get

A2 = (fu, v)L2(Ω) −A0 −A1,

where now the left hand side contains two second order derivatives, and the right hand-side at
most one. We are now ready to prove the Claim.

Set X :=
∑d

j,k=1 ‖ζDh
k∂ju‖2L2(Ω). Our goal is to prove X ≤ C[‖f‖L2(Ω)+‖u‖L2(Ω)]

2 ∀0 < |h| ≤ h0.
By uniform ellipticity we have

A2 ≥ θ
∑
jk

ˆ
Ω

(ζDh
k∂ju)2dx = θX,

hence
θX ≤ A2 = (fu, v)L2(Ω) −A0 −A1 ≤ |(fu, v)L2(Ω)|+ |A0|+ |A1|. (2.25)

We bound the three terms separately.

Bound on |A0|. There is a constant C1 > 0 independent of u such that

|A0| ≤ C1

(
‖f‖L2(Ω) + ‖u‖L2(Ω)

)2
. (2.26)

To prove this we argue, using supp ζ ⊂W and 0 ≤ ζ ≤ 1,

|A0| ≤
∑
kij

2‖Dh
kaij‖L∞(W ) ‖∂jζ‖L∞(W ) ‖Dh

i u‖L2(W )‖∂iu‖L2(W ) (2.27)

• Since u ∈ H1(Ω) is a weak solution of Lu = f and W ⊂⊂ Ω, by Lemma 2.14 (ii) we have

‖Du‖L2(W ) ≤ CWΩ

(
‖f‖L2(Ω) + ‖u‖L2(Ω)

)
(2.28)

for some constant CW > 0.

• To obtain the same bound on ‖Dh
ku‖L2(W ) we argue in two steps. Set W ′ := B2h0(W ). Since

|h| ≤ h0

B|h|(W ) ⊂⊂W ′ ⊂⊂ Ω, and |h| ≤ h0 =
1

2
dist (W,∂W ′).

Hence, by Theorem 2.17 (ii),

‖Dh
i u‖L2(W ) ≤ ‖Du‖L2(W ′) ≤ CWW ′

(
‖f‖L2(Ω) + ‖u‖L2(Ω)

)
. (2.29)

where in the second inequality we applied again Lemma 2.14 (ii).
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• Since a ∈ C1(W ′) ∩ L∞(Ω) we have

sup
0≤|h|≤h0

‖Dh
i a‖L∞(W ) ≤ sup

x∈W ′
|Da(x)| <∞, (2.30)

and
‖a(·+ hei)‖L∞(W ) ≤ ‖a‖L∞(Ω). (2.31)

Inserting all these estimates in (2.27) we obtain (2.26).

Bound on |A1|. There is a constant C2 > 0 independent of u such that, using also Young’s
inequality,

|A1| ≤ C2

d∑
j,k=1

‖ζDh
k∂ju‖L2(Ω)

(
‖f‖L2(Ω) + ‖u‖L2(Ω)

)
≤ C2ε

2
X +

C2d
2

2ε

(
‖f‖L2(Ω) + ‖u‖L2(Ω)

)2
,

(2.32)
for all ε > 0. To prove this we argue, using again supp ζ ⊂W and 0 ≤ ζ ≤ 1,

|A1| ≤
∑
ijk

2‖aij(·+ hek)‖L∞(W )‖∂iζ‖L∞(W ) ‖Dh
ku‖L2(W )‖‖ζDh

k∂ju‖L2(W )

+
∑
kij

‖Dh
kaij‖L∞(W ) ‖∂iu‖L2(W )‖ζDh

k∂ju‖L2(W )

The result follows applying (2.28), (2.29),(2.30) and (2.31).

Bound on |(fu, v)L2(Ω)|. There are constants C3, C4 > 0 independent of u such that, using also
Young’s inequality,

|(fu, v)L2(Ω)| ≤ C3

(
‖f‖L2(Ω) + ‖u‖L2(Ω)

)2
+ C4

d∑
j,k=1

‖ζDh
k∂ju‖L2(Ω)

(
‖f‖L2(Ω) + ‖u‖L2(Ω)

)
≤ C4ε

2
X + (C3 +

C4d
2

2ε
)
(
‖f‖L2(Ω) + ‖u‖L2(Ω)

)2
, (2.33)

for all ε > 0. To prove this we argue, using again supp ζ ⊂W,

|(fu, v)L2(Ω)| = |(fu, v)L2(W )| ≤ ‖fu‖L2(W )‖v‖L2(W ) (2.34)

We bound the last two terms separately.

• We have, using (2.28),

‖fu‖L2(W ) ≤ ‖f‖L2(Ω) + ‖b‖L∞(Ω)‖Du‖L2(W ) + ‖c‖L∞(Ω)‖u‖L2(Ω) ≤ C
(
‖f‖L2(Ω) + ‖u‖L2(Ω)

)
,

for some constant C > 0.

• Finally, setting wk := ζ2Dh
ku

‖v‖2L2(W ) =
∑
k

‖D−hk ζ2Dh
ku‖2L2(W ) =

∑
k

‖D−hk wk‖2L2(W ).

Since wk ∈ H1(Ω), suppwk ⊂W and |h| ≤ 1
2dist (W,∂Ω), we have

‖D−hk wi‖L2(W ) ≤ ‖∂kwk‖L2(Ω) = ‖∂kwk‖L2(W ) = ‖∂k(ζ2Dh
ku)‖L2(W ).
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Hence

‖v‖L2(W ) ≤
∑
k

‖∂k(ζ2Dh
ku)‖L2(W ) ≤

∑
k

[
‖2ζ∂kζDh

ku‖L2(W ) + ‖ζ2Dh
k∂ku)‖L2(W )

]
≤
∑
k

[
‖2∂kζ‖L∞(Ω)‖Dh

ku‖L2(W ) + ‖ζDh
k∂ku)‖L2(Ω)

]
≤
∑
k

‖ζDh
k∂ku)‖L2(Ω) + C ′

(
‖f‖L2(Ω) + ‖u‖L2(Ω)

)
,

where in the last line we used again (2.29) and C ′ > 0 is some constant. The result now follows
inserting these bounds in (2.34).

Final bound on X. Putting all the above estimates together we obtain

θX ≤
(C2

2
+
C4

2

)
εX +

(
C1 +

C2d
2

2ε
+ C3 +

C4d
2

2ε

)(
‖f‖L2(Ω) + ‖u‖L2(Ω)

)2

The result follows choosing ε > 0 small enough. This completes the proof of the Claim.

[9: 06.11.2023]
[10: 09.11.2023]

Higher regularity Let us go back to Example 1, i.e. L = −∆, u ∈ C∞c (Ω) is a weak solution
of −∆u = f in Ω. We have seen that, if f ∈ L2(Ω), then −∆u = f holds pointwise a.e. in Ω
and ‖D2u‖L2(Ω) = ‖f‖L2(Ω). If in addition f ∈ C1(Ω), then −∆∂ju = ∂jf holds pointwise a.e.
in Ω and ‖D2∂ju‖L2(Ω) = ‖∂jf‖L2(Ω).

If f ∈ Cm(Ω), and u ∈ C∞c (Ω) is a strong solution of −∆u = f we can derive both terms and
obtain −∆∂αj u = ∂αj f, ∀|α| ≤ m. Then w = ∂αj u is a weak solution of −∆w = ∂αj f in Ω and
hence

‖D2∂αj u‖L2(Ω) = ‖D2w‖L2(Ω) = ‖∂αj f‖L2(Ω).

In the general case we consider Lu = f where Lu = −div (aDu) + b ·Du+ cu, aij , bj , c ∈ L∞(Ω),
and f ∈ L2(Ω).
If a ∈ C1(Ω) and u ∈ H1(Ω) is a weak solution of Lu = f we know, by Theorem 2.18, that
u ∈ H2

loc(Ω), Lu = f holds pointwise a.e., and (2.24) holds.
Assume now in addition a ∈ C2(Ω), b, c ∈ C1(Ω), f ∈ H1(Ω). Then formally

∂jf = ∂j(Lu) = L(∂ju) +Rj(u),

where the error term Rj(u) is defined as

Rj(u) := −div ((∂ja)Du) + (∂jb) ·Du+ (∂jc)u. (2.35)

Hence w := ∂ju is a formal solution of

Lw = ∂jf −Rj(u) =: f̃u. (2.36)

Note that, since u ∈ H2
loc(Ω) we have w = ∂ju ∈ H1

loc(Ω). Moreover, since a ∈ C2(Ω), and
b, c ∈ C1(Ω) we have D2a,Da,Da,Dc ∈ L∞loc(Ω) and hence the function Rj(u) is well defined
and Rj(u) ∈ L2

loc(Ω).

41 [February 12, 2024]



On the other hand L(∂ju) is not well defined, unless u admits third order weak derivatives. We
will show below that ∂ju is a local weak solution of the formal PDE

L(∂ju) = f̃u,

and hence by Theorem 2.18, ∂ju ∈ H2
loc(Ω), i.e. u ∈ H3

loc(Ω). This is the content of the next
theorem.

Theorem 2.19 (higher interior regularity).
Assume Ω ⊂ Rd is open and bounded. We consider the formal uniformly elliptic differential
operator Lu = −div (aDu) + b ·Du+ cu with aij , bj , c ∈ L∞(Ω).

Assume in addition a ∈ Cm+1(Ω), b, c ∈ Cm(Ω), f ∈ Hm(Ω) and u ∈ H1(Ω) is a weak solution
of Lu = f in Ω (no boundary condition), i.e. BL[u, v] = (f, v)L2(Ω) ∀v ∈ H1

0 (Ω).

Then u ∈ H2+m
loc (Ω) and ∀V open with V ⊂⊂ Ω, there is a constant C = C(Ω, V, a, b, c) > 0 such

that
‖u‖H2+m(V ) ≤ C

[
‖f‖Hm(Ω) + ‖u‖L2(Ω)

]
Proof. We argue by induction on m.

For m = 0 we have a ∈ C1(Ω) ∩ L∞(Ω), b, c ∈ C0(Ω) ∩ L∞(Ω) f ∈ L2(Ω) and the result follows
from Theorem 2.18.

We prove now the first induction step: if the statement holds for m = 0, then the statement
holds also for m = 1. Assume a ∈ C2(Ω) ∩ L∞(Ω), b, c ∈ C1(Ω) ∩ L∞(Ω), f ∈ H1(Ω). Our goal
is to show that u ∈ H3

loc(Ω).

• Since u ∈ H1(Ω) is a weak solution of Lu = f, by the case m = 0 we know that u ∈ H2
loc(Ω),

Lu = f holds pointwise a.e. in Ω, and ∀V open with V ⊂⊂ Ω, there is a constant C =
C(Ω, V, a, b, c) > 0 such that

‖u‖H2(V ) ≤ C
[
‖f‖L2(Ω) + ‖u‖L2(Ω)

]
. (2.37)

Setting Rj(u) as in (2.35) above, we will show that ∂ju is a local weak solution of the formal
PDE

L(∂ju) = ∂jf −Rj(u) =: f̃u. (2.38)

i.e. ∀V open with V ⊂⊂ Ω, ∂ju ∈ H1(V ) (since u ∈ H2
loc(Ω)) and

BL[∂ju, v] = (f̃u, v)L2(V ) ∀v ∈ H1
0 (V ).

Indeed for v ∈ H1
0 (V ), there is a sequence n 7→ vn ∈ C∞c (V ) such that ‖vn − v‖H1

0
→ 0.

Then BL[∂ju, v] = limn→∞BL[∂ju, vn]. Moreover, since a, b, c ∈ C1(Ω), and vn ∈ C3
c (V ) we can

integrate by parts as follows:

BL[∂ju, vn] =

ˆ
V

(
Dvn · aD∂ju+ vn[b ·D∂ju+ c∂ju]

)
dx

= −
ˆ
V

(
Dvn · (∂ja)Du+ vn[(∂jb) ·Du+ (∂jc)u]

)
dx

−
ˆ
V

(
D∂jvn · aDu+ ∂jvn[b ·Du+ cu]

)
dx

= −BL[u, ∂jvn]− (Rj(u), vn)L2(V ) = −(f, ∂jvn)L2(V ) − (Rj(u), vn)L2(V ) = (f̃u, vn)L2(V )
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where in the last line we used ∂jvn ∈ C∞c (V )⇒ BL[u, ∂jvn] = (f, ∂jvn)L2(V ). Finally

BL[∂ju, v] = lim
n→∞

BL[∂ju, vn] = lim
n→∞

(f̃u, vn)L2(V ) = (f̃u, v)L2(V ).

Therefore ∂ju is a local weak solution of L(∂ju) = f̃u.

• Since ∂ju ∈ H1(Ω) is a weak solution of L∂ju = f̃u, in V, by the case m = 0 we know that
∂ju ∈ H2

loc(V ), L∂ju = f̃u holds pointwise a.e. in V, and ∀W open with W ⊂⊂ V, there is a
constant C1 = C1(V,W, a, b, c) > 0 such that

‖∂ju‖H2(W ) ≤ C1

[
‖f̃u‖L2(V ) + ‖∂ju‖L2(V )

]
.

We bound now the two terms on the right separately. Since u ∈ H1(Ω) is a weak solution of
Lu = f in Ω, by Lemma 2.14(ii), we have

‖∂ju‖L2(V ) ≤ C2

[
‖f‖L2(Ω) + ‖u‖L2(Ω)

]
.

Moreover

‖f̃u‖L2(V ) ≤ ‖∂jf‖L2(Ω) + ‖Da‖L∞(V )‖D2u‖L2(V )

+ ‖Du‖L2(V )

(
‖D2a‖L∞(V ) + ‖Db‖L∞(V )

)
+ ‖Dc‖L∞(V )‖u‖L2(V )

≤ ‖∂jf‖L2(Ω) + C3

[
‖f‖L2(Ω) + ‖u‖L2(Ω)

]
≤ C4

[
‖f‖H1(Ω) + ‖u‖L2(Ω)

]
,

where we used a, b, c ∈ C2(V ), the bound (2.37) and again Lemma 2.14(ii). Therefore u ∈ H3(W )
and

‖u‖H3(W ) ≤ C5

[
‖f‖H1(Ω) + ‖u‖L2(Ω)

]
.

The claim for m = 1 now follows since W is arbitrary. The general step m ⇒ m + 1 is proved
in the same way (exercise).

Theorem 2.20 (infinite interior regularity). Assume Ω ⊂ Rd is open and bounded. We consider
the uniformly elliptic formal differential operator Lu = −div (aDu) + b ·Du+ cu with aij , bj , c ∈
L∞(Ω).

Assume in addition a, b, c, f ∈ C∞(Ω) and u ∈ H1(Ω) is a weak solution of Lu = f in Ω (no
boundary condition), i.e. BL[u, v] = (f, v)L2(Ω) ∀v ∈ H1

0 (Ω).

Then u ∈ C∞(Ω) and Lu = f holds pointwise in Ω.

To prove this result we will need the following generalized Sobolev inequalities.

Theorem 2.21 (generalized Sobolev inequalities). Assume Ω ⊂ Rd is open and bounded, with
Lipschitz boundary. Let k ≥ 1, and u ∈W k,p(Ω). The following hold.

(i) If 1 ≤ p < d
k then u ∈ Lq(Ω) ∀1 ≤ q ≤ p∗ with

1

p∗
:=

1

p
− k

d
,

and there is a constant C = Cp,q,k,Ω such that

‖u‖Lq(Ω) ≤ C ‖u‖Wk,p(Ω).
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(ii) If d
k < p, we define

γ :=

{
1−

(
d
p −

⌊
d
p

⌋)
if d

p 6∈ N
any number 0 < γ < 1 if d

p ∈ N.

Then for all ∀0 < β ≤ γ ∃ũ ∈ Ck−1−
⌊
d
p

⌋
,β

(Ω) and a constant C = Cp,β,k,Ω > 0 such that
u = ũ a.e, and

‖ũ‖
C
k−1−b dpc,β(Ω)

≤ C ‖u‖Wk,p(Ω).

Note: u ∈ Cm,β(Ω) means u ∈ Cm(Ω) and ∂αu ∈ C0,β(Ω) ∀|α| = m. Moreover

‖u‖Cm,β(Ω) :=
∑

0≤|α|≤m

sup
x∈Ω

|∂αu(x)|+
∑
|α|=m

[∂αu]C0,β .

Proof. We will consider only the case k = 2 for simplicity. The general case is proved in the
same way.

(i) Assume 1 ≤ p < d
2 . Then u,Du ∈ W 1,p(Ω), with p < d. By standard Sobolev inequality

Theorem 1.17 it follows

u,Du ∈ Lp1(Ω),
1

p1
:=

1

p
− 1

d
,

and ‖u‖W 1,p1 (Ω) ≤ C1 ‖u‖W 2,p(Ω). Since p < d
2 we have p1 < d, hence, again by Theorem 1.17,

u ∈ Lp2(Ω) with 1
p2

= 1
p1
− 1

d = 1
p −

2
d = 1

p∗ and

‖u‖Lp2 (Ω) ≤ C2 ‖u‖W 1,p1 (Ω) ≤ C1C2‖u‖W 2,p(Ω).

The statement for q < p∗ now follows since Ω is bounded.

(ii) We distiguish three cases.
Case 1. Assume p > d

2 and p > d. In particular this means 0 < d
p < 1, and hence d

p 6∈ N and⌊
d
p

⌋
= 0. Our goal is to show that there is a ũ ∈ C1,γ(Ω) with u = ũ a.e., where γ = 1− d

p .

Indeed, since u,Du ∈ W 1,p(Ω) and d < p, it follows, by standard Sobolev inequality Theorem
1.17, that u,Du ∈ C0,γ(Ω) with γ = 1 − d

p . Precisely, there are functions ũ, ṽj ∈ C0,γ(Ω) such
that u = ũ, ∂ju = ṽj a.e. and

‖ũ‖C0,γ(Ω) ≤ C ‖u‖W 1,p(Ω), ‖ṽj‖C0,γ(Ω) ≤ C ‖∂ju‖W 1,p(Ω).

It follows (excercise) that ũ ∈ C1,γ(Ω) and ‖ũ‖C1,γ(Ω) ≤ C ‖u‖W 2,p(Ω).

Case 2. Assume d > p > d
2 . In particular this means d

p 6∈ N and
⌊
d
p

⌋
= 1. Our goal is to show

that there is a ũ ∈ C0,γ(Ω) with u = ũ a.e., where γ = 2− d
p .

Indeed, since u,Du ∈ W 1,p(Ω) and p < d, it follows, by standard Sobolev inequality Theorem
1.17, that

u,Du ∈ Lp1(Ω),
1

p1
:=

1

p
− 1

d
,

and ‖u‖W 1,p1 (Ω) ≤ C1 ‖u‖W 2,p(Ω). Since p > d
2 we have p1 > d, hence there is a ũ ∈ C0,γ(Ω),

with u = ũ a.e and γ = 1− d
p1

= 2− d
p , such that

‖ũ‖C0,γ(Ω) ≤ C1 ‖u‖W 1,p1 (Ω) ≤ C1C2‖u‖W 2,p(Ω).
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It follows (excercise) that ũ ∈ C0,γ(Ω) and ‖ũ‖C0,γ(Ω) ≤ C ‖u‖W 2,p(Ω).

Case 3. Assume p > d
2 and p = d. In particular this means

⌊
d
p

⌋
= d

p = 1 ∈ N Our goal is to

show that ∀0 < γ < 1 there is a ũ ∈ C0,γ(Ω) with ũ = u a.e..

Indeed, since u,Du ∈ W 1,d(Ω) and Ω is bounded it follows u,Du ∈ W 1,d−ε(Ω) ∀0 < ε ≤ d− 1.
By Sobolev inequality we have then

u,Du ∈ Lqε(Ω), qε :=
d(d− ε)

ε
,

Since ε is arbitrarily near to zero, we obtain u,Du ∈ Lq(Ω) ∀d < q <∞. The result now follows
again by standard Sobolev inequality, as in Case 1.

The statement for β < γ follows since Ω is bounded.

Proof of Theorem 2.20.
Since a, b, c, f ∈ C∞(Ω), we have a, b, c ∈ Cm+1(Ω) ∩ L∞loc(Ω) and f ∈ Hm

loc(Ω) ∀m ≥ 1.
Since u ∈ H1(Ω) is a weak solution of Lu = f in Ω we know by Theorem 2.19, u ∈ Hm

loc(Ω)

∀m ≥ 0. Fix now x0 ∈ Ω. Since Ω is open there exists r > 0 such that Br(x0) ⊂ Ω. Define
V := Br(x0). Then V is open and V ⊂⊂ Ω. Hence u ∈ Hm(V ) = Wm,2(V ) ∀m ≥ 1. There
exists m0 > 0 such that 2 > d

m ∀m ≥ m0. Since ∂V is C1 it follows by generalized Sobolev

inequality Theorem 2.21(ii) that u ∈ Cm−1−b dmc,γ(V ) ∀m ≥ m0 and hence u ∈ C∞(V ). Since
x0 is arbitrary u ∈ C∞(Ω).

Remark. Note that we can repeat all the proofs above in unbounded domain Ω since we only
work locally.

[10: 09.11.2023]
[11: 13.11.2023]

2.4.3 Regularity up to the boundary

Remember that if u ∈ Lp(Ω) then Dh
i u ∈ Lp(Ω|h|) ∀i = 1, . . . d, where

Ωε := {x ∈ Ω| dist (x, ∂Ω) > ε}, ε > 0.
In the special case Ω = B+

r (x0) := {x ∈ Br(x0)| xd > 0}, the finite difference quotients in
directions i = 1, . . . , d − 1 are well defined up to lower boundary of Ω i.e. Dh

i u ∈ Lp(B+
s (x0))

∀0 < s < r− |h|, and i = 1, . . . , d− 1. This remark motivates the following lemma, that extends
Theorem 2.17.

Lemma 2.22. Let Ω = B+
r (x0) = {x ∈ Br(x0)|xd > 0} be the half-ball and

Γ := {x ∈ Br(x0)|xd = 0} the corresponding lower boundary.

(i) Set 1 ≤ p <∞, u ∈W 1,p(B+
r (x0)) and i ∈ {1, . . . , d− 1}. It holds

‖Dh
i u‖Lp(B+

s (x0)) ≤ ‖∂xiu‖Lp(B+
r (x0)) ∀0 < |h| ≤ 1

2
(r − s).

(ii) Set 1 < p <∞, u ∈ Lp(B+
r (x0)). Assume i ∈ {1, . . . , d− 1} and

sup
0<|h|≤ r−s

2

‖Dh
i u‖Lp(B+

s (x0)) = C <∞.

Then u admits a weak derivative in direction i and ‖∂xiu‖Lp(B+
s (x0)) ≤ C.
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Proof. Exercise (argue as in the proof of Theorem 2.17)

Theorem 2.23 (H2 regularity up to the boundary). Assume Ω ⊂ Rd is open and bounded. We
consider the formal differential operator Lu = −div (aDu) + b ·Du+ cu with aij , bj , c ∈ L∞(Ω),
and L uniformly elliptic.

Assume in addition ∂Ω is C2, a ∈ C1(Ω), f ∈ L2(Ω) and u ∈ H1
0 (Ω) is a weak solution of

Lu = f in Ω with u|∂Ω = 0.

Then u ∈ H2(Ω) and there is a constant C = C(Ω, a, b, c) > 0 such that

‖u‖H2(Ω) ≤ C
[
‖f‖L2(Ω) + ‖u‖L2(Ω)

]
.

Remark 1. Compared to Theorem 2.18 the additional requirements are: ∂Ω is C2, a ∈ C1(Ω)
and u|∂Ω = 0 (i.e. u ∈ H1

0 (Ω)). Note that for u ∈ H1
0 (Ω) weak solution of Lu = f we already

know, by Lemma 2.14(i), that

‖Du‖L2(Ω) ≤ C [‖f‖L2(Ω) + ‖u‖L2(Ω)]

holds for some constant C > 0, without requiring any boundary regularity for Ω. We also know,
by Theorem 2.18, that u ∈ H2

loc(Ω). The problem is to replace ‖D2u‖L2(V ) with ‖D2u‖L2(Ω).

Remark 2. Since the boundary is C2 we can flatten it locally via a coordinate change. Assume
the boundary is already flat near x0 ∈ ∂Ω i.e. ∃r > 0 such that Ω ∩ Br(x0) = B+

r (x0) = {x ∈
Br(x0)|xd > 0}. Let Γ := {x ∈ Br(x0)|xd = 0} be the corresponding lower boundary. Since
u ∈ H1

0 (Ω) we have u ∈ H1(B+
r (x0)) and Tu|Γ = 0. The main idea is to show that the boundary

condition Tu|Γ = 0 allows to extend the first and second derivative norm down to the lower
boundary.

Proof. As noted in remark 1 above, we already know, by Theorem 2.18, that u ∈ H2
loc(Ω) and

the PDE Lu = f holds pointwise a.e. in Ω. We argue in two steps.

Step 1. Assume Ω = B+
r (x0) := {x ∈ Br(x0)|xd > 0}, b, c ∈ L∞(Ω), a ∈ C1(Ω) (hence in

particular a,Da ∈ L∞(Ω)), f ∈ L2(Ω), and u ∈ H1(Ω) is a weak solution of Lu = f satisfying
Tu|Γ = 0, where Γ := {x ∈ Br(x0)|xd = 0} (i.e. u is zero on the lower boundary of Ω, but not
necessarily on the upper one).

Let W be an open set such that W ⊂⊂ Br(x0) and define V := W ∩ B+
r (x0). There exists a

constant C = CV,a,b,c > 0 such that

(i) ‖Du‖L2(V ) ≤ C
[
‖f‖L2(Ω) + ‖u‖L2(Ω)

]
,

(ii) ‖D2u‖L2(V ) ≤ C
[
‖f‖L2(Ω) + ‖u‖L2(Ω)

]
.

In particular this means u ∈ H2(V ) and ‖u‖H2(V ) ≤ C ′
[
‖f‖L2(Ω) + ‖u‖L2(Ω)

]
.

Proof of (i) Since u is a weak solution of Lu = f we have BL[u, v] = (f, v)L2 ∀v ∈ H1
0 (Ω).

Take ζ ∈ C∞c (Br(x0); [0, 1]) with ζ|V = 1, then, since Tu|Γ = 0, it holds v := ζ2u ∈ H1
0 (Ω) is a

possible test function. The result follows arguing as in the proof of Lemma 2.14.

Proof of (ii) Let W ′ be open with W ⊂⊂W ′ ⊂⊂ Br(x0), and set h0 := 1
4dist (W ′, ∂Br(x0)) and

V ′ := W ′∩Ω. Let now ζ ∈ C∞c (W ′; [0, 1]), such that ζ|V = 1 and define v := −
∑d−1

i=1 D
−h
i ζ2Dh

i u.
Then argue as in the proof of Theorem 2.18 to deduce that ∂iDu ∈ L2(V ) ∀i = 1, . . . , d− 1 and

‖∂iDu‖L2(V ) ≤ C
[
‖f‖L2(Ω) + ‖u‖L2(Ω)

]
(2.39)
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(cf. also Lemma 2.22 above).
Finally use that Lu = f holds pointwise to argue

add∂
2
du = Lu+

∑
jk

(∂jajk)∂ku+
∑
j<d

∑
k

ajk∂j∂ku− b ·Du− cu

= f +
∑
jk

(∂jajk)∂ku+
∑
j<d

∑
k

ajk∂j∂ku− b ·Du− cu.

Since add ≥ θ > 0 we have

θ‖∂2
du‖L2(V ) ≤ ‖f‖L2(V ) +

(
‖Da‖∞+‖b‖∞

)
‖Du‖L2(V ) +‖c‖∞‖u‖L2(V ) +‖a‖∞

d−1∑
j=1

‖∂iDu‖L2(V ).

The bound now follows from (i) and (2.39).

Step 2. We consider now the general case.

Since ∂Ω is C2, for all x0 ∈ ∂Ω there exists r = rx0 > 0 sucht that (eventually after relabelling
and rotation of the variables)

Ω ∩Br(x0) = {x = (x′, xd) ∈ Br(x0)|xd > γ(x′)},

where γ ∈ C2(Rd−1;R).

To flatten the boundary near x0 we introduce the coordinate change

y = Φ(x) := (x′, xd − γ(x′)).

Then the function Φ is invertible with x = Φ−1(y) = (y′, yd + γ(y′)), both Φ and Φ−1 are C2

and
Φ(Ω ∩Br(x0)) = {y = (y′, yd) ∈ Φ(Br(x0))| yd > 0}.

Define y0 := Φ(x0). The set Φ(Br(x0)) is open, hence ∃s > 0 such that Bs(y0) ⊂ Φ(Br(x0)) and
in particular B+

s (y0) ⊂ Φ(Ω ∩Br(x0)). We define now

Ũ := B+
s (y0), Ṽ := B+

s/2(y0), Γ̃ := ∂Ũ ∩ ∂Φ(Ω),

U := Φ−1(B+
s (y0)), V := Φ−1(B+

s/2(y0)), Γ := ∂U ∩ ∂Ω.

• We show now that u ∈ H2(V ) holds and

‖u‖H2(V ) ≤ C
[
‖f‖L2(U) + ‖u‖L2(U)

]
.

To prove this result we translate the problem in the new coordinates y.
Since u ∈ H1

0 (Ω), we have u ∈ H1(U) and Tu|∂U∩∂Ω = 0 in the trace sense. Moreover u is a weak
solution of Lu = f in U, hence BL[u, v] = (f, v)L2(U) ∀v ∈ H1

0 (U), which can be reformulated as
ˆ
U
Dv · (aDu) dx =

ˆ
U
v [f − b ·Du− cu] dx ∀v ∈ H1

0 (U).

We change into the y coordinates in both integrals. For any function F (x) we denote by F̃ (y) :=
F ◦ Φ−1(y) the same function in the new coordinates. The Jacobian of this coordinate change
is 1, hence ˆ

Ũ
D̃v · (ãD̃u) dy =

ˆ
Ũ
ṽ [f̃ − b̃ · D̃u− c̃ũ] dy ∀v ∈ H1

0 (U). (2.40)
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Since Φ,Φ−1 are C2 it holds (exercise)

u ∈ H1
0 (U), ⇔ ũ ∈ H1

0 (Ũ),

u ∈ H1(U), Tu|Γ = 0 ⇔ ũ ∈ H1(Ũ), T ũ|Γ̃ = 0

u ∈ H2
loc(U), ⇔ ũ ∈ H2

loc(Ũ).

Moreover u ∈ H1(U) is a weak solution of Lu = f in U ⇔ ũ ∈ H1(Ũ) is a weak solution of
L̃ũ = f̃ in Ũ , where L̃ũ := −div (ADũ) +B ·Dũ+ Cũ, with (exercise)

A := D̃Φ ã D̃Φ
t
, B := D̃Φ b̃, C := c̃.

Written explicitely in components

Ai′j′(y(x)) = Ai′j′ ◦ Φ(x) =
∑
ij

∂xiΦi′(x) aij(x) ∂xjΦj′(x)

Bj′(y(x)) = Bj′ ◦ Φ(x) =
∑
j

∂xjΦj′(x) bj(x).

Hence we are reduced to consider ũ ∈ H1(B+
s (y0)) weak solution of L̃ũ = f̃ in B+

s (y0) and
satisfying T ũ|Γ̃ = 0, so we are in the setting of Step 1. To apply the corresponding result we

must ensure that A ∈ C1(Ũ), B, C ∈ L∞(Ũ), f̃ ∈ L2(Ũ) and A is uniformly elliptic.

Since b, c ∈ L∞(U), and Φ ∈ C(U) we have b̃, c̃ ∈ L∞(Ũ).

Since f ∈ L2(Ω), Φ ∈ C1(U) and the Jacobian equals 1, we have ‖f̃‖L2(Ũ) = ‖f‖L2(U).

Since a ∈ C1(Ω), and Φ ∈ C2(U) we have A ∈ C1(Ũ).

It remains to prove that A is uniformly elliptic. We compute, for any ξ ∈ Rd,

ξtA(y(x))ξ = ξtDΦ(x) a(x) DΦt(x)ξ = ηta(x)η ≥ θ|η(x)|2,

where η(x) := DΦt(x)ξ.We have (DΦ)−1 = (DΦ−1)◦Φ, hence ξ = (DΦ(x))−1η(x) = (DΦ−1(y(x)))η(x),
and

|ξ| = |(DΦ(x))−1η(x)| ≤ ‖(DΦ−1)‖L∞(Ũ)|η(x)| = C|η(x)|.

It follows,

ξtA(y(x))ξ ≥ θ|η(x)|2 ≥ θ

C2
|ξ|2,

a.e. in U which implies, since Φ is invertible, that A is uniformly elliptic in Ũ .

Step 1 now ensures ũ ∈ H2(Ṽ ) and ‖ũ‖H2(Ṽ ) ≤ C
[
‖f̃‖L2(Ũ) + ‖ũ‖L2(Ũ)

]
. Changing coordinates

in each integral we obtain ‖u‖H2(V )‖ ≤ C ′‖ũ‖H2(Ṽ ), ‖u‖L2(V ) = ‖ũ‖L2(Ṽ ) and ‖f‖L2(V ) =

‖f̃‖L2(Ṽ ), from which the result follows. This completes the proof inside V.

• Finally we show that u ∈ H2(Ω) and

‖u‖H2(Ω) ≤ C
[
‖f‖L2(Ω) + ‖u‖L2(Ω)

]
.

For each x ∈ ∂Ω we construct V ′x := Φ−1(Bs/2(Φ(x))) as above (but this time we map the whole
ball back, not only half of it). Then V ′x is an open neighborhood of x, and ∂Ω ⊂

⋃
x∈∂Ω V

′
x. By
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compactness of ∂Ω there are N ∈ N, x1,, . . . , xN ∈ ∂Ω such that ∂Ω ⊂
⋃N
j=1 V

′
xj . Finally we add

an open subset V0 ⊂⊂ Ω such that Ω = V0 ∪
⋃N
j=1 Vxj , where Vx := Φ−1(B+

s/2(Φ(x))).

By the arguments above, we know that u ∈ H2(Vxj ) ∀j = 1, . . . , N. Moreover, u ∈ H2(V0), by
interior regularity, hence

‖u‖H2(Ω) ≤ ‖u‖H2(V0) +
N∑
j=1

‖u‖H2(Vxj ) ≤ C
[
‖f‖L2(Ω) + ‖u‖L2(Ω)

]
.

This concludes the proof of the theorem.

Remark. Suppose 0 is not in the real spectrum of L, 0 6∈ Σ(L). Then the equation Lu = f has
a unique weak solution u ∈ H1

0 (Ω) for all f ∈ L2(Ω), and the operator T−1
L|L2(Ω)

: L2(Ω)→ H1
0 (Ω)

is well defined and bounded. It follows ‖u‖L2(Ω) ≤ ‖T−1‖op ‖f‖L2(Ω) and hence

‖u‖H2(Ω) ≤
[
‖f‖L2(Ω) + ‖u‖L2(Ω)

]
≤ C ′‖f‖L2(Ω).

This means the operator T−1 is bounded as a map from (L2(Ω), ‖ · ‖L2) to (H2(Ω), ‖ · ‖H2).
[11: 13.11.2023]
[12: 16.11.2023]

Theorem 2.24 (higher regularity up to the boundary). Assume Ω ⊂ Rd is open and bounded.
We consider the formal differential operator Lu = −div (aDu) + b ·Du + cu with L uniformly
elliptic.

Assume in addition ∂Ω is C2+m, a ∈ C1+m(Ω), b, c ∈ Cm(Ω), f ∈ Hm(Ω) and u ∈ H1
0 (Ω) is a

weak solution of Lu = f in Ω.

Then u ∈ H2+m(Ω) and there is a constant C = C(Ω, a, b, c,m) > 0 such that

‖u‖H2+m(Ω) ≤ C
[
‖f‖Hm(Ω) + ‖u‖L2(Ω)

]
.

Proof. We argue by induction on m.

For m = 0 we have a ∈ C1(Ω), b, c ∈ C0(Ω), ∂Ω is C2, f ∈ L2(Ω) and the result follows from
Theorem 2.23.

We prove now the first induction step: if the statement holds for m = 0, then the statement
holds also for m = 1. Assume a ∈ C2(Ω), b, c ∈ C1(Ω), ∂Ω is C3 and f ∈ H1(Ω). Our goal is to
show that u ∈ H3(Ω).

• Since u ∈ H1
0 (Ω) is a weak solution of Lu = f with u|∂Ω = 0, by the case m = 0 we know

that u ∈ H2(Ω), Lu = f holds pointwise a.e. in Ω, and ‖u‖H2(Ω) ≤ C [‖f‖L2(Ω) + ‖u‖L2(Ω)].
Moreover, by Theorem 2.19, u ∈ H3

loc(Ω), and the PDE

L(∂ju) = fj := ∂jf + div [(∂ja)Du]− (∂jb) ·Du− (∂jc)u, (2.41)

holds pointwise a.e. Note that since a ∈ C2(Ω), b, c ∈ C1(Ω), f ∈ H1(Ω) and u ∈ H2(Ω), it
holds fj ∈ L2(Ω), and not just L2

loc(Ω), as was the case in the proof of Theorem 2.19. Therefore
∂ju ∈ H1(Ω) is a weak solution (not just local weak solution) of (2.41) in Ω.

• Suppose in addition that ∂ju ∈ H1
0 (Ω). In this case Theorem 2.23 implies that ∂ju ∈ H2(Ω),

and ‖∂ju‖H2(Ω) ≤ C [‖fj‖L2(Ω) + ‖∂ju‖L2(Ω)], which would then provide the desired estimate.
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• In general ∂ju 6∈ H1
0 (Ω), but the statement is true if we consider only derivatives in the

direction parallel to the boundary. Indeed, as in the proof of Theorem 2.23 Step 1, we consider

U := B+
r (x0), V := B+

1/2(0), Γ := {x ∈ ∂U |xd = 0},

and u ∈ H1(U) is a weak solution of Lu = f in U satisfying Tu|Γ = 0 in the trace sense. Our
problem can be locally reduced to the above setting by restricting to a small neighborhood of
some point x0 ∈ ∂Ω and performing a coordinate chance Φ: Rd → Rd, that flattens locally the
boundary. The PDE Lu = f will be transformed into L̃ũ = f̃ , (cf. proof of Theorem 2.23)
where, since ∂Ω and hence also Φ is C3, the new coefficients satify A,B,C ∈ C2(Ω). Moreover,
since Φ ∈ C3(Ω) it holds u ∈ H3(Ω)⇔ ũ ∈ H3(Φ(Ω)).

Claim. It holds ∂ju ∈ H1(V ) and T∂ju|Γ = 0 for all i = 1, . . . , d− 1.

Consequence. Since ∂ju ∈ H1(V ) is a weak solution of L(∂ju) = fj in Ω, with T∂ju|Γ = 0, it
follows (cf Step 1. in the proof of Theorem 2.23) that ∂ju ∈ H2(V ) and

‖D2∂ju‖L2(V ) ≤ C [‖fj‖L2(Ω) + ‖∂ju‖L2(Ω)] ≤ C [‖f‖H1(Ω) + ‖u‖L2(Ω)].

Finally, since u ∈ H3
loc(Ω) and hence the equation L(∂ju) = fj holds pointwise a.e. for all

j = 1, . . . d, we deduce the same result also for ∂3
du.

Proof of the Claim. If u ∈ C1(U) we have Tu|Γ = u(x′, 0) = 0 ∀|x′| < r. It follows T∂ju|Γ =
∂x′ju(0, x′) = 0 for j = 1, . . . , d − 1. Since u ∈ H2(V ) and V has Lipschitz boundary, there is a

sequence n 7→ un ∈ C1(V ) such that ‖u− un‖H2(V ) → 0. It follows ‖Tu− Tun‖L2(∂V ) → 0 and
‖T∂ju−T∂jun‖L2(∂V ) → 0. Therefore Tu is weakly differentiable along Γ with ∂jTu = T∂ju = 0
for j = 1, . . . , d− 1.

Theorem 2.25 (infinite regularity up to the boundary). Assume Ω ⊂ Rd is open and bounded.
We consider the formal differential operator Lu = −div (aDu)+b·Du+cu with aij , bj , c ∈ L∞(Ω),
and L uniformly elliptic.

Assume in addition a, b, c, f ∈ C∞(Ω), ∂Ω is C∞ and u ∈ H1
0 (Ω) is a weak solution of Lu = f

in Ω with boundary condition u|∂Ω = 0.

Then u ∈ C∞(Ω) and Lu = f holds pointwise in Ω.

Proof. By Theorem 2.24 it holds u ∈ Hm(Ω) ∀m ∈ N. It follows, by generalized Sobolev in-
equality, u ∈ Ck(Ω) ∀k ∈ N.

2.5 Maximum principles

Assume Ω ⊂ Rd is open and bounded, and u ∈ C2(Ω) ∩ C(Ω).

(i) If x0 ∈ Ω is a local maximum of u, then Du(x0) = 0 and D2u(x0) ≤ 0 as a quadratic form,
i.e.

∑d
ij=1 ξi∂i∂ju(x0)ξj ≤ 0 ∀ξ ∈ Rd.

(ii) If D2u(x) > 0 (as a quadratic form) ∀x ∈ Ω then there is no local maximum in Ω−

The following two results were shown in Introduction to PDE.

Weak maximum principle: if −∆u ≤ 0 on Ω, then maxΩ u = max∂Ω u.

Strong maximum principle: if −∆u ≤ 0 on Ω and Ω is connected, then exactly one of the
following holds:
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(a) u(x) < max∂Ω u ∀x ∈ Ω, or

(b) u is constant on Ω.

Our goal is to derive these results with −∆u replaced by Lu uniformly elliptic operator. In this
section it will be convenient to switch to non-divergence formulation: Lu = −Tr (aD2u) + b ·
Du+ cu. Since we want to derive pointwise estimates, we will assume below a, b, c ∈ C(Ω) and
u ∈ C2(Ω) ∩ C(Ω).
Since we work with Tr (aD2u) the followig result will be useful.

Lemma 2.26. (comparing matrices) Let A ∈ Rn×nsym such that A ≥ 0 as a quadratic form. The
following statements hold.

(i) TrA ≥ 0.

(ii) ∀B,C ∈ Rn×n such that B ≥ C (i.e. B − C ≥ 0 as a quadratic form) we have

TrAB ≥ TrAC.

Proof.
(i) Since A ≥ 0 we have Ajj = (ej , Aej) ≥ 0 ∀j = 1, . . . , n, and hence TrA ≥ 0.

(ii) Since AT = A we can write A = V TDV, where V ∈ Rn×n is orthogonal V TV = Id ,
D = diag (λ1, . . . , λn) and λ1, . . . λn ∈ R are eigenvalues of the matrix A. Since A ≥ 0 we have
λj ≥ 0 ∀j = 1, . . . , n. Hence the matrix

√
A := V TD1/2V, D1/2 := diag (

√
λ1, . . . ,

√
λn)

is well defined and symmetric. Using the decomposition A =
√
A
√
A, we compute

Tr (B − C)A = Tr (B − C)
√
A
√
A = Tr

√
A(B − C)

√
A.

Since B−C ≥ 0 it follows
√
A(B−C)

√
A ≥ 0 and hence, by (i), Tr

√
A(B−C)

√
A ≥ 0. Indeed

for any vector v ∈ Rn we have

(v,
√
A(B − C)

√
Av) = (

√
Av, (B − C)

√
Av) = (ṽ, (B − C)ṽ) ≥ 0,

where we used ṽ :=
√
Av and

√
A
T

=
√
A.

2.5.1 Weak maximum principle

Theorem 2.27 (weak maximum principle I). Assume Ω ⊂ Rd is open and bounded. We consider
the differential operator Lu = −Tr (aD2u) + b ·Du+ cu with aij , bj , c ∈ C(Ω), and L uniformly
elliptic. Assume u ∈ C2(Ω) ∩ C(Ω). Then the following statements hold.

(i) (a) If Lu < 0 on Ω and c = 0, then u has no local maximum in Ω.

(b) If Lu > 0 on Ω and c = 0, then u has no local minimum in Ω.

(ii) Assume Lu ≤ 0 on Ω.

(a) If
c = 0 or
c ≥ 0 and u ≥ 0

then maxΩ u = max∂Ω u.
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(b) If c ≥ 0 then maxΩ u ≤ max∂Ω u+, where u+(x) := max{0, u(x)} ≥ 0.

(iii) Assume Lu ≥ 0 on Ω.

(a) If
c = 0 or
c ≥ 0 and u ≤ 0

then minΩ u = min∂Ω u.

(b) If c ≥ 0 then minΩ u ≥ min∂Ω(−u−), where u−(x) := −min{0, u(x)} ≥ 0.

Notation. If Lu ≤ 0 on Ω, u is called a subsolution of Lu = 0 on Ω. If Lu ≥ 0 on Ω, u is
called a supersolution of Lu = 0 on Ω.

Proof. The idea is that at a maximum (minimum) point x0 ∈ Ω Lu(x0) = −Tr aD2u(x0), since
Du(x0) = 0. Then uniform ellipticity garantees that Lu(x0) is “equivalent to” D2u(x0).

(i)(a) Since c = 0 we have Lu = −Tr aD2u+ b ·Du. By contradiction, assume Lu < 0 on Ω and
x0 ∈ Ω is a local maximum. Then Du(x0) = 0 and D2u(x0) ≤ 0. Therefore

Lu(x0) = −Tr a(x0)D2u(x0) + b(x0) ·Du(x0) = −Tr a(x0)D2u(x0) = TrAB,

where A := a(x0) ≥ θId , B := −D2u(x0) ≥ 0 and BT = B. It follows (cf. Lemma 2.26 below)

0 > Lu(x0) = TrAB ≥ θTrB ≥ 0,

which gives a contradiction.

(i)(b) Use (i)(a) on the function −u.

(ii)(a) Case 1: c = 0 and Lu ≤ 0. We will construct below a function v ∈ C2(Ω) ∩ C(Ω) such
that Lv(x) < 0 on Ω. Define uε := u+ εv, with ε > 0. Then, since Lu(x) ≤ 0 and Lv(x) < 0 we
have

Luε(x) = Lu(x) + εLv(x) < 0 ∀x ∈ Ω,

hence by (i) uε admits no local maximum. In particular this means uε(x) ≤ max∂Ω uε ∀x ∈
Ω, ∀ε > 0. The result follows taking the limit ε→ 0.

Construction of v. In the special case Lu = −∆u is suffices to take v(x) := |x|2/2. Indeed by
direct computation −∆v = −d < 0.
Consider now the general case Lu = −Tr (aD2u) + b · Du. We take v to be a function of only
one variable, say x1, and of the form v(x) := eλx1 , where λ ∈ R is a parameter to choose. We
compute

Dv(x) = λeλx1e1, D2u = λ2eλx1e1 ⊗ e1,

Lv(x) = [−a11(x)λ2 + b1(x)λ] eλx1 .

Therefore Lv(x) < 0 iff [−a11(x)λ2 + b1(x)λ] < 0. By uniform ellipticity

−a11(x)λ2 + b1(x)λ ≤ −θλ2 + b1(x)λ ≤ −θλ2 + ‖b1‖L∞ |λ|

= |λ| [−θ|λ|+ ‖b1‖L∞ ] < 0 ∀|λ| > ‖b1‖L
∞

θ
.

This concludes the proof of Case 1.

Case 2: c ≥ 0, u ≥ 0 and Lu ≤ 0. We can write Lu = L0u+ cu, where

L0u := −Tr (aD2u) + b ·Du = Lu− cu.
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Since u, c ≥ 0 we have −cu ≤ 0 and hence, using Lu ≤ 0,

L0u(x) = Lu(x)− c(x)u(x) ≤ 0.

The result follows from Case 1. This concludes the proof of (ii)(a)

(ii)(b) Apply (ii)(a) to the function −u.

(iii)(a) Assume Lu ≤ 0 and define V := {x ∈ Ω|u(x) > 0}.
If V = ∅, then u ≤ 0 on Ω, u+|∂Ω = 0 and the statement holds.

Assume now V 6= ∅. Then u|V = u+|V , and since u is continuous, the set V is open. Therefore

u+|V = u|V ∈ C2(V ) ∩ C(V ) and, since u > 0 on V we have

L0u+(x) = Lu(x)− c(x)u(x) ≤ 0 ∀x ∈ V.

By (ii)(a) we have maxV u+ = max∂V u+. Since u(x) ≤ u+(x) ∀x ∈ Ω and u+|Ω\V = 0, it follows

max
Ω

u ≤ max
Ω

u+ = max
V

u+ = max
∂V

u+.

We have ∂V = (∂V ∩ Ω) ∪ (∂V ∩ ∂Ω). Since u+|∂V ∩Ω = 0 and u+|∂V ∩∂Ω ≥ 0 it follows

max
Ω

u ≤ max
∂V

u+ = max
∂Ω

u+.

This concludes the proof of (iii)(a).

(iii)(b) Apply (iii)(a) to the function −u.

Remark 1. If u|∂Ω ≤ 0 and Lu ≤ 0 it follows maxΩ u ≤ max∂Ω u+ = 0, i.e. u(x) ≤ 0 ∀x ∈ Ω.

Remark 2. If Lu = 0 and c ≥ 0 in Ω it follows

max
Ω
|u| = max

∂Ω
|u|.

Indeed

Lu ≤ 0⇒ u(x) ≤ max
∂Ω

u+ ≤ max
∂Ω
|u|,

Lu ≥ 0⇒ −max
∂Ω
|u| ≤ −max

∂Ω
u− ≤ u(x).

The result follows.
[12: 16.11.2023]
[13: 20.11.2023]

2.5.2 Strong maximum principle

Theorem 2.28. Assume Ω ⊂ Rd is open, bounded and connected.
We consider the differential operator Lu = −Tr (aD2u) + b ·Du+ cu with aij , bj , c ∈ C(Ω), and
a uniformly elliptic. Assume u ∈ C2(Ω) ∩ C(Ω) and define

M := max
Ω

u, m := min
Ω
u.

Then the following statements hold.
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(i) Assume one of these conditions holds.

(a) c = 0 and Lu ≤ 0 in Ω, or

(b) c ≥ 0, Lu ≤ 0 in Ω and M ≥ 0.

Then either u(x) < M ∀x ∈ Ω or u ≡M is constant on Ω.

(ii) Assume one of these conditions holds.

(a) c = 0 and Lu ≥ 0 in Ω, or

(b) c ≥ 0, Lu ≥ 0 in Ω and m ≤ 0.

Then either u(x) > m ∀x ∈ Ω or u ≡ m is constant on Ω.

Strategy of the proof To prove (i) we define V := {x ∈ Ω|u(x) < M}, C := {x ∈ Ω|u(x) = M}.
Then Ω = V ∪C and, since u is continuous, V is open. Our goal is to show that, if V 6= ∅, then
V = Ω.
By contradiction, assume V 6= ∅ and V ( Ω. In particular this means ∂V ∩ Ω 6= ∅. Note also
that ∂V ∩ Ω ⊂ C, hence every point in this set is a local maximum. The strategy is to show
that there must be a point x1 ∈ ∂V ∩ Ω with Du(x1) 6= 0, which contradicts the fact that this
is a local maximum. To understand how this works we consider first a simple example.

Example Assume d = 1, V = (a, b) such that [a, b] ⊂ Ω, and a ∈ ∂V ∩ Ω or b ∈ ∂V ∩ Ω.
Assume in addition Lu = −u′′.
If b ∈ ∂V ∩ Ω, then u(x) < u(b) = M ∀x ∈ (a, b). It follows, that there exists a point x ∈ (a, b)
with u′(x) > 0. Hence, since −u′′ ≤ 0 on Ω, we have

u′(y) ≥ u′(x) > 0 ∀y ∈ [x, b],

and therefore u′(b) > 0, which is impossible since b is a maximum point inside Ω.
In the same way we argue that u′(a) < 0 if a ∈ ∂V ∩Ω, which again contradicts the fact that a
is a maximum point.

In the general case, we need to find a point x1 ∈ ∂V ∩ Ω satisfying the requirements of the
following lemma.

Theorem 2.29 (Hopf’s lemma). Assume Ω ⊂ Rd is open, bounded and connected.
We consider the differential operator Lu = −Tr (aD2u) + b ·Du+ cu with aij , bj , c ∈ C(Ω), and
a uniformly elliptic.
Assume u ∈ C2(Ω) ∩ C1(Ω), and there is a point x0 ∈ ∂Ω such that

• Ω satisfies interior ball regularity at x0, i.e. ∃y ∈ Ω, r > 0 with Br(y) ⊂ Ω and x0 ∈
∂Br(y), and

• u(x) < u(x0) ∀x ∈ Ω.

We consider ∂νu(x0) := νx0 · Du(x0), where νx0 is the outward unit normal to ∂Br(y) in x0.
Then the following statements hold.

(i) If c = 0 and Lu ≤ 0 in Ω, then ∂νu(x0) > 0.

(ii) If c ≥ 0, Lu ≤ 0 in Ω and u(x0) ≥ 0, then ∂νu(x0) > 0.
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Remark 1. From u(x) < u(x0) it follows that ∂νu(x0) ≥ 0. The non trivial part is to prove
that the inequality is strict ∂νu(x0) > 0.

Remark 2. If ∂Ω is C2, interior ball regularity holds in every point x ∈ ∂Ω.

We will prove this theorem below. Now, using Hopf’s lemma, we can prove the strong maximum
principle.

Proof of Theorem 2.28.
(i) We define V := {x ∈ Ω|u(x) < M}, C := {x ∈ Ω|u(x) = M}. Then Ω = V ∪C and, since u
is continuous, V is open. Our goal is to show that, if V 6= ∅, then V = Ω.
By contradiction, assume V 6= ∅ and V ( Ω. In particular this means ∂V ∩ Ω 6= ∅. We look
for a point x1 ∈ ∂V ∩ Ω with Du(x1) 6= 0, which contradicts the fact that this must be a local
maximum.

Indeed, since ∂V ∩ Ω 6= ∅ there is some point x0 ∈ ∂V ∩ Ω. Since x0 ∈ ∂V, for each ε > 0
there is yε ∈ V such that |yε − x0| ≤ ε. Set now ε0 := dist (x0,∂Ω)

4 and y := yε0 . We have
dist (y, ∂V ∩ Ω) ≤ |y − x0| ≤ ε0 and dist (y, ∂Ω) ≥ dist (x0, ∂Ω)− |y − x0| ≥ 3ε0 and therefore

dist (y, ∂V ∩ Ω) < dist (y, ∂Ω). (2.42)

Since V is open, Br(y) ⊂ V for some r > 0. We define

R := sup{r > 0|Br(y) ⊂ V }.

From (2.42) it follows that BR(y) ⊂ Ω and ∃x1 ∈ ∂V ∩ ∂BR(y).

Then u ∈ C2(BR(y)) ∩ C1(BR(y)), Lu ≤ 0 on BR(y), u(x) < u(x1) = M ∀x ∈ BR(y), and, if
c ≥ 0 we have assumed M = u(x1) ≥ 0. Finally the set BR(y) satisfies interior ball regularity
and all boundary points, hence in particular at x1.
The result now follows from Hopf’s lemma applied to the set BR(y).

(ii) Apply (i) to the function −u.

We now prove Hopf’s lemma.

Proof of Theorem 2.29.

The case of d = 1 The ball Br(y) is replaced by I = (y − r, y + r). Performing a translation we
can reduce to the case I = (−r,+r). To make the formulas more readable, in the following we
write a = −r, b = r.
We distinguish three cases.

Case 1. Assume x1 = b and a ∈ V i.e. [a, b) ⊂ V and hence u u(x) < u(b) ∀x ∈ [a, b). We
assume one of the following two conditions holds:

(α) c = 0, and Lu = L0u = −a(x)u′′(x) + b(x)u(x) ≤ 0, or

(β) c ≥ 0, Lu = L0u+ c(x)u(x) ≤ 0 and u(b) ≥ 0.

Our goal is to prove that u′(b) > 0.
Idea. Note that if u′(b) > 0 and u(x) < u(b) ∀a ≤ x < b then, there exists a function ū ∈ C1(I)
such that

u(x) ≤ ū(x) ≤ u(b) ∀x ∈ I, and 0 < ū′(b) < u′(b).
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We can reformulate this statement by defining w := ū−u. Then 0 ≤ w(x) ≤ u(b)−u(x) ∀x ∈ I,
in particular w(b) = 0, and w′(b) = ū′(b)− u′(b) < 0.

Rigorous argument. Inspired by the idea above, assume ∃w ∈ C1(I) such that

0 ≤ w ≤ u(b)− u, and w′(b) < 0.

We claim that then u′(b) > 0. Indeed, setting ū := u + w, we have ū(x) ≤ u(b) ∀x ∈ [a, b] and
ū(b) = u(b). It follows that ū′(b) ≥ 0. We compute now

u′(b) + w′(b) = ū′(b) ≥ 0 ⇒ u′(b) ≥ −w′(b) > 0,

where in the last inequality we used w′(b) < 0.

Construction of w. It is not difficult to construct a function w satisfying w ≥ 0, w(b) = 0 and
w′(b) < 0. The hard part is to satify the constraint w ≤ u(b)− u.
Remember that, by weak maximum principle, and using u(a) < u(b), we have:

if c = 0, Lu ≤ 0 ⇒ max
I
u = max{u(a), u(b)} = u(b),

if c ≥ 0, Lu ≤ 0, u(b) ≥ 0 ⇒ max
I
u ≤ max{u+(a), u+(b)} = u(b).

Claim. ∃v ∈ C2(I) ∩ C1(I), such that

v ≥ 0, v(b) = 0, v′(b) < 0, Lv ≤ 0.

Proof. Take the ansatz v(x) := (e−λx − e−λb), with λ > 0 a parameter to choose later.
Since λ > 0 we have v(x) > 0 ∀x < b and v(b) = 0. Moreover v′(x) = −λe−λx < 0 ∀x ∈ [a, b].
Finally, using c(x) ≥ 0 and a(x) ≥ θId , we get

Lv = −a(x)v′′(x) + b(x)v′(x) + c(x)v(x) = [−a(x)λ2 − b(x)λ+ c(x)]e−λx − c(x)e−λb

≤ [−a(x)λ2 − b(x)λ+ c(x)]e−λx ≤ [−θλ2 + ‖b‖L∞λ+ ‖c‖L∞ ]e−λx < 0

for λ large enough. This concludes the proof of the Claim.

Set now w := εv, with ε > 0 a parameter to choose later. Then w ∈ C2(I) ∩ C1(I), w ≥ 0,
w(b) = 0, w′(b) < 0. It remains to check that w ≤ u(b)− u.
Set ū := u+ w. Using Lw ≤ 0 we have

Lū = Lu+ Lw ≤ 0.

Note that ū(b) = u(b) and

ū(a) = u(a) + εv(a) < u(b), for ε small enough.

Hence, by weak maximum principle, if (α) or (β) holds we have

ū(x) ≤ u(b) ∀x ∈ [a, b].

It follows w(x) = ū(x)− u(x) ≤ u(b)− u(x). This concludes the proof in Case 1.

Case 2. Assume x1 = a and b ∈ V i.e. (a, b] ⊂ V. Using the function v(x) := eλx − eλa we can
repeat the above arguments to prove u′(a) < 0.
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Case 3. Assume both a, b ∈ ∂V i.e. u(−r) = u(+r) = M and u(x) < M ∀ − r < x < r. The
argument above cannot work because u(−r) + εv(−r) > u(−r) = M for any ε > 0. Hence we
need a function v such that v(−r) = v(r) = 0. We take the ansatz

v(x) := e−λx
2 − e−λr2

.

This function satisfies v ∈ C∞([−r, r]), v(x) < 0 for |x| < r and v(±r) = 0. Moreover setting
x1 = r we argue v′(x1) = v′(r) = −2λre−λr

2
< 0 for any λ > 0. By direct computation

Lv(x) =
[
−4x2λ2a(x) + 2a(x)λ− 2b(x)xλ+ c(x)

]
e−λx

2 − c(x)e−λr
2
.

Note that Lv ≤ 0 cannot hold on (−r, r). Indeed for x = 0 we compute

Lv(0) = 2a(0)λ+ c(0)(1− e−λr2
) ≥ 2θλ+ c(0)(1− e−λr2

) ≥ 2θλ > 0.

The solution is to consider v only on the set { r2 < |x| < r}. On this set we have

Lv ≤
[
−r2λ2θ + 2‖a‖∞λ+ 2‖b‖∞rλ+ ‖c‖∞

]
e−λx

2
< 0

for λ > 0 large enough. The price to pay is that we have additional points on the boundary
x = ±r/2. Since on these points we have u(x) < M we can argue as in case 1 and 2.

The case of d > 1. By rotating and translating we can reduce to the case y = 0, and x0 = re1.
Set

B := Br(y) = Br(0), R := Br(0) \Br/2(0).

In the same spirit as d = 1 Case 3, we look for a function v ∈ C2(R) ∩C1(R), and a parameter
ε > 0, such that 

v(x) ≥ 0 on R,

∂νv(x0) = ∂1v(re1) < 0

Lv ≤ 0 on R,

v(x0) = 0, and (u+ εv)|∂R ≤ u(x0).

We take the ansatz
v(x) := (e−λ|x|

2 − e−λr2
),

with λ > 0 a parameter to choose later. Then v ∈ C∞(B), v ≥ 0 on B and v|∂B = 0. Hence

(u+ εv)|∂B = u|∂B = u(x0). Moreover ∂νv(x0) = ∂1v(re1) = −2λre−λr
2
< 0. It remains to check

that Lv ≤ 0 and (u+ εv)|∂Br/2(0) ≤ u(x0). We compute

∂jv = −2λxje
−λ|x|2 , ∂i∂jv = [4λ2xixj − 2λδij ]e

−λ|x|2 ,

hence, using a ≥ θ, and r/2 ≤ |x| ≤ r, we get

Lv(x) = [−4λ2(x, a(x)x) + 2λTr a(x)− 2λb(x) · x+ c(x)]e−λ|x|
2 − c(x)e−λr

2

≤ [−4λ2(x, a(x)x) + 2λTr a(x)− 2λb(x) · x+ c(x)]e−λ|x|
2

≤ [−4λ2θ|x|2 + 2λ(d‖a‖L∞ + |x|‖b‖L∞) + ‖c‖L∞ ]e−λ|x|
2

≤ [−λ2θr2 + 2λ(d‖a‖L∞ + r‖b‖L∞) + ‖c‖L∞ ]e−λ|x|
2
< 0
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for λ large enough. Finally for x ∈ ∂Br/2(0), we have

ū(x) = u(x) + ε(e−λ
r2

4 − e−λr2
) ≤ max

∂Br/2(0)
u+ εα.

where α := (e−λ
r2

4 − e−λr2
) > 0. Since max∂Br/2(0) u < u(x0) there exists ε satisfying

0 < ε <
max∂Br/2(0) u

α
.

For this choice of ε, we have ū|∂Br/2(0) ≤ u(x0). This concludes the construction of v and hence
the proof of the theorem.

[13: 20.11.2023]
[14: 23.11.2023]

2.6 Harnack’s inequality

Theorem 2.30 (Harnack’s inequality on balls). Assume Ω ⊂ Rd is open and bounded. We
consider the formal differential operator Lu = −div (aDu) with aij ∈ L∞(Ω), and a uniformly
elliptic.

Then ∃C = C(a, d) > 1 such that for all u ∈ H1(Ω) weak solution of Lu = 0 in Ω with u ≥ 0
a.e. in Ω we have

sup
BR(x0)

u ≤ C inf
BR(x0)

u, ∀R > 0, x0 ∈ Ω s.t. B4R(x0) ⊂ Ω, (2.43)

where by sup and inf we mean the essential sup and essential inf .

Remark 1 Harnack’s inequality is a quantitative version of the strong maximum principle.
Indeed, assuming a ∈ C1(Ω) and u ∈ C2(Ω, [0,∞))∩H1

0 (Ω) is a weak solution of −div (aDu) = 0,
we have Lu = −Tr aD2u −Da ·Du = 0. Since infB2R(x0) u ≥ 0 and B2R(x0) is connected, the
strong maximum principle ensures that either u(x) > 0 for all x ∈ B2R(x0) or u = 0 on the ball
hence

min
BR(x0)

u = 0 ⇒ max
BR(x0)

u = 0.

Harnack inequality provides a more quantitative estimate of the relation between sup and inf.

Remark 2 Remember that if u ∈ C2(Ω) is a solution of ∆u = 0 then

u(x) =

 
BR(x)

u(y)dy =
1

|BR(x)|

ˆ
Br(x)

u(y)dy ∀BR(x) ⊂⊂ Ω. (2.44)

Assume u ≥ 0 and B3R(x0) ⊂⊂ Ω. Then ∀x, y ∈ BR(x0) we have

u(x) =
1

|BR(x)|

ˆ
BR(x)

u(z)dz ≤ 1

|BR(x)|

ˆ
B2R(y)

u(z)dz =
|B2R(y)|
|BR(x)|

u(y) = 2du(y),

which implies u(x) ≤ 2du(y) ∀x, y ∈ BR(x0) and hence Harnack’s inequality holds with C = 2d.
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Proof of Harnack’s inequality in the case of smooth coefficents (sketch).
Assume aij ∈ C∞(Ω) and u ∈ H1

0 (Ω) is a weak solution of Lu = −div (aDu) = 0. By improved
regularity u ∈ C∞(Ω). Our goal is to find a constant C = C(a, d) > 1 such that

u(x) ≤ C u(y) ∀x, y ∈ BR(x0). (2.45)

For ε > 0 consider the function uε := u+ ε. Since u ≥ 0 we have uε := u+ ε ≥ ε > 0 and since
Du = Duε, we have div (aDuε) = div (aDu) = 0. We argue, for each x, y ∈ BR(x0)

uε(x) =
uε(x)

uε(y)
uε(y) = ev(x)−v(y)uε(y) ≤ e|v(x)−v(y)|uε(y).

where we defined v := lnuε. Since uε > 0 and uε ∈ C∞(Ω) the function v is well defined and
v ∈ C∞(Ω). Note that

|v(x)− v(y)| = |
ˆ 1

0
Dv(y + τ(x− y)) · (x− y)dτ | ≤ |x− y| sup

BR(x0)
|Dv|.

The hard part is to show that supBR(x0) |Dv| is bounded by a constant independent of uε. The
main trick is to remark that

Lu = 0 ⇒ Lv = Dv · aDv.

Indeed Dv = 1
uε
Du and hence, using also Lu = 0,

Lv = −div (aDv) = −div

(
1

uε
aDu

)
= − 1

uε
Lu−

∑
jk

ajk∂ku∂j
1

uε
=
∑
jk

ajk∂ku∂ju
1

u2
ε

= Dv·aDv.

Extracting information on Dv from the nonlinear PDE above requires some work (see Evans).
Here we consider directly the more general case a ∈ L∞(Ω).

We will see the proof Harnack’s inequality only for d ≥ 3 (for d = 1, 2 there are simpler

arguments, see exercise sheet). The idea is to replace in (2.45) uε(x) with
(ffl

B2R(x0) u
p
) 1
p

for

some p > 0, uε(y) with
(ffl

B2R(x0) u
−p
)− 1

p
and sup |D lnuε| with ‖D lnu‖L2(B2R(Ω)). We will need

the following results and definitions.

Definition 2.31 (sub and supersolution). Assume Ω ⊂ Rd is open and bounded. We consider
the formal differential operator Lu = −div (aDu) with aij ∈ L∞(Ω), and a uniformly elliptic.

(i) u ∈ H1(Ω) is a weak subsolution of Lu = 0 if

BL[u, v] ≤ 0 ∀v ∈ H1
0 (Ω) with v ≥ 0.

(ii) u ∈ H1(Ω) is a weak supersolution of Lu = 0 if

BL[u, v] ≥ 0 ∀v ∈ H1
0 (Ω) with v ≥ 0.
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Theorem 2.32 (weak Harnack inequality). Assume Ω ⊂ Rd is open and bounded, d ≥ 3. We
consider the formal differential operator Lu = −div (aDu) with aij ∈ L∞(Ω), and a uniformly
elliptic. The following hold.

(i) ∀p > 0 ∃C1 = C1(a, p, d) > 0 such that ∀u ∈ H1(Ω; [0,∞)) weak subsolution of Lu = 0 in
Ω it holds

sup
BR(x0)

u ≤ C1

( 
B2R(x0)

up

) 1
p

∀B4R(x0) ⊂ Ω. (2.46)

(ii) ∀q > 0 ∃C2 = C2(a, q, d) > 0 such that ∀u ∈ H1(Ω; [0,∞)) weak supersolution of Lu = 0
in Ω it holds

inf
BR(x0)

u ≥ C2

( 
B2R(x0)

u−q

)− 1
q

∀B4R(x0) ⊂ Ω. (2.47)

Remark. Assume u ∈ C2(Ω; [0,∞)).
If −∆u ≤ 0, then u(x) ≤

ffl
Br(x) u(y)dy ∀Br(x) ⊂⊂ Ω. Assuming B2R(x0) ⊂⊂ Ω, we argue for

all x ∈ BR(x0),

u(x) ≤
 
BR(x)

u dy ≤ 2d
 
B2R(x0)

u dy,

which gives the weak Harnack’s inequality (i) for p = 1.

Assume now u ≥ ε > 0 on Ω, and −∆u ≥ 0. Then 1/u ∈ C2(Ω; (0,∞)) and −∆(1/u) ≤ 0.
Indeed

−∆
1

u
=

∆u

u2
− 2
|Du|2

u3
≤ 0.

Hence

sup
BR(x0)

1

u
≤ 2d

 
B2R(x0)

u−1dy.

It follows

inf
BR(x0)

u ≥ 2−d

( 
B2R(x0)

u−1dy

)−1

,

which gives the weak Harnack’s inequality (ii) for q = 1.

Theorem 2.33 (bound on log variation). Assume Ω ⊂ Rd is open and bounded. We consider
the formal differential operator Lu = −div (aDu) with aij ∈ L∞(Ω), and a uniformly elliptic.
The following hold.

For all d ≥ 1 there exists a constant C3 = C3(a, d) > 0 such that, if u ∈ H1(Ω; [0,∞)) is a weak
solution of Lu = 0 we have

ˆ
B2R(x0)

|D ln(u+ ε)|2dx ≤ C3R
d−2 ∀B4R(x0) ⊂ Ω,∀ε > 0. (2.48)
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Definition 2.34 (functions of bounded mean oscillation).
Assume Ω ⊂ Rd is open. We say that f has bounded mean oscillation f ∈ BMO(Ω) if
f ∈ L1(Ω) and

[f ]BMO(Ω) := sup
Q⊂Ω;Qcube

 
Q
|f − fQ| dx <∞, (2.49)

where

fQ :=

 
Q
f dx.

Remark [·]BMO(Ω) is a seminorm since [f ]BMO(Ω) = 0 ⇒ f = const. The space BMO(Ω) is a
Banach space with the norm ‖f‖BMO(Ω) := ‖f‖L1(Ω) + [f ]BMO(Ω).

Theorem 2.35 (John-Nierenberg). Let Q0 ⊂ Rd be a cube. Therere exist three contants
A, σ,C4 > 0 independent of Q0 such that ∀f ∈ BMO(Ω) the following hold.

(i) ∀t > 0 we have
|{x∈Q0| |f(x)−fQ0

|>t}|
|Q0| ≤ Ae

− σt
[f ]BMO(Ω) ,

(ii)
ffl
Q0
eγ|f−fQ0

|dx ≤ C4 ∀0 < γ ≤ 1
2

σ
[f ]BMO(Ω)

,

(iii)
ffl
Q0

ffl
Q0
eγ(f(x)−f(y))dxdy ≤ C4 ∀0 < γ ≤ 1

2
σ

[f ]BMO(Ω)
.

Remark With some work one can replace the cubes with balls (see also Sheet 9)

Proof.
(i) see chapter 6 in the book by M. Giaquinta, L. Martinazzi.

(ii) Using (i) we argue

 
Q0

eγ|f−fQ0
|dx =

1

|Q0|
∑
n

ˆ
Q0

eγ|f−fQ0
|1|f−fQ0

|∈[n,n+1)dx

≤ 1

|Q0|
∑
n

eγ(n+1)|{x ∈ Q0| |f(x)− f(y)| > n}| ≤ A
∑
n

eγ(n+1)e
− σn

[f ]BMO(Ω) <∞

for all γ < σ
[f ]BMO(Ω)

.

(iii) Use (ii) together with f(x)− f(y) ≤ |f(x)− f(y)| ≤ |f(x)− fQ0 |+ |f(y)− fQ0 |.

Proof of Harnack’s inequality Thm 2.30. Fix ε > 0 and consider uε := u + ε. Since Du = Duε
the function uε ∈ H1(Ω; [ε,∞)) is a weak solution of Lu = 0, hence it is also a weak subsolution
and by weak Harnack’s inequality (i) we have

sup
BR(x0)

uε ≤ C1

( 
B2R(x0)

up

) 1
p

∀p > 0

Moreover uε is a weak supersolution of Lu = 0, and hence by weak Harnack’s inequality (ii) we
have

inf
BR(x0)

uε ≥ C2

( 
B2R(x0)

u−q

)− 1
q

∀q > 0.
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Set v := lnuε and v :=
ffl
B2R(x0) v dx. Using Poincaré inequality and Thm 2.33, we get

ˆ
B2R(x0)

|v − v|2 dx ≤ CPR2

ˆ
B2R(x0)

|Dv|2 dx ≤ CPC3R
d.

It follows

 
B2R(x0)

|v−v| dx = 1
|B2R(x0)|

ˆ
B2R(x0)

|v−v| dx ≤ 1

|B2R(x0)|
1
2
‖v−v‖L2(B2R(x0)) ≤

√
CPC3R

d/2

|B2R(x0)|
1
2

= C ′

for some constant C ′ independent of R and x0. It follows that v ∈ BMO(Ω) with [v]BMO(Ω) ≤ C ′,
and hence, using Thm 2.35, there exists γ > 0 such that

 
B2R(x0)

 
B2R(x0)

eγ(v(x)−v(y))dxdy ≤ C2
4

for some constant C4 > 0 independent of v,R, x0. This can be also written as( 
B2R(x0)

uγεdx

) 1
γ

=

( 
B2R(x0)

eγv(x)dx

) 1
γ

≤ C2/γ
4

( 
B2R(x0)

e−γv(y)dy

)− 1
γ

= C
2/γ
4

( 
B2R(x0)

u−γε dy

)− 1
γ

.

Putting all this together we argue

sup
BR(x0)

uε ≤ C1

( 
B2R(x0)

uγ

) 1
γ

≤ C1C
2/γ
4

( 
B2R(x0)

u−γε dy

)− 1
γ

≤ C1C
2/γ
4

C2
inf

BR(x0)
uε,

which completes the proof of Harnack’s inequality.

Proof of the bound on |D lnuε| Theorem 2.33.
Remember that, if u ∈ C∞(Ω; [0,∞)) is a strong solution of Lu = 0 then v := lnuε = ln(u+ ε)
is a strong solution of Lv = Dv · aDv.
To obtain some kind of weak formulation set ζ ∈ C∞c (B4R(x0); [0, 1]) with ζ|B2R(x0) = 1. Then

ˆ
Ω
ζ2Lv dx =

ˆ
Ω
ζ2Dv · aDv dx.

The second integral can be written as

ˆ
Ω
ζ2Dv · aDv dx =

ˆ
Ω
ζ2Du

uε
· aDu

uε
dx =

ˆ
Ω
ζ2Du

u2
ε

· aDu dx.

Integrating by parts in the first integral we obtain

ˆ
Ω
ζ2Lv dx =

ˆ
Ω
Dζ2 · aDv dx =

ˆ
Ω
Dζ2 · aDu

uε
dx.

Putting all this together we get

0 =

ˆ
Ω

(
1

uε
Dζ2 − ζ2Du

u2
ε

)
· aDu

uε
dx =

ˆ
Ω
D

(
ζ2

uε

)
aDu dx = BL[u, ζ2/uε].

This suggests to try use in the general case ζ2/uε as test function.
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Remember that uε := u+ε, satisfies uε ∈ H1(Ω; [ε,∞)) and is a weak solution of Luε = 0. Since
uε ≥ ε > 0, the function v := lnuε is well defined and v ∈ H1(Ω), with Dv = 1

uε
Du. In addition

u−1
ε ∈ H1(Ω) with Du−1

ε = −u−2
ε Du.

Therefore w := ζ2u−1
ε ∈ H1

0 (Ω) is a possible test function and hence BL[uε, ζ
2u−1
ε ] = 0. It follows

ˆ
Ω

(ζDv) · a(ζDv))dx = 2

ˆ
Ω
Dζ · a(ζDv)dx.

By uniform ellipticity and Young’s inequality, it follows

θ‖ζDv‖2L2(Ω) ≤
ˆ

Ω
(ζDv) · a(ζDv))dx ≤ 2‖a‖∞

ˆ
Ω
|Dζ| (ζ|Dv|)dx

≤ 2‖a‖∞
[
δ

2
‖ζDv‖2L2(Ω) +

1

2δ
‖Dζ‖2L2(Ω)

]
.

Choosing δ = θ/(2‖a‖∞) we get

θ

2
‖ζDv‖2L2(Ω) ≤

‖a‖∞
δ
‖Dζ‖2L2(Ω).

Since ζB2R(x0) = 1 and supp ζ ⊂ B4R(x0) we can choose the function such that sup |Dζ| ≤ 2/R.
Hence

ˆ
B2R(x0)

|Du|2

(u+ ε)2
dx ≤ ‖ζDv‖2L2(Ω) ≤

2‖a‖∞
δθ

‖Dζ‖2L2(Ω) ≤
8‖a‖∞
θδ

R−2|B4R(x0)| = C3R
d−2.

This concludes the proof. Note that, since the constant C3 is independent of ε, by monotone
convergence we have

ˆ
B2R(x0)

|Du|2

u2
dx = lim

ε→0

ˆ
B2R(x0)

|Du|2

(u+ ε)2
dx ≤ C3R

d−2.

[14: 23.11.2023]
[15: 27.11.2023]

The key tools to prove the weak Harnack’s inequality in dimension d ≥ 3 are Sobolev inequality
and Moser iteration. Remember that if f ∈ H1

0 (Ω) = W 1,2
0 (Ω) and d ≥ 3 we have f ∈ L2∗(Ω)

with
1

2∗
=

1

2
− 1

d
=
d− 2

2d

and there exists a constant CS = CS(d,Ω) > 0 such that

‖f‖L2∗ (Ω) ≤ CS‖Df‖L2(Ω). (2.50)

Theorem 2.36 (Moser iteration). Assume Ω ⊂ Rd is open and bounded, d ≥ 3. We consider the
formal differential operator Lu = −div (aDu) with aij ∈ L∞(Ω), and a uniformly elliptic. Let
u ∈ H1(Ω; [0,∞)) be a weak subsolution of Lu = 0. Fix x0 ∈ Ω. For r > 0 such that Br(x0) ⊂ Ω
and p > 0 we define

Φ(p, r) :=

(ˆ
Br(x0)

up

) 1
p

. (2.51)
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Set

µ :=
2∗

2
=

d

d− 2
,

where 2∗ is the Sobolev exponent associated to p = 2. Note that µ > 1. Then there is a constant
C = C(a, d) > 0 such that

Φ(µp, s) ≤
(
Cp

r − s

) 2
p

Φ(p, r) ∀0 < s < r, ∀p ≥ 2. (2.52)

Note that Φ(p, r) is well defined and non negative ∀Br(x0) ⊂ Ω, but it may take value +∞. We
show now how weak Harnack’s inequality follows from Moser’s iteration.

Proof of weak Harnack’s inequality Thm. 2.32 (i) for p ≥ 2.
Let u ∈ H1(Ω; [0,∞)) be a weak subsolution of Lu = 0. Our goal is to prove

sup
BR0

(x0)
u ≤ C1

( 
B2R0

(x0)
up

) 1
p

∀B2R0(x0) ⊂ Ω.

Note that for p ≥ 2 we only need to require B2R0(x0) ⊂ Ω.

Fix ρ > 0 such that Bρ(x0) ⊂⊂ Ω. We have (exercise, see also FA)

sup
Bρ(x0)

u = lim
p→∞

(ˆ
Br(x0)

up

) 1
p

= lim
p→∞

Φ(p, ρ). (2.53)

Take now R > ρ > 0 such that BR(x0) ⊂ Ω (possible since Bρ(x0) ⊂⊂ Ω). We interpolate
between R and ρ as follows: for each n ∈ N we define

Rn := ρ+
R− ρ

2n
, pn := µnp.

Then pn+1 = µpn, p0 = p, R0 = R, Rn+1 < Rn, limn→∞Rn = ρ, and Rn−Rn+1 = (R−ρ)2−n−1.
We argue, using Moser iteration (2.52),

Φ(pn+1, Rn+1) = Φ(µpn, Rn+1) ≤
(

Cpn
Rn −Rn+1

) 2
pn

Φ(pn, Rn)

=

(
Cp 2n+1µn

R− ρ

) 2
pn

Φ(pn, Rn) =

(
2Cp

R− ρ

) 2
pn

(2µ)
2n
pn Φ(pn, Rn)

≤
n∏
j=0

(
2Cp

R− ρ

) 2
pj

(2µ)
2j
pj Φ(p0, R0) =

(
2Cp

R− ρ

)2
∑n
j=0

1
pj

(2µ)
2
∑n
j=0

j
pj Φ(p,R).

Note that

n∑
j=0

1

pj
=

1

p

n∑
j=0

1

µj
=

1

p(1− 1
µ)

(1− 1

µn+1
)→n→∞

1

p(1− 1
µ)

=
d

2p

n∑
j=0

j

pj
=

1

p

n∑
j=0

j

µj
= −µ

p
∂µ

n∑
j=1

1

µj
=

1

µp(1− 1
µ)2

[
1− 1

µn+1
− n+ 1

µn
(1− 1

µ
)

]

→n→∞
1

pµ(1− 1
µ)2

=
1

p

d− 2

d

d2

4
=
d

p

d− 2

4
,
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hence(
2Cp

R− ρ

)2
∑n
j=0

1
pj

→n→∞

(
2Cp

R− ρ

) d
p

, (2µ)
2
∑n
j=0

j
pj →n→∞ (2µ)

d−2
2

d
p = (2∗)

d−2
2

d
p .

Using this results together with (2.53) we argue

sup
Br(x0)

u = lim
n→∞

(ˆ
Br(x0)

upn

) 1
pn

≤ lim sup
n→∞

(ˆ
BRn (x0)

upn

) 1
pn

= lim sup
n→∞

Φ(pn, Rn) ≤ C ′

(R− ρ)
d
p

(ˆ
BR(x0)

up

) 1
p

≤ C ′′
(

R

R− ρ

) d
p

( 
BR(x0)

up

) 1
p

where

C ′ :=
(

2Cp 2∗
d−2

2

) d
p
, C ′′ := C ′

(
|BR(x0)|
Rd

) 1
p

.

The result now follows setting ρ = R0 and R = 2R0.

Proof of Moser iteration Thm 2.36. Remember the definition of Φ(p, r) (2.51). Our goal is to
prove that there is a constant C = C(a, d) > 0 such that

Φ(µp, s) ≤
(
Cp

r − s

) 2
p

Φ(p, r) ∀0 < s < r. (2.54)

for all Br(x0) ⊂ Ω and u ≥ 0, such that u ∈ H1(Ω) is a subsolution of Lu = 0, i.e.

ˆ
Ω
Dv · aDu dx ≤ 0 ∀v ∈ H1

0 (Ω; [0,∞))

We construct now an appropriate test function v. For this we distinguish two cases.

Case 1. Assume 0 < ε ≤ u ≤M for some fixed M > ε > 0.
Then the function uα satisfies uα ∈ H1(Ω) ∀α ∈ R with Duα = αuα−1Du. We will assume from
now on α > 0.
For 0 < s < r take ζ ∈ C∞c (Br(x0); [0, 1]) such that ζ|Bs(x0) = 1 We define

v := ζ2uα,

The function v satisfies v ∈ H1
0 (Ω; [0,∞)), hence we can use it as test function. We compute

0 ≥ BL[u, v] =

ˆ
Ω
Dv · aDu dx =

ˆ
Ω

(αuα−1ζ2Du+ 2uαζDζ) · aDu dx,

and hence

α

ˆ
Ω
uα−1ζ2 Du · aDu dx ≤ −2

ˆ
Ω
uαζ Dζ · aDu dx ≤ 2‖a‖∞

ˆ
Ω
uα |Dζ| ζ|Du| dx.

By uniform ellipticity a ≥ θId , we get

‖ζu
α−1

2 Du‖2L2(Ω) =

ˆ
Ω
uα−1ζ2|Du|2dx ≤ 2‖a‖∞

αθ

ˆ
Ω
uαζ |Dζ| |Du| dx.
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Inserting the decomposition uα = u
α−1

2 u
α+1

2 , we get

‖ζu
α−1

2 Du‖2L2(Ω) ≤
2‖a‖∞
αθ

ˆ
Ω

(ζ u
α−1

2 |Du|) (u
α+1

2 |Dζ|) dx

≤ 2‖a‖∞
αθ

‖ζu
α−1

2 Du‖L2(Ω) ‖u
α+1

2 Dζ‖L2(Ω),

and hence

‖ζu
α−1

2 Du‖L2(Ω) ≤
2‖a‖∞
αθ

‖u
α+1

2 Dζ‖L2(Ω). (2.55)

It follows, using u
α−1

2 Du = 2
α+1D(u

α+1
2 ),

‖ζDu
α+1

2 ‖L2(Ω) =
α+ 1

2
‖ζu

α−1
2 Du‖L2(Ω) ≤

α+ 1

α

‖a‖∞
θ
‖u

α+1
2 Dζ‖L2(Ω).

We assume in the following α ≥ 1, therefore α+1
α ≤ 2. We will also set

p := α+ 1 ≥ 2.

Inserting this above we obtain

‖ζDu
p
2 ‖L2(Ω) ≤

2‖a‖∞
θ
‖u

p
2Dζ‖L2(Ω),

and hence

‖D(ζu
p
2 )‖L2(Ω) ≤ ‖ζDu

p
2 ‖L2(Ω) + ‖u

p
2Dζ‖L2(Ω)

≤
[
1 +

2‖a‖∞
θ

]
‖u

p
2Dζ‖L2(Ω)

≤
[
1 +

2‖a‖∞
θ

]
‖u

p
2Dζ‖L2(Ω) ≤

[
1 +

2‖a‖∞
θ

](ˆ
Br(x0)

up|Dζ|2
) 1

2

.

Since up/2 ∈ H1(Ω) and ζ ∈ C∞c (Ω), it holds ζu
p
2 ∈ H1

0 (Ω), hence, by Sobolev inequality (2.50)
we have ζu

p
2 ∈ L2∗(Ω) and

CS‖D(ζu
p
2 )‖L2(Ω) ≥ ‖ζu

p
2 ‖L2∗ (Ω) =

(ˆ
Ω
ζ2∗upµdx

) 1
2µ

. (2.56)

It follows

Φ(µp, s) =

(ˆ
Bs(x0)

uµp

) 1
µp

≤
(ˆ

Ω
ζ2∗uµp

) 1
µp

= ‖ζu
p
2 ‖

2
p

L2∗ (Ω)
≤ C

2
p

S ‖D(ζu
p
2 )‖

2
p

L2(Ω)

≤ C
2
p

S

[
1 +

2‖a‖∞
θ

] 2
p

(ˆ
Br(x0)

up|Dζ|2
) 1

p

.

Since ζBs(x0) = 1 and supp ζ ⊂ Br(x0) we can choose ζ such that |Dζ| ≤ 2/(r − s) hence(ˆ
Br(x0)

up|Dζ|2
) 1

p

≤
(

2

r − s

) 2
p

(ˆ
Br(x0)

up

) 1
p

=

(
2

r − s

) 2
p

Φ(p, r).
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Finally we obtain

Φ(µp, s) ≤
(

C

r − s

) 2
p

Φ(p, r)

with

C := 2CS

[
1 +

2‖a‖∞
θ

]
.

Note that there is no p factor next to C. The p factor will appear when we consider the general
case u ≥ 0. This completes the proof in the case ε ≤ u ≤M.

Case 2. Assume now u ≥ 0. Then u ∈ H1(Ω) 6⇒ uα ∈ H1(Ω) so we need to modify our strategy.

Note that, since we assumed α ≥ 1 we never needed the assumption u ≥ ε and we used the
assumption u ≤M only in two steps:

• uα ∈ H1(Ω) ⇒ uαζ2H1
0 (Ω; [0,∞)) is an admissible test function, and hence (2.55) holds.

• u
α+1

2 ∈ H1(Ω) ⇒ ζu
α+1

2 ∈ H1
0 (Ω) and we can apply Sobolev inequality to get (2.56).

We distinguish now three cases:

For p = 2, we have α = 1, hence u = uα = u
α+1

2 ∈ H1(Ω), so the arguments used in Case 1 hold.

For p > 2, if up 6∈ L1(Br(x0)), then Φ(r, p) =∞ and the (2.52) holds trivially.

Assume now p > 2 and up ∈ L1(Br(x0)). Set α := p − 1. We will prove the following two
statements:

(a) ‖ζu
α−1

2 Du‖L2(Ω) ≤
2‖a‖∞
θ ‖u

α+1
2 Dζ‖L2(Ω) ∀ζ ∈ C∞c (Br(x0)).

(b) u
p
2 = u

α+1
2 ∈ H1

loc(Br(x0)).

Note that the inequality in (a) differs from (2.55) by a factor α.

We see first how Moser iteration follows from (a) and (b).
Since u

p
2 ∈ H1

loc(Br(x0)) and ζ ∈ C∞c (Br(x0)) we have ζu
p
2 ∈ H1

0 (Ω) and by Sobolev inequality
we obtain (2.56). Putting this together with (a) we obtain the result. Note that instead of 1+α

α
we have (1 + α) = p, which accounts for the additional factor p in the final bound.

Proof of (b), assuming (a) holds .
Since up ∈ L1(Br(x0)) we have u

p
2 ∈ L2(Br(x0)).

We show that D(u
p
2 ) = p

2u
p−2

2 Du = p
2u

α−1
2 Du ∈ L2

loc(Br(x0)).
For this let K be a compact set with K ⊂ Br(x0), and let ζ ∈ C∞c (Br(x0); [0, 1]) such that
ζ|K = 1. We argue, using (a),

‖D(u
p
2 )‖L2(K) ≤ ‖ζD(u

p
2 )‖L2(Ω) =

p

2
‖ζu

α−1
2 Du‖L2(Ω)

≤ C‖u
p
2Dζ‖L2(Ω) ≤ C‖Dζ‖L∞‖u

p
2 ‖L2(Br(x0)) <∞.

Hence D(u
p
2 ) ∈ L2

loc(Br(x0)) and (b) follows.

[15: 27.11.2023]
[16: 30.11.2023]
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Proof of (a) .
For M > 0 we introduce the cut-off function hM : (0,∞)→ (0,∞) defined as

hM (t) :=

{
tα if 0 ≤ t ≤M
Mα + αMα−1(t−M) if t > M

where α = p−1 > 1. This function satisfies hM ∈ C∞([0,∞)), 0 < h′M (t) ≤ αMα−1 ∀t > 0, and
h′M (0) = 0. We have |hM (u)|2 = 1 +u2 ∈ L1(Ω) since Ω is bounded and DhM (u) = h′M (u)Du ∈
L2(Ω) since h′M is bounded. Hence hM (u) := hM ◦u ∈ H1(Ω) and v := ζ2hM (u) ∈ H1

0 (Ω; [0,∞))
is an admissible test function for all ζ ∈ C∞c (Br(x0)). Since u is a subsolution of Lu = 0 we
have

0 ≥ BL[u, v] =

ˆ
Ω
Dv · aDu dx =

ˆ
Ω

(ζ2h′M (u)Du+ 2hM (u)ζDζ) · aDu dx.

Using ζ2 ≥ 0, h′M ≥ 0 and uniform ellipticity, we argue

θ

ˆ
Ω
ζ2h′M (u) |Du|2 dx ≤

ˆ
Ω
ζ2h′M (u) Du · aDu dx ≤ 2‖a‖∞

ˆ
Ω
|ζ||Du| hM (u)|Dζ| dx.

The function hM satisfies
0 ≤ hM (t) ≤ th′M (t),

hence

‖ζh′M (u)
1
2Du‖2L2(Ω) ≤

2‖a‖∞
θ

ˆ
Ω

(|ζ|h′M (u)
1
2 |Du|) (uh′M (u)

1
2 |Dζ|) dx

≤ 2‖a‖∞
θ
‖ζh′M (u)

1
2Du‖L2(Ω) ‖uh′M (u)

1
2Dζ‖L2(Ω).

It follows,

‖ζh′M (u)
1
2Du‖L2(Ω) ≤

2‖a‖∞
θ
‖uh′M (u)

1
2Dζ‖L2(Ω).

The function h′M satisfies
h′M (t)t2 ≤ αtα+1 = αtp,

hence |u|h′M (u)
1
2 ≤
√
αu

α+1
2 and the inequality becomes

‖ζh′M (u)
1
2Du‖L2(Ω) ≤

2‖a‖∞
√
α

θ
‖u

α+1
2 Dζ‖L2(Ω).

Note that ‖u
α+1

2 Dζ‖L2(Ω) ≤ ‖Dζ‖L∞‖u
α+1

2 ‖L2(Ω) = ‖Dζ‖L∞‖up‖L1(Ω) <∞ hence by dominated
convergence it follows, using limM→∞ h

′
M (t) = αtα−1,

lim
M→∞

ˆ
Ω
u2h′M (u)|Dζ|2dx = α

ˆ
Ω
up|Dζ|2dx <∞.

Finally we obtain
√
α‖ζu

α+1
2 Du‖L2(Ω) ≤

2‖a‖∞
√
α

θ
‖u

α+1
2 Dζ‖L2(Ω),

which proves (a).

Until now we have proved, using Moser iteration, the weak Harnack’s inequalty (i) for p ≥ 2.
We consider now the case 0 < p < 2.
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Proof of weak Harnack’s inequality Thm. 2.32 (i) for 0 < p < 2.
Let u ∈ H1(Ω; [0,∞)) be a weak subsolution of Lu = 0. Our goal is to prove

sup
BR(x0)

u ≤ C1

( 
B2R(x0)

up

) 1
p

∀B4(x0) ⊂ Ω.

From the proof of weak Harnack inequality for p = 2 we know

sup
Bρ(x0)

u ≤ C

(R− ρ)
d
2

(ˆ
BR(x0)

u2

) 1
2

=
C

(R− ρ)
d
2

‖u‖L2(Ω) <∞ ∀BR(x0) ⊂ Ω, 0 < ρ < R.

(2.57)
Assume B2R0(x0) ⊂ Ω and define φ : [0, R0]→ R by

φ(r) := sup
Br(x0)

u.

From (2.57) φ is well defined. Moreover 0 ≤ φ(ρ) ≤ φ(R0). Using (2.57) again we have

φ(ρ) = sup
Bρ(x0)

u ≤ C

(R− ρ)
d
2

(ˆ
BR(x0)

u2dx

) 1
2

∀0 < ρ < R ≤ R0.

We compute, using 2− p > 0,

u2 = upu2−p ≤ up
(

sup
BR(x0)

u

)2−p

= up φ(R)2−p.

Hence, using the inequality ab ≤ δaq + Cδb
q′ with 0 < δ, 1/q = 1− p/2, and 1/q′ = p/2, we get

φ(ρ) ≤ φ(R)1− p
2

C

(R− ρ)
d
2

(ˆ
BR(x0)

updx

) 1
2

≤ δ φ(R) +
CδC

2
p

(R− ρ)
d
p

(ˆ
BR(x0)

updx

) 1
p

≤ δ φ(R) +
CδC

2
p

(R− ρ)
d
p

(ˆ
BR0

(x0)
updx

) 1
p

= δ φ(R) +
A

(R− ρ)
d
p

,

where

A := CδC
2
p

(ˆ
BR0

(x0)
updx

) 1
p

<∞.

Claim. Let φ : [0, R0]→ R be a function satisfying: φ ≥ 0, φ is bounded and

φ(ρ) ≤ δφ(R) +
A

(R− ρ)
d
p

, ∀0 < ρ < R ≤ R0,

with 0 < δ < min{1, 2−
d
p }. Then there exists a constant C ′ > 0 independent of A, such that

φ(ρ) ≤ C ′A

(R− ρ)
d
p

∀0 < ρ < R ≤ R0.
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Consequence. We argue

sup
Bρ(x0)

u ≤ C ′Cδ

(R− ρ)
d
p

(ˆ
BR0

(x0)
updx

) 1
p

.

setting ρ := R0/2 R = R0 we obtain the result.
Proof of the Claim. Fix 0 < ρ < R ≤ R0, and set

ρ0 := ρ, ρn+1 := ρn +
(R− ρ)

2n+1
, n ≥ 0.

This sequence is increasing and

ρn+1 = ρ+ (R− ρ)
n+1∑
j=1

1

2j
= ρ+ (R− ρ)(1− 1

2n+1
).

In particular limn→∞ ρn = R. We argue

φ(ρ) = φ(ρ0) ≤ δ φ(ρ1) +
A

(ρ1 − ρ0)
d
p

≤ δn+1φ(ρn+1) +A
n∑
j=0

δj

(ρj+1 − ρj)
d
p

= δn+1φ(ρn+1) +
A2

d
p

(R− ρ)
d
p

n∑
j=0

(δ2
d
p )j .

Since (δ2
d
p ) < 1 we have

∑n
j=0(δ2

d
p )j →n→∞

1

1−δ2
d
p
. Hence, using that φ is bounded, we obtain

in the limit n→∞

φ(ρ) ≤ A2
d
p

(R− ρ)
d
p

1

1− δ2
d
p

=
C ′A

(R− ρ)
d
p

.

This completes the proof of the claim.

Proof of weak Harnack’s inequality Thm. 2.32 (ii).
Assume u ∈ H1(Ω) is a weak supersolution of Lu = 0 and u ≥ 0.
Then uε := u+ ε is also a weak supersolution of Luε = 0, uε ≥ ε, and hence 1/uε ∈ H1(Ω) and
1/u2

ε ∈ H1(Ω).
We will show now that 1/uε is a weak subsolution. Indeed, let ϕ ∈ C∞c (Ω; [0,∞)). We compute

ˆ
Ω
D

(
1

uε

)
· aDϕ dx = −

ˆ
Ω

1

u2
ε

Du · aDϕ dx = −
ˆ

Ω
Du · aD

(
ϕ

u2
ε

)
dx− 2

ˆ
Ω

(Du · aDu)
ϕ

u3
ε

dx.

By uniform ellipticity, and since ϕ ≥ 0, we have

ˆ
Ω

(Du · aDu)
ϕ

u3
ε

dx ≥ 0.

Moreover, 1/uε ∈ H1(Ω) and hence ϕ/uε ∈ H1
0 (Ω; [0,∞)) is a possible test function. It follows,

since uε is also a weak supersolution,

ˆ
Ω
Du · aD

(
ϕ

u2
ε

)
dx = BL[u,

ϕ

u2
ε

] ≥ 0,
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and hence ˆ
Ω
D

(
1

uε

)
· aDϕ dx ≤ 0 ∀ϕ ∈ C∞c (Ω; [0,∞)).

This implies 1/uε is a weak subsolution of Lu = 0. By weak Harnack’s inequality Thm. 2.32 (i)
we have ∀p > 0,

sup
BR(x0)

1

u+ ε
≤ C1

( 
B2R(x0)

(u+ ε)−p

) 1
p

∀B4R(x0) ⊂ Ω.

Hence

inf
BR(x0)

(u+ ε) ≥ C−1
1

( 
B2R(x0)

(u+ ε)−p

)− 1
p

∀B4R(x0) ⊂⊂ Ω.

The result now follows taking ε→ 0.

[16: 30.11.2023]
[17: 4.12.2023]

Until now we have seen Harack’s inequality on balls. We can prove the same result on any
compact subset of Ω. This is the content of the next corollary.

Corollary 2.37 (Harnack’s inequality on compact subsets). Assume Ω ⊂ Rd is open and
bounded. We consider the formal differential operator Lu = −div (aDu) with aij ∈ L∞(Ω),
and a uniformly elliptic.

For all V open and connected with V ⊂⊂ Ω there exists a constant CV = C(a, d, V ) > 1 such
that

sup
V
u ≤ CV inf

V
u, (2.58)

for all u ∈ H1(Ω) weak solution of Lu = 0 in Ω with u ≥ 0 a.e. in Ω.
Remember that by sup and inf we mean the essential sup and essential inf .

Proof. Since V is compact and V ⊂⊂ Ω we can find N > 0, x1, . . . xN ∈ Ω and r1, . . . , rN > 0
such that

• V ⊂ ∪Nj=1Brj (xj),

• B4rj (xj) ⊂ Ω ∀j.

Since V is connected we can also choose the balls such that |Brj (xj) ∩ Brj+1(xj+1)| > 0 ∀j =
1, . . . , N − 1. Set Bj := Brj (xj). Harnack’s inequality on balls Thm. 2.30 ensures that

sup
Bj

u ≤ C0 inf
Bj
u ∀j = 1, . . . , N, (2.59)

where the constant C0 > 1 is independent on rj and xj .

We show
sup
∪Nj=1Bj

u ≤ CN0 inf
∪Nj=1Bj

u. (2.60)

Indeed, by (2.59), we can write ∪Nj=1Bj = Ω0 ∪N where |N | = 0 and

inf
Bj
u ≤ u(x) ≤ sup

Bj

u ∀x ∈ Bj ∩ Ω0, ∀j = 1, . . . , N. (2.61)
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Assume now N = 2. Since |B1 ∩B2| > 0 there is a point z1 ∈ B1 ∩B2 ∩Ω0 and using (2.61) we
have

inf
B1

u ≤ u(z1) ≤ sup
B2

u.

For any two points x ∈ B1 ∩ Ω0 and y ∈ B2 ∩ Ω0 we argue

u(x) ≤ sup
B1

u ≤ C0 inf
B1

u ≤ C0u(z1) ≤ C0 sup
B2

u ≤ C2
0 inf
B2

u.

The same holds exchanging the roles of B1 and B2. If x, y ∈ Bj ∩ Ω0 we have

u(x) ≤ C0u(y) ≤ C2
0u(y),

where in the last step we used C0 > 1. Putting these results together we get (2.60) in the case
N = 2. The case N > 2 is proved in the same way.

Finally we argue, since V ⊂ ∪Nj=1Bj ,

sup
V
u ≤ sup

∪Nj=1Bj

u ≤ CN0 inf
∪Nj=1Bj

u ≤ CN0 inf
V
u,

which completes the proof.

Corollary 2.38 (de Giorgi). Assume Ω ⊂ Rd is open and bounded. We consider the formal
differential operator Lu = −div (aDu) with aij ∈ L∞(Ω), and a uniformly elliptic.
Le u ∈ H1(Ω) be a weak solution of Lu = 0 in Ω. The following hold.

(i) u ∈ L∞loc(Ω)

(ii) ∃α ∈ (0, 1), and u ∈ C0,α
loc (Ω) such that u = u a.e. in Ω.

Remark. u ∈ C0,α
loc (Ω) means for all V ⊂⊂ Ω there is a constant CV > 0 and a coefficient

α > 0 such that

sup
x 6=y∈V

|u(x)− u(y)|
|x− y|α

≤ CV .

Not that (ii)⇒ (i). We will prove first (i) and use the result to prove (ii).

Proof. For d = 1, 2 we can prove (ii) directly.

Indeed, for d = 1 u ∈ H1
0 (Ω) implies, by Sobolev embedding, u ∈ C0, 1

2 (Ω).

For d = 2, any weak solution of Lu = 0 satisfies, by interior H2 regularity, u ∈ H2
loc(Ω). In par-

ticular u ∈ H2(Br(x0)) for all Br(x0) ⊂⊂ Ω. By Sobolev embedding we have u ∈ W 1,q(Br(x0))
∀1 < q < ∞ and hence, again by Sobolev embedding, u ∈ C0,γ(Br(x0)) for some γ > 0,
independent of Br(x0). It follows u ∈ C0,γ

loc (Ω). In the following we consider the case d ≥ 3.

(i) If u ≥ 0 is a weak subsolution of Lu = 0, weak Harnack’s inequality ensures

sup
BR(x0)

u ≤ C1

( 
B2R(x0)

u2dx

) 1
2

<∞ ∀B2R(x0) ⊂ Ω
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and hence u ∈ L∞loc(Ω). The problem is that here u may be negative. The most natural idea
would be to consider |u| ∈ H1

0 (Ω). But u weak solution of Lu = 0 6⇒ |u| weak subsolution. To
avoid this problem we will use an approximation of |u| constructed as follows.

Consider the function f : R → R defined via f(t) :=
√
t2 + 1. It holds f ∈ C2(R), |f ′| ≤ 1 and

0 < f ′′ < 1. Therefore, since u ∈ H1(Ω), we have f(u), f ′(u) ∈ H1(Ω) with

D(f(u)) = f ′(u)Du, D(f ′(u)) = f ′′(u)Du.

We show now that f(u) is a weak subsolution of Lu = 0. For this, it is sufficent to show
BL[f(u), ϕ] ≤ 0 ∀ϕ ∈ C∞c (Ω; [0,∞)). We argue

BL[f(u), ϕ] =

ˆ
Ω
D(f(u)) · aDϕdx =

ˆ
Ω
f ′(u)Du · aDϕdx.

Since f ′(u) ∈ H1(Ω) and ϕ ∈ C∞c (Ω) the function f ′(u)ϕ ∈ H1
0 (Ω) is a possible test function

for u. We write
f ′(u)ϕ = D(f ′(u)ϕ)− f ′′(u)Du ϕ.

Hence

BL[f(u), ϕ] =

ˆ
Ω
f ′(u)Du·aDϕdx = BL[u, f ′(u)ϕ]−

ˆ
Ω
f ′′(u)Du·aDudx = −

ˆ
Ω
f ′′(u)Du·aDudx,

where we used that BL[u, f ′(u)ϕ] = 0 since u is a weak solution of Lu = 0. Finally, since f ′′ > 0,
ϕ ≥ 0 and Du · aDu ≥ θ|Du|2 ≥ 0 we have

BL[f(u), ϕ] ≤ 0.

which proves that f(u) is a non-negative subsolution of Lu = 0 and hence f(u) ∈ L∞loc(Ω). The
result now follows from |u| ≤ f(u) a.e. in Ω.

(ii) For x ∈ Ω and r > 0 such that Br(x) ⊂⊂ Ω we define the oscillation of u on Br(x0) by:

ω(x, r) := sup
Br(x0)

u− inf
Br(x0)

u.

This function is well defined since u ∈ L∞loc(Ω). We show now that there exists 0 < σ < 1 such
that

ω(x,R/4) ≤ σω(x,R) ∀BR(x) ⊂⊂ Ω. (2.62)

This inequality implies local Hölder continuity (see exercise sheet).

Fix x ∈ Ω and assume BR(x) ⊂⊂ Ω. For each ρ ≤ R we define

M(ρ) := sup
Bρ(x)

u, m(ρ) := inf
Bρ(x)

u.

Consider the two functions u1 := M(R)−u, u2 := u−m(R). For each j = 1, 2, uj ≥ 0 on BR(x)
and uj ∈ H1(BR(x)) is a weak solution of Luj = 0 in BR(x). Then, by Harnack inequality, there
is a constant C0 > 1 such that

sup
Bρ(x)

uj ≤ C0 inf
Bρ(x)

uj , ∀0 < ρ ≤ R/4,
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which gives the two inequalities, for 0 < ρ ≤ R/4,

M(R)−m(ρ) ≤ C0 [M(R)−M(ρ)]

M(ρ)−m(R) ≤ C0 [m(ρ)−m(R)].

Summing both terms we obtain w(R) + w(ρ) ≤ C0 [w(R)− w(ρ)] and hence

w(ρ) ≤ C0 − 1

C0 + 1
w(R) = ν w(R) ∀0 < ρ ≤ R/4,

where 0 < ν < 1.

3 Semilinear ellipic PDEs

We consider PDEs of the form −div (aDu) + g(u,Du) = f, where a is uniformly elliptic.

3.1 Weak formulation

Definition 3.1. Let Ω ⊂ Rd be open and bounded, a ∈ L∞(Ω;Rd×dsym), g : R→ R given functions
and f ∈ H−1(Ω) a given operator.
We say that u is a weak solution of the Dirichlet boundary value problem{

−div (aDu) + g(u) = f in Ω
u|∂Ω = 0

if ˆ
Ω
Dv · aDu dx+

ˆ
Ω
vg(u) dx = F (v) ∀v ∈ H1

0 (Ω).

as long as the integral above are all well defined.

Remark. The only problem is to ensure that g(u)v ∈ L1(Ω) for all u, v ∈ H1
0 (Ω). This is the

content of the next lemma.

Lemma 3.2. Let Ω ⊂ Rd be open and bounded.

(i) Assume d ≥ 3 and f ∈ Lm(Ω) with m ≥ 2d
d+2 .

Then fv ∈ L1(Ω) for all v ∈ H1
0 (Ω) and ∃c1 = c1(Ω,m, d) > 0 such that

‖fv‖L1(Ω) ≤ c1 ‖f‖Lm(Ω)‖v‖H1(Ω).

(ii) Assume g : R→ R satisfies |g(t)| ≤ C|t|α ∀t ∈ R, with C > 0 some constant and

• 0 ≤ α <∞ if d = 1, 2,

• 0 ≤ α ≤ d+2
d−2 if d ≥ 3.

Then there exists m = m(d, α) > 1 and constants C1, C2 > 0 depending on Ω, α, d, such
that

(a) u ∈ H1
0 (Ω)⇒ g(u) ∈ Lm(Ω) and ‖g(u)‖Lm(Ω) ≤ C1‖u‖αH1

0 (Ω)
,

(b) ‖g(u)v‖L1(Ω) ≤ C2‖g(u)‖Lm(Ω)‖v‖H1
0 (Ω) ≤ C1C2‖u‖αH1

0 (Ω)
‖v‖H1

0 (Ω) ∀u, v ∈ H1
0 (Ω).
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Proof.
(i) Assume d ≥ 3. Since v ∈ H1

0 (Ω), we have, by Sobolev embedding, v ∈ L2∗(Ω) with 2∗ = 2d
d−2

and hence
‖fv‖L1(Ω) ≤ ‖f‖Lq(Ω)‖v‖L2∗ (Ω) ≤ CS ‖f‖Lq(Ω)‖v‖H1(Ω),

where q := 2∗
′

= 2d
d+2 ≤ m. By Hölder inequality,

‖f‖Lq(Ω) ≤ |Ω|
1
q
− 1
m ‖f‖Lm(Ω)

and the result follows.

(ii) Assume first d ≥ 3. Using (i), g(u)v ∈ L1(Ω) if g(u) ∈ Lm(Ω), for some m ≥ 2d
d+2 . Since

|g(u)| ≤ C|u|α, that means we need |u|αm ∈ L1(Ω).
Since u ∈ H1

0 (Ω), by Sobolev inequality we have |u|2∗ ∈ L1(Ω).
Therefore, vg(u) ∈ L1(Ω), if there exists m ≥ 0 such that mα ≤ 2∗ and m ≥ 2d

d+2 , i.e.

2d

d+ 2
≤ m ≤ 2d

α(d− 2)
.

Since α ≤ d+2
d−2 , we have 2d

d+2 ≤
2d

α(d−2) , and hence a solution m exists always. Moreover

m ≥ 2d

d+ 2
= 1 +

d− 2

d+ 2
> 1 ∀d ≥ 3,

and

‖g(u)‖Lm(Ω) ≤ C‖|u|α‖Lm(Ω) = C ‖u‖αLαm(Ω) ≤ C|Ω|
1
αm
− 1

2∗ ‖u‖α
L2∗ (Ω)

≤ CCS |Ω|
1
αm
− 1

2∗ ‖u‖αH1(Ω),

which proves (a). Finally we argue

‖g(u)v‖L1(Ω) ≤ ‖g(u)‖Lq(Ω)‖v‖L2∗ (Ω) ≤ CS ‖g(u)‖Lq(Ω)‖v‖H1(Ω)

≤ CS |Ω|
1
q
− 1
m ‖g(u)‖Lm(Ω)‖v‖H1(Ω),

which proves (b) in the case d ≥ 3.

Assume d = 2. We argue u ∈W 1,2(Ω)⇒ u ∈W 1,2−ε(Ω) ∀0 < ε ≤ 1. By Sobolev embedding we
obtain u ∈ Lq(Ω) ∀1 ≤ q <∞ and

‖u‖Lq(Ω) ≤ CS,q‖u‖H1(Ω).

Setting m = 2 we argue

‖g(u)‖L2(Ω) ≤ C‖|u|α‖L2(Ω) = C ‖u‖αL2α(Ω) ≤ CC
α
S,2α‖u‖αH1(Ω),

which proves (a). Finally |g(u)v‖L1(Ω) ≤ ‖g(u)‖L2(Ω)‖v‖L2(Ω) which proves (b).

Assume d = 1. We argue u ∈W 1,2(Ω)⇒ u ∈ C0,α(Ω) by Sobolev embedding. It follows

|u(x)| ≤
 

Ω
|u(y)|dy +

 
Ω
|u(x)− u(y)|dy ≤ 1

|Ω|
1
2

‖u‖L2(Ω) + (diam Ω)α[u]C0,α(Ω)

and hence u ∈ L∞(Ω) with ‖u‖L∞(Ω) ≤ C ′‖u‖H1
0 (Ω). Setting m = 2 we argue

‖g(u)‖L2(Ω) ≤ C|Ω|
1
2 ‖u‖αL∞(Ω),

which proves (a). Finally |g(u)v‖L1(Ω) ≤ ‖g(u)‖L2(Ω)‖v‖L2(Ω) which proves (b).

[17: 4.12.2023]
[18: 7.12.2023]
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3.2 Stampacchia’s theorem and some applications

Theorem 3.3 (Stampacchia). Let H be a real Hilbert space, and

a : H ×H → R
(x, y) → a(x, y)

such that

(i) ∀x ∈ H the map a(x, ·) : H → R is linear and continuous i.e. a(x, ·) ∈ H∗,

(ii) ∃α > 0 such that |a(x1, y)− a(x2, y)| ≤ α‖x1 − x2‖ ‖y‖ ∀x1, x2, y ∈ H,

(iii) ∃β > 0 such that a(x1, x1 − x2)− a(x2, x1 − x2) ≥ β‖x1 − x2‖2 ∀x1, x2 ∈ H.

Then ∀T ∈ H∗ ∃!uT ∈ H such that

T (v) = a(uT , v) ∀v ∈ H.

Proof. The result follows from the following Claim (cf Ex 1.4)

Let H be a Hilbert space, and A : H → H a map (in general nonlinear) satisfying

(i) ∃α > 0 such that ‖A(x)−A(y)‖ ≤ α‖x− y‖ ∀x, y ∈ H,

(ii) ∃β > 0 such that (A(x)−A(y), x− y) ≥ β‖x− y‖2 ∀x, y ∈ H.

Then A is invertible i.e. ∀f ∈ H ∃!uf ∈ H such that A(uf ) = f.

We will see now two applications of this result.

Theorem 3.4. Let Ω ⊂ Rd be open and bounded, a ∈ L∞(Ω;Rd×dsym) uniformly elliptic and
g : R→ R Lipschitz continuous and non-decreasing.

Then ∀F ∈ H1
0 (Ω)∗ ∃!u = uF ∈ H1

0 (Ω) weak solution of{
−div (aDu) + g(u) = F in Ω,
u|∂Ω = 0.

(3.1)

Remark. Note that if g is linear and non-decreasing we have g(u) = Cu, with C ≤ 0. By the
first existence theorem 2.8, the linear PDE −div aDu+Cu = F has a unique weak solution for
all F ∈ H−1(Ω). The theorem above extends this result to nonlinear g.

Proof.
• The weak formulation for (3.1) is well defined. Indeed, since g is Lipschitz continuous,

|g(t)− g(s)| ≤ Lg |t− s| ∀t, s ∈ R,

where Lg > 0 is the Lipschitz constant. Hence, using also |Ω| <∞,

|g(u)| ≤ |g(0)|+ |g(u)− g(0)| ≤ |g(0)|+ Lg|u| ∈ L2(Ω) ∀u ∈ L2(Ω).
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• We define

B : H1
0 (Ω)×H1

0 (Ω) → R
(u, v) → B[u, v] :=

´
ΩDv · aDu dx+

´
Ω vg(u) dx.

Then u ∈ H1
0 (Ω) is a weak solution of (3.1) iff B[u, v] = T (v) ∀v ∈ H1

0 (Ω).
We prove now that B satisfies the assumptions of Stampacchia’s theorem, and hence the weak
solution exists and is unique.

For this purpose we write B[u, v] = B0[u, v] +B1[u, v] where

B0[u, v] :=

ˆ
Ω
Dv · aDu dx, B1[u, v] :=

ˆ
Ω
vg(u) dx.

We check now that B satisfies (i)(ii)(iii) in the assumptions of Theorem 3.3.

(i) B0 is bilinear and continous, while B1 is linear in the second variable. It remains to check
that B1[u, ·] is also continuous. Since v 7→ B1[u, v] is linear we only need to check the map is
bounded:

|B1[u, v]| ≤
ˆ

Ω
|g(u)| |v| dx ≤ ‖g(u)‖L2(Ω)‖v‖L2(Ω) ≤ ‖g(u)‖L2(Ω)‖v‖H1(Ω)

and hence the map v 7→ B1[u, v] ∈ H−1(Ω) with ‖B1[u, ·]‖op ≤ ‖g(u)‖L2(Ω) <∞.

(ii) Set u1, u2, v ∈ H1
0 (Ω). We compute, using |g(u1)− g(u2)| ≤ C|u1 − u2|,

|B[u1, v]−B[u2, v]| ≤
∣∣∣∣ˆ

Ω
Dv · aD(u1 − u2) dx

∣∣∣∣+

ˆ
Ω
|v| |g(u1)− g(u2)| dx

≤ ‖a‖L∞(Ω)‖Du1 −Du2‖L2(Ω)‖Dv‖L2(Ω) + C‖u1 − u2‖L2(Ω)‖v‖L2(Ω)

≤ α ‖u1 − u2‖H1
0 (Ω)‖v‖H1

0 (Ω),

for some α > 0.

(iii) Set u1, u2 ∈ H1
0 (Ω). We compute

B[u1, u1 − u2]−B[u2, u1 − u2] =

ˆ
Ω
D(u1 − u2) · aD(u1 − u2) dx+

ˆ
Ω

[g(u1)− g(u2)](u1 − u2) dx.

Since g is non-decreasing we have

ˆ
Ω

[g(u1)− g(u2)](u1 − u2) dx ≥ 0.

By uniform ellipticity a ≥ θId , and Poincaré inequality, we conclude

B[u1, u1 − u2]−B[u2, u1 − u2] ≥
ˆ

Ω
D(u1 − u2) · aD(u1 − u2) dx

≥ θ‖D(u1 − u2)‖2L2(Ω) ≥ β‖u1 − u2‖2H1
0 (Ω),

for some β > 0. Hence B satisfies the assumptions of Theorem 3.3 which garantees ∀F ∈ H1
0 (Ω)∗

∃!u = uF ∈ H1
0 (Ω) weak solution of (3.1). This concludes the proof of the theorem.
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This can be extended to the case when g is just locally Lpischitz continuous. To prove it, we
will need the following result from Functional Analysis.

Theorem 3.5 (Vitali). Let (Ω,F , µ) be a measure space with µ(Ω) <∞, and n 7→ fn ∈ Lp(Ω),
with 1 ≤ p <∞, a sequence of functions satisfying:

(i) fn → f pointwise a.e.,

(ii) ∀ε > 0 ∃δ = δε > 0 such that the following holds:
ˆ
E
|fn|pdx < ε ∀n ∈ N, ∀E ⊂ Ω measurable set with µ(E) < δ.

Then f ∈ Lp(Ω) and fn → f in Lp(Ω).

Proof. See for example Boccardo-Croce, or Brezis.

Theorem 3.6. Let Ω ⊂ Rd be open and bounded, a ∈ L∞(Ω;Rd×dsym) uniformly elliptic and
g : R→ R locally Lipschitz continuous and non-decreasing.

Then ∀F ∈ H1
0 (Ω)∗ ∃!u = uF ∈ H1

0 (Ω) weak solution of{
−div (aDu) + g(u) = F in Ω,
u|∂Ω = 0.

(3.2)

in the following sense: g(u) ∈ L1(Ω) and
ˆ

Ω
Dv · aDu dx+

ˆ
Ω
vg(u) dx = F (v) ∀v ∈ H1

0 (Ω) ∩ L∞(Ω). (3.3)

Remark. We need v ∈ L∞(Ω), g(u) ∈ L1(Ω) to ensure that
´

Ω |vg(u)| dx < ∞ holds and
hence the weak formulation makes sense.

Proof. We can assume g(0) = 0. Indeed, if g(0) 6= 0 we can write

g(t) = g(t)− g(0) + g(0) = g̃(t) + g(0),

where g̃(t) := g(t) − g(0) is locally Lipschitz continuous, non-decreasing and satisfies g̃(0) = 0.
Moreover u ∈ H1

0 (Ω) is a weak solution of (3.1) iff it is weak solution of −div (aDu) + g̃(u) =
F − g(0) in Ω with u|∂Ω = 0.

Existence. We construct a weak solution by approximation. In order to make g Lipschitz
continous, we introduce the cut-off function

Tk : R→ R,
s→ Tk(s)

, Tk(s) :=


k s > k
s |s| ≤ k
−k s < −k,

and define

gk := g ◦ Tk i.e. gk(s) =


g(k) s > k
g(s) |s| ≤ k
g(−k) s < −k.

Note that gk(0) = 0 ∀k and
lim
k→∞

gk = g pointwise.
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Since g is locally Lipschitz continuous and non-decreasing, it follows (exercise) that gk is Lipschitz
continuous and non-decreasing. By Theorem 3.4, for all F ∈ H1

0 (Ω)∗ and k ≥ 1 there exists a
unique function uk ∈ H1

0 (Ω) weak solution of −div aDuk + gk(uk) = F , i.e.
ˆ

Ω
Dv · aDuk dx+

ˆ
Ω
vgk(uk) dx = F (v) ∀v ∈ H1

0 (Ω).

Claim. ∃u ∈ H1
0 (Ω) and a subsequence j 7→ ukj such that

(a) ukj ⇀ u weakly in H1
0 (Ω),

(b) g(u) ∈ L1(Ω) and gkj (ukj )→ g(u) strongly in L1(Ω).

Consequence. It follows from (a) that

lim
j→∞

ˆ
Ω
Dv · aDukj dx =

ˆ
Ω
Dv · aDu dx, ∀v ∈ H1(Ω).

It follows from (b) that

lim
j→∞

ˆ
Ω
vgkj (ukj ) dx =

ˆ
Ω
vg(u) dx ∀v ∈ L∞(Ω).

Hence, since ukj is a weak solution of −div aDukj +gkj (ukj ) = F , it holds, ∀v ∈ H1
0 (Ω)∩L∞(Ω),

ˆ
Ω
Dv · aDu dx+

ˆ
Ω
vg(u) dx = lim

j→∞

ˆ
Ω

[Dv · aDukj + vgkj (ukj )] dx = lim
j→∞

F (v) = F (v),

and therefore u is a weak solution for (3.2).

Proof of Claim (a). We show that the sequence n 7→ uk is bounded in H1
0 (Ω), and hence (since

H1
0 (Ω) is reflexive) there exists a weakly convergence subsequence.

Indeed, since uk ∈ H1
0 (Ω) we can take as test function v = uk. We obtain, using also the uniform

ellipticity of a,

θ‖Duk‖2L2(Ω) ≤ (Duk, aDuk)L2(Ω) = F (uk)−
ˆ

Ω
ukgk(uk) dx.

Note that ukgk(uk) = (uk − 0)(gk(uk)− gk(0)) ≥ 0, since gk is non-decreasing. It follows, using
also Poincaré inequality, that there exists a constant c1 > 0 such that

c1‖uk‖2H1
0 (Ω) ≤ θ‖Duk‖

2
L2(Ω) ≤ F (uk)−

ˆ
Ω
ukgk(uk) dx ≤ F (uk) ≤ ‖F‖op ‖uk‖H1

0 (Ω),

and hence

sup
k
‖uk‖H1

0 (Ω) ≤
‖F‖op
c1

<∞.

This concludes the proof of Claim (a).

Proof of Claim (b). By (a) we have ukj ⇀ u in H1
0 (Ω) and hence, by Rellich, ukj → u in L2(Ω).

It follows that there is a subsequence l → ukjl such that ukjl → u pointwise a.e. in Ω. Since
gk(s) = g(s) ∀k > |s| we have gkjl (ukjl )→ g(u) pointwise a.e. in Ω.
We want to apply Vitali’s Theorem 3.5 with p = 1 to the sequence fn := gn(un), where we write,
to simplify the notation, un instead of ukjl . Since gn(un)→ g(u) pointwise a.e., we already have
condition (i) in Theorem 3.5. We check now the validity of condition (ii).
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Let E ⊂ Ω be a measurable set and ε > 0. Our goal is to find δε > 0 independent of E such that

|E| < δε ⇒
ˆ
E
|gn(un)|dx < ε ∀n.

For any M > 1 note that

|un| ≤M ⇒ |gn(un)| ≤ max{g(M), |g(−M)|} =: CM,g.

Indeed, using that gn is nondecreasing, gn(t) ≤ g(t) ∀t > 0 and gn(t) ≥ g(t) ∀t < 0 we argue

0 ≤ gn(un) ≤ gn(M) ≤ g(M) ∀0 < un ≤M,

g(−M) ≤ gn(−M) ≤ gn(un) ≤ 0 ∀ −M ≤ un ≤ 0.

Inserting this bounds in the integral we obtain
ˆ
E
|gn(un)|dx =

ˆ
E∩{|un|≤M}

|gn(un)|dx+

ˆ
E∩{|un|>M}

|gn(un)|dx

≤ CM,g|E|+
ˆ
E∩{|un|>M}

|gn(un)|dx.

When |un| > M we have 1 < |un|
M and hence

ˆ
E∩{|un|>M}

|gn(un)|dx ≤ 1

M

ˆ
E∩{|un|>M}

|ungn(un)|dx =
1

M

ˆ
E∩{|un|>M}

ungn(un)dx,

where we used that gn is non-decreasing and gn(0) = 0, and hence g(un)un ≥ 0. Since un is a
weak solution for −div aDun + gn(un) = F and also a possible test function, we compute

ˆ
Ω
ungn(un)dx = F (un)− (Dun, aDun)L2(Ω) ≤ F (un) ≤ ‖F‖op ‖un‖H1

0 (Ω) ≤
‖F‖2op
c1

,

and hence ˆ
E
|gn(un)|dx ≤ CM,g|E|+

1

M

‖F‖2op
c1

For ε > 0 choose M = Mε such that

1

Mε

‖F‖2op
c1

=
ε

4

and choose δε such that

CMε,gδε =
ε

4
.

We obtain

|E| < δε ⇒
ˆ
E
|gn(un)|dx < ε ∀n ∈ N,

i.e. condition (ii) in Theorem 3.5 holds too. It follows g(u) ∈ L1(Ω) and gn(un) → g(u) in
L1(Ω). This completes the proof of existence.

[18: 7.12.2023]
[19: 11.12.2023]
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Proof of uniqueness. Assume u1, u2 ∈ H1
0 (Ω) satisfy g(u1), g(u2) ∈ L1(Ω) and

(Du1, aDv)L2(Ω)+

ˆ
Ω
g(u1)vdx = F (v) = (Du2, aDv)L2(Ω)+

ˆ
Ω
g(u2)vdx ∀v ∈ H1

0 (Ω)∩L∞(Ω).

It follows

(D(u1 − u2), aDv)L2(Ω) +

ˆ
Ω

[g(u1)− g(u2)]vdx = 0 ∀v ∈ H1
0 (Ω) ∩ L∞(Ω).

We cannot replace as test function v = u1 − u2 since this function is not necessarily in L∞(Ω).
Instead set

vk := Tk ◦ (u1 − u2) =


k u1 − u2 ≥ k
u1 − u2 |u1 − u2| ≤ k
−k u1 − u2 ≤ −k.

It holds (exercise) vk ∈ L∞(Ω) ∩H1
0 (Ω) ∀k, and

Dvk = 1|u1−u2|<kD(u1 − u2).

Inserting v = vk above and usingˆ
Ω
D(u1 − u2) · aDvk =

ˆ
Ω

1|u1−u2|<kD(u1 − u2) · aD(u1 − u2) =

ˆ
Ω
Dvk · aDvk,

we argue

θ‖Dvk‖2L2(Ω) ≤
ˆ

Ω
D(u1 − u2) · aDvk dx

= −
ˆ

Ω
[g(u1)− g(u2)]Tk(u1 − u2)dx ≤ 0,

where in the last step we used that Tk and g are non-decreasing. It follows that vk = 0 holds a.e.
in Ω and hence u1 = u2 a.e. in Ω. This concludes the proof of unicity and of the theorem.

Example 1. Set g(t) := t|t|p−2, with p ≥ 2. This function is locally Lipschitz and non-
decreasing. Hence the unique weak solution u ∈ H1

0 (Ω) of (3.2) must satisfy g(u) ∈ L1(Ω), i.e.
u ∈ H1

0 (Ω) ∩ Lp−1(Ω).

Example 2. Set g(t) := et − 1. This function is locally Lipschitz and non-decreasing. Hence
the unique weak solution u ∈ H1

0 (Ω) of (3.2) must satisfy eu − 1 ∈ L1(Ω).

3.3 Subsolution and supersolution method

Let Ω ⊂ Rd be open and bounded. We consider now the linear operator Lu := −div aDu and
the nonlinear PDE {

Lu = g(u) + F in Ω
u|∂Ω = 0

(3.4)

with F ∈ H1(Ω)∗ and g : R→ R non-decreasing.

Note that, contrary to the previous chapter, we study Lu−g(u) = F. For g linear this corresponds
to study Lu− Cu = F, with C > 0. This equation is not always solvable (cf Section 2.2.3). We
will see that, in some cases, we can at least garantee existence, though not uniqueness, of a
weak solution. The idea is to compare the PDE with the solutions of some appropriately chosen
linearized equation. To make this rigorous we will use sub and supersolutions.
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Definition 3.7. Let Ω ⊂ Rd be open and bounded.
Remember that BL[u, v] = (Dv, aDu)L2(Ω) =

´
ΩDv · aDu dx ∀u, v ∈ H

1
0 (Ω).

(i) The function u ∈ H1
0 (Ω) is a (weak) subsolution for (3.4) if

BL[u, v] ≤
ˆ

Ω
vg(u) dx+ F (v) ∀v ∈ H1(Ω; [0,∞)).

(ii) The function u ∈ H1
0 (Ω) is a (weak) supersolution for (3.4) if

BL[u, v] ≥
ˆ

Ω
vg(u) dx+ F (v) ∀v ∈ H1(Ω; [0,∞)).

Here we assume g is regular enough to ensure the weak formulation above is well defined.

Remark. If u, u ∈ C2(Ω), a ∈ C1(Ω;Rd×dsym) and F = (f, ·)L2(Ω), with f ∈ C(Ω) ∩ L2(Ω), then
we can replace the integrals above with pointwise inequalities

Lu ≤ g(u) + f (3.5)

Lu ≥ g(u) + f.

Theorem 3.8. Let Ω ⊂ Rd be open and bounded, a ∈ L∞(Ω;Rd×dsym) uniformly elliptic,
F ∈ H1

0 (Ω)∗ and g : R→ R a function satisfying:

• g is continuous and g(0) = 0,

• |g(t)| ≤ C |t|α ∀t ∈ R, where C > 0 is some constant and α ∈ [0,∞) for d = 1, 2, while
α ∈ [0, d+2

d−2 ] for d ≥ 3.

Assume u ∈ H1
0 (Ω) is a weak subsolution for (3.4), and u ∈ H1

0 (Ω) is a weak supersolution for
(3.4), satisfying

u ≤ u a.e. in Ω,

and at least one of the conditions below holds.

(i) g is non-decreasing.

(ii) g is Lipschitz continuous.

(iii) g|R+
is non-decreasing and 0 ≤ u ≤ u a.e. in Ω.

(iv) g is locally Lipschitz continuous, g|R+
is non-decreasing and ∃M > 0 such that

−M ≤ u ≤ u a.e. in Ω.

Then ∃u ∈ H1
0 (Ω) weak solution of (3.4) satisfying u ≤ u ≤ u a.e. in Ω.

Remark 1. The assumptions on α garantee, using Lemma 3.2, that the weak formulation is
well defined.
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Remark 2. The weak solution obtained from the theorem above is not unique in general (cf.
Lemma 3.10 below).

Proof. Sketch (cf Ex 10.1 and 10.2)

Case 1. Assume g is non-decreasing. We approximate u by a sequence k 7→ uk ∈ H1
0 (Ω)

constructed as follows.
Set u0 := u. For k ≥ 1 take uk ∈ H1

0 (Ω) to be the unique weak solution of the linear PDE{
Luk = Fk in Ω
u|∂Ω = 0

where
Fk := F +

(
g(uk−1) , ·

)
L2(Ω)

∈ H1
0 (Ω)∗.

The function uk exists and is unique by the first existence theorem 2.8. Moreover (exercise)

u ≤ u1 ≤ u2 ≤ · · · ≤ u,

and uk → u in some appropriate sense, where u ∈ H1
0 (Ω) is a weak solution of (3.4) satisfying

u ≤ u ≤ u a.e. in Ω.

Case 2. Assume g is Lipschitz continuous. Then ∃C > 0 such that |g(t) − g(s)| ≤ C|t − s|
∀t, s ∈ R. It follows h(t) := g(t) +Ct is non-decreasing. We use then Case 1 to construct a weak
solution of Lu+Cu = h(u) +F and from there a weak solution of (3.4) satisfying u ≤ u ≤ u
a.e. in Ω

Case 3. Use the same strategy as in Case 1.

Case 4. Use the same strategy as in Case 2 and 3.

Lemma 3.9 (Example 1). Let Ω ⊂ Rd, with d ≤ 6, be open, bounded and connected, with smooth
boundary. Assume in addition f ∈ C∞(Ω; [0,∞)) and ∃x0 ∈ Ω such that f(x0) > 0.
Then the nonlinear PDE {

−∆u = u2 − f in Ω
u|∂Ω = 0

(3.6)

has at least one non-positive weak solution u ∈ H1
0 (Ω; (−∞, 0]).

[19: 11.12.2023]
[20: 14.12.2023]

Proof.
• The weak formulation is well defined. Indeed g(s) = s2, i.e. α = 2 and

2 ≤ d+ 2

d− 2
∀3 ≤ d ≤ 6.

• The map s 7→ g(s) satisfies g(0) = 0, is non-decreasing on R+ and locally Lipschitz on R.
Moreover we look for a non-positive solution, hence we need to use Case (iv) of Theorem 3.8.
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• We look for a supersolution satisfying u ≤ 0. The choice u := 0 works. Indeed, using f ≥ 0
and g(0) = 0, we get

ˆ
Ω
Dv ·Du dx = 0 ≥ −

ˆ
Ω
vf dx =

ˆ
Ω
v[g(u)− f ] dx, ∀v ∈ H1

0 (Ω; [0,∞)).

Equivalently we can argue pointwise

−∆u = 0 ≥ −f = u2 − f.

• We look for a subsolution u ∈ H1
0 (Ω) satisfying u ≤ u = 0. Note that u2 − f ≥ −f so we

consider the linear PDE {
−∆ψ = −f in Ω
ψ|∂Ω = 0.

By the first existence theorem 2.8, this PDE has a unique weak solution ψ ∈ H1
0 (Ω). Since f ∈

C∞(Ω) and ∂Ω is smooth, by Theorem 2.25 we have ψ ∈ C∞(Ω) and the equation −∆ψ = −f
holds pointwise. Hence we have

−∆ψ = −f ≤ 0 in Ω, and −∆ψ(x0) = −f(x0) < 0.

Therefore, by the strong maximum principle (since Ω is connected) ψ < 0 in Ω.

We define u := ψ. This is a subsolution. Indeed

−∆u = −f ≤ −f + u2.

Moreover this function satisfies u < 0 = u. Finally, since u ∈ C(Ω), there exists M > 0 such that
−M ≤ u(x) ∀x ∈ Ω, and by Case (iv) of Theorem 3.8 there exists at least one weak solution
u ∈ H1

0 (Ω) such that u ≤ u ≤ 0.

Lemma 3.10 (Example 2). Let Ω ⊂ Rd, with d ≤ 6, be open, bounded and connected, with
smooth boundary. Assume in addition 0 < θ < 1.
Then the nonlinear PDE {

−∆u = |u|θ in Ω
u|∂Ω = 0

(3.7)

has at least one strictly positive weak solution u ∈ H1
0 (Ω; (0,∞)).

Remark. Since u = 0 is also a weak solution, the PDE above has at least two different
solutions.

Proof.
• We have g(s) = |s|θ, with 0 < θ < 1 hence the weak formulation is well defined in any
dimension.

• Since g is non decreasing on R+ it is enough to find a sub and supersolution such that
0 < u ≤ u. We note that, if θ = 0 we have −∆u = 1 which is a linear non-homegeneous PDE.
If θ = 1 and u ≥ 0 we have −∆u = |u| = u which is a linear homegeneous PDE. Since u|∂Ω = 0
we expect 0 < u < 1 near ∂Ω and hence

u1 ≤ uθ ≤ u0 = 1.
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Therefore we will use the case θ = 0 to look for a supersolution u and the case θ = 1 to look for
a subsolution u.

• Supersolution: consider the PDE {
−∆u = 1 in Ω
u|∂Ω = 0.

By the first existence theorem 2.8, this PDE has a unique weak solution ψ ∈ H1
0 (Ω). By Theorem

2.25 we have ψ ∈ C∞(Ω), ψ|∂Ω = 0, and the equation −∆ψ = 1 holds pointwise. Hence we have

−∆ψ = 1 > 0 in Ω,

and by the strong maximum principle (since Ω is connected) ψ > 0 in Ω.

We define u := c1ψ, where c1 > 0 is some constant to be chosen later. u is a supersolution if

c1 = −∆u ≥ cθ1ψθ.

For this it is enough to choose c1 ≥ ‖ψ‖
θ

1−θ
L∞ .

• Subsolution: consider the PDE {
−∆u = u in Ω
u|∂Ω = 0.

The spectrum of −∆ is at most countable and strictly positive (cf. Theorem 2.12 and the
remarks after it)

Σ = {λn}n∈N, 0 < λ1 ≤ λ2 ≤ λ3 · · ·

Claim. ∃ϕ ∈ H1
0 (Ω; (0,∞)) strictly positive eigenvector for λ1, i.e. ϕ is a weak solution of

−∆ϕ = λ1ϕ.

Proof. Cf Evans for the general case. In the special case d = 1 and Ω = (−1, 1) one can construct
explicitely all eigenvalues and eigenvectors for −∆ (exercise).

We define u := c2ψ, where c2 > 0 is some constant to be chosen later. u is a subsolution if

λ1u = −∆u ≤ uθ, iff u1−θ ≤ λ−1
1 iff ‖u‖L∞ ≤ λ

− 1
1−θ

1 .

For this it is enough to choose c2 ≤ λ
− 1

1−θ
1 ‖ψ‖−1

L∞ .

• We have now a super and a subsolution. We still need to check that u ≤ u. We define
w := u− u. Then w ∈ C∞(Ω) and w|∂Ω = 0. We compute

−∆w = (−∆u)− (−∆u) = c1 − c2λ1ϕ.

We choose c1 ≥ λ1c2‖ϕ‖L∞ . Then −∆w ≥ 0 and by the strong maximum principle w ≥ 0 on Ω
and hence u ≥ u.

• We have constructed a subsolution and a supersolution such that 0 < u ≤ u. Since g is non-
decreasing on R+, by Case (iii) of Theorem 3.8, there exists at least one strictly positive weak
solution u ∈ H1

0 (Ω).
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4 Fixed point methods

Existence of solutions for NLPDEs can be sometimes proved by finding a fixed point. The
following theorems summarize the most important fixed point results.

Theorem 4.1 (Banach-Cacciopoli).
Let (X, d) be a complete metric space, and F : X → X a contraction, i.e. ∃0 < λ < 1 such that

d(F (x), F (y)) ≤ λ d(x, y) ∀x, y ∈ X.

Then there exists a unique fixed point for F, i.e. ∃!x0 ∈ X such that F (x0) = x0.

Proof. Cf Analysis 2.

Theorem 4.2 (Brouwer).
Let K ⊂ Rd be convex, closed and bounded.
Let F : K → K be a continuous function.

Then F admits a fixed point, i.e ∃x0 ∈ K such that F (x0) = x0.

Theorem 4.3 (Schauder I).
Let X be a real Banach space, K ⊂ X convex and compact.
Let F : K → K be a continuous function.

Then F admits a fixed point, i.e ∃x0 ∈ K such that F (x0) = x0.

Theorem 4.4 (Schauder II).
Let X be a real Banach space, A ⊂ X convex, closed and bounded.
Let F : X → X be a function satisfying

• F is continous and compact (cf Def. 4.7 below),

• F (A) ⊂ A.

Then F admits a fixed point in A, i.e ∃x0 ∈ A such that F (x0) = x0.

Theorem 4.5 (Schaefer).
Let X be a real Banach space and F : X → X a function satisfying

• F is continous and compact (cf. Def. 4.7 below),

• the set A := {x ∈ X |x = λF (x) for some 0 ≤ λ ≤ 1} is bounded.

Then F admits a fixed point, i.e ∃x0 ∈ X such that F (x0) = x0.

The rest of this section is devoted to prove these fixed point theorems. We start with some
remarks and preliminary results.

Remarks.

• Banach-Cacciopoli is the only result that garantees not only existence but also uniqueness
of the fixed point.

• Brouwer is a special case of Schauder I, since K ⊂ Rd is compact iff K is closed and
bounded.

• The advantage of Schaefer is that we do not need to look for a convex subset of X

• The assumptions in Schauder I and II are all important: see the examples below.
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Example 1. Let X = l2(R) = {{xj}∞j=1|
∑∞

j=1 x
2
j <∞}.

We consider K := B1(0) and F : X → X defined as

F (x) :=

{
1− ‖x‖2

2
, x1, x2, . . .

}
.

The set K is convex, closed and bounded, but not compact. The function F is well defined,
continuous, and satisfies F (K) ⊂ K but is not compact (exercise).

This function has no fixed point. Indeed, we have F (x) = x iff

x1 = F (x)1 =
1− ‖x‖2

2
, xk = F (x)k = xk−1 ∀k ≥ 2.

This holds iff xk = x1 ∀k ≥ 1, and hence x1 = 0 (since the sequence must be square summable).
It follows 0 = x1 = 1−0

2 = 1/2 which gives a contradiction.

Example 2. Let X = R2, K := B2(0) \B1(0), and F : R2 → R2 be defined as

F (x1, x2) := (−x2, x1).

The set K is compact, but not convex. The function F is well defined and continuous (actually
it is the rotation by π/2).

This function has the unique fixed point x = (0, 0) which does not belong to K.

[20: 14.12.2023]
[21: 18.12.2023]

To prove Brouwer’s fixed point theorem we will need the following result from FA.

Lemma 4.6 (projection on a convex and closed subset). Let (H, 〈·, ·〉) be a real Hilbert space.
Let A ⊂ H be a closed and convex subset with A 6= ∅.
Then ∃! map PA : H → A such that ‖PA(x)− x‖H = dist (x,A). Moreover PA satisfies

(i) PA is the unique map such that 〈x− PA(x), y − PA(x)〉 ≤ 0 ∀y ∈ A, x ∈ H.

(ii) PA is Lipschitz continuous with Lipschitz constant LPA = 1.

Remark. In general PA is not a linear function, unless A is a linear subspace of H.

Proof. Existence/uniqueness of PA, as well as (i) have been seen in Functional Analysis.

(ii) Fix x1, x2 ∈ H. It follows from (i) that

〈x1 − PA(x1), y − PA(x1)〉 ≤ 0 ∀y ∈ A,
〈x2 − PA(x2), y − PA(x2)〉 ≤ 0 ∀y ∈ A.

Setting y = P (x2) in the first inequality and y = P (x1) in the second, we obtain

〈x1 − PA(x1), PA(x2)− PA(x1)〉 ≤ 0,

〈PA(x2)− x2, PA(x2)− PA(x1)〉 ≤ 0.

Summing the two lines we get

〈x2 − x1, PA(x2)− PA(x1)〉 ≥ ‖PA(x2)− PA(x1)‖2H
and hence ‖PA(x2)− PA(x1)‖H ≤ ‖x2 − x1‖H ∀x1, x2 ∈ X.
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Proof of Brouwer’s fixed point theorem 4.2. Let K ⊂ Rd be convex, closed and bounded. Let
F : K → K a continuous function. Our goal is to show that there exists x0 ∈ X such that
F (x0) = x0.

• We can assume K = BR(0). Indeed, suppose K 6= BR(0).

Since K is bounded, ∃R > 0 such that K ⊂ BR(0).
Since K is convex and closed, by Lemma 4.6, ∃!PK : Rd → K such that |PK(x)−x| = dist (x,K).
We define F̃ : BR(0)→ K ⊂ BR(0) by

F̃ (x) := F (PK(x)).

This function is continuous, since both F and PK are continuous.

Assume the theorem holds for the case K = BR(0). Then F̃ admits a fixed point, i.e. ∃x0 ∈
BR(0) such that F̃ (x0) = x0.
Since F̃ (BR(0)) ⊂ K we must have x0 ∈ K. Therefore PK(x0) = x0 and x0 = F̃ (x0) =
F (PK(x0)) = F (x0), hence x0 is a fixed point for F .

• We can assume R = 1. Indeed, suppose R 6= 1.

We define F̃ : B1(0)→ B1(0) by

F̃ (x) :=
1

R
F (Rx).

This function is well defined and continuous.

Assume the theorem holds for the case K = B1(0). Then F̃ admits a fixed point, i.e. ∃x0 ∈ B1(0)
such that F̃ (x0) = x0. Therefore Rx0 = F (Rx0) and hence x1 := Rx0 is a fixed point for F.

• We can assume F : Rd → B1(0). Indeed, set B := B1(0) and suppose F : B → B. We define
F̃ : Rd → B by

F̃ (x) := F (PB(x)),

where PB is well defined since B is convex and closed. Since F and PB are continous, F̃ is
continuous.

Assume the theorem holds for the case F : Rd → B. Then F̃ admits a fixed point i.e. ∃x0 ∈ Rd
such that F̃ (x0) = x0. Since F̃ (Rd) ⊂ B it follows x0 ∈ B, PB(x0) = x0 and hence F̃ (x0) =
F (x0) = x0. Therefore x0 is a fixed point for F.

•We can assume F : Rd → B is smooth. Indeed, assume F is continuous and define Fε := ρε ∗F,
where {ρε}ε>0 is a family of standard mollifiers, i.e. ρε := ε−dρ(ε−1x), with ρ ∈ C∞c (B; [0,∞))
and

´
ρ dx = 1.

It holds Fε ∈ C∞(Rd;B) ∀ε and Fε → F uniformly on B.

Assume the theorem holds for the case F : Rd → B smooth function. Then for each ε > 0
∃xε ∈ B such that Fε(xε) = xε. The family {xε}ε>0 is bounded hence there is a sequence
n → εn with εn → 0 and xεn → x ∈ B. By uniform convergence we get Fεn(xεn) → F (x), and
hence F (x) = x.

• We assume now F : Rd → B is a smooth function. Our goal is to prove that there exists a
point x0 ∈ B such that F (x0) = x0.

By contradiction assume F (x) 6= x ∀x ∈ B. Then we can construct a function g : B → ∂B,
where g(x) is the unique intersection with ∂B of the half-line starting in F (x) (the starting
point is not included) and passing through x. This function has the following properties.
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• g(x) = x iff x ∈ ∂B, by construction.

• g ∈ C∞(B; ∂B). Indeed g(x) = F (x) + λ(x)[x − F (x)], where λ(x) is the unique positive
solution of

|F (x) + λ(x)[x− F (x)]|2 = 1, i.e. λ2a(x) + 2λb(x)− c(x) = 0,

with

a(x) := |x− F (x)|2, b(x) := F (x) · [x− F (x)], c(x) := 1− |F (x)|2.

Note that a(x) > 0 on B, since x 6= F (x) ∀x ∈ B, and c(x) ≥ 0 since F (Rd) ⊂ B. Hence

λ(x) =
b(x) +

√
b(x)2 + a(x)c(x)

a(x)
,

It holds a, b, c ∈ C∞(B) and b(x)2+a(x)c(x) > 0 onB (exercise), therefore λ ∈ C∞(B; (0,∞)),
which implies g ∈ C∞(B; ∂B).

The claim below states that no such function exists, hence providing a contradiction.

Claim 1. There exists no function g ∈ C∞(B; ∂B) such that g(x) = x ⇔ x ∈ ∂B.

Proof. We could use topological arguments. Here we use a different proof, using Banach fixed
point theorem. By contradiction, assume ∃g ∈ C∞(B; ∂B) such that g(x) = x ⇔ x ∈ ∂B. We
will show that g satisfies the following statements:

(a) detDg(x) = 0 ∀x ∈ B.

(b) g satisfies
´
B detDg dx = |B|.

But these two statements are incompatible, which gives the contradiction.

Proof of (a). Since g(B) ⊂ ∂B we have |g(x)|2 = 1 and hence Dg(x)tg(x) = 0 ∀x ∈ B. It follows
that kerDg(x)t 6= {0} and hence detDg(x) = 0 ∀x ∈ B.

Proof of (b). Note that if we had g(x) = x, then Dg = Id and
´
B detDg dx =

´
B 1 dx = |B|.

We will show that g is not far from the identity. For this purpose we define, for t ∈ [0, 1] the
map

ϕt : B → B
x 7→ ϕt(x) := (1− t)x+ tg(x).

• ϕt is well defined since |ϕt(x)| ≤ (1 − t)|x| + t|g(x)| ≤ 1 − t + t = 1. Morever ϕ0(x) = x and
ϕ1(x) = g(x), hence ϕt interpolates between x and g(x).

• ϕt ∈ C∞(B;B), since both g and the identity are smooth. Moreover

detDϕt = det[Id + t(Dg − Id )] = 1 + a1(x)t+ · · ·+ ad(x)td,

where aj ∈ C∞(B;R), therefore

ˆ
B

detDϕt dx = |B|+
d∑
j=1

tjαj , with αj :=

ˆ
B
aj dx.
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• detDϕ0 = 1 and t 7→ detDϕt is continuous, hence ∃t1 > 0 such that detDϕt > 0 ∀t ∈ [0, t1].
Therefore ˆ

B
|detDϕt| dx =

ˆ
B

detDϕt dx = |B|+
d∑
j=1

tjαj , ∀t ∈ [0, t1].

Claim 2. ∃t2 > 0 such that ϕt is bijective ∀t ∈ [0, t2].

Consequence. Set δ := min{t1, t2}. Then, ∀t ∈ [0, δ] we have

|B|+
d∑
j=1

tjαj =

ˆ
B

detDϕt dx =

ˆ
B
|detDϕt| dx =

ˆ
ϕt(B)

dx = |ϕt(B)| = |B|,

where we used ϕt(B) = B by surjectivity. Hence αj = 0 ∀j = 1, . . . , d and

ˆ
B

detDϕt dx = |B|, ∀t ∈ [0, 1].

Proof of Claim 2. Here we use Banach fixed point theorem. Fix some t < 1, y ∈ B. Our goal is
to show that, if t ≤ t2 there exists a unique x ∈ B such that ϕt(x) = y.

We have ϕt(x) = y iff (1− t)x+ tg(x) = y iff x = ψ(x), where

ψ : B → Rd
x 7→ ψ(x) := 1

1−ty −
t

1−tg(x).

To apply Banach fixed point theorem, we extend this function to ψ̃ : Rd → Rd defined by
ψ̃(x) := ψ(P (x)), where P = PB.
This function is a contraction if t2 is small enough. Indeed

|ψ̃(x)− ψ̃(x′)| = t

1− t
|g(P (x))− g(P (x′))| ≤ t

1− t
‖Dg‖L∞(B)|P (x)− P (x′)|

≤ t

1− t
‖Dg‖L∞(B)|x− x

′| ≤ t2
1− t2

‖Dg‖L∞(B)|x− x
′| = θ|x− x′|,

where θ < 1 if t2 is small enough. It follows that ∃!x ∈ Rd such that ψ̃(x) = x. We distinguish
now two cases.

• If x ∈ B, then P (x) = x and hence x = ψ(P (x)) = ψ(x).

• If x ∈ Bc
, then P (x) ∈ ∂B and hence g(P (x)) = P (x), by the assumptions on g. It follows

y = (1− t)x+ tg(P (x)) = (1− t)x+ tP (x) 6∈ B,

since x 6∈ B and P (x) ∈ ∂B. This contradicts y ∈ B. Hence this case cannot occur.

This completes the proof of Claim 2 and of the theorem.

[21: 18.12.2023]
[22: 21.12.2021]
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Proof of Schauder I, Theorem 4.3. Let X be a real Banach space, K ⊂ X convex and compact,
F : K → K a continuous function. Our goal is to show that ∃x0 ∈ K such that F (x0) = x0.

Claim. ∀ε > 0 ∃Kε ⊂ K and Fε : K → K such that

• Kε convex, bounded and closed, and Kε ⊂ Vε where Vε is a finite dimensional linear
subspace of X,

• Fε is continuous, Fε(Kε) ⊂ Kε and supx∈K ‖Fε(x)− F (x)‖ ≤ ε.

Consequence. By Brouwer’s fixed point theorem, there exists a point xε ∈ Kε such that Fε(xε) =
xε. Since K is compact, we can find x ∈ K and a sequence n→ εn such that εn → 0 and xεn → x.
We claim that x is a fixed point for F. Indeed we argue

‖x− F (x)‖ ≤ ‖x− xεn‖+ ‖xεn − F (xεn)‖+ ‖F (xεn)− F (x)‖.

Since xεn → x and F is continuous we have ‖x− xεn‖ → 0 and ‖F (xεn)− F (x)‖ → 0. Finally,
using Fεn(xεn) = xεn we argue

‖xεn − F (xεn)‖ = ‖Fεn(xεn)− F (xεn)‖ ≤ sup
x∈K
‖Fεn(x)− F (x)‖ ≤ εn → 0,

and hence F (x) = x.

Proof of the Claim.
• We construct Kε. Since K is compact ∀ε > 0 ∃Nε ≥ 1, xε1, . . . x

ε
Nε
∈ K such that

K ⊂
Nε⋃
j=1

Bε(x
ε
j).

We define Vε := span {xε1, . . . xεNε} and

Kε := conv{xε1, . . . xεNε} = {y =

Nε∑
j=1

λjx
ε
j | λj ≥ 0,

Nε∑
j=1

λj = 1}.

It holds dimVε ≤ Nε <∞. Moreover Kε ⊂ K, since K is convex, Kε ⊂ Vε by construction, Kε

is closed (exercise) and bounded since |y| ≤
∑Nε

j=1 λj |xεj | ≤ maxj |xεj | ∀y ∈ Kε.

• We construct Fε. The easiest choice Fε := F does not work since F (Kε) 6⊂ Kε in general.

It is enough to find a continuous function Jε : K → Kε such that

sup
x∈K
‖Jε(x)− x‖ ≤ ε.

Indeed, given such a function, we define Fε(x) := Jε(F (x)). Then Fε is continuous, Fε(Kε) ⊂ Kε

and
sup
x∈K
‖Fε(x)− F (x)‖ = sup

x∈K
‖Jε(F (x))− F (x)‖ ≤ sup

x∈K
‖Jε(x)− x‖ ≤ ε.

To contruct Jε it is enough to find Nε continuous functions λj : K → [0, 1] such that:∑Nε
j=1 λj(x) = 1 ∀x ∈ K and λj(x) = 0 ∀x 6∈ Bε(xεj).

Indeed, set Jε(x) :=
∑Nε

j=1 λj(x)xεj .
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By construction, Jε(x) ∈ Kε ∀x ∈ K. Moreover Jε is continous and

‖Jε(x)− x‖ = ‖
Nε∑
j=1

λj(x) (xεj − x)‖ ≤
Nε∑
j=1

λj(x)‖xεj − x‖ ≤ ε
Nε∑
j=1

λj(x) = ε,

where we used λj(x) = 0 if ‖xεj − x‖ > ε.

To construct the functions λj we argue as follows. Consider aj(x) := dist (x,Bε(x
ε
j)
c). This

function is continuos and satisfies

aj(x) = 0 ∀x 6∈ Bε(xεj), 0 < aj(x) ≤ ε ∀x ∈ Bε(xεj), aj(x
ε
j) = ε.

We define now

λj(x) :=
aj(x)∑Nε
k=1 ak(x)

.

This function is well defined, since ∀x ∈ K ∃j such that x ∈ Bε(xεj), and hence
∑Nε

k=1 ak(x) > 0.
Moreover λj has all the required properties (exercise). This concludes the proof of the claim
and of the theorem.

To prove the second version of Schauder’s theorem, we need some preliminary definitions and
results.

Definition 4.7. Let X be a Banach space, F : X → X a map.

F is compact if F (B) is precompact ∀B ⊂ X bounded set.

Reminders from Functional Analysis. Let X be a Banach space, A ⊂ X a subset.

• A is precompact if ∀ε > 0 ∃N ≥ 1 and x1, . . . , xN ∈ A such that

A ⊂
N⋃
j=1

Bε(xj) = {x1, . . . , xN}+Bε(0),

i.e. ∀x ∈ A ∃j ∈ {1, . . . , N} and y ∈ Bε(0) such that x = xj + y.

• A is precompact ⇔ A is compact.

• The convex hull of A is the set

convA :=

y =
n∑
j=1

λjyj | n ≥ 1, λj ≥ 0,
n∑
j=1

λj = 1, y1, . . . , yn ∈ A

 .

Lemma 4.8. Let X be a Banach space, A ⊂ X a subset.

A is precompact ⇒ convA is precompact.

Proof.
• A is precompact, then ∀ε > 0 ∃N ≥ 1 and x1, . . . , xN ∈ A such that A ⊂ {x1, . . . , xN}+Bε(0).
We show that convA ⊂ conv{x1, . . . , xN}+Bε(0) holds.
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Indeed, set z ∈ convA. By definition ∃k ≥ 1, z1, . . . , zk ∈ A, λ1, . . . , λk ≥ 0 with
∑k

l=1 λl = 1

such that z =
∑k

l=1 λlzl.
Since zl ∈ A we can write zl = xjl + yl, for some jl ∈ {x1, . . . , xN} and yl ∈ Bε(0). It follows

z =
k∑
l=1

λlzl =
k∑
l=1

λlxjl +
k∑
l=1

λlyl ∈ conv{x1, . . . , xN}+Bε(0),

and hence convA ⊂ conv{x1, . . . , xN}+Bε(0).

• We show that convA is precompact.
Indeed conv{x1, . . . , xN} is compact, since it is bounded, closed and

conv{x1, . . . , xN} ⊂ span {x1, . . . , xN}, with dim span {x1, . . . , xN} ≤ N.

Therefore ∃m ≥ 1, x̃1, . . . , x̃m ∈ conv{x1, . . . , xN}, such that

conv{x1, . . . , xN} ⊂ {x̃1, . . . , x̃N}+Bε(0).

It follows
convA ⊂ conv{x1, . . . , xN}+Bε(0) ⊂ {x̃1, . . . , x̃N}+B2ε(0).

This concludes the proof of the lemma.

Proof of Schauder II, Theorem 4.4. Let X be a real Banach space, A ⊂ X convex, closed and
bounded, F : X → X satisfying

• F is continous and compact.

• F (A) ⊂ A.

Our goal is to show that F admits a fixed point in A.

The idea is to reduce to Schauder I. Indeed it is enough to find K ⊂ A such that K is convex
and compact, and F (K) ⊂ K. Then, by Schauder’s theorem I, ∃x ∈ K ⊂ A such that F (x) = x.

To construct K we proceed as follows. Since F is compact and A is bounded, F (A) is precompact
and hence, by Lemma 4.8, convF (A) is precompact and convex. We define

K := convF (A).

Then K is convex and compact. We show now: K ⊂ A and F (K) ⊂ K.

Since F (A) ⊂ A and A is convex it follows that convF (A) ⊂ A. Since A is closed we get

K = convF (A) ⊂ A = A,

and hence K ⊂ A. Finally, since K ⊂ A, we have F (K) ⊂ F (A) ⊂ convF (A) ⊂ K.
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Proof of Schaefer’s fixed point theorem 4.5. Let X be a real Banach space, F : X → X satisfy

• F is continous and compact,

• the set A := {x ∈ X |x = λF (x) for some 0 ≤ λ ≤ 1} is bounded.

Our goal is to prove that F admits a fixed point. For this purpose we reduce to Schauder II.
A natural candidate for the set K is BM (0), since this set is convex, bounded and closed. But
in general F (BM (0)) 6⊂ BM (0). We consider instead a regularized version of F constructed as
follows.

Since the family A is bounded, we have M0 := supx∈A ‖x‖ < ∞. Set now M > M0. We define
the function FM : X → X as FM := TM (F (x)) where TM : X → X is given by

TM (x) :=

{
x if ‖x‖ ≤M
M
‖x‖x if ‖x‖ > M.

i.e.

FM (x) :=

{
F (x) if ‖F (x)‖ ≤M
λxF (x) if ‖x‖ > M.

where λx :=
M

‖F (x)‖
∈ (0, 1).

• SInce T is continuous (exercise) and F is continuous by assumption, FM is continuous too.

• FM (X) ⊂ BM (0) by construction, and hence FM (BM (0)) ⊂ BM (0).

• FM is compact. Indeed let n 7→ xn ∈ X be a bounded sequence in X. Since the function F is
compact there exists a subsequence j 7→ xnj and a point y ∈ X such that F (xnj )→ y. Since T
is continuous we have FM (xnj ) = T (F (xnj ))→ T (y).

Therefore, by Shauder’s theorem 4.4, ∃x0 ∈ BM (0) such that FM (x0) = x0.
We distinguish now two cases

If ‖F (x0)‖ ≤M then F (x0) = FM (x0) = x0.

If ‖F (x0)‖ > M then λx0F (x0) = FM (x0) = x0, where λx0 = M/‖F (x0)‖ < 1. Therefore x0 ∈ A
and hence ‖x0‖ ≤M0 < M. Using again F (x0) = λ−1

x0
x0, we argue

‖F (x0)‖ =
1

λx0

‖x0‖ = ‖F (x0)‖‖x0‖
M

< ‖F (x0)‖

which gives a contradiction. Therefore this case cannot occur.

The fixed point theorems above can be used to prove existence (thought not uniqueness) of
several nonlinear PDEs. Three examples (see Sheet 11) are

• −∆u(x) = f(x, u(x)),

• −div (a(u)Du) = f where a : R→ R is a scalar function,

• −∆u(x) + µu(x) = f(x,Du(x)).

In all these cases the main trick is to construct a function F : X → X, whereX = L2(Ω) orH1
0 (Ω)

where v = Fu is defined as the unique weak solution of the linear PDE −∆v(x) = f(x, u(x)),
(resp. −div (a(u)Dv) = f, −∆v(x) + µv(x) = f(x,Du(x))).
To prove continuity of the function F we need some continuity of the operator u→ f(x, u(x)).
This is the content of the next theorem.
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Lemma 4.9 (Nemitski composition theorem). Let Ω ⊂ Rd be open and bounded.
Set 1 ≤ p, q <∞, and f : Ω× R→ R a function with the following properties.

• f is a Carathéodory function i.e. x → f(x, s) is measurable ∀s ∈ R and s → f(x, s)
continuous for a.e. x ∈ Ω.

• ∃b ≥ 0, a function g ∈ Lq(Ω; [0,∞)) and 0 < β ≤ p
q such that

|f(x, s)| ≤ g(x) + b|s|β ∀s ∈ R, for a.e. x ∈ Ω.

Then the Nemitski operator

F : Lp(Ω)→ Lq(Ω)
u 7→ F (u)(x) := f(x, u(x))

is well defined and continuous.

Proof. Sheet 11.

[22: 21.12.2021]
[23: 08.01.2024]

5 Quasilinear elliptic PDEs

Let Ω ⊂ Rd be open and bounded. A quasilinear PDE of second order has the (non-divergence)
form

− Tr [M(x, u,Du)D2u] = f(x, u,Du) (5.1)

where
M : Ω× R× Rd → Rd×dsym

(x, s, p) 7→M(x, s, p)
,

f : Ω× R× Rd → R
(x, s, p) 7→ f(x, s, p).

To write the corresponding divergence formulation, which is more practical to study weak solu-
tions, we need first some notation.

Consider a function F : Ω × R × Rd → Rn. We will denote by ∂/∂xjF the derivative of the
function x 7→ F (x, s, p) and by d/dxjF the derivative of the function x 7→ F (x, u(x), Du(x)).

For a : Ω× R× Rd → Rd, differentiable we define

div a(x, u,Du) : =

d∑
j=1

d

dxj
aj(x, u,Du)

=
d∑
j=1

[
∂xjaj(x, u,Du) + ∂saj(x, u,Du)∂xju+

d∑
l=1

∂plaj(x, u,Du)∂2
xlxj

u

]
= Tr [A(x, u,Du)D2u] +B(x, u,Du) = Tr [(ReA)D2u] +B,

where

A : Ω× R× Rd → Rd×d
(x, s, p) 7→ Aij(x, s, p) := ∂piaj(x, s, p)

,

B : Ω× R× Rd → R
(x, s, p) 7→ B(x, s, p) :=

∑
j

[
∂xjaj(x, u,Du) + ∂saj(x, u,Du)∂xju

]
,
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and we used ReA = 1
2(A+A∗) = 1

2(A+At) and (D2u)t = (D2u).
Hence, u is a solution of−div a(x, u,Du) = f(x, u,Du) iff u is a solution of−Tr [M(x, u,Du)D2u] =
f̃(x, u,Du) with M := ReA and f̃(x, u,Du) := f(x, u,Du) +B(x, u,Du).

Note that, performing integration by parts directly in (5.1) we do not obtain an expression of
the form div a(x, u,Du) +B(x, u,Du) in general:

−Tr [M(x, u,Du)D2u] = −div (M(x, u,Du)Du) +

d∑
k=1

∂ku divM·,k

= −div (M(x, u,Du)Du) +

d∑
k=1

∂ku

d∑
jl=1

∂plM(x, u,Du)jk(D
2u)jl + B̃(x, u,Du).

In the following we consider the boundary value problem:{
−div a(x, u,Du) = f(x, u,Du) in Ω
u|∂Ω = 0

(5.2)

where a : Ω×R×Rd → Rd and f : Ω×R×Rd → R are nonlinear functions. If a is differentiable
in the third variable we define Ajl(x, s, p) := ∂plaj(x, s, p).

5.1 Ellipticity and weak formulation

Definition 5.1 (ellipticity version I). Assume the function a : Ω × R × Rd → Rd is C1 in the
third variable. In particular A : Ω × R × Rd → Rd×d is well defined. We say that the (formal)
differential operator u 7→ −div a(x, u,Du) is

• elliptic, if ReA(x, s, p) ≥ 0 as a quadratic form ∀(s, p) ∈ R× Rd and a.e. x ∈ Ω,

• uniformly elliptic, if ReA(x, s, p) ≥ θId , for some θ > 0, ∀(s, p) ∈ R×Rd and a.e. x ∈ Ω.

The next lemma summarizes some important properties of vector fields. Since A is constructed
from the derivative of a in p, we can neglect the x, s dependence for the moment.

Lemma 5.2 (properties of vector fields). Fix n ∈ N, n ≥ 1.

(i) Consider a function F : Rn → R, C2 and convex. Set a(p) := DF (p) and Aij := ∂iaj .

Then A is well defined, At = A and A ≥ 0.

(ii) Assume the vector field a : Rn → Rn is differentiable and monotone i.e.

[a(p)− a(q)] · (p− q) ≥ 0 ∀p, q ∈ Rd.

Set Aij := ∂iaj .

Then A is well defined and ReA ≥ 0.

(iii) (zeros of a vector field) Let v : Rn → Rn be a vector field satisfying

(a) v is continous and

(b) ∃R > 0 such that v(x) · x ≥ 0 ∀x ∈ ∂BR(0).

Then ∃x0 ∈ BR(0) such that v(x0) = 0.

96 [February 12, 2024]



Proof.
(i) Since p 7→ F (x, s, p) is C2, the hessian matrix Hij := ∂pi∂pjF = ∂pj∂piF is well defined and
symmetric. Hence Aij = ∂piaj = Hij is well defined and symmetric.
Since p 7→ F (p) is convex we have H = A ≥ 0.

(ii) Set p := q + hξ, with h ∈ R \ 0 and ξ ∈ Rd. Then p− q = hξ and monotonicity gives

0 ≤ [a(p)− a(q)] · (p− q) = h[a(q + hξ)− a(q)] · ξ,

hence, since h2 > 0,

1

h2
h[a(x, s, q + hξ)− a(x, s, q)] · ξ =

1

h
[a(x, s, q + hξ)− a(x, s, q)] · ξ ≥ 0 ∀h ∈ R.

Taking the limit h→ 0 we get

0 ≤
∑
jl

∂plaj(x, s, q)ξlξj = ξ ·Aξ = ξ · ReAξ.

The result follows since ξ is arbitrary.

(iii) By contradiction assume v(x) 6= 0 ∀x ∈ BR(0). We define

w : BR(0) → ∂BR(0) ⊂ BR(0)

x 7→ w(x) := − R
|v(x)|v(x).

Since v is continous and v 6= 0 the function w is also continous. Moreover BR(0) ⊂ Rn is convex,
bounded and closed. By Brouwer’s fixed point theorem, it follows ∃x0 ∈ BR(0) such that

x0 = w(x0) = − R

|v(x0)|
v(x0), hence v(x0) = −|v(x0)|

R
x0.

Since w(BR(0)) ⊂ ∂BR(0), we have x0 ∈ ∂BR(0), and hence, since v(x0) 6= 0,

0 ≤ x0 · v(x0) = −|v(x0)|
R
|x0|2 = −|v(x0)|R < 0,

which gives a contradiction.

We can use monotonicity to define ellipticity also when a is not differentiable

Definition 5.3 (monotone vector field). A vector field v : Rn → Rn is

(i) monotone, if [v(p)− v(q)] · (p− q) ≥ 0 ∀p, q ∈ Rn,

(ii) strictly monotone if [v(p)− v(q)] · (p− q) > 0 ∀p 6= q ∈ Rn,

(iii) uniformly monotone if ∃θ > 0 such that [v(p)− v(q)] · (p− q) ≥ θ|p− q|2 ∀p, q ∈ Rn.

Definition 5.4 (ellipticity version II). Let a : Ω × R × Rd → Rd be a given function. The
(formal) differential operator u 7→ −div a(x, u,Du) is

• elliptic if p 7→ a(x, s, p) is a monotone vector field ∀s ∈ R and a.e. x ∈ Ω.

• strictly elliptic if p 7→ a(x, s, p) is a striclty monotone vector field ∀s ∈ R and a.e. x ∈ Ω.

• uniformly elliptic if p 7→ a(x, s, p) is a uniformly monotone vector field ∀s ∈ R and a.e.
x ∈ Ω, with constant θ independent of (x, s).
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Example Assume ∃F : Ω×R×Rd → R, such that F is differentiable and convex in the third
variable and a = ∂pF. Then p 7→ a(x, s, p) is a monotone vector field and the (formal) differential
operator u 7→ −div a(x, u,Du) is elliptic (exercise).

Definition 5.5 (weak formulation). Let Ω ⊂ Rd be open and bounded, a : Ω×R×Rd → Rd and
f : Ω× R× Rd → R two functions. We consider the (formal) PDE{

−div a(x, u,Du) = f(x, u,Du) in Ω
u|∂Ω = 0

(5.3)

A function u ∈ H1
0 (Ω) is a weak solution of (5.3) if

ˆ
Ω
Dv · a(x, u,Du) dx =

ˆ
Ω
vf(x, u,Du) dx ∀v ∈ H1

0 (Ω),

provided the integrals above are well defined and finite ∀u, v ∈ H1
0 (Ω).

Regularity requirements.

• Consider first
´

ΩDv ·a(x, u,Du) dx. Since Dv ∈ L2(Ω) we need x 7→ a(x, u(x), Du(x)) ∈ L2(Ω)
∀u ∈ H1

0 (Ω). Assume the function is measurable in all variables and ∃C,α, β ≥ 0 such that

|a(x, s, p)| ≤ C[1 + |s|α + |p|β] ∀(x, s, p).

Therefore we need u2α ∈ L1(Ω) and Du2β ∈ L1(Ω) ∀u ∈ H1
0 (Ω). Since Du ∈ L2(Ω) we must have

β ≤ 1. On the contrary, any α <∞ works for d = 1, 2 while for d ≥ 3 we need 2α ≤ 2∗ = 2d
d−2 .

• Consider now
´

Ω vf(x, u,Du) dx. Since v ∈ H1
0 (Ω) we have v ∈ Lq(Ω) ∀1 ≤ q <∞ in d = 1, 2

and v ∈ L2∗(Ω) in d ≥ 3. Therefore we need x 7→ a(x, u(x), Du(x)) ∈ Lm(Ω) with m > 1 for
d = 1, 2 and m = (2∗)′ = 2d

d+2 for d ≥ 3.
Assume f is measurable in all variables and ∃C ′, α′, β′ ≥ 0 such that

|f(x, s, p)| ≤ C ′[1 + |s|α′ + |p|β′ ] ∀(x, s, p).

Arguing as above we need: β′ ≤ 2
m < 2 for d ≥ 1, 0 < α′ <∞ for d = 1, 2 and α′ ≤ 2∗

(2∗)′ = d+2
d−2

for d ≥ 3 (exercise).

• In the following we will assume |a(x, s, p)| ≤ C[1 + |s| + |p|] and |f(x, s, p)| ≤ |g(x)| where
g ∈ L2(Ω). These assumptions garantee the weak formulation is well defined in any dimension.

5.2 Monotonicity and existence of weak solutions

Theorem 5.6 (Leray-Lions). Let Ω ⊂ Rd be open and bounded.
Let a : Ω× R× Rd → Rd and f : Ω× R× Rd → R satisfy the following properties.

(i) Both a and f are Carathéodory functions

[i.e. they are continuous in (s, p) for a.e. x ∈ Ω and they are measurable in x ∀(s, p) ∈
R× Rd.]

(ii) ∃C > 0 and g ∈ L2(Ω) such that

|a(x, s, p)| ≤ C [1+|s|+|p|], |f(x, s, p)| ≤ |g(x)| ∀(s, p) ∈ R×Rd for a.e. x ∈ Ω.
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(iii) a is strictly monotone in the third variable i.e

[a(x, s, p)− a(x, s, q)] · (p− q) > 0 ∀s ∈ R, p 6= q ∈ Rd, for a.e. x ∈ Ω.

(iv) (coercivity) ∃β > 0 such that

a(x, s, p) · p ≥ β|p|2 ∀s ∈ R, p ∈ Rd, for a.e. x ∈ Ω.

Then there exists a function u ∈ H1
0 (Ω) weak solution of (5.3).

Remarks.

• Condition (ii) garantees the weak formulation is well defined.

• The weak solution is not unique in general but we will see that if we replace strict mono-
tonicity with uniform monotonicity, the solution is unique.

We will not see the general proof of Leray-Lions theorem (too long). Instead we will see the
proof in the simpler case, stated in the theorem below.

Theorem 5.7. Let Ω ⊂ Rd be open and bounded.
Let a : Rd → Rd and f : Ω→ R satisfy the following properties.

(i) a is continuous and f is measurable.

(ii) f ∈ L2(Ω) and ∃C > 0 such that |a(p)| ≤ C [1 + |p|], ∀p ∈ Rd.

(iii) a is a monotone vector field i.e [a(p)− a(q)] · (p− q) ≥ 0 ∀p, q ∈ Rd.

(iv) ∃β > 0, γ ≥ 0 such that a(p) · p ≥ β|p|2 − γ ∀p ∈ Rd.

Then there exists a function u ∈ H1
0 (Ω) weak solution of{
−div a(Du)(x) = f(x) in Ω
u|∂Ω = 0.

(5.4)

Moreover, if a is uniformly monotone, then the weak solution is also unique.

Remark. Note that in (iii) and (iv) we need weaker conditions than in Leray-Lions.

Proof of Thm 5.7: unicity. Assume a is uniformly monotone, i.e [a(p)−a(q)] · (p−q) ≥ θ|p−q|2
∀p, q ∈ Rd, with θ > 0. Our goal is to show that the weak solution, in case it exists, is unique.
By contradiction, let u1, u2 ∈ H1

0 (Ω) be two weak solutions. Since f = f(x) is independent of
s, p, we haveˆ

Ω
Dv · a(Du1) dx =

ˆ
Ω
v f(x) dx =

ˆ
Ω
Dv · a(Du2) dx ∀v ∈ H1

0 (Ω),

and hence
´

Ω[a(Du1) − a(Du2)] · Dv dx = 0 ∀v ∈ H1
0 (Ω). Setting v = u1 − u2 we obtain, by

uniform monotonicity,

0 =

ˆ
Ω

[a(Du1)− a(Du2)] · (Du1 −Du2) dx ≥ θ‖D(u1 − u2)‖2L2(Ω) ≥ 0.

Therefore D(u1 − u2) = 0 and hence, since u1 − u2 ∈ H1
0 (Ω), it holds u1 = u2 a.e. in Ω.
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[23: 08.01.2024]
[24: 11.01.2024]

Strategy for the existence proof: Galerkin’s method. Let X be a reflexive and separable
Banach space. Consider A : X → X∗ a given map and F ∈ X∗ a given element in the dual
space. We look for a solution u ∈ X of the equation

A(u) = F, i.e. A(u)(v) = F (v) ∀v ∈ X.

In our specific case, X = H1
0 (Ω),

A(u)(v) :=

ˆ
Ω
Dv · a(Du) dx, F (v) :=

ˆ
Ω
vf(x) dx.

Galerkin’s method can be organized in three steps.

Step 1: restriction to a finite dimensional problem.

Since X is separable, there exists {wk}∞k=1 dense subset. We define Vn := span {w1, . . . , wn}.
Then dn := dimVn ≤ n <∞. We say that u ∈ Vn is a solution of the restricted problem (in Vn)
if

A(u)|Vn = F|Vn i.e. A(u)(v) = F (v) ∀v ∈ Vn.

Step 2: solving the restricted problem.

We have dn equations and dn unknowns. In some cases one can prove that for each n ∃un ∈ Vn
solution of the restricted problem.

Step 3: convergence to a solution of the starting problem.

The idea is to prove that n 7→ un is a bounded sequence in X, hence, since X is reflexive, there
exists u ∈ X and a subsequence j → unj such that unj ⇀ u weakly in X.
The hard part is to show that the limit function is a solution of A(u) = F. Indeed, since u 7→ A(u)
is nonlinear, un ⇀ u 6⇒ A(un)→ A(u) in any sense. Here we will use monotoniticy.

Proof of Thm 5.7: existence. Set X := H1
0 (Ω), A : X → X∗, and F ∈ X∗ defined as

A(u)(v) :=

ˆ
Ω
Dv · a(Du) dx, F (v) :=

ˆ
Ω
vf(x) dx.

Our goal is to find u ∈ X solution of A(u) = F. We use Galerkin’s method.

Step 1: restriction to a finite dimensional problem. H1
0 (Ω) is a separable Hilbert space so there

exists an o.n. countable basis. To construct such a basis consider the differential operator
L := −∆.
By Theorem 2.13, the real spectrum of L has the form

Σ(L) = {λ1, λ2, . . . } with 0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · and lim
k→∞

λk =∞.

Moreover there exists an o.n. basis of L2(Ω) {wn}n≥1 such that −∆un = λnun ∀n. It follows

(exercise) that {en}n≥1 with en := 1√
λn
wn is an o.n. basis of

(
H1

0 (Ω), BL[·, ·]
)

where BL[u, v] :=´
ΩDu ·Dv dx. Hence {en}n≥1 is an orthogonal basis of

(
H1

0 (Ω), (·, ·)H1
0

)
with

‖en‖2H1
0

= ‖en‖2L2 + ‖Den‖2L2 =
1

λn
+ 1.
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We define now Vn := span {e1, . . . , en}. Then dimVn = n.

Step 2: solving the restricted problem. We show that ∀n ≥ 1 ∃un ∈ Vn solution of the restricted
problem A(u)|Vn = F|Vn .

Fix n ≥ 1. For α ∈ Rn set uα :=
∑n

j=1 αjej . We look for α ∈ Rn solution of

ˆ
Ω
Dv · a

(
uα
)
dx = A(uα)(v) = F (v) =

ˆ
Ω
vf(x) dx ∀v ∈ Vn.

We have A(u)|Vn = F|Vn iff A(uα)(ek) = F (ek) ∀k = 1, . . . , n, iff A(uα)(ek) − F (ek) = 0
∀k = 1, . . . , n, iff v(α) = 0 where

v : Rn → Rn
α 7→ v(α)k := A(uα)(ek)− F (ek), k = 1, . . . n.

Therefore the problem is reduced to finding a zero for the vector field v. By Lemma 5.2 (iii)
above, it is sufficient to check that v is continous and ∃R > 0 such that v(α)·α ≥ 0 ∀α ∈ ∂BR(0).

Continuity. The map p 7→ a(p) is continous and |a(p)| ≤ C [1 + |p|], therefore the function

Φ: L2(Ω)d → L2(Ω)d

U 7→ Φ(U) := a(U)

is well defined and continous (proof: use Nemitski composition Lemma 4.9). It follows (exercise)
that α 7→ A(uα)(ek) is continuous ∀k and hence v is continous.

Positivity on the boundary of a sphere. We compute

v(α) · α =
n∑
k=1

αkv(α)k =
n∑
k=1

αk[A(uα)(ek)− F (ek)] = A(uα)(uα)− F (uα).

Since a(p) · p ≥ β|p|2 − γ we have

A(uα)(uα) =

ˆ
Ω
Duα · a(Duα) dx ≥ β‖Duα‖2L2(Ω) − γ|Ω|,

and hence

v(α) · α ≥ ‖Duα‖2L2(Ω) − γ|Ω| − F (uα) ≥ ‖Duα‖2L2(Ω) − ‖u
α‖L2(Ω)‖f‖L2(Ω) − γ|Ω|.

Since {en}n≥1 is o.n. with respect to BL[·, ·] and orthogonal with respect to (·, ·)L2(Ω) we obtain

‖Duα‖2L2(Ω) =BL[uα, uα] =

n∑
j=1

α2
j = |α|2

‖uα‖2L2(Ω) =(uα, uα)L2(Ω) =
n∑
j=1

α2
j‖wj‖2L2(Ω) =

n∑
j=1

α2
j

1

λj
≤ 1

λ1
|α|2.

Therefore, using |α| = R,

v(α) · α ≥ |α|2 − ‖f‖L2(Ω)
1√
λ1
|α| − γ|Ω| = R2 − ‖f‖L2(Ω)

1√
λ1
R− γ|Ω| ≥ 0
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for R large enough.

By Lemma 5.2 (iii) it follows that v admits a zero and hence there exists a solution un ∈ Vn of
the restricted problem A(u)|Vn = F|Vn .

Step 3: convergence to a solution of the starting problem.

Let n 7→ un ∈ Vn the family of solutions we constructed in Step 2. Since A(u)|Vn = F|Vn , we
have

A(un)(un) = F (un) ∀n ≥ 1. (5.5)

• We show that the sequence n 7→ un is bounded in H1
0 (Ω). Indeed

A(un)(un) =

ˆ
Ω
Dun · a(Dun) dx =

ˆ
Ω
unf dx = F (un) ∀n.

Using (iv) and Poincaré inequality we have

ˆ
Ω
Dun · a(Dun) dx ≥ β‖Dun‖2L2(Ω) − γ|Ω| ≥ β̃‖un‖

2
H1

0 (Ω) − γ|Ω|,

with β̃ > 0. By Cauchy-Schwarz and then Young inequality we have

|
ˆ

Ω
unf dx| ≤ ‖un‖L2(Ω)‖f‖L2(Ω) ≤ ‖un‖H1

0 (Ω)‖f‖L2(Ω) ≤
ε

2
‖un‖2H1

0 (Ω) +
1

2ε
‖f‖2L2(Ω).

Putting all this together and setting ε ≤ β̃ we obtain

sup
n≥1
‖un‖2H1

0 (Ω) ≤
2

β̃

[
γ|Ω|+ 1

2ε
‖f‖2L2(Ω)

]
=: C2

1 .

Therefore the sequence n 7→ un is bounded.

• We show that the sequence n 7→ A(un) is bounded in H1
0 (Ω)∗. Indeed using (ii),

‖A(un)‖op = sup
‖v‖

H1
0

=1
|A(un)(v)| ≤ sup

‖v‖
H1

0
=1

ˆ
Ω
|Dv| |a(Dun)| dx

≤ ‖a(Dun)‖L2(Ω) ≤ C ‖1 + |Dun|‖L2(Ω) ≤ C
(√
|Ω|+ ‖Dun‖L2(Ω)

)
≤ C

(√
|Ω|+ C1

)
where in the last step we used supn≥1 ‖un‖H1

0 (Ω) ≤ C1.

• We have proved that the sequence n 7→ un (resp. n 7→ A(un)) is bounded in H1
0 (Ω) (resp in

H1
0 (Ω)∗). Therefore, since X is reflexive, ∃ j 7→ nj subsequence, u ∈ H1

0 (Ω) and T ∈ H1
0 (Ω)∗

such that
unj ⇀ u, in H1

0 (Ω), A(unj ) ⇀ T, in H1
0 (Ω)∗.

It remains to show that T = F and T = A(u), which then implies A(u) = F.

• We show that T = F. Since A(unj ) ⇀ T we have

lim
j→∞

A(unj )(v) = T (v) ∀v ∈ X.
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By construction we have A(unj )(ek) = F (ek) ∀nj ≥ k, therefore

T (ek) = lim
j→∞

A(unj )(ek) = F (ek) ∀k ≥ 1,

and hence T (ek) = F (ek) ∀k. The assertion now follows since {ek}k≥1 is a basis for X.

• We show that T = A(u). By monotonicity of a we get

[A(unj )−A(v)](unj − v) =

ˆ
Ω

[a(Dunj )− a(Dv)] · (Dunj −Dv) dx ≥ 0 ∀v ∈ X, j ≥ 1.

We compute

[A(unj )−A(v)](unj − v) = A(unj )(unj )−A(unj )(v)−A(v)(unj − v).

By (5.5) we have
A(unj )(unj ) = F (unj ) = T (unj )→ T (u)

where we used T = F and unj ⇀ u.
unj ⇀ u also implies A(v)(unj − v)→ A(v)(u− v).
Finally, A(unj ) ⇀ T implies A(unj )(v)→ A(u)(v) and hence

[T −A(v)](u− v) ≥ 0 ∀v ∈ X.

We take v ’near’ u as follows. Set v := u − λw, with λ > 0 and w ∈ X. The inequality above
becomes

[T −A(u− λw)](w) ≥ 0 ∀w ∈ X.

Since λ 7→ A(u− λw)(w) is continuous, we can take the limit λ→ 0 :

lim
λ→0

[T −A(u− λw)](w) = [T −A(u)](w) ≥ 0 ∀w ∈ X,

which implies T = A(u).

6 Calculus of variations

A powerful tool to solve nonlinear PDEs is calculus of variations. The idea is to replace the
problem of solving a PDE with the problem of minimizing some functional. The latter is
sometimes easier.

Example. Let Ω ⊂ Rd open and bounded, with Lipschitz boundary.
We look for solutions of the PDE {

−∆u = f in Ω
u|∂Ω = g

(6.1)

where f ∈ L2(Ω) and g ∈ L2(∂Ω) are given functions. A function u ∈ H1(Ω) is a weak solution
if Tru = g and ˆ

Ω
[Dv ·Du− vf ] dx = 0 ∀v ∈ H1

0 (Ω).
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Assume ∃ug ∈ H1(Ω) such that Trug = g (otherwise there can be no solution). We have seen
(cf. Lemma 2.4) that u ∈ H1(Ω) is a weak solution of (6.1) iff w := u − ug ∈ H1

0 (Ω) is a weak
solution of {

−∆w = f −
∑d

j=1 fj in Ω

w|∂Ω = 0

where fj := −∂jf ∈ L2(Ω). By Lax-Milgram the weak solution exists and is unique.

We reformulate now the problem as a functional minimization. Set X := H1(Ω) and Y := {u ∈
X| Tru = g}. We have Y 6= ∅ and Y = ug +H1

0 (Ω). Define

I : X → R
u 7→ I(u) :=

´
Ω

[
|Du|2

2 − uf
]
dx.

This map is well defined since u, ∂ju, f ∈ L2(Ω).

Claim. Assume u0 ∈ Y is a minimizer for I on Y, i.e. I(v) ≥ I(u0) ∀v ∈ Y. Then u0 is a weak
solution for (6.1).

Proof. u0 ∈ Y hence u0 + τw ∈ Y ∀τ ∈ R and ∀w ∈ H1
0 (Ω). Therefore, since u0 is a minimizer,

we have I(u0 + τw) ≥ I(u0) ∀τ ∈ R and ∀w ∈ H1
0 (Ω). For a fixed w ∈ H1

0 (Ω) define

iw : R→ R
τ 7→ iw(τ) := I(u0 + τw).

By direct computation, this function is a polynome is τ :

iw(τ) =
τ2

2
‖Dw‖2L2(Ω) + τ

ˆ
Ω

[Dw ·Du0 − wf ] dx+ I(u0).

Since u0 is a minimizer, τ = 0 is minimizer for iw(τ) and hence
ˆ

Ω
[Dw ·Du0 − wf ] dx = i′w(0) = 0 ∀w ∈ H1

0 (Ω).

Therefore u0 is a weak solution of (6.1).

The general strategy is to construct, if possible, a functional associated to the PDE we consider
and instead of solving the PDE to look for a minimizer of the functional.

[24: 11.01.2024]
[25: 15.01.2024]

6.1 Characterization of minimizers: Euler-Lagrange equation

In this section we look for the PDE associated to the mininimizer of a functional.

Definition 6.1 (minimizer). Let X be a real Banach space, I : X → R a given map.

(i) u0 ∈ X is a minimizer for I over X (or I attains its minimum at u0, or u0 is a global
minimizer) if

I(u) ≥ I(u0) ∀u ∈ X.

(ii) Let Y ⊂ X a subset. u0 ∈ Y is a minimizer for I over Y (or restricted to Y ) if

I(u) ≥ I(u0) ∀u ∈ Y.
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Remark. In the Example above, X = H1
0 (Ω) and Y = ug + H1

0 (Ω), with ug ∈ H1(Ω), and

I(u) :=
´

Ω

[
|Du|2

2 − uf
]
dx. Note that u0 is a minimizer for I over Y iff u0 − ug ∈ H1

0 (Ω) is a

global minimizer of Ĩ : H1
0 (Ω)→ R defined via Ĩ(v) := I(ug + v).

Lemma 6.2 (characterization of minimizers). Let X be a real Banach space, I : X → R a map,
and u0 ∈ X fixed. For each w ∈ X we define the map

iw : R→ R
τ 7→ iw(τ) := I(u0 + τw).

Then the following hold.

(i) u0 is a minimizer ⇔ iw attains its minimum at τ = 0 ∀w ∈ X, i.e. iw(τ) ≥ iw(0) ∀τ ∈ R
and ∀w ∈ X.

(ii) Assume iw is differentiable in τ = 0. Then if u0 is a minimizer we have i′w(0) = 0.

(iii) Assume iw is C2. Then if u0 is a minimizer we have i′w(0) = 0 and i′′w(0) ≥ 0.

Proof. Exercise

Notation. i′w(0) is called “first variation of I at u0 in the direction w”.
i′′w(0) is called “second variation of I at u0 in the direction w”.

Definition 6.3. Let X be a real Banach space, I : X → R a map.

(i) I is Gateaux differentiable at u ∈ X in the direction w ∈ X if the map τ 7→ I(u+ τw) is
differentiable at τ = 0.

I is Gateaux differentiable at u ∈ X if I is Gateaux differentiable at u in all direction
w ∈ X. In this case we denote by

I ′(u)(w) := lim
τ→0

I(u+ τw)− I(u)

τ

the Gateaux derivative at u in the direction w. In this case the function I ′(u) : X → R is
called the Gateaux derivative of I at u.

(ii) I is Fréchet differentiable at u ∈ X if ∃Au ∈ X∗ such that

lim
‖w‖X→0

|I(u+ w)− I(u)−Au(w)|
‖w‖X

= 0.

I is Fréchet differentiable if it is Fréchet differentiable at each u ∈ X. In this case I ′(u) =
Au ∀u and I ′ : X → X∗.

(iii) I is in C1(X) if I is Fréchet differentiable and the map I ′ is continuous.

Remarks.

• I Fréchet differentiable at u ⇒ I Gateaux differentiable at u and I ′(u) = Au.

The inverse implication does not hold.
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• The Gateaux derivative is not necessarily additive or continuous. As an axample con-
sider F : R2 → R defined via F (x, y) = x3

x2+y2 for (x, y) 6= (0, 0) and F (0, 0) = 0. Then

F ′(0, 0)(a, b) = F (a, b) and is not linear in (a, b).

• Below we mostly need Gateaux differentiability, but our Gateaux derivatives I ′(u) : X → R
will satify I ′(u) ∈ X∗.

• If u 7→ I ′(u) is well defined and continuous in a neighborhood U of u0, and I ′(u) ∈ X∗ for
all u ∈ U, then I is Fréchet differentiable at u0 with Au0 = I ′(u0).

Lemma 6.4 (Euler-Lagrange equation). Let X be a real Banach space, I : X → R a map.
Assume u0 ∈ X is a minimizer for I on X and I is Gateaux differentiable at u0.
Then u0 is a solution of

I ′(u0)(w) = 0 ∀w ∈ X.

This is called the Euler-Lagrange equation associated to I.

Proof. Since I is Gateaux differentiable at u0 the map τ 7→ iw(τ) := I(u0 + τw) is differentiable
at τ = 0. Since u0 is a minimizer, it follows 0 = i′w(0) = I ′(u0)(w) ∀w ∈ X.

Remark. In some cases the Euler-Lagrange equation corresponds to a PDE in weak formula-
tion. In the example above we can set X := H1

0 (Ω),

I(u) :=

ˆ
Ω

[
|D(ug + u)|2

2
− (ug + u)f

]
dx,

with ug ∈ H1(Ω) fixed. This functional is Gateaux differentiable everywhere and the Euler-
Lagrange equation is

0 = I ′(u0)(w) =

ˆ
Ω

[Dw ·D(ug + u0)− wf ] dx = 0 ∀w ∈ H1
0 (Ω).

u0 is a solution iff u := ug + u0 is a weak solution of the PDE{
−∆u = f in Ω
u|∂Ω = g.

Note that I is even Fréchet differentiable since

lim sup
‖w‖

H1
0
→0

|I(u+ w)− I(u)− I ′(u)(w)|
‖w‖H1

0

= lim sup
‖w‖

H1
0
→0

‖Dw‖2L2

2‖w‖H1
0

≤ lim sup
‖w‖

H1
0
→0

‖w‖H1
0

2
= 0.

Moreover

I ′(u1)(w)− I ′(u2)(w) =

ˆ
Ω

[Dw ·D(u1 − u2)] dx,

hence
‖I ′(u1)− I ′(u2)‖op ≤ ‖Du1 −Du2‖L2 ≤ ‖u1 − u2‖H1

0

and therefore I ∈ C1(X).
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PDE associated to the Euler-Lagrange equation We will consider functionals of the form

I : X → R
u 7→ I(u) :=

´
Ω L(x, u(x), Du(x)) dx,

where Ω ⊂ Rd is open and bounded, X = W 1,q(Ω), with 1 ≤ q <∞ and

L : Ω× R× Rd → R
(x, s, p) 7→ L(x, s, p).

Remark 1. In the example above L(x, s, p) = |p|2
2 − f(x)s.

Remark 2. We perform a non rigorous computation, to derive the expected expression for the
Euler-Lagrange equation. We assume L is differentiable in (s, p) for all x, and we can exchange
limits and integrals. We compute

I ′(u)(w) = lim
τ→0

I(u+ τw)− I(u)

τ
= lim

τ→0

ˆ
Ω

L(x, u+ τw,Du+ τDw)− L(x, u,Du)

τ
dx

=

ˆ
Ω

[w∂sL(x, u,Du) +Dw · ∂pL(x, u,Du)] dx ∀w ∈ X

where we used the abbreviated notation

∂sL(x, u,Du) := ∂sL(x, s, p)|s=u(x),p=Du(x), ∂pL(x, u,Du) := ∂pL(x, s, p)|s=u(x),p=Du(x).
(6.2)

The Euler-Lagrange equation is then

ˆ
Ω

[w∂sL(x, u,Du) +Dw · ∂pL(x, u,Du)] dx = 0 ∀w ∈ X. (6.3)

Remark 3.(PDE in weak formulation) Assume L and u above are smooth functions. Then
we obtain the quasi-linear second order PDE

− div [a(x, u,Du)] = −∂sL(x, u,Du) (6.4)

with aj(x, s, p) := ∂pjL(x, s, p) and ∂sL(x, u,Du) = ∂sL(x, u,Du) = ∂sL(x, s, p)|s=u(x),p=Du(x).

u ∈W 1,q(Ω) is a weak solution of (6.4) if (6.3) holds ∀w ∈W 1,p
0 (Ω).

Note that the weak formulation above is well defined if ∀u ∈W 1,q(Ω) it holds

• x 7→ ∂pjL(x, u(x), Du(x)) ∈ Lq′(Ω) with 1
q′ = 1− 1

q ,

• x 7→ ∂sL(x, u(x), Du(x)) ∈ Lα(Ω) with 1 ≤ α < ∞ in the case d ≤ q and α ≥ (q∗)′ if d > q,
where q∗ is the Sobolev number 1

q∗ = 1
q −

1
d and 1

(q∗)′ = 1− 1
q∗ .

We look now for sufficient regularity conditions on L such that

• I : X → R is well defined,

• I is Gateaux differentiable with I ′(u) ∈ X∗ and the EL equation is of the form (6.3).
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Theorem 6.5. Let Ω ⊂ Rd be open and bounded.
Set X := W 1,q(Ω), with 1 ≤ q <∞ and let

L : Ω× R× Rd → R
(x, s, p) 7→ L(x, s, p)

be a map satisfying the following two properties.

C1) L is Carathéodory, i.e. x 7→ L(x, s, p) is measurable ∀(s, p) and (s, p) 7→ L(x, s, p) is
continuous for a.e. x.

Moreover ∃f1 ∈ L1(Ω; [0,∞)) and C1 > 0 such that

|L(x, s, p)| ≤ f1(x) + C1 [|s|q + |p|q]

C2) L is differentiable in (s, p) for a.e. x ∈ Ω, ∂sL and ∂pL are Carathéodory functions, and
∃f2, f3 ∈ Lq

′
(Ω; [0,∞)) and C2, C3 > 0, with 1

q′ = 1− 1
q , such that

|∂sL(x, s, p)| ≤ f2(x) + C2

[
|s|

q
q′ + |p|

q
q′
]

= f2(x) + C2

[
|s|q−1 + |p|q−1

]
|∂pL(x, s, p)| ≤ f3(x) + C3

[
|s|

q
q′ + |p|

q
q′
]

= f3(x) + C3

[
|s|q−1 + |p|q−1

]
.

Then the following holds.

(i) The map I : X → R defined by I(u) :=
´

Ω L(x, u(x), Du(x)) dx is Gateaux differentiable
everywhere in X and

I ′(u)(w) =

ˆ
Ω

[w∂sL(x, u,Du) +Dw · ∂pL(x, u,Du)] dx, ∀u,w ∈ X. (6.5)

where we used the notation introduced in (6.2). Moreover I ′(u) ∈ X∗ with

‖I ′(u)‖op ≤ ‖∂sL(x, u,Du)‖Lq′ (Ω) + ‖∂pL(x, u,Du)‖Lq′ (Ω).

(ii) Assume ∂Ω is Lipschitz continuous and g ∈ T (W 1,q(Ω)) ⊂ Lq(∂Ω,Hd−1).

Define Xg := {u ∈ X| Tru = g}. In particular X0 = W 1,q
0 (Ω).

Then, if u0 ∈ Xg is a minimizer for I on Xg, u0 is a weak solution of{
−div ∂pL(x, u,Du) = −∂sL(x, u,Du) in Ω
u|∂Ω = g

i.e.ˆ
Ω

[w∂sL(x, u0(x), Du0(x)) +Dw · ∂pL(x, u0(x), Du0(x))] dx = 0 ∀w ∈W 1,q
0 (Ω).

Proof.
(i)

C1)⇒ x 7→ L(x, u(x), Du(x)) ∈ L1(Ω) ∀u ∈W 1,q(Ω) and hence I is well defined.

108 [February 12, 2024]



C2) ⇒ x 7→ ∂sL(x, u(x), Du(x)), ∂pL(x, u(x), Du(x)) ∈ Lq
′
(Ω) ∀u ∈ W 1,q(Ω) and hence the

integral in (6.5) is well defined.

We study

I ′(u)(w) = lim
τ→0

I(u+ τw)− I(u)

τ
= lim

τ→0

ˆ
Ω
Lτ (x) dx,

where

Lτ (x) =
L(x, u+ τw,Du+ τDw)− L(x, u,Du)

τ
.

Since L is differentiable in (s, p) for a.e. x we have

lim
τ→0

Lτ (x) = w∂sL(x, u,Du) +Dw · ∂pL(x, u,Du)

pointwise a.e. in Ω. Moreover, using C2) again, we obtain ∀|τ | ≤ 1

|Lτ (x)| =
∣∣∣ ˆ 1

0
[(w∂s +Dw · ∂p)L(x, u+ tτw,Du+ tτDw)] dt

∣∣∣
≤
[
|w|f2 + |Dw|f3

]
+
(
C2|w|+ C3|Dw|

) ˆ 1

0

[
|u+ tτw|

q
q′ + |Du+ tτDw|

q
q′
]
dt

≤
[
|w|f2 + |Dw|f3

]
+
(
C2|w|+ C3|Dw|

)
[(|u|+ |w|)

q
q′ + (|Du|+ |Dw|)

q
q′ ] =: F (x),

where F ∈ L1(Ω). The result now follows by dominated convergence.

Finally I ′(u) is linear and

|I ′(u)(w)| ≤
ˆ

Ω
[|w| |∂sL(x, u,Du)|+ |Dw| |∂pL(x, u,Du)|] dx

≤ ‖w‖Lq‖∂sL(x, u,Du)‖Lq′ + ‖Dw‖Lq‖∂pL(x, u,Du)‖Lq′
≤ ‖w‖W 1,q

[
‖∂sL(x, u,Du)‖Lq′ + ‖∂pL(x, u,Du)‖Lq′

]
.

The result follows.

(ii) exercise.

Remark. We can always restrict ourselves to the case g = 0. Indeed u ∈ Xg is a mininizer for
I on Xg ⇔ u− ug is a minimizer for Ĩ : X0 → R defined by Ĩ(u) := I(ug + u).

[25: 15.01.2024]
[26: 18.01.2024]

6.2 Existence of minimizers: direct method of calculus of variations

As a preparation, consider the following result from Analysis 1.

Lemma 6.6. Assume f ∈ C(R) satisfies

(i) f is bounded below, i.e. ∃M ∈ R such that f(x) ≥M ∀x ∈ R.

(ii) f is coercive, i.e. f(x)→∞ as |x| → ∞.

Then f admits a minimizer, i.e. ∃x0 ∈ R such that f(x0) = infx∈R f(x).
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The proof is elementary, but very instructive.

Proof.
Step 1. (i)⇒ m := infx f ∈ R and hence ∃ a sequence n 7→ xn ∈ R such that f(xn)→ m.

Step 2. (ii)⇒ the sequence n 7→ xn is bounded. Indeed otherwise there would be a subsequence
j 7→ xnj with |xnj | → ∞ and hence m = limj→∞ f(xnj ) = +∞ which gives a contradiction.

Step 3. Since n 7→ xn is bounded, there exists a convergent subsequence xnj → x. By continuity
of f it follows m = limj→∞ f(xnj ) = f(x).

We must extend now this strategy to I : X → R.

Definition 6.7. Let X be a real Banach space, I : X → R a map.

• I is bounded below if ∃M ∈ R such that I(u) ≥M ∀u ∈ X.

• I is coercive if I(u)→∞ as ‖u‖X →∞.

Assume now I : X → R is bounded below and coercive. We try repeating the steps in the proof
of Theorem 6.6.

Since I is bounded below it holds m := infu∈X I(u) ∈ R and hence ∃ a sequence n 7→ un ∈ X
such that I(un)→ m.

Since I is coercive, the sequence n 7→ un ∈ X is bounded.

Problem 1: n 7→ un bounded 6⇒ there is a convergent subsequence. If X is reflexive, then there
exists a subsequence j 7→ unj , and u ∈ X such that unj ⇀ u weakly.

Problem 2: I is not weakly continuous in general, i.e. un ⇀ u 6⇒ I(un)→ I(u). We will see that
we only need weak lower semicontinuity.

Definition 6.8. Let X be a real Banach space, I : X → R a map.
I is weak lower semicontinuous (w.l.s.c. in short) if

un ⇀ u ⇒ lim inf
n→∞

I(un) ≥ I(u).

Theorem 6.9 (Weierstrass). Let X be a real reflexive Banach space.
Let I : X → R be bounded below, coercive and weakly lower semicontinuous.
Then I admits a minimizer i.e. ∃u0 ∈ X such that I(u0) ≤ I(u) ∀u ∈ X.

Proof.
Step 1. I bounded below ⇒ m := infu∈X I(u) ∈ R and hence ∃ a sequence n 7→ un ∈ X such
that I(un)→ m.

Step 2. I is coercive ⇒ the sequence n 7→ un is bounded in X. It follows, since X is reflexive,
there exists a subsequence j 7→ unj , and u ∈ X such that unj ⇀ u in X.

Step 3. I is weakly lower semicontinuous ⇒

m = lim
j→∞

I(unj ) = lim inf
j→∞

I(unj ) ≥ I(u) ≥ m.

It follows I(u) = m.
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The hard part is to prove weak lower semicontinuity. The next result shows that it is sufficient
that p 7→ L(x, s, p) is convex.

Theorem 6.10 (convex L). Let Ω ⊂ Rd open and bounded with Lipschitz boundary.
Set X := W 1,q(Ω) with 1 ≤ q <∞.
We consider the map

I : X → R
u 7→ I(u) :=

´
Ω L(x, u(x), Du(x)) dx,

where L : Ω× R× Rd is such that

(i) (C1) and (C2) from Theorem 6.5 hold,

(ii) p 7→ L(x, s, p) is convex ∀s ∈ R and a.e. x ∈ Ω.

Then I is weakly lower semicontinuous.

Remark. p 7→ L(x, s, p) differentiable and convex⇒ the Euler-Lagrange equation is an elliptic
second order PDE.

Proof. Let n 7→ un ∈ X be a sequence with un ⇀ u ∈ X.
Our goal is to show that lim infn→∞ I(un) ≥ I(u) holds.

• Since un ⇀ u, it follows that the sequence is bounded.
Moreover W 1,q(Ω) ⊂⊂ Lq(Ω) ∀1 ≤ q <∞ d ≥ 1.
Therefore, since n 7→ un is bounded and un ⇀ u in W 1,q(Ω), it follows un → u in Lq(Ω).

• Assume first L = L(x, s) is independent of p. By (C1) and Nemitski composition theorem it
follows that the function

Φ: Lq(Ω)→ L1(Ω)
u 7→ Φ(u) := L(x, u(x))

is well defined and continuous. Hence un → u in Lq(Ω) implies I(un) → I(u), i.e. I is weakly
continuous.

• Assume L is linear in p, i.e I(u) =
´

Ω f(x) ·Du(x) dx. In this case

Dun ⇀ Du ⇒ I(un) =

ˆ
Ω
f(x) ·Dun(x) dx→

ˆ
Ω
f(x) ·Du(x) dx = I(u),

i.e. I is weakly continuous.

• Consider now the general case L = L(x, s, p). We only know Dun ⇀ Du, hence we cannot use
continuity. We will use convexity to compare I(un) with an expression linear in Dun.
Ineed, since L is convex and differentiable in the p variable, it holds

L(x, s, p+ p′) ≥ L(x, s, p) + p′ · ∂pL(x, s, p) ∀p, p′ ∈ Rd, s ∈ R and a.e. x ∈ Ω.

It follows
L(x, un, Dun) ≥ L(x, un, Du) + (Dun −Du) · ∂pL(x, un, Du)

and hence

lim inf
n→∞

I(un) = lim inf
n→∞

ˆ
Ω
L(x, un, Dun) dx

≥ lim inf
n→∞

[ˆ
Ω
L(x, un, Du) dx+

ˆ
Ω

(Dun −Du) · ∂pL(x, un, Du) dx

]
.

111 [February 12, 2024]



Fix u ∈ W 1,q(Ω) and consider the function L̃(x, s) := L(x, s,Du(x)). By (C1) and Nemitski
composition theorem again it follows that the function

Φ: Lq(Ω)→ L1(Ω)

v 7→ Φ(v) := L̃(x, v(x))

is well defined and continuous. Hence un → u in Lq(Ω) implies

lim
n→∞

ˆ
Ω
L(x, un, Du) dx = lim

n→∞

ˆ
Ω
L̃(x, un) dx =

ˆ
Ω
L̃(x, u) dx = I(u).

Finally we show limn→∞
´

Ω(Dun − Du) · ∂pL(x, un, Du) dx = 0, which concludes the proof.
Indeedˆ

Ω
(Dun −Du) · ∂pL(x, un, Du) dx =

ˆ
Ω

(Dun −Du) · [∂pL(x, un, Du)− ∂pL(x, u,Du)] dx

+

ˆ
Ω

(Dun −Du) · ∂pL(x, u,Du) dx.

Since un ⇀ u we have limn→∞
´

Ω(Dun −Du) · ∂pL(x, u,Du) dx = 0. Since n→ Dun −Du is a

bounded sequence in Lq(Ω) and ∂pL(x, un, Du) → ∂pL(x, u,Du) in Lq
′
(Ω) (which holds again

by Nemitski), it follows

lim
n→∞

ˆ
Ω

(Dun −Du) · [∂pL(x, un, Du)− ∂pL(x, u,Du)] dx = 0.

Example 1. Set X := W 1,q
0 (Ω), with 1 < q <∞ and consider I(u) := ‖Du‖qLq =

´
Ω |Du|

qdx.
This functional is weakly lower semicontinuous (exercise).

Example 2. Set X := W 1,q
0 (Ω), with 1 < q <∞. We consider the map

I : X → R
u 7→ I(u) :=

´
Ω L(x, u(x), Du(x)) dx.

Assume L satisfies the assumptions of Theorem 6.10 and in addition ∃α > 0, β ∈ Lq′(Ω; [0,∞)),
with 1

q + 1
q′ = 1, such that

L(x, s, p) ≥ α|p|q − β(x)|s|.
This functional admits a minimizer.

Proof. By Theorem 6.10, I is weakly lower semicontinuous. It remains to prove that I is bounded
below and coercive. We compute

I(u) =

ˆ
Ω
L(x, u(x), Du(x)) dx ≥ α

ˆ
Ω
|Du|q dx−

ˆ
Ω
β(x)|u(x)| dx

≥ α‖Du‖qLq − ‖β‖Lq′‖u‖Lq ≥ α̃‖u‖
q

W 1,q
0

− ‖β‖Lq′‖u‖W 1,q
0
,

for some constant α̃ > 0. In the last line we used Poincaré inequality. It follows by Young’s
inequality

I(u) ≥
[
α̃− ε

q

]
‖u‖q

W 1,q
0

− 1

q′ε
‖β‖q

′

Lq′
,

and hence ∃γ1, γ2 > 0 such that ∀u ∈W 1,q
0 (Ω)

I(u) ≥ γ1‖u‖q
W 1,q

0

− γ2.

Therefore I is bounded below and coercive.
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6.3 Regularity of minimizers

Let Ω ⊂ Rd be open and bounded and consider the map

I : H1
0 (Ω)→ R

u 7→ I(u) :=
´

Ω F (Du(x)) dx,

with F ∈ C∞(Rd) and such that |F (p)| ≤ α|p|2 for some α > 0 and ∀p ∈ Rd.
Define a := DF ∈ C∞(Rd;Rd) and assume ∃β, θ > 0 such that |a(p)| ≤ β|p| and Da(p) ≥ θId
∀p. The following hold.

• I is Gateaux differentiable and I ′(u)(w) =
´

ΩDw · a(Du(x)) dx ∀u,w ∈ H1
0 (Ω).

• If u ∈ H1
0 (Ω) is a minimizer for I it follows that u is a weak solution of{

−div a(Du) = 0 in Ω
u|∂Ω = 0

Since A := Da ≥ θId this is a quasi-linear second order uniformly elliptic PDE.

We investigate now regularity of the solution.
[26: 18.01.2024]
[27: 22.01.2024]

In the case of a linear PDE −divM(x)Du(x) = 0 with M ∈ L∞(Ω;Rd×dsym) and M ≥ θI a.e. we
have seen the following results: assume u ∈ H1(Ω) is a weak solution.

• By the lemma of de Giorgi we have u ∈ C0,σ
loc (Ω) for some 0 < σ < 1.

• If in addition M ∈ C1+k(Ω;Rd×dsym) we have u ∈ Hk+2
loc (Ω).

We will need the following generalization of de Giorgi (see Giaquinta-Martinazzi Sec. 5.4):

M ∈ Ck,σloc (Ω;Rd×dsym)⇒ u ∈ Ck+1,σ
loc (Ω) ∀k ≥ 0. (6.6)

Theorem 6.11. Let Ω ⊂ Rd be open and bounded.
Let a ∈ C∞(Rd;Rd) be a function satisfying ∀p ∈ Rd

(i) |a(p)| ≤ C1|p|,

(ii) Da(p) = Da(p)t and Da(p) ≥ θId , where Da(p)ij = ∂pjai,

(iii) |Da(p)| ≤ C2,

for some constants C1, C2, θ > 0. Assume u ∈ H1(Ω) is a weak solution of

− div a(Du) = 0, in Ω. (6.7)

Then u ∈ C∞(Ω) and ∀j = 1, . . . , d the function vj := ∂ju is a solution of the linear elliptic
PDE

− div (ADvj) = 0 (6.8)

where the matrix-valued function A ∈ C∞(Ω;Rd×d) is defined via A(x) := Da(Du(x)).
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Proof.
Step 1. We show that u ∈ H2

loc(Ω). Since u ∈ H1(Ω) we need to show that Du ∈ H1(V ) holds
for all V open V ⊂⊂ Ω.
Let V ⊂⊂ Ω be fixed. We can construct U open such that V ⊂⊂ U ⊂⊂ Ω and ζ ∈ C∞c (U ; [0, 1])
such that ζ|V = 1. Set

h0 :=
dist (U, ∂Ω)

2
.

To prove Du ∈ H1(V ) it is sufficient to find a constant C = CU,V,ζ > 0 such that (cf. Thm 2.17
and proof of Thm 2.18)

sup
0<|h|≤h0

‖ζDh
jDu‖L2(Ω) ≤ C ∀j = 1, . . . , d. (6.9)

Since u is a weak solution of (6.7), it holds

ˆ
Ω
Dw · a(Du)dx ∀w ∈ H1

0 (Ω).

For w ∈ H1
0 (U) we have D−hj w ∈ H1

0 (Ω) ∀0 < |h| ≤ h0 and hence, using DDh
jw = Dh

jDw and
partial integration, we get

0 =

ˆ
Ω
−Dh

jDw · a(Du)dx =

ˆ
Ω
Dw ·Dh

j (a(Du)) dx ∀w ∈ H1
0 (U), 0 < |h| ≤ h0. (6.10)

We compute

Dh
j (a(Du))(x)) =

1

h

[
a(Du(x+hej))−a(Du(x))

]
=

ˆ 1

0
Da(Uh,t(x)) Dh

j (Du)(x) dt = Ah(x)Dh
jDu(x),

where

Uh,t(x) := Du(x) + thDh
jDu(x) ∈ Rd, Ah(x) :=

ˆ 1

0
Da(Uh,t(x))dt ∈ Rd×d.

Since Da(p) ≥ θId and |Da(p)| ≤ C2 we have

Ah(x) ≥ θId and |Ah(x)| ≤ C2 for a.e x ∈ V. (6.11)

Inserting these formulas in (6.10) we obtain

ˆ
Ω
Dw ·AhDh

jDu dx = 0 ∀w ∈ H1
0 (U), 0 < |h| ≤ h0. (6.12)

We consider w := ζ2Dh
j u. This function is well defined and satisfies w ∈ H1

0 (U) ∀0 < |h| ≤ h0

and hence (6.12) holds. Using

Dw = ζ2Dh
jDu+ 2ζDh

j uDζ,

(6.11) and (6.12) we argue

θ‖ζDh
j (Du)‖2L2(Ω) ≤

ˆ
Ω
ζ2 Dh

jDu ·AhDh
jDudx = −2

ˆ
Ω
ζ Dh

j u Dζ · AhDh
jDudx

≤ 2‖AhDζ‖L∞(Ω) ‖Dh
j u‖L2(U) ‖ζDh

j (Du)‖L2(Ω).
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Since u ∈ H1(Ω), by Thm 2.17 there is a constant C3 > 0 such that

‖Dh
j u‖L2(U) ≤ C3‖Du‖L2(Ω) ∀0 < |h| ≤ h0.

Inserting this bound above we obtain (6.9). Therefore u ∈ H2
loc(Ω) and vj := ∂ju ∈ H1

loc(Ω).

Step 2. We show that vj := ∂ju is a local weak solution for −div (ADvj) = 0, where A(x) =
Da(Du(x)) = Ah=0(x). We need to show

ˆ
Ω
Dw ·A0D∂ju dx = 0 ∀w ∈ H1

0 (V ).

We claim there is a sequence n 7→ hn with hn → 0 and

lim
n→∞

ˆ
Ω
Dw ·AhnD

hn
j Du dx =

ˆ
Ω
Dw ·A0D∂ju dx,

so that the result follows from (6.12). We proceed now to prove the claim.

• By Step 1 we have ‖Dh
jDu‖L2(V ) ≤ ‖ζDh

jDu‖L2(Ω) ≤ C‖Du‖L2(Ω) for all 0 ≤ |h| ≤ h0 and

hence (L2(V ) is reflexive) there is a sequence n 7→ hn with hn → 0 and v ∈ L2(V ) such that
Dhn
j Du ⇀ v in L2(V ). Using the definition of weak derivative we obtain v = D∂ju.

• Since n 7→ Dhn
j Du is a bounded sequence we have limn→∞ hD

hn
j Du = 0 and hence Uhn,t → Du

strongly in L2(V ). Since a is continuous it follows, by Nemitski composition theorem, AhnDw →
A0Dw strongly in L2(V ).

• Putting these results together we argue

ˆ
Ω
Dw ·AhnD

hn
j Du dx =

ˆ
Ω
Dw ·A0D

hn
j Du dx+

ˆ
Ω
Dw · (Ahn −A0)Dhn

j Du dx = I1,n + I2,n.

Since Dhn
j Du ⇀ ∂jDu in L2(V ) we have

lim
n→∞

I1,n =

ˆ
Ω
Dw ·A0∂jDu dx.

Since n 7→ Dhn
j Du is bounded and AhnDw−A0Dw → 0 strongly in L2(V ) we have limn→∞ I2,n =

0, which concludes the proof of the claim.

Step 3. We show that vj is smooth.
By Step 2, vj = ∂ju ∈ H1

loc(Ω) is a local weak solution of −divADvj = 0, with A uniformly
elliptic and x 7→ A(x) ∈ L∞(Ω). Hence, by Corollary 2.38 vj is locally Hölder continuous, i.e

vj ∈ C0,σ
loc (Ω) for some 0 < σ < 1 and for all j = 1, . . . , d.

Since Du ∈ C0,σ
loc (Ω) and a ∈ C∞ we have Aij ∈ C0,σ

loc (Ω). Applying (6.6) we obtain vj ∈ C1,σ
loc (Ω),

which implies Aij ∈ C1,σ
loc (Ω). Repeating this argument we obtain smoothness.

Remark. Note that even if a ∈ C∞, the map x 7→ A(x) := Da(Du(x)) is only as regular as the
function Du. Therefore we cannot argue as in the case of linear PDEs with smooth coefficients.
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6.4 Constrained minimizers

Let X = W 1,q(Ω), I : X → R be a given map, A a subset of X. We say that u0 ∈ A is a
constrained minimizer for I on A if

I(u0) = inf
u∈A

I(u).

We have already seen the case when A = {u ∈ X|Tru = g} for some g ∈ Lq(∂Ω). We will
consider now two important types of constraint:

1. integral contraint: in this case A = {u ∈ X| J(u) = 0} where J : X → R is of the form
J(u) =

´
ΩG(x, u(x)) dx;

2. unilateral constraint: in this case A = {u ∈ X|u ≥ h a.e.} where h ∈ C∞(Ω) is the
’obstacle’.

Example 1. Set d = 3, Ω ⊂ R3 open and bounded. We consider

I : H1
0 (Ω)→ R

u 7→ I(u) := 1
2

´
Ω |Du|

2 dx,

J : H1
0 (Ω)→ R

u 7→ I(u) :=
´

Ω

[
1 + u3

3

]
dx,

Note that J is well defined since d = 3 and hence H1
0 (Ω) ⊂ L3(Ω).

The unique global minimizer for I on X is u = 0. But 0 6∈ A, hence it cannot be a constrained
minimizer on A.

Example 2. Set Ω = B2(0) ⊂ Rd andX = H1
0 (Ω). Consider h ∈ C∞c (Ω; [0, 1]) with h|B1(0) = 1,

and I(u) := 1
2

´
Ω |Du|

2 dx. Once again the unique global minimizer for I on X is u = 0. But
0 6∈ A, hence it cannot be a constrained minimizer on A.

[27: 22.01.2024]
[28: 25.01.2024]

Theorem 6.12 (existence of constrained minimizers).
Let Ω ⊂ Rd be open and bounded, X = W 1,q

0 (Ω) with 1 < q <∞.
We consider

I : X → R
u 7→ I(u) :=

´
Ω L(x, u(x), Du(x)) dx,

and we assume I is bounded below, coercive and weakly lower semicontinuous.

(i) (integral constraint) Let 1 ≤ p <∞ such that W 1,q
0 (Ω) ⊂⊂ Lp(Ω) and consider

J : Lp(Ω)→ R
u 7→ J(u) :=

´
ΩG(x, u(x)) dx,

such that J is continuous. Let A := {u ∈ X| J(u) = 0} and assume A 6= ∅.
Then ∃u0 ∈ A such that I(u0) = infu∈A I(u).
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(ii) (unilateral constraint) Define A := {u ∈ X|u ≥ h a.e. in Ω}, where h ∈ C∞(Ω) is a given
function and assume A 6= ∅.

Then ∃u0 ∈ A such that I(u0) = infu∈A I(u).

Moreover, if (s, p) → L(x, s, p) is strictly convex for a.e. x ∈ Ω, the minimizer u0 is also
unique.

Proof.
(i) Set mA := infu∈A I(u).
I is bounded below and A 6= ∅, hence mA ∈ R and ∃n→ un ∈ A such that I(un)→ mA. Since
I is coercive, the sequence u 7→ un is bounded, and therefore, since X is reflexive, there exists a
weakly convergent subsequence unj ⇀ u ∈ X. Since I is weakly lower semicontinuous it follows
mA = lim infj→∞ I(unj ) ≥ I(u).

We show now u ∈ A, and hence mA = I(u).
Indeed, unj ⇀ u and W 1,q

0 (Ω) ⊂⊂ Lp(Ω), imply that unj → u in Lp(Ω) and hence, since J is
continuous, limj→∞ J(unj ) = J(u).
Since unj ∈ A we have J(unj ) = 0 ∀j, and hence

J(u) = lim
j→∞

J(unj ) = 0.

Therefore u ∈ A.

(ii) (existence) Set mA := infu∈A I(u). Arguing as in (i), ∃n → un ∈ A and a function u ∈ X
such that un ⇀ u in X and mA ≥ I(u).

It remains to prove that u ∈ A. We argue as follows.
Since un ⇀ u ∈ X and W 1,q

0 ⊂⊂ Lq(Ω) it follows un → u in Lq(Ω), and therefore there is a
subsequence j → unj such that unj → u pointwise a.e. in Ω, i.e ∃Ω̃ ⊂ Ω with |Ω \ Ω̃| = 0 and

unj → u pointwise in Ω̃.

unj ∈ A for all j, hence for each j ∃Ωj ⊂ Ω such that |Ω \ Ωj | = 0 and unj (x) ≥ h(x) ∀x ∈ Ωj .

We define now Ω := Ω̃∩
⋂
j Ωj We have |Ω \Ω| = 0, unj (x) ≥ h(x) ∀x ∈ Ω and ∀j, and unj → u

pointwise in Ω. Therefore u(x) ≥ h(x) ∀x ∈ Ω and hence u ∈ A. This completes the proof of
existence.

(ii) (unicity) By contradiction assume u1, u2 ∈ A are two different minimizers over A, i.e u1 6= u2

and I(u1) = I(u2) = mA. The set A is convex (exercise), therefore λu1 + (1 − λ)u2 ∈ A and
hence I(λu1 + (1− λ)u2) ≥ mA ∀λ ∈ (0, 1). Since (s, p)→ L(x, s, p) is strictly convex we have

L(x, λu1 + (1− λ)u2, λDu1 + (1− λ)Du2) < λL(x, u1, Du1) + (1− λ)L(x, u2, Du2)

and hence
mA ≤ I(λu1 + (1− λ)u2) < λI(u1) + (1− λ)I(u2) = mA,

which gives a contradiction.

Remark. Note that the set A := {u ∈ X| J(u) = 0} is not convex in general (unless J is
linear) hence the argument above does not apply for integral constraints.

We investigate now the PDE associated to a constrained minimizer.
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Theorem 6.13 (Euler-Lagrange equation for constrained minimizers). Let Ω ⊂ Rd be open and
bounded, X = W 1,q

0 (Ω) with 1 < q <∞.
We consider

I : X → R
u 7→ I(u) :=

´
Ω L(x, u(x), Du(x)) dx,

and we assume I is bounded below, coercive, weakly lower semicontinuous and C1(X) i.e. I is
Fréchet differentiable and the map I ′ : X → X∗ is continuous (cf. Def. 6.3)

(i) (integral constraint) Let 1 ≤ p <∞ such that W 1,q
0 (Ω) ⊂⊂ Lp(Ω) and consider

J : Lp(Ω)→ R
u 7→ J(u) :=

´
ΩG(x, u(x)) dx,

such that J is C1(X). Let A := {u ∈ X| J(u) = 0} and assume A 6= ∅. Let u0 ∈ A be a
constrained minimizer (whose existence is ensured by Thm. 6.12).

Assume in addition ∃v = vu0 ∈ X, v 6= 0 such that J ′(u0)(v) 6= 0.

Then u0 is a solution of

I ′(u0)(w) = λ(u0)J ′(u0)(w) ∀w ∈ X. (6.13)

where

λ(u0) :=
I ′(u0)(vu0)

J ′(u0)(vu0)
∈ R.

is called the “Lagrange multiplier for the integral constraint J”.

(ii) (unilateral constraint) Define A := {u ∈ X|u ≥ h a.e. in Ω}, where h ∈ C∞(Ω) is a given
function and assume A 6= ∅. Let u0 ∈ A be a constrained minimizer (whose existence is

ensured by Thm. 6.12).

Then u0 is a solution of

I ′(u0)(w) ≥ I ′(u0)(u0) ∀w ∈ A. (6.14)

Proof.
(i) Without constraint we would study the function τ 7→ I(u0 + τw). The problem is that
u,w ∈ A does not imply u0 + τw ∈ A. The solution is to “shift” τw back onto A. Precisely,
∀w ∈ X, ∃δ = δw,v > 0 and φ = φw,v : R→ R such that

• φ ∈ C1(R) and φ(0) = 0,

• u0 + τw + φ(τ)v ∈ A ∀|τ | ≤ δ.

To prove this consider

j : R× R→ R
(τ, σ) 7→ j(τ, σ) := J(u0 + τw + σv).

Since J ∈ C1 we have j ∈ C1(R× R) and{
∂τ j(τ, σ) = J ′(u0 + τw + σv)(w)

∂σj(τ, σ) = J ′(u0 + τw + σv)(v).
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In particular ∂σj(0, 0) = J ′(u0)(v) 6= 0. Therefore, by the implicit function theorem, there exists
a function φ ∈ C1(R) and a parameter δ > 0 such that φ(0) = 0 and j(τ, φ(τ)) = 0 ∀|τ | ≤ δ.
We define now

i = iw : R→ R
τ 7→ i(τ) := I(u0 + w(τ)),

where w(τ) := τw + φ(τ)v.

Since I ∈ C1(X) and τ → w(τ) ∈ C1(R;X) we have i ∈ C1(R). Moreover, since u0 + w(τ) ∈ A
∀|τ | ≤ δ, and u0 is a constrained minimizer on A, we have i(τ) ≥ i(0) ∀|τ | ≤ δ and hence
i′(0) = 0. We compute

i′(0) = lim
τ→0

I(u0 + w(τ))− I(u0)

τ

= lim
τ→0

I(u0 + w(τ))− I(u0)− I ′(u0)(w(τ))

‖w(τ)‖X
‖w(τ)‖X

τ
+ lim
τ→0

I ′(u0)(w(τ))

τ
.

Note that limτ→0w(τ) = 0 and

‖w(τ)‖X
τ

= w +
φ(τ)

τ
v = w +

φ(τ)− φ(0)

τ
v →τ→0 w + φ′(0)v.

Inserting these results above and using that I is Fréchet differentiable we get

0 = i′(0) = lim
τ→0

I ′(u0)(w(τ))

τ
= I ′(u0)(w) + φ′(0)I ′(u0)(v). (6.15)

We use now the relation J(u) = 0 ∀u ∈ A to derive a formula for φ′(0).
Indeed u0 + w(τ) ∈ A ∀|τ | ≤ δ, hence J(u0 + w(τ)) = 0 ∀|τ | ≤ δ. In particular, arguing as for
τ 7→ I(u0 + w(τ)), we obtain

0 =
d

dτ
J(u0 + w(τ))|τ=0 = lim

τ→0

J(u0 + w(τ))− J(u0)

τ
= J ′(u0)(w) + φ′(0)J ′(u0)(v),

and hence, since J ′(u0)(v) 6= 0

φ′(0) = −J
′(u0)(w)

J ′(u0)(v)
.

Inserting in (6.15) we obtain the result.

(ii) As in (i), the main problem is that u0, w ∈ A 6⇒ u0 + τw ∈ A.
Since A is convex it holds

(1− τ)u0 + τw = u0 + τ(w − u0) ∈ A ∀w ∈ A,∀τ ∈ [0, 1].

Fix now w ∈ A and let i : [0, 1] → R be the map defined via i(τ) := I(u0 + τ(w − u0)). Then
i(τ) ≥ i(0) ∀0 < τ ≤ 1 and therefore

0 ≤ lim
τ↓0

i(τ)− i(0)

τ
= I ′(u0)(w − u0).

This concludes the proof of the theorem.

[28: 25.01.2024]
[29: 29.01.2024]

119 [February 12, 2024]



Example 1. Set d = 3, Ω ⊂ R3 open and bounded, X = X0 = H1
0 (Ω). We consider again

I(u) :=
1

2

ˆ
Ω
|Du|2 dx, J(u) :=

ˆ
Ω

[
1 +

u3

3

]
dx.

• It holds H1
0 (Ω) ⊂⊂ L3(Ω).

• I ≥ 0 hence I is bounded below.

• By Poincaré, I(u) = 1
2‖Du‖L2(Ω) ≥ C‖Du‖2

H1
0 (Ω)

, hence I is coercive. Moreover p 7→ |p|2
2 is

convex and hence I is weakly lower semicontinuous (cf. Thm 6.10)

• J : L3(Ω) → R is continous. Moreover A = {u ∈ H1
0 (Ω)| J(u) = 0} 6= ∅. Indeed take

u ∈ H1
0 (Ω; [0,∞)), u 6= 0 and consider uα := αu, for α ∈ R to choose. We compute

J(uα) = J(αu) = |Ω|+ α3 1

3

ˆ
Ω
u3 = |Ω|+ α3 ‖u‖

3
L3

3
,

where in the last step we used u ≥ 0. We obtain J(uα) = 0 for α := −(3|Ω|)
1
3 /‖u‖L3 .

Hence, by Theorem 6.12, there exists u0 ∈ A such that I(u0) = infA I. We look now for the
corresponding Euler-Lagrange equation.

• I ∈ C1(X). Indeed we have I(u + w) − I(u) = (Du,Dw)L2(Ω) + 1
2‖Dw‖

2
L2(Ω). Therefore

(exercise) I is Fréchet differentiable with

I ′(u)(w) = (Du,Dw)L2(Ω) =

ˆ
Ω
Du ·Dw dx.

Finally

‖I ′(u)− I ′(v)‖op = sup
‖w‖

H1
0

=1

∣∣∣∣ˆ
Ω

(Du−Dv) ·Dw dx

∣∣∣∣
≤ sup
‖w‖

H1
0

=1
‖Du−Dv‖L2‖Dw‖L2 ≤ ‖Du−Dv‖L2 ≤ ‖u− v‖H1

0
.

Therefore I ′ : X → X∗ is continuous.

• J ∈ C1(X). Indeed we have J(u+w)− J(u) =
´

Ω u
2w dx+ 1

3

´
Ωw

3dx. Therefore (exercise) J
is Fréchet differentiable with

J ′(u)(w) =

ˆ
Ω
u2w dx.

Finally

‖J ′(u)− J ′(v)‖op = sup
‖w‖

H1
0

=1

∣∣∣∣ˆ
Ω

(u2 − v2)w dx

∣∣∣∣
≤ ‖u2 − v2‖L2 = ‖(u− v)(u+ v)‖L2 ≤ ‖u− v‖L4‖u+ v‖L4

≤ C‖u− v‖H1
0
‖u+ v‖H1

0
≤ C‖u− v‖H1

0
(‖u‖H1

0
+ ‖v‖H1

0
).

Therefore J ′ : X → X∗ is continuous.

• ∃v 6= 0 such that J ′(u0)(v) 6= 0. Indeed, by contradiction, assume J ′(u0)(v) = 0 ∀v ∈ X. Then
ˆ
u2

0v = 0 ∀v ∈ C∞c (Ω)
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and hence u0 = 0 a.e. in Ω. But this is impossible since 0 6∈ A.

By Theorem 6.13 it follows that u0 is a weak solution of the nonlinear eigenvalue equation

−∆u0 = λ(u0)u2
0, where λ(u0) =

´
ΩDu0 ·Dv dx´

Ω u
2
0v dx

.

Example 2. Let Ω ⊂ Rd be open and bounded. Set X = H1
0 (Ω). We consider again

I(u) :=
1

2

ˆ
Ω
|Du|2 dx.

Let h ∈ C∞c (Ω) be a given function and set A := {u ∈ X|u ≥ h a.e. in Ω}.
With this choice A 6= ∅ since h ∈ A.
I is bounded, coercive and w.l.s.c. and the map p 7→ L(p) = |p|2/2 is strictly convex.
Then, by Theorem 6.12 ∃!u0 ∈ A such that I(u0) ≤ I(u) ∀u ∈ A.
In addition I ∈ C1(X), hence, by Theorem 6.13, u0 satisfies

I ′(u0)(w − u0) ≥ 0 ∀w ∈ A.

In particular we have w = u0 + τv ∈ A ∀τ ≥ 0, v ∈ H1
0 (Ω; [0,∞)), since w ≥ u0 ≥ h a.e. in Ω.

Hence
I ′(u0)(w − u0) = τI ′(u0)(v) ≥ 0 ∀τ > 0, v ∈ H1

0 (Ω; [0,∞)).

Dividing by τ we obtain
ˆ

Ω
Du0 ·Dv dx = I ′(u0)(v) ≥ 0 ∀v ∈ H1

0 (Ω; [0,∞))

and hence u0 is a weak sub-solution for −∆u = 0.

6.5 Critical points

As an illustrative example let d = 3, X = H1
0 (Ω), f ∈ L2(Ω) and consider the functional

I(u) :=

ˆ
Ω

(
|Du|2

2
− u3

3
+ fu

)
dx. (6.16)

This functional is well defined and in C1(X) (exercise) with

I ′(u)(w) =

ˆ
Ω

(
Du ·Dw − u2w + fw

)
dx.

If I ′(u) = 0 then u is a weak solution of −∆u = u2 − f.
Note that the functional I is not coercive. Indeed take v ∈ H1

0 (Ω; [0,∞)) and consider uλ := λv
with λ > 0. Then I(uλ)→ −∞ as λ→∞. This shows also that I admits no global minimizer.
We will see that we can still find u0 solution of I ′(u0) = 0. This will be a critical point, but not
necessarily a local minimizer.

Definition 6.14 (critical points). Let X be a real Banach space and I : X → R a functional
satisfying I ∈ C1(X).

(i) The point u0 ∈ X is a critical point for I if I ′(u0) = 0.

In this case c0 := I(u0) is called a critical value for I.
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(ii) A real number c ∈ R is called a regular value for I if c is not a critical value, i.e I ′(u) 6= 0
for all u ∈ X such that I(u) = c.

Remark 1. If c0 is a critical value then ∃u0 ∈ X solution of the E-L equation I ′(u0) = 0 i.e.
u0 is a weak solution for the corresponding PDE.

Remark 2. When proving existence of minimizers we start with a minimizing sequence I(un)→
infX I. Coercivity implies that the sequence n 7→ un is bounded. If in addition X is reflexive,
there exists then a weakly convergent subsequence.
When proving existence of critical points we replace coercivity+reflexivity with the so-called
Palais-Smale condition.

Definition 6.15 (Palais-Smale condition). Let X be a Banach space and I ∈ C1(X).
We say that

(i) I satisfies Palais-Smale condition at level c ∈ R if ∀n 7→ un ∈ X such that

I(un)→ c in R, and I ′(un)→ 0 in X∗,

there exists a strongly convergent subsequence unj → u ∈ X,

(ii) I satisfies Palais-Smale condition, if I satisfies Palais-Smale condition at all level c ∈ R.

Example. The function f : R→ R defined via f(x) := ex does not satisfy PS.
Indeed take xn := −n. It holds f(xn) → c = 0 and f ′(xn) → 0. But the sequence admits no
convergent subsequence.

Topological characterization of the critical points.

We will often use the notation

{I ≤ c} := {u ∈ X| I(u) ≤ c} = I−1((−∞, c]).

In the same way we define {I = c}, {a ≤ I ≤ b}, ecc.

Informal statement: c ∈ R is a critical point for I if there exists no continuous deformation
Φ: {I(u) ≤ c+ δ} → {I(u) ≤ c− δ}, where δ > 0. This means the two sets {I(u) ≤ c+ δ} and
{I(u) ≤ c− δ} are topologically different. Lemma 6.16 below makes this statement precise.

Example. Let X = R and I(x) := x3 − 3x. This function has two critical points x1 = −1,
x2 = 1 with critical values c1 = I(x1) = 2, and c2 = I(x2) = −2. We investigate now the set
{I ≤ c} for different values of c. We have

c < −2⇒ {I ≤ c} = (−∞, α1]

− 2 < c < 2⇒ {I ≤ c} = (−∞, α′1] ∪ [α2, α3]

2 < c⇒ {I ≤ c} = (−∞, α′′1].

Therefore passing through a critical value the number of connected components changes.

Note that this topological characterization is a sufficient but not necessary condition for existence
of a critical point. Consider for example the function I(x) := x3. Then x = 0 is a critical point
but both {I(u) ≤ δ} and {I(u) ≤ −δ} have only one connected component.
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Lemma 6.16 (Deformation lemma). Let X be a Banach space.
Assume

• I ∈ C1(X) and satisfies Palais-Smale condition,

• c ∈ R is a regular value for I.

Then the following hold.

(i) ∃0 < δ0 ≤ 1 and 0 < σ ≤ 1 such that

‖I ′(u)‖X∗ ≥ σ > 0, ∀u ∈ Bδ := {c− δ ≤ I(u) ≤ c+ δ}, ∀0 < δ ≤ δ0.

(ii) Let σ and δ0 be the constants introduced above. Then ∀0 < ε and 0 < δ < min{δ0,
σ2

2 , ε}
∃η = ηε,δ ∈ C([0, 1]×X;X) such that

(a) η(0, u) = u ∀u ∈ X,
(b) ∀t ∈ [0, 1] the function η(t, ·) : X → X is a homeomorphism

(i.e continuous and invertible with continuous inverse),

(c) u ∈ Aε := {c− ε < I < c+ ε}c ⇒ η(t, u) = u ∀t ∈ [0, 1],

(d) the map t→ I(η(t, u)) is non-increasing ∀u ∈ X,
(e) η(0, u) = u ∈ {I ≤ c+ δ} ⇒ η(1, u) ∈ {I ≤ c− δ}.

Proof.
(i) By contradiction assume there are three sequences δn → 0, σn → 0 and n → un such that
un ∈ Bδn = {c− δn ≤ I ≤ c+ δn} and ‖I ′(un)‖H ≤ σn ∀n.
From δn → 0 and c − δn ≤ I(un) ≤ c + δn, it follows I(un) → c. Since ‖I ′(un)‖H ≤ σn and
σn → 0 we also have I ′(un)→ 0.
By Palais-Smale, there exists a convergent subsequence unj → u in X. Since I and I ′ are
continuous we have

I(u) = lim
j→∞

I(unj ) = c, I ′(u) = lim
j→∞

I ′(unj ) = 0,

which is impossible since c is a regular value for I.

(ii) We will see the proof only in the special case X = H is a Hilbert space and hence we can
identify X and X∗ via I ′(u)(w) = (vI′(u), w)H . By abuse of notation we will sometimes write
I ′(u) instead of vI′(u).

We will assume in addition the map Î ′ : H → H defined via Î ′(u) := vI′(u) is locally Lipschitz-
continuous, i.e. Lipschitz-continuous on bounded sets.

In the general case of a Banach space, we need to replace the map Î ′ : H → H by a pseudo-
gradient vector field, i.e. a map W : Xr → X, with Xr := {u ∈ X| I ′(u) 6= 0} satisfying

• W is locally Lipschitz-continuous,

• W “approximates” I ′(u).
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One can prove that such a function always exists. See the book by S. Kesavan (“Nonlinear
functional analysis”) for more details.

Assume now X = H is a Hilbert space and u 7→ vI′(u) is locally Lipschitz-continuous. To
construct η we look for a vector field V : H → H such that the ODE{

∂tη(t, u) = V (η(t, u))

η(0, u) = u
(6.17)

has a unique solution η ∈ C([0, 1]×X;X) satisfying (i)− (v).
Note that, if the potential V is bounded and locally Lipschitz, then for each u ∈ H (6.17) has
a unique solution η(·, u) ∈ C1(R;H) (by adapting the proof of Picard-Lindelöf). Moreover, the
solution satisfies η ∈ C([0, 1]×H;H).

The rest of the proof was not discussed in class

Part 1: construction of V . Assume η is the unique solution of (6.17), and satisfies (i)− (v). We
will use now (i)− (v) to impose restrictions on the choice of V.

Step 1. By (iv), the function t→ I(η(t, u)) must be non-increasing ∀u ∈ X, i.e

0 ≥ d

dt
I(η(t, u) = I ′(η(t, u))(∂tη(t, u)) =

(
I ′(η(t, u)), ∂tη(t, u)

)
H

=
(
I ′(η(t, u)), V (η(t, u))

)
H

where in the last identity we used (6.17). Therefore we define

V (u) := −Φ(u)I ′(u),

where Φ: H → [0,∞) will be chosen later. With this choice(
I ′(u), V (u)

)
H

= −Φ(u)‖I ′(u)‖2H ≤ 0 ∀u ∈ H. (6.18)

Step 2. We want V to be bounded i.e.

sup
u∈H
‖V (u)‖H = sup

u∈H
Φ(u)‖I ′(u)‖H <∞.

The map u 7→ ‖I ′(u)‖H is not bounded in general hence we neet Φ to compensate. We introduce
the cut-off function

h : [0,∞)→ R
τ → h(τ)

, h(τ) :=

{
1 0 ≤ τ ≤ 1
1
τ 1 < τ.

This function is Lipschitz continuous and satisfies supτ≥0 τh(τ) ≤ 1. We define now

Φ(u) := Φ̃(u)h(‖I ′(u)‖H)

where Φ̃ : H → [0,∞) is a bounded function to be chosen later. With this choice

sup
u∈H

Φ(u)‖I ′(u)‖H = sup
u∈H

Φ̃(u)h(‖I ′(u)‖H)‖I ′(u)‖H ≤ sup
u∈H

Φ̃(u) <∞.

Step 3. We have now V (u) = −Φ̃(u)h(‖I ′(u)‖H)I ′(u).
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Let u ∈ Aε = {c− ε < I < c+ ε}c. By (iii), we have η(t, u) = u ∀t ∈ [0, 1], hence

0 = ∂tη(t, u) = V (η(t, u)) = V (u) ∀t ∈ [0, 1].

Therefore we need V (u) = 0 ∀u ∈ Aε.

Assume now c−δ < I(u) ≤ c+δ. By (v) we have I(η(1, t)) ≤ c−δ < I(u) = I(η(0, u)). Therefore
η(1, u) 6= η(0, u) and hence V (η(t, u)) = ∂tη(t, u) 6= 0 is some time interval.

Putting these two conditions together we look for Φ̃ : H → [0,∞) such that

• Φ̃ is bounded and locally Lipschitz,

• Φ̃ = 0 on Aε := {c− ε < I < c+ ε}c,

• Φ̃ = 1 on Bδ := {c− δ ≤ I ≤ c+ δ}.

Since I is continuous, both Aε and Bδ are closed sets. Since δ < ε we have Aε ∩ Bδ = ∅ and
hence dist (Aε, Bδ) > 0. We define then

Φ̃(u) :=
dist (u,Aε)

dist (u,Aε) + dist (u,Bδ)
.

With this choice 0 ≤ Φ̃ ≤ 1, Φ̃(u) is locally Lipschitz, Φ̃ = 0 on Aε and Φ̃ = 1 on Bδ. This
concludes Part 1.

Part 2: construction of η. Let us define V as above. Then V is bounded and locally Lipschitz,
and hence for each u ∈ H (6.17) has a unique solution η(·, u) ∈ C1(R;H). Moreover, the solution
satisfies η ∈ C([0, 1]×H;H). We check now that the solution satisfies (i)− (v).

• (i) holds since η(0, u) = u by construction.

•We have η(t+s, u) = η(t, η(s, u)) ∀t, s, u. In particular η(−t, η(t, u)) = η(t−t, u) = η(0, u) = u.
Therefore η(t, ·) : X → X is invertible with η(t, ·)−1 = η(−t, ·), and hence (ii) holds.

• To check (iii) take u ∈ Aε and consider the constant function η̃(t) = u. Since V (u) = 0 this
function is a solution of (6.17). By unicity of the solution it follows η̃ = η(·, u).

• (iv) follows directly from (6.18).

• It remains to check (v). Note that until now δ < ε are free parameters. O ur goal is to choose
them such that u ∈ {I ≤ c+ δ} ⇒ η(1, u) ∈ {I ≤ c− δ}. We distinguish two cases.

Case 1. If I(u) ≤ c− δ, we also have I(η(1, u)) ≤ c− δ, since t→ I(η(t, u)) is non-increasing.

Case 2 : Let c− δ < I(u) ≤ c+ δ, i.e u ∈ Bδ. By contradiction assume c− δ < I(η(1, u)). Then
η(t, u) ∈ Bδ ∀t ∈ [0, 1] and hence, using Φ̃ = 1 on Bδ

V (η(t, u)) = −h(‖I ′(η(t, u))‖H)I ′(η(t, u)) ∀t ∈ [0, 1].

Therefore

d

dt
I(η(t, u)) = −h(‖I ′(η(t, u))‖H)‖I ′(η(t, u))‖2H =

{
−‖I ′(η(t, u))‖2H if ‖I ′(η(t, u))‖ ≤ 1
−‖I ′(η(t, u))‖H if ‖I ′(η(t, u))‖ > 1.

By (i) ∃0 < δ0 < 1 and 0 < σ ≤ 1 such that ‖I ′(u)‖ ≥ σ ∀u ∈ Bδ with 0 < δ ≤ δ0. We have

d

dt
I(η(t, u)) ≤

{
−σ2 if ‖I ′(η(t, u))‖ ≤ 1
−1 if ‖I ′(η(t, u))‖ > 1,

}
≤ −σ2 ∀t ∈ [0, 1].
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Therefore

I(η(1, u)) = I(η(0, u)) +

ˆ 1

0

d

dt
I(η(s, u))ds ≤ c+ δ − σ2 < c− δ,

if we take 0 < δ < σ2

2 . This contradicts c− δ < I(η(1, u)), hence the result holds.

[29: 29.01.2024]
[30: 01.02.2024]

Existence of critical points.

Example. Consider f ∈ C1(Rd;R) satisfying

• f(0) = 0,

• ∃r, a > 0 such that f(x) ≥ a ∀|x| = r,

• ∃x0 ∈ Rd such that |x0| > r and f(x0) ≤ 0.

Then ∃x̄ ∈ Rd such that 0 < |x̄| < |x0|, f(x̄) ≥ a and Df(x̄) = 0.
The next theorem extends this result to general Banach spaces.

Theorem 6.17 (Mountain Pass Theorem). Let X be a Banach space, and I ∈ C1(X) a func-
tional satisfying Palais-Smale condition. Assume in addition

• I(0) = 0,

• ∃r, a > 0 such that I(v) ≥ a ∀‖v‖X = r,

• ∃u0 ∈ X such that ‖u0‖X > r and I(u0) ≤ 0.

Let Γ := {γ ∈ C([0, 1];X)| γ(0) = 0, γ(1) = u0} be the set of continuous paths starting in 0 and
ending in u0. Then

c := inf
γ∈Γ

max
t∈[0,1]

I(γ(t))

is a critical value for I, i.e. ∃ū ∈ X such that I(ū) = c and I ′(ū) = 0.

Remark 1. We are looking for the path from the valley containing 0 to the valley contining
u0 with the lowest altitude (the mountain pass). The point ū may be a saddle, a local max or
a local min.

Remark 2. γ must cross the mountain range ‖v‖ = r, therefore maxt∈[0,1] I(γ(t)) ≥ a ∀γ ∈ Γ
and hence c ≥ a.

Remark 3. Since I(ū) = c ≥ a > 0 it holds ū 6= 0 and ū 6= u0. In particular, if we already
know that 0 or u0 is a critical point, the theorem implies there are at least two solutions for the
Euler-Lagrange equation of I.
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Proof.
By Remark 2, c ≥ a > 0. By contradiction, assume c is a regular value. We will show that in
this case ∃γ̃ ∈ Γ such that maxt∈[0,1] I(γ(t)) < c which contradicts the definition of c.

• We construct a candidate for γ̃.
c is a regular point, then, by the Deformation Lemma, ∀ε > 0 ∃0 < δ < ε and η̃ : X → X
(η̃ = η(1, ·)) such that

• η̃ is a homeomorphism,

• η̃(u) = u ∀u ∈ Aε = {c− ε < I < c+ ε}c,

• η̃({I ≤ c+ δ}) ⊂ {I ≤ c− δ}.

In particular we can choose ε < 1 small enough s.t.

c− ε > 0 = I(0) ≥ I(u0)

and hence η̃(0) = 0 and η̃(u0) = u0. Since c = infγ∈Γ maxt∈[0,1] I(γ(t)), ∃γ0 ∈ Γ such that

max
t∈[0,1]

I(γ0(t)) ≤ c+ δ. (6.19)

We define γ̃ := η̃ ◦ γ0.

• We check γ̃ is the correct choice.
Indeed, γ̃ ∈ C([0, 1];X) since both η̃ and γ0 are continuous. Moreover

γ̃(0) = η̃(γ0(0)) = η̃(0) = 0, γ̃(1) = η̃(γ0(1)) = η̃(u0) = u0,

hence γ̃ ∈ Γ.
By construction γ0(t) ∈ {I ≤ c + δ} ∀t ∈ [0, 1] hence γ̃(t) = η̃(γ0(t)) ∈ {I ≤ c − δ} ∀t ∈ [0, 1],
and therefore

c ≤ max
t∈[0,1]

I(γ̃(t)) ≤ c− δ,

which gives a contradiction.

Example. Set d = 3, Ω ⊂ R3 open and bounded, X := H1
0 (Ω), f ∈ L2(Ω) and consider the

functional (6.16), i.e.

I(u) :=

ˆ
Ω

[ |Du|2
2
− u3

3
+ fu

]
dx.

This functional is well defined and is in C1(X) with

I ′(u)(w) =

ˆ
Ω

(
Du ·Dw − u2w + fw

)
dx.

We show now that I satisfies Palais-Smale condition. Let n→ un ∈ H1
0 (Ω) be a sequence such

that
I(un)→ c ∈ R, I ′(u0)→ 0.

Our goal is to find a strongly convergent subsequence. For this purpose we show first that the
sequence is bounded, and hence, since X is reflexive, there is a weakly convergent subsequence
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unj ⇀ u. Since H1
0 (Ω) ⊂⊂ L2(Ω) this implies unj → u strongly in L2(Ω). The last step is to

prove that also Dunj → Du strongly in L2(Ω).

• We prove that the sequence n → un is bounded. Since I is not coercive, we will use instead
the exact expressions for I(un) and I ′(un). We have, by direct computation

I(un) =
1

2
‖Dun‖2L2 −

1

3

ˆ
Ω
u3
ndx+ (f, un)L2 (6.20)

I ′(un)(un) =‖Dun‖2L2 −
ˆ

Ω
u3
ndx+ (f, un)L2 . (6.21)

From the first equation we get

−
ˆ

Ω
u3
ndx = 3

[
I(un)− 1

2
‖Dun‖2L2 − (f, un)L2

]
.

Inserting this into (6.21) we get

I ′(un)(un) = −1

2
‖Dun‖2L2 + 3I(un)− 2(f, un)L2

and hence, using Poincaré,

C‖un‖2H1
0
≤ 1

2
‖Dun‖2L2 = 3I(un)− I ′(un)(un)− 2(f, un)L2

≤ 3I(un) + ‖I ′(un)‖op‖un‖H1
0

+ 2‖f‖L2‖un‖L2

≤ 3|I(un)|+ ‖un‖H1
0

[
‖I ′(un)‖op + 2‖f‖L2

]
Since I(un)→ c and I ′(un)→ 0 the two sequences n 7→ |I(un)| and n 7→ ‖I ′(un)‖op are bounded
and therefore

C‖un‖2H1
0
≤ α+ β‖un‖H1

0
,

where α = 3 supn |I(un)| and β = 2‖f‖L2 + supn ‖I ′(un)‖op. It follows that the sequence n→ un
is bounded ad hence, since X is reflexive, there is a weakly convergent subsequence unj ⇀ u.
Since H1

0 (Ω) ⊂⊂ Lp(Ω) ∀p < 6 this implies unj → u strongly in Lp(Ω) ∀p < 6. In particular
unj → u in L2(Ω)

• We prove Dunj → Du strongly in L2(Ω).
Remember that

I ′(unj )(w) = (Dunj , Dw)L2 −
ˆ

Ω
u2
njw dx+ (f, w)L2 .

Since I ′(unj ) → 0 we have I ′(unj )(w) → 0. Since Dunj ⇀ Du we have (Dunj , Dw)L2 →
(Du,Dw)L2 . Finally since unj → u in L4(Ω) we have

ˆ
Ω
|u2
nj − u

2| |w| dx ≤ ‖un − u‖L4‖un + u‖L4‖w‖L2 → 0.

Putting all this together we obtain

0 = (Du,Dw)L2 −
ˆ

Ω
u2w dx+ (f, w)L2 ∀w ∈ H1

0 (Ω). (6.22)

In particular, setting w = u,

0 = ‖Du‖2L2 −
ˆ

Ω
u3 dx+ (f, u)L2 . (6.23)
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From (6.21) we obtain, for all j,

‖Dunj‖2L2 = I ′(unj )(unj ) +

ˆ
Ω
u3
nj dx− (f, unj )L2 .

Since I ′(unj )→ 0 and the sequence j 7→ unj is bounded we have I ′(unj )(unj )→ 0. Since unj → u
in L3(Ω) we have

´
Ω u

3
nj dx →

´
Ω u

3 dx. Since unj → u in L2(Ω) we have (f, unj )L2 → (f, u).
Putting all this together,and using (6.23) we obtain

lim
j→∞

‖Dunj‖2L2 = 0 +

ˆ
Ω
u3 dx− (f, u) = ‖Du‖2L2 . (6.24)

Since X is a Hilbert space Dunj ⇀ Du and ‖Dunj‖L2 → ‖Du‖L2 implies Dunj → Du in L2(Ω),
which concludes the proof.

As an example of application consider the equation{
−∆u = u2 − f in Ω ⊂ R3

u|∂Ω = 0
(6.25)

with f ∈ L2(Ω). In weak formulation this PDE becomes
ˆ

Ω
[Du ·Dw − u2w + fw] dx = 0 ∀w ∈ H1

0 (Ω).

Therefore a weak solution of (6.25) is a critical point for the functional I defined in (6.16).
Assume now, Ω is connected, f ∈ C∞(Ω; [0,∞)) and ∃x0 ∈ Ω such that f(x0) > 0. By
Lemma 3.9 (sub-supersolution method) there exists at least one non-positive weak solution
u0 ∈ H1

0 (Ω; (−∞, 0]). We will use now the Mountain Pass theorem to show that there is at least
a second weak solution.

In order to apply the Mountain Pass theorem, we replace u = 0 with u0 (point in the first valley)
and I(0) = 0 with the value of I(u0).

Claim. ∃r, a > 0 and u1 ∈ H1
0 (Ω) such that

(i) ∀‖u− u0‖H1
0

= r it holds I(u) ≥ I(u0) + a,

(ii) ‖u1 − u0‖H1
0
> r and I(u1) ≤ I(u0).

Consequence. By the Mountain Pass theorem, there exists ū ∈ H1
0 critical point for I such that

I(ū) ≥ I(u0) + a. Therefore ū 6= u0 and hence there are at least two weak solutions for (6.25).

Proof of the Claim.
• If ‖u− u0‖H1

0
= r then u = u0 + rw with ‖w‖H1

0
= 1. We have

I(u)− I(u0) = I(u0 + rw)− I(u0) = r

[
(Du0, Dw)L2 −

ˆ
Ω
u2

0w dx+ (f, w)L2

]
+ r2

[
1

2
‖Dw‖2L2 −

ˆ
Ω
u0w

2 dx

]
− 1

3
r3

ˆ
Ω
w3 dx.

Since u0 is a critical point we have (Du0, Dw)L2 −
´

Ω u
2
0w dx+ (f, w)L2 = 0 hence

I(u)− I(u0) = r2

[
1

2
‖Dw‖2L2 −

ˆ
Ω
u0w

2 dx

]
− 1

3
r3

ˆ
Ω
w3 dx.
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Since u0 ≤ 0 a.e we have −
´

Ω u0w
2 dx ≥ 0 and hence

I(u)− I(u0) ≥ r2 1

2
‖Dw‖2L2 −

1

3
r3‖w‖3L3

By Poincaré and Sobolev inequality we have

‖Dw‖2L2 ≥ C1‖w‖2H1
0

= C1, ‖w‖3L3 ≤ C2‖w‖3H1
0

= C2,

where C1, C2 > 0, and we used ‖w‖H1
0

= 1. Therefore

I(u)− I(u0) ≥ r2 1

2
C1 −

1

3
r3C2 ≥ r2 1

4
C1 > 0

for r small enough. So (i) holds.

•We construct u1. Set v := u0 + tϕ where ϕ ∈ H1
0 (Ω; [0,∞)) is a given function satisfying ϕ > 0

on a set of positive measure, and t > 0 is a parameter to choose. We have

‖u1 − u0‖H1
0

= t‖ϕ‖H1
0
> r

if t > r/‖ϕ‖H1
0
. Finally

I(u1)− I(u0) = t2
[

1

2
‖Dϕ‖2L2 −

ˆ
Ω
u0ϕ

2 dx

]
− 1

3
r3

ˆ
Ω
ϕ3 dx = t2α1 − t3α2,

where α1 ∈ R and α2 > 0. It follows I(u1)− I(u0) < 0 if t is large enough. Hence (ii) holds.
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