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[T: 08.10.2024]

1 Preliminary definitions and results

1.1 Introduction

Our goal in this lecture is to study integrals in N > 1 variables. These can be represented as

Iv= [ don(o)f)

where M is a manifold, ¢: {1,..., N} — M is the spin configuration or field configuration, the
measure dpy(g) has the form

N
dpn(p) = [ [ dej e ™),
j=1

and f is the function we wish to average (the observable). In the following we often replace
je{l,...,N} with j € A cC Z¢ or j € finite graph.

Examples
e Ising model: M = {—1,1} with dp = 3(6_1 + 641);

e O(n) model: M = 8" ! n > 2 with dp = dH" ! the surface measure. For n = 1 we recover
the Ising model. For n = 2 this is also called XY or rotator model. For n = 3 this is called
Heisenberg model.

e unbounded spin: M =R or C. In the first case we use dy the real Lebesgue measure. In the

second case we use
dpdy =2 dReyp dlmep (1.1)

Note that there are other possible conventions in the literature (no 2 factor, an additional i
factors). The choice above is motivated by the computation (dz — idy) A (dx + idy) = 2idxdy
The above construction can be generalized to M = R™ or C™ with m > 1.

e more generally we will use ¢ € R™*™ or p € C"*" and ¢ may have in addition anticommuting
components.

Anticommuting variables arise naturally in physics (in the context of the quantum description
of particles satisfying Fermi statistics) and in mathematics (in the context ot differential forms
and graded algebras). Here we will use them principally as a tool to reformulate some integral
as a new integral that is hopefully easier to study (duality).
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Two easy examples of duality
1. mean field O(n). This example is motivated by statistical mechanics.
Consider S = (S1,...,Sy) with S; € "1, n > 1. We write
N
ds =[] ds;
j=1

where dS; is the normalized Hausdorff measure dH™ 1 ie.
/ ds; = 1.
Sn—l

dpn(S) = dS eN Zowm SiSk h T30 Sye,

We consider the measure

where 3, h > 0 are parameters and é € 8" ! is a fixed direction. In the case h > 0, this measure
favours the (unique) configuration S; = é Vj. For h = 0 the measure favours configurations of
the form S; = S, Vj, k. Our goal is to study properties of this measure as N — oo . We have
the following dual representation (that will be proved later)

/(Sn_l)N dpn(S) = (%)% /n do e_N<%_lnI(@)> (1.2)

where

I(‘P):/ ds e¥% > 0.
Sn—1

Note that, while in the first integral we have O(Nn) variables, in the second we only have n
variables. The large number N remains only as a large parameter in the exponent and can
be used to perform rigorous Laplace method. This dual representation is obtained using real
Gaussian integrals.

Example 2 large random matrix. This example is motivated by quantum mechanics (self-
adjoint operator describing the energy levels of a large nucleus). Our variable is now a matrix
H e (ijlvefnjf By self-adjointness we have H;; € RVi = 1,...,N and Hj; = H;; Vi < j. We
consider the measure

N N

N o _

dpn(H) := Hdeje_TH?j H dH;jdH;je"NHiiHi = g e 2 TrH?
j=1 i<j=1

where dH := HjV: 1 dHj; Hij\ijzl dH;jdH;;. This measure is real and finite hence becomes a

probability measure after normalization. Moreover it is invariant under unitary rotations H —

U*HU with U*U = 1. The corresponding set of random matrices is called Gaussian Unitary
Ensemble (GUE). We will use the notation

B fcg;wfj dpn(H) f(H)
(= f(CNxN dpn(H)

herm

We are interested in the resolvent (2 — H)~!. Since H* = H we have o(H) C R hence z =
E +ic € p(H) VE € R and ¢ > 0. Spectral properties of H can be inferred from the two
averages

(B+ie—H)z)n,  ((E+ie—H)gyP)n.
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These integrals are hard to control when N > 1 since the operation of inverting the matrix
creates interactions between the (independently distributed) matrix elements. A dual represen-
tation exists but requires introducing anticommuting variables. The following duality does not
require them.

< 1 >N _ \/N / da efN(éJrln(EJriefa))
det(E+ZE—H) \ 2 R

On the left we have O(N?) variables, on the right we have only one real variable. The large
number N is a parameter in the new measure and can be used to perform rigorous saddle
analysis. This dual representation is obtained using complex Gaussian integrals.

1.2 Gaussian integrals
1.2.1 Scalar Gaussian integral

Theorem 1.1. Fixz a € C with Re a > 0.

(i) (Laplace-Fourier transform) For all u,v € C we have

/ Ay e 299" P — Le%% (1.3)
R V2T Va

/ dPdy _opp pusve _ 1
c 2m a

where we have taken the unique (complex) square root of a with positive real part. We will

use the notation
a 1 2
d =4/ —dp e 2% 1.4
pilp) = /5 dee (1.4)

A1 (7, ) = 5 —dpdp e
a 2m
(i) (integration by parts) We have

1
[an@ e )= [ duste) £ (15)
R @ aJr @
_ _ 1 _ _
/(Cdu;(% v) e f(@9) = a/cd“i(“”@) G (@, ¢)
1
Lan @07 1.0 = 1 [ dny@.9) 0,10,
For all differentiable function f such that the above integrals exist in absolute value.

Remark 1 Setting u = 0 or u = iy, and v = —iw, in (|1.3)) we obtain the normalization and
Fourier transform respectively

/ dy e~ 3% — L’ / Ao e29¢" ¢iPY = ie_%% (1.6)
R V21 va R V21 Va
/ dpdp _ 1 / @ei(@ﬂrﬁ@) — le*%

c 27 a’ c 27 a
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Remark 2 The following identities follow directly from ([1.5) is

/dul(w)so =0, /dul(w)soz = 17 (1.7)
R @ R @

a
/dul(%«p) p=0= / dp1 (2, 0) P
C @ C @
_ _ _ _ _ 1
/dul(%cﬁ) p?=0= / dp1(,9) P, /dul(sojw) vp = —.
C a C a C a a
Definition 1.2. Fiz a € C with Re a > 0.
(i) We call dui(p) the normalized Gaussian measure on R with mean [ dpi(p)e = 0 and
variance [ dp1(p)? =1,
(i) We call dpi (@, ) the normalized Gaussian measure on C with mean [-dpi(P,¢) ¢ =
0= Jedus(®, ) § and covariance [ dp1(P,¢) v = %

[1: 08.10.2024]
[2: 14.10.2024]

Proof. Proof of Theorem
Case 1: real variable ¢ € R.
e For a > 0 and u € R we argue

d 1 2 142 d 1 2 142 d 1 2 1 1.2
/ v e 24P U — 85% ;0 efﬁa((p*%) = 65% ;0 e 20¥ — —e?%’
R R ™ R 4 a

where we used the coordinated change ¢ — ¢ — 2.

e Fix now a,u € C with Rea > 0. The integral is well defined since

/ d90 ef%meecpu
R V27

u2 ul?
:/ Ao ~L(Rea)s? Joul < e%/ 9o ~dmeame? _ 50 L
R

27 R V2T vRea —n

where we used |pu| < % (n<p2 + %|u|2) with 0 <7 < Rea.

We first prove (1.3)) in the case a > 0 and u € C. Consider the two functions F,G: C — C
defined by
d 1 122
F(z):= / —Soe_%a‘ﬁew, G(z) := s
R V2T Va

These two functions are holomorphic on C (exercise). Moreover F'(u) = G(u) Vu € R, hence by
analytic continuation (see Thm. below) F'(z) = G(z) Vz € C.

We now prove (|1.3)) in the general case a,u € C with Rea > 0. Fix u € C and set
C*:={z € C| Rez > 0}. (1.8)

Note that this set is open and connected. We consider the two functions F,G: CT — C defined
by
d(p 1,2 1
F(z):= | ——e 2%¥ ¥4, G(z) := —=e2
()= | & ()= =
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These two functions are holomorphic on C* (exercise). Moreover F'(a) = G(a) Va € R, with
a > 0 hence by analytic continuation (see Thm. below) F(z) = G(z) Vz € C™.

e To prove (|1.5)) use
(pe_%mPQ = —1 @e_%a‘pQ
a
and perform integration by parts.

Case 2: complex variable ¢ € C.
e The integral is well defined since

/ dpdy |e—aPoPutTe| — / A2y —(Rea(? +42) ol(a-+i) | (1l +o)
C

27 R2 T

< e(\u\wn? / dxdye,(Rea,n/Q)(xzwz) _ euu\;vn? 1 < o
- R2 T Rea —n/2 ’

where we used again Young’s inequality with 0 < n < 2Rea.
e Assume now a > 0. To prove (1.3) we argue, using Case 1,

dod B dxd 2,2y = - 1 @+w?  @-w? 1 wu
¥ Qpefcupgpe(pu+v<p _ yefa(z +y )ex(v+u)+yz(vfu) — e da T I — *6%.
c 2m R2 T a a

e We prove now (|1.3]) in the general case a,u,v € C with Rea > 0. Remember the definition of
C™* (1.8) and consider the two functions F,G: C* — C defined by

ded S0 BulT
F(z):= / ﬂe*wwe%ww’ G(z):=-e>=.
C

2 z

These two functions are holomorphic on C*t (exercise). Moreover F(a) = G(a) Va € R, with
a > 0 hence by analytic continuation (see Thm. below) F(z) = G(z) Vz € C™.

e To prove (|L.5)) use

_ 1 _ _ 1 _
—a —a — —a —a
pe P = - Oge™ %%, pe 1P = - Ogpe” "%

and perform integration by parts (exercise).

1.2.2 Reminders of complex analysis
Definition 1.3. Let U C C be an non-empty open set and f: U — C a function.

e f is analytic on U if it has a power series representation at each point i.e. for all w € U
there exists an open ball B,(w) C U and a power series z +— Y. ~,an(z — w)" with
convergence radius p > r such that

flz) = Zan(z —w)" Vz € By (w).

n>0

e f is holomorphic on U if the complex derivative

f(z0+h) — f(20)
h

exists in all points zg € U and [’ defines a continuous function on U

0:f(20) :== }llli%
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Theorem 1.4 (important properties ). Let U C C be an non-empty open set and f: U — C a
function. The following statementas hold.

(i) f is holomorphic on U < f is analytic on U

(ii) Let U.{(x,y) € R%|(x +iy) € U}.

Then, f is holomorphic on U < the function F: U, — R? defined by (z,y) — (Ref(x +
iy), Imf(x +iy) is continuously differentiable and satisfies the Cauchy-Riemann equations

Oy Ref(x +iy) = OyImf(x + iy), OyRef(x +iy) = —0xImf(z + 1y)
& 0zf == 1 (0, +i0,) f = 0.
(iii) f complex differentiable = 0.f = % (0 — i0,) f.
(iv) f holomorphic on U = f admits infinitely many complex derivatives.

Theorem 1.5 (analytic continuation). Let U C C be an non-empty connected open set, f,g: U —
C two functions analytic on U. The following statements are equivalent:

(1) f(z) =9(2) Vz € U;
(i) there exists a set V.C U such that

(a) f(z) =g(z) Vz €V,

(b) V' contains infinitely many points and an accumulation point in U,
(iii) there exists a point zo € U such that f™(z) = g™ (20) ¥n >0
Note that the complex derivatives are well defined since an analytic function is alwasy holomor-
phic.
1.2.3 Some properties of matrix spaces

To define Gaussian measures on vectors we replace agp? (resp. apyp) with a quadratic form
(¢, Ap) (resp. (@, Ap)). We will need some preliminary facts/definitions on complex-valued
matrices. The analog of a real scalar is a self-adjoint matrix. In order to apply analytic con-
tinuation we need to parametrize a complex matrix A via variables that become real when A is
self-adjoint. This is the content of the next result.

Lemma 1.6 (decomposition of complex matrices).
(i) Every matriz A € CN*N can be decomposed as

with A1, Ao self-adjoint matrices defined by

A= A4 47, Ayi= =(A— 4, (1.10)
2 21
where A* = A'. We define
Re A = Alzé(AJrA*), Tm A = Agz%(A—A*). (1.11)
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(ii) Every matriz A € CN*N can be uniquely identified by the set of N? complex variables

zii = Ay = (A1) +1(A2)is;, i=1,...N
Zij = Re (Al)ij +iRe (Ag)ij, 1< ]
Wij = Im (Al)ij + ¢Im (Ag)ij, 1< ]
via the formula
A(z, w) = Aij =z + iwij Vi < g,
Aji = Zij — iwij Vi > 7.

(i4i) The function z,w — A(z,w) is analytic in each variable separateley, since Oz, A(z,w) =

0 = 0y, Az, w).
(iv) A*=A iff zi, Zij, Wij € R.
Proof. exercise 0

Remark 1 Since both Aq, Ao are self-adjoint we have

(7. Ap)| = (B, A1) + (P, A2)| = V/ (7, A19)? + (7, A20)? 2 |(7, A1) - (1.12)

Remark 2 A complex self-adjoint matrix A = A* is positive definite as a quadratic form
A>0if
(@ Ap) >0  YpeCV\o. (1.13)

Since we are in finite dimension this is equivalent to find a number A > 0 such that

(@, Ap) > M@, ) = Alp]> Ve CV\o. (1.14)

In the following we consider the space
CP N .= {A e CV*N| Re A > 0}. (1.15)

Theorem 1.7. The followig hold.

(i) CfXN is an open connected subset of CN*N

(i) A € CYN iff A is invertible and A=t € CY*V.

Note that since we are in finite dimension all norms are equivalent so we do not need to specify
under which norm the spaces are open.

Proof.

e We show that (Cf XN is an open subset of CV*V with respect to the operator norm.

Fix A € CY*Y. Then A = A; + iAs and there is A > 0 such that (3, A1) > Ap|? > 0
Y € CV\ 0.

Our goal is to find 7 > 0 such that B € CY*Y for all B € CVN*V such that ||A — B|| < r.
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NxN
C+

Using the decomposition B = B; + iBs we have B € iff By > 0. We argue, using also

(.12),
(@ Bip) = (3, A1) + (@, (B1 — A1)p) = Mof” = (@, (B1 — A1)p)|
> Ael? = (@, (B = A)p)| = Apl* = | B = Al| [¢ = (A~ ||B — Al ]¢f.
Hence By (A) c CY*V.

e The set Cf XN is convex and hence connected. Indeed, for all A, B € (Cf XN and ¢t € [0,1] we
have

(@, (tA+ (1 = t)B)1p) = (@, Arp) + (1 = 1) (@, Bip) > 0

o Let A€ CYV*Y. We claim that A is invertible and A~! € CJN,

Indeed, assume by contradiction A is not invertible. Then there exists ¢ € C" such that Ay = 0.
But then (¢, Ap) = 0 and hence (@, A1) = 0 which contradicts A; > 0.

To prove A~' € CY*Y we argue

2ReA ' =(A"+ A Y)=AT+A) ) =(AT = (=49
= (AT (AT - A)AT = (A THA+ AT AT
where we used the resolvent identity
At —Bl=AY(B-AB =B (B-A4)A"".

Hence
ReA™ = (A7)*(Re A)A™L.

The result now follows from

(@ ReA™'p) = (7, (A7) (Re A) A7) = (A7p, (Re A) (A7) > 0.

e Assume A € CV*V ig invertible and A~1 € (CfXN. we claim that A-1 € CfXN. This follows
from

Red = A*(Re A"1)A.

O
1.2.4 Vector Gaussian integral
Theorem 1.8. Fiz N > 1
(i) (Laplace-Fourier transform,)
(a) For all A € (CfXN with the additional condition A* = A it holds
d(pj 1A 1 10y A-1
e 3PAP)(p) — = 5(v,AT ) 1.16
/]RN H Vdet A ( )

where \/det A is defined via (see also Remark 3 below)

1 _1
Vdet A = /det Al\/det(l +iA] 2 AA] 7).
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(b) For all A € CivXN, v,w € CN it holds

d%d% ~@A9) ) +me) - L @A)
v)+(W,p) _ w, v 1.1
/(CN H ¢ det Ae (1.17)
Setting C := A~Y, we will use the notation
N l
duc(p) = H e~ 2(A9) (1.18)
N _
dc(7,¢) = det A e P 49)
(i) (integration by parts) We have
N
[ (o) e £0) =S Co [ ducte) 9,.5(0) (119)
k=1

N

> Cou [ duc(v) 05,1@00)
k=

Nl

>Con [ dncls) 000

/RN dﬂC(@a QO) P f(@a 90) =

/ . duc(@,») 0; f(@,p) =
R k=1

For all differentiable function f such that the above integrals exist in absolute value.

Remark 1 Setting v = 0 we obtain the normalization

1

/Hd%egws@): L / H d% o—(7.A0) _ .
RN vdet A v det A

Remark 2 The following identities follow directly from ([1.5) is

/ duc(p)p; =0, / duc(p)ejer = Cik (1.20)

RN R

/ duc (P, p)p; =0 = / duc (@, ¢)?;

(CN (CN

/]R duc (P, p)pjpr = /R dpc (P, ©)P; Py,

/Rd,uc(% ©)iPr = Ci
[2: 14.10.2024]
[3: 18.10.2024J
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Remark 3 Forall A € Cf?é\fn we have

A=A +idy A, Ay e RVXN 41 > 0.

sym
Since A is real, symmetric and positive we have
A =UINUL, Uy € O(N), A=diag(\i,...\y), M\ >0Vk=1,... N.

On the other hand U; does not diagonalize the real symmetric matrix As unless [A;, Ag] = 0
(i.e. the matrices cannot be diagonalized simultaneously using the same orthogonal matrix).
Since A > 0 we can define

The matrix A2 is positive and invertible. We argue
det A = det UL\ + iUy Ay UNUL = det(A + iUy AoUY) = det Adet(1 + i\~ 2 U3 AoULA2).
The matrix X_%UlAgUfj\_% is real and symmetric, hence
)\_§U1A2U1)\_7 Ul alUs

for some Us € O(N) and real diagonal matrix fi. Inserting this in the determinant we get

det A = H)\ H +ip )
7j=1

Since Re(1 +ipj) =1 > 0 we can define

N N
Vdet A= [ vN T vi+tin
j=1 j=1

where in each term we take the unique root with positive real part.

Proof. Proof of Theorem

e The assumptions on A imply the integrals are well defined (exercise)
Case 1: real variables ¢ € RY.
e To prove (|1.16]) we argue, using Remark 3 above

A=A+ Ay =U! (X + iUlAgUf) U
Inserting this in the quadratic form we obtain

(p, Ap) = ((Uup), <X + iUlAsz) (U1¢)>
- ((X%U ©), <1+m 2U1A2U1)\_’) (AU ))

— <(5\%U1(p), (1 + iUguUz) (S\%UIQP))-
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We argue via three coordinate changes. In a first step we perform the rotation ¢ := Ujp. Since
1

this is an isometry there is no Jacobian. In a second step we perform the scaling gé"i = /\f Pj
V7 € A. Finally we perform the rotation ¢” := Us@’. We obtain

doj 1,4 / dpj  —1(p,(\tith AsUY
e~ 3 (PAP) (pv) I e +il142U1) @) o (,U10)
/RN H V2 ]RN H \/271‘

~ 1
dpj  —lp 1+M 303 AQUIA™ 7) ) (W,X*%UW)

:\/1‘;7)\/]1{1\71_[\/%6
¢HAAJI

H/ d@j e ;1+z,uj)gajecp](U2)\ ?Ulv)
us

~_ 1
dep; o~ 3 U2,(14i)U2p) ,(Uaip,U2 A~ 2U1v)

JJl

1
(U237 2U7v)2
1 J
1 €§ Zj:l 1+iuj _ 1

I+ ) Vet A

e To prove ([1.19)) in the real case use

(pje—%(so,AsO) - Z(A—l)jkawke—%(soﬂw)
k
and perform integration by parts.

Case 1: complex variables ¢ € CN.

e We prove (| in the case A = A*. Then there is a complex unitary matrix U € U(N) and a
real diagonal matrlx A= diag (A1, ..., An) such that A = U*AU. Inserting this in the quadratic
form we obtain

N
(@, Ap) = Y N1(Up); ).
j=1
We perform the coordinated change (complex rotation) ¢ := U¢. Since this is an isometry there

is no Jacobian. We obtain

/ Hd%d% —(@Ap) o () + (@) H/ i%i e~ 32051 B (Uv);+TUw; 0
CcN

N -
H ;6% Z;\le ij)%j(UU)j _ Le%(ﬁ,A—lv)
ij:1 Y det A

j=1

e We prove in the general case A # A*. We can repeat the strategy used in the case of a
real matrix or argue via analytic deformation as follows.

We start by fixing all variables in A to be real except z11. Let A(z) be the matrix obtained where
all z; (except 211) and all z;;.,, are real and set

U :={z € C|4i1(z) > 0}.
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Using Theorem [1.7]above we can show that U is open and connected. Consider the two functions

d¢] o~ (BAR)) (70) + () 1 amaey
\/C\N H e 5 G(Z) = MGQ .

These functions are analytic on U and coincide on U N R, hence they coincide on U. Repeat
making one variable at a time complex.

e To prove (1.19)) in the complex case use

@je_@’A”) = _ Z(A_l)jk%ke_@’AW)a @e—(@flw) = _ Z(A_l)jk 3%6—(@1490)
k k

Theorem 1.9 (Sum of Gaussian variables).

(i) Let Ay, Ag € Cf;ﬁ[n and set Cq,Cy the corresponding inverse. We have

/ duc, (go)d,U,CQ ((p/) f((,O + 30/) = / dpcy+0y ((P)f(@)
R2N RN

for all functions f such that the integrals above are well-defined.

(ii) Let Ay, As € CfXN and set Cq,Co the corresponding inverse.

/ dpc, (B, ©)duc, (@, &) fle+¢') = / dpcy+c, (@, 0) f(9)
(CZN (CN

for all functions f such that the integrals above are well-defined.

Proof. For a function f € L?(R") it is sufficient to consider f = €?** and then use the Fourier
transform. For more general functions use the coordinate change

et =u - =v

and perform the (Gaussian) integral with respect to v explicitely. The same argument works in
the case of complex variables. O

We go back to the duality examples given in the introduction and use Gaussiam integrals to
prove the formulas.

1.2.5 Example 1: spin O(n) model

We consider the function Hy: (S* 1) — R defined via

1 & h o
HN(S):—ﬁZSj-Sk—BZS] é
jk=1 J=1

where h, 3 > 0 and é € S"~! is a fixed direction. Set
N
as =[] ds;
j=1
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with dS; the normalized Hausdorff measure H™ 1 on S"~1. We are interested in the measure
ds e_BHN(S) =dS 6% Z;'\Ifczl Sj'SkehZle Sj-é

for N large.
Lemma 1.10. We have

2 N (ke p(p)
_ S 2
[yt = ()7 [ ap U000 a2

where dp := [[}_; dp; and

Proof.
We can reorganize SH (S) as follows

N
—BH(S QNZS Sk+hZSJ e—2N|ZS\2 +h|)S,

Jj=1
We argue

—BHS) — o3| T 5j|2€h(2§y:1 Si)e — oh(3iis Sj)'é/ dpis g ((p)ezé‘v:l Sip
n N

where dp s () is the vector Gaussian measure on R™ with mean zero and covariance C' = %Id
N

Inserting this in the integral we obtain

/ dSeBH(S) — / ds dpi sy () e Sitp 22, Sjé
(Snfl)N (Snfl)N Rn N

= d dS. ¢Si-(ptheé) _ / d N1n I(p+he)
/R" M%Id (‘P)H/Snl Sje H%Id (¢) e

dp; -N %Fln[(g@-ﬁ-he dp; —N(1258E 1)
/ n.H Fe ( / n.H Fe ( )

where we can exchange the integrals because we are integrating positive functions.

1.2.6 Example 2: average of the inverse determinant for GUE

We consider the measure on (CJI xN

] dHjze = H dH jdHyje Vit = g e~ %™ H?

1<j=1

where dH := vazl dHj; Hfij:l dH;;dH;j. We will use the notation

)= g [ dH e )

herm
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_NTyH2 . .. . .
where 7 := fCNxN dH e~ 2™H" ig the constant normalizing the measure. We are interested in
herm

the resolvent (z — H)™!. Since H* = H we have o(H) C R hence z = E +ic € p(H) VE € R
and € > 0. In particular

|det(E +ic — H)| > &Y VH = H*. (1.22)

Lemma 1.11. We have

< 1 >N _ \/N / da e_N<§+ln(E+is—a))
det(E—i—z&—H) /2T R

Note that by (1.22) the above integral is well defined.

[3: 18.10.2024]
[4: 22.10.2024]

Proof. We would like to use complex Gaussian integral to reformulate (det(E +ic — H))™! as
a Gaussian integral. For this we need the real part of the matrix to be positive definite. Note
that

Re(E+ice—H)=FE — H.

This matrix has no sign! On the other hand
Re[—i(E+ie — H)|=¢ > 0.

Apply formula (1.17) to A = —i(E + ic — H) we obtain

. 4N N
1 GO dpde | ™ _(pa0) _ / dpdo | ™ i@ (B+ie—H)p)
det(E+ic —H) detA cN | 2w CN

2

where we defined

_ N
dpde ™ _ H dp;de;
27 o 2

J=1
Inserting this in the average we obtain

1 1 A 1
— dH -5 TrH
GtErie—m'¥ "7 /szxzv 7 det(E+ie—H)

herm

. — , AN
_ (—Z)N/ dH e—{jTrHQ/ [dwdw} i@ (E+ie—H)p)
Z  JeNxN cN | 2m

herm

N
Y / [d@ﬂ gitErie)lf2 L / JH o~ YT H? —i(o. ),
ey | 27 Z JeNxN

herm

where we used

N

N
/(CN H dp;dp; ‘ef%TrHQGi(@(EJrisfH)@)‘ - /CN H d;de; /(CNXN dH e~ o~ YT H? _
j=1 j=1

herm
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to apply Fubini and exchange the integration order. We compute now

1 dH o YT H? —i(p,Hy)

7 (CNXN

herm

— | | dH;; o~ 5 H}; =it | | dH_]k‘dH]k‘ e~ NIHji|? o—i(H;1%; 06+ H 1 Prp;)
Z
i /R i<k

= He x5 (7525 (@;05) He ¥ @00) @) — o an k(@00 @res)
J i<k

Therefore

1 dpdo™
(3 (E i H)>N = (—i)V / [‘;’@] G EB+ie)l? =5y T (@00) Brs)
e + e — CcN T

Using (|1.3)) we reorganize the quartic term as follows

e~ 2w Lin (@00 @rei) = o~ an [Z;@e0)]" = 0[S (@505)],

m/dae

Inserting this above we get

1 N dpdep E+e|e0|2\ﬁ/ Na2 i[5 (7505)]
_ dpdy i d ia[S; 55)],
<det(E+i5—H)>N (=0) /@N[ 27 ] ne i o

Note that

/ H dgoj/da / Hd%d%/dae elel’e

and hence by Fubini we can exchange the integration order. Finally we obtain

i(E+tie)lp|? ,— 5 a? jia[3;(@;05)]

1 N .2 dtp dgoj E 2
< : >N _ —Z N da e~ 2@ H ] z( +ie—a)|p;|
det(E +ie — H) V2

da N _2 1
VN | B3t -~
R 271'6 ’ (E—l—ie—a)N

This completes the proof.
O

The second step in the proof above is sometimes called Hubbard-Stratonovich transformation.

1.2.7 Gaussian measures on infinite dimensional spaces

We start with an equivalent definition of Gaussian measure in finite dimension that can be
generalized to infinite dimensional spaces.

Lemma 1.12. Let C € RVXN be a symmetriz positive definite matriz and duc(p) the Gaussian
measure on RN with mean zero and covariance C defined above.

(i) duc(p) is the unique probability measure on R™ with Fourier transform
,ELC(U) = / duc(so)ez(go’v) — 6%(’0,0'1})'
RN
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(i) The Fourier transform is the moment generating function, precisely

N N
U vC’v)
| dnee) 14 = |TJotze

v=0

(iii) duc(p) is the unique probability measure on RN such that [un duc(y) vazl ;| < oo

and
N 1 if ;=0
/NdMC(SO)HSO?j Y if Y. n; odd (1.23)
R J=1 > cem) e Cary 22515 = 2m even

where G(2m) denotes the set of all partitions of the 2m Zj n; terms into subsets of two
elements (pairs).

Proof. (not done in class)
(i) Holds since a probability measure is uniquely defined by its Fourier transform.

(7i) Direct computation.

(737) We show first that the moments of duc(¢) are absolutely integrable and given by ((1.23]).
For all n > 0 we have the bound

qnj an % o 1 2 nj % < n]‘ 77805 %
|51 —<80] ) = W(@jn) = W‘f .

/duc HI%\"]<H( >/duc(s0)6"'”'2-

The last integral is finite for all > 0 such that C~! — 25 > 0. Such an 7 exists since C' > 0.

Formula ([1.23)) follows applying several times ([1.19)).

Assume now p is a probability measure with integrable moments given by (1.19). The Fourier
transform of the measure fic(v) is infinitely often differentiable in all variables since

N N
dpc(e) [T o™ ei(”’“”)‘ =/ duc(e) [T lei|™ < oc.
/. @ T les [ @ [Tl

We show now that the Fourier series S(v) of fic(v) around the point v = 0 is absolutely conver-
gent. Indeed

o) N )
S)l= > H#A(nl’ Mol=1+> Y H!véj!

N1, NN

Hence

We have H ", vl < |v]2™ and

Z HCSI»‘l w SO (2m =1l

G(2m)leG
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where |v] := max; |vj| and |Cls := max;j, |Cj|. Hence

Sl <1+ GErem Y
m=1

> ni=2m

2 ol 1 0120 1C 100 N2
D (i) L gt

m!
m=1

where we used

@m-nt 1 ) 2m)! _ om

(2m)! ~ 2mml’ [1;n;! B

N

j=115=2m

It follows that the function is real analytic on RY and hence fic(v) is determined by the Taylor
series in v = 0.

O

This characterization can be extended to infinite dimensional spaces as follows.

The covariance C = A~! with A € RV*V is replaced by C = A~ where A: D(A) — H is a
positive self-adjoint (unbounded ) operator defined on a subset D(A) of a Hilbert space H, with
0 € p(A). To make sense of the formal expression

/ dpc(e) [ | e(x))
X i
we replace H with Hoo = N2

o o D(A+1I)", the test point z; with a test function ¢; € Ho and
the function ¢ with an element in the dual space ¢ € H},. To define all this properly we need

the notion of nuclear space. The measure is then defined on H}, and the covariance is now a
bilinear form C' : Hoo X Hoo — R defined via

C(Q@ 1/}) = (307 Cw)?l

For the proper construction and definitions see the book by Glimm and Jaffe Quantum Physics,
a functional integral point of view.

Definition 1.13. A measure on H}, is Gaussian with mean zero and covariance C isV¢y, ..., &, €
Hoo test functions we have

n 1 ifn=20
/dﬂc(w) [Te)=1 0 ifn odd
j=1 >cem) Lliec(&s C&y,)  ifn = 2m even

Theorem 1.14. There is a unique Gaussian measure on H5, with mean 0 and covariance C

Proof. See Glimm-Jaffe. O]
This construction is not easily generalizable to complex covariances.
[4: 22.10.2024]
[5: 25.10.2024]
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2 Grassmann variables

2.1 Definition

Definition 2.1. A Grassmann algebra is a real (or complex) unital algebra whose generators
anticommute. More precisely let V be a finite dimensional K—vector space with K = R or C.
We introduce the antisymmetric tensor product

A . V X V — V ®as V
(2.1)

(v,w) HVAW=vw.

This (Grassmann) product is bilinear associative and anticommuting i.e.

VW= — W and vv=0v>=0 Yo, w € V.

The Grassmann algebra (also called exterior or Z?—graded algebra) on K generated by V is the
associative algebra with unit defined by

dim VY
Ge[V] =P A"V,  with (2.2)
n=0
AV = K, AY =V, AY =V Qas V Qus - - - Qas V, 1> 2. (2.3)
n times
We define
grrv= @ AV, g¥YVI= P AV (2.4)
0<n<dim VY OSnSC(%nV

its even and its odd subspace, respectively.

In particular, K = A%V C G&°n[V] and V = A1V C Ge4dV).

Elements in Gg""[V] are called even or Bosonic variables.

Elements in G24V] are called odd or Fermionic or Grassmann variables.

If {41,..., 9N} is a basis for the K—vector space V, we write Gg[V]| = Gk [¢1, ..., ¥N].

Examples
1. Set N =1 and V = span{¢; }. Then G = AV P ALY, gever = N0V = K, Godd = Aly = V.

Note that A"V = {0} Vn > 2 since ¥ = 0.

2. Set N = 2 and V = span{t,92}. Then G = NOVPAVP A2V, Gover = NV P A2Y,
Godd = Aly =y,

Note that A"V = {0} ¥n > 3 since 19211 = 0 = Y1121h2. Moreover
v E GV S v =1x+ arie, z,a € K

v € G o v = a1y + ages, ay,az € K.

The next result extends this to general V.
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Proposition 2.2. Let {¢1,...,9n} be a basis for the K—vector space V. Set G = Gg[V], and
In = {1,2,...,N}. Later Ty will be replaced by a finite subset of Z.2.
For each I C In we choose some ordering <; and define

v =[]
el
where the product is performed according to the ordering. It holds
(i) For all permutation o € Py we have
vr=¢" ] vou,
i€o(l)

where €7 is the sign of the permutation and the last product is performed in the permuted
order.

(ii) v € G admits a unique decomposition

v=Y vy

ICT,
where vy € K is an antisymmetric tensor vy = (Uih..-,vim)'
Every element v € GV (resp QOdd) admits a unique decomposition

v = Z vy, resp v = Z vrYr.

ICT,, |I|leven ICTZ,, |Ilodd

(11i) v,w € Gedd = pw € GV and vw = —wv. In particular v*> = 0 Yo € Godd,
Note that G° is not a subalgebra.

(iv) v,w € GV = vw € GV and vw = wo.

In particular GV is a subalgebra.
(v) veGV"we Gedd— yw € G° gnd vw = wo.
(vi) v € GV admits the unique decomposition

v=x+n, where x € NV =K, ne @/\Q”V. (2.5)
n>1
In particular n is nilponent i.e. Ik < % st n® # 0 and n*t1 = 0.

Proof. Use the definition of G and the following fact (excercise): for all I, I’ C Z,, with |I| = m,
|I'| = m’ we have
wlwl’ _ (_1)mm’¢l’w1.
O

Definition 2.3. Fiz v € G*V" and let v = x + n be the unique decomposition introduced in
(2.5). We call = the body and n the soul of v:

body(v) := =z soul(v) := n.
We say that v € U C K if body(v) € U.

Note that an even element is almost a standard real or complex number (it has a domain if
definition and commutes with everything) except for the additional nilpotent part.
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2.2 Functions

Definition 2.4 (Functions I). Every alement v € G can be seen as a function of the basis

elements {11, ...,¥n}. Every such function is a polynomial of degree at most 1 in each variable:
f(wlanwwN): vawl- (26)
I1CZ,

Definition 2.5 (Functions II). Every function f € C*(K,K) can be upgraded to a function
mapping GV — GV as follows

v=x+n +— f(x+n) ::Zkzof(/,i!(x)'rz’lC '

Remarks
e Since n is nilpotent, the sum above is finite. Precisely, setting N := dim V), we have 2k < N.
Therefore we only need f € CINV/2(K, K).

e The same construction works for f € C[N/Q](U, K) for some open set U C K. In this case we
even

have to replace Gg™"[V] in the domain of the function with

g]%ven[v] NU = {’U c g]%ven’ body(’l)) S U}

e We have body f(v) = f(body(v))

Example 1: the exponential function. Using the definition above we get

k
n

eV =t = E et —.
k!

k>0
With this definition we have

U1

eVlel? = V1tv2 Vi, ve € GV, (2.8)

Note that we could use the Taylor expansion around zero to define eV for v € G°4 too. We
would get

e =1+
since v2 = 0 Vo € G°d, This definition does not satisfy eV1e?2 = Y172 gince €€’ = 1 + vy +
vy + v1vy while V112 =1 + vy + vs.

Example 2: the scalar and matrix inverse function. We define Vv € G°V°" with z =
bodywv # 0
1 1
ol = (wtn) = Y ()
k>1

1

With this definition we have (exercise) v~1v = vo~1 = 1. Moreover, if n> = 0 we have

e"=1-n=(1+n)""
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Note that an odd element admits no inverse! By contradiction assume v € G°4 and let w € G
such that vw = 1. That means vw € G*" with body(vw) = 1 and soul(vw) = 0. To get
vw € G we need w € Godd too, hence v, w € ®n21 A"V, As a result

vw € @ AV
n>2

and therefore body(vw) = 0 which gives a contradiction.
To define the analog in the case of a matrix consider A = Ag + A; € (G¥V")™*™ with Ay =
bodyA € C™*™ invertible. We define

AT = (L4 A AN TIAGT =) (—DRAGT AR AT
k>0

With this definition we have (exercise) AA™! = A71A = 1.

Example 3: the scalar logarithm. We define Vv =2 +n € GV

—1)k
Inv=In(x+n):=lhz - Z (k 2 nk.
k>1 t
With this definition we have (exercise)
env) — v, In(viv2) = Inwvy + lnws.

In particular, if x =1,

In(l14+n)=-— Z (_l:)knk,

k>1
and body(In(1+4n)) = 0.

Example 4: the matrix exponential and logarithm. Let A € C™*™. Remember that,
there are two ways of deﬁning exponential and lpgarithm for this matrix.
If A* = A, then A = U*A\U, with U*U =1 and A = diag{\1,..., A}, A €RVj=1,...,m. In

this case we define

A= U*e U, e = diag {e,... e}

InA:=U*mAU,  Ini:=dag{lnAy,...,In A}

For general A (not necessarily hermitian), we can use the Taylor expansion

—_1)J .
lnA::—Zﬂ(A—l)], with ||A — 1| < 1.

For A = A* the two definitions above are equivalent (for the log we also need to require || A—1|| <
1). Whenever In A is well defined we also have

Indet A = tr In A. (2.9)
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This relation implies in particular tr In(A; A2) = tr (In A; + In Ay) whenever the logarithms are

well defined.
Consider now A = Ay + A; € (GV")"™*™ with Ay = bodyA. We define

1 . 1 .
oA — ﬁAJ:ZT(AO"'Al)]
j=0 j=0

1) .
lnA:hm%+wh%:—E:Lilp%+A¢—Uf with |[Ag — 1|| < 1

Jj=1

Since A; is nilpotent there is some k such that [];", Ay’ A" = 0 whenever 0y +--- 4 nl, > k
for any n > 1. Using this fact one can show that the above sums are still convergent (exercise).

Moreover, body(e?) = e4°, body(In(A4)) = In 4y and

e = A,

2.3 Derivative

Lemma 2.6. Fiz ;. An element v € G admits a unique deconposition
v = vy + vl = v + Vi,

where vl,vé,vg € G are independent of ;.

Proof. exercise

Definition 2.7. Fiz ;.
_>
The left derivative of v € G with respect to v 1s 0 y,v = vh

%
The right derivative of v € G with respect to ¥; is v 0y, = v}

(2.10)

We will mostly use the left derivative and note is by O instead of 3 We will need the right

derivative when defining the Jacobian of a coordinate change.

Lemma 2.8.

(i) (anticommutation property) We have

= .
Gy Oy =—0p 0y, ik

_)
In particular 812/}], = 0. The same holds for the right derivative.

(ii) (product rule)

(a) Assume v is homogeneous of degree m(v). Then we have

Ty, (0w) = (Fyopw + 7(0) v (Fy,0)

(b) Assume w is homogeneous of degree m(w). Then we have

(vw)%d,j =0 (w%

26
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Proof.
(1) Let j < k. Each v admits the unique decomposititon v = vy + ©jv2 + VYrv3 + Y114, where
v; is independent of both v; and ;. We compute

Dy, 8¢.7” = Oy, 3wj Yjrvg = vy
8%'81/%” = 8¢j3wk¢j¢kv4 = —6¢j8¢k¢k¢jv4 = —y.

(#7) We prove the identity for the left derivative. We have v = v 4+ ¢jua and w = wy + Y;ws.
Moreover, since v is homogeneous of degree m(v), v; is homogeneous of degree 7(v), and vo is
homogeneous of degree 7(v) — 1.

We compute

vw = viwy + Yjvawr + v1yws = viwr + 1 (vawy + (—1)"vywy)
Hence
Oy, (vw) = vawy + (—=1)"vywy = (Dy,v)wr + (=1)" vy (9, w)
= (O,0)w + (1) (D, w) — [vatjun + (~1)7 v
= (B, v)w + (=1)" (3, w)

where we used
vatpjwe = —(—=1)"ejv0ws.

2.4 Integration

To motivate a notion of integral for Grassmann variables consider the following properties of
the standard integral on Rﬂ

e The integral is a linear map [ dz(f + Ag) = [pdxf + X [ dzg.
e The integral maps a function into a number.

e The integral of a derivative is zero: [, dzf’ = 0.

Each function of v; can be written as f(¢;) = f1 + v fo. By linearity we get

[ vt = ([ awssi ([ avuse

Therefore we only need to define [ di;1 and [ dij1;. The integral of a derivative must be zero

hence we define
/ di;1 := 0.

It remains to fix [ dy;1;. Two frequently used conventions are [dijv; := 1 and [ diji; :=
1/v/2m. We will use the first one.

Definition 2.9. For I CZ and f(¢) € G we define

/ aT () = 08 £ () = [[ 0y, ().

jel

!This informal motivation for the definition of Grassmann integral is taken from a post on the web page of
Terry Tao.
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Example Consider f := e~ ®1¥2 with a € C. Since 1113 is an even element the exponential
is well defined. We compute

/dwldwgeawle = 8¢1 81[,267(“’[11#}2 = 8¢16¢2<1 — awllbg) =a

This result is the analog of the scalar Gaussian integral

/ dpdp _ajp2 _ 1
C 27 a

which is only true if Rea > 0.

[5: 25.10.2024]
[6: 29.10.2024]
2.5 Grassmann Gaussian integral
Remember the formulas (|1.16])(1.17)
—— vAeclN 2.11
/(CN H det A e ( )
/ H d“”f edlode) 1 vA e YN (2.12)
RY Vdet A Foeum
The next theorem states the analog results in the case of Grassmann variables.
Theorem 2.10.
(i) Let V :=span{yy,1,..., ¥y, YN} with dimV = 2N. We have
/Hd@b]dq/}] @A) —det 4 VA e CVN, (2.13)
where
(0, Ap) =" 0 Ajty.
ik
(ii) LetV :=span{yi,...,¢¥n} with dimV = N. We have
N
/ [[dv; e =Pfa  vAeChX)ie A'=-A4, (2.14)

where

1/%141# Z¢] gk¢k

and the Pfaffian of the matriz A € CN*N s deﬁned via

0 if N odd
PfA = o N/2 3 o4 A N (2.15)
N/2)' ceP(N) & Ao(1)o(2) o(N—1)o(N) 1 even,

where P(N) is the set of permutations of {1,...,N}.
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Remarks B
e The variable ¢ is not a complex conjugate!

o (P, Ay) == ik YAk € GV hence e~ (@4Y) ig well defined and again an element in
Geren[V]. The same holds for (¢, Ay).

e Using the anticommutativity of the v variables and A® = —A we argue
(0, Ap) == i Ajtb = 2> 0 Ajptd.
jk j<k

e Since d@jd@bj is homogeneous of even degree the order in the product vazl dﬁjdwj is irrelevant

dipydipy dipydipy = dipydipy dipydip.

On the other hand the order in the product HjV: 1 di; is relevant

dindipy = —dipadiy.

e While in (2.11)) we need ReA > 0 (in particular A is invertible) no condition on A is required
for (2.13).

e While in (2.12) we need ReA > 0 (in particular A is invertible) and A* = A, for (2.14]) we
require A* = —A but no invertibility.

e Formula (2.13)) remains true when dim V = 2N+2N' with N’ > 1, {¢1, 901, ..., ¥ N, UN, €1, €15 oo Enry En )

is a corresponding basis and the matrix element Aj;, € Cisreplaced with Aj, € G&¥"[£1, &1, ... SN EN)-
Formula ([2.14]) remains true when dimV = N + N’ with N' > 1, {¢1,...,,¥N,&1,...,Ev ) is a
corresponding basis and the matrix element A, € C is replaced with A, € G&'*"[&1,...,Ewv].

e We will see later that Pf(A4)? = det A for all skew-symmetric matrix A.

Proof of Theorem [2.10.

(7) Using the definition of exponential we have

—( (_1YL" n
e ) = 3 L, )

n>0

It holds B
(Y, A)" =0 Vn > N,

since (¢, Av) contains at least one 1) variable, we have at most N different 1 and 1/)]2- =0 Vj.
Therefore

T ey, o) _ = (2D
[ d;dv; e = I,
7j=1 n=0
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where

/ Hd%d% (P, Ap)" H 05,0y, (D, AY)".

7j=1
We have I, = 0 V0 < n < N since in this case we have N derivatives but only n < N v variables.

Therefore
T i duss o @) — DY
1 djdw; e @A) = NIy
j=1

To compute Iy note that

N
(&, Ap)N (Z% Jm) = > D Ytk ity Ajks Ak

J1yeodN K1y kN

= > H‘ﬁa()%z)HA

o,TEP(N) =1

. —2 . . .,
where we used the fact that, since 1#]2 =1; = 0 we cannot have j; = ji or k; = ky for i # i

Claim (exercise) We have

N N
1Y ¢0 = [[ s Vo,7 € P(N). (2.16)
=1 =1
Inserting all this in Iy we get
N N N N
N _
In = H % 81/’] (% Al/J) = H %jaw] Z H 0(1)1/}7'(1) HAO'(’L)T(’L)
Jj=1 j=1 o,TEP(N) =1 i=1
N N N
=110;,00 IT0w > €I 4mm0
j=1 i=1 o,r€P(N) =1

J=1 =1 J=1 7j=1
and
N ) N
Z €€’ H Ag(i)T(i) = Z €7 H A“.( -1(z)) Z H Am— (i) = N! det A.
o,TEP(N) =1 o,7€P(N) =1 TeP(N) i=1
Finally

/Hdw dip; e~ (AY) = (N) Iy =det A,

which concludes the proof of (7).

(i) exercise.
O
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In the following we will mostly use (2.13]).

Lemma 2.11 (moments). Let A € CVN*N. Remember that for I,J C {1,...,N} we define
Pl = [Licr ¥is @J = HjeJ @j where the product is performed according to the ordering in I, J.

(i) For all I,J C {1,...,N} non empty sets we have
N —
j=1

N
/ [] dé;dw; e @495 =o.

j=1

Moreover, if |I| # |J| we also have
N - J
/ [ d¥dw; e A9 = o.
j=1

(ii) Assume |I| =|J| =p>1. Let
I:{ilw-'aip}a J:{jlv"'a.jp}v
with the ordering i1 < is < -+ <ip, j1 < jo < --- < jp. We define
— — J— p J—
Yry =ity i,y = [ vity,
=1

Moreover we define Ajere € CN=PXIN=P) the matriz obtained by removing from A the
rows corresponding to the indices J and the columns corresponding to the indices I. With
this notation we have

N p—
/H dipjdip; e A ap ;= (—1)2 T2 det A jepe, (2.17)
j=1
where
P P
ZI::ZZ'Z, ZJ::Zjl.
=1 =1

In particular we have, for all i,j € {1,...,N}

N
/H da]d’(ﬂj 6_(¢’A¢)’¢Z’Jj = (—1)i+] det A{j}c{i}c = COf(A)z]

j=1
Proof.
(i) The first identity follows from
N J—
112500 @ 40) ¢ =0 vk>0,
j=1
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which holds since we have k powers of 1) and k + |I| > k powers of 1. Similar arguments work
for the other two identities.

(ii) Note that, for any function f(1) we have

Vi () = ¥ilfig;=0 + ¥i0, f1 = ¥j frw,=o- (2.18)
Hence B
qb[@‘]e*@,z‘w) — wla(}e*w#‘w’)\wizowez,@:owa,
where

(¥, A¢)|wi=ovz'e1,¥j=ov]'eJ = (¢|ge, Asereiire).

We can reorganize the product of differentials as follows (exercise)

N
[T dv;de; = (—0)=""2"dg jdgr diedire

j=1

where
N-p

p
dwjdd)l = Hdwﬂd%p d@]cd’(ﬁ[c — H d@]lcdqplfa
=1

=1
where in the second product we organized also the elements in I¢, J¢ in growing order. Putting
all this together we get

v i :
J YL sty O, = 0= [ stvn ) [ e Cortraci)
j=1

_ (_1)ZI+2Jdet Achc/ded"tb[ (Y1 g).

Finally we compute

p

p
/d@dewl (wI@J) = H%ﬂ'z &ml H @Z)Zﬂ/)ﬂ H [%ﬂ'z 8¢il ¢ilgjli| =1
=1

=1 =1

hS]

This concludes the proof of the lemma.
O

Definition 2.12. Assume A € CN*N and invertible. Set C := A~L. The normalized Grassmann
Gaussian measure with mean zero and covariance C = A1 is

Ao (P, v) = 4 AHdwjdw] A, (2.19)

Note that this is not a true measure!

Theorem 2.13. Assume A € CV*N and invertible. Set C := A~L.

(i) We have
/ duc@,9)1 = 1, / dpic (T, dub)s; = / dpc (B, 9)%; = 0, / dc (@, )id; = Ci;.
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(ii) (Laplace-Fourier transform)

Let dim(V) = 2N + 2N’ with N' > N. Let {1y, %1,..., %N, VN, &1, €1, Enr €Nt} be a
basis for V. For any

n= (nla s ?77N) € gﬂo(dd[gl’gh . -EN/,&N’]N,
/'7 = (ﬁ17 A 717N) e gH%dd[gl7§17 A 'EN’7§N/:|N
we define
N N
@) =D ymjs (30) =Y iy
j=1
With this notation

/ Ao (@, )" EDuiv) — @Oy 4 e C. (2.20)

[6: 29.10.2024]
[7: 05.11.2024]

Proof.
(i) Follows from Lemma together with
det Agiverine
1)+ el _ 41 .
(1) ST 41y, =

(i7) One may expand both sides in &,& (exercise). We will use instead a coordinate change
(later).
]

2.6 Coordinate changes

Definition 2.14 (generators). Let dimV = N. A set x1,...,xn € G24[V] is a set of generators
for G = Gk[V] if every element v € G admits a unique decomposition

v = Z vr XI.
Ic{1,...,N}
In this case we write Gg[V] = Gr[X1,- -, XN]-

A basis for V is a natural set of generators.

2.6.1 Grassmann translation

To define the translation by an odd element we need to enlarge the algebra. Let {¢1,...,¥nN, &1, ...

be a basis for V. We can generalize the definintion of function as follows.

Definition 2.15 (Functions III). Let {t1,...,¥nN,&1,..., &N} be basis for V. A function of the

variables {¢n, ..., YN} taking values in Gx[V] is any element of the algebra. Every such function
is a polynomial of degree at most 1 in each variable:
F@r Ny = > v gt el (2.21)
Ic{1,..,N}
r'c{i,... N’}

where vy € K.
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Let now ay,...,ay € Ge[&, ... &), le. a; = a;j(€) is an odd function of the & variables
taking values in Gk[&1, ..., &N

We define x; := ¢ +«a; j =1,...,N. Then {x1,...,xn~,&1,...,&n} is a set of generators for
gk V] (exercise) but x; ¢ V in general.

Under the coordinate change x = 1 + «(&) the function f(¢) € Gk[vn1,..., ¥UN, &1y EN]
transforms as

fy=" > wurd" e f) =)= > v (x—a) ¢
Ic{1,..,N} Ic{1,..,N}
I'c{1,.. N’} I'c{i,... N’}

Proposition 2.16. Let V = span{¢1,...,¥n,&1,...,{n}, f() a function taking values in
GV, a1,...,an € G&Y&, ... &) and xj :=vj+a; j=1,...,N the corresponding transla-

tion. We have
N N
J v £ = [TLdw foc-a).
j=1 J=1
Proof. Remember that

N N
/ [T v f) =] 0w f(&)
=1 =1

We perform the derivarives one at a time.
Oy f() = Opy [fo+Unfi] = f1
where fy, f1 are independent of ¢n. We argue

6XN fix—a)= aXN(fO + (xny —an)fi) = f1.

The result follows repeating for all j. O

As a first application we use this result to prove the second statement in Theorem [2.13

Proof of Theorem [2.13 (ii). We have
D) et @m gwig) b.dip: e~ AV o) qw(i )
[dnc@ppe@nein - [ vy G Certan

We compute

(8, A%) = o(B,m) — w(@, ¥) = (@ - @), AW —a)) — vw (7,A7"n)

where we defined
aj = U(A_lf)j, Qj = w((A_l)tﬁ)j-

The result now follows inserting this in the integral and using Lemma [2.16 O

Note that, in the proof above &; is NOT the complex conjugate of ;. To define more general
coordinate changes we need to introduce the composition of functions.
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2.6.2 Chain rule with Grassmann variables

Proposition 2.17. Let {¢1,...,9%n} be a basis for V.

(i) Let x1(¢¥), ..., xn(®¥) € GSUV], N odd functions of ¥1,...,¥n.
Then, fOT’ any f(¢) = f(wlv s 7¢N) S gK[V]7 we have

N
Ay, fxa (), -, xn(¥)) = Z Oy, xk (V) aigjkf(i/;)m:x(w) (2.22)
k=1

(i1) Let g1(v¥),...,gp(¥) € GR"[V], p even functions of 1, ...,¥n. In particular g;(¢) admits
the unique decomposition g;(¢) = xj +n;(¢) where x; € K and nj(v) is an even nilpotent

function of 1.
Then, for any f € CN(U;C) with U C KP open and 2N > dim V

Proof.
() Since every function f(1)) can be written as
fWy="> v
Ic{1,...N}
it is sufficient to consider the case f = ! = le ;, with i1 < ip < -+ < ip. We argue by

induction on p.
For p =1 we have f(x(¢)) = x:,(¢) and

Oy, f(x(¥)) = Oy, xiy () = Oy, Xy (1/1)%1.1%2%1
N N
=0y xk(¥) 0y i = D O x(®) 9, F() g—y ()
k=1 =1

where we used J; 1[%1 = 0,i,. Assume the statement is true for p > 1 and consider f(¢) =

Hp +l ;. We can erte f as a product of two functions

p+1

F@) =A@ f(0),  A@) =i, f20) = ]] v

=2

We argue now, using Lemma [2.8| and the fact that y;, is odd,
Oy, f () = Dy, (1f2) = Dy, (xh(w)fg(x(w))) = (90,2 () L200()) = Xis (¥)Dy 2 ().

Using 8"/~ka1 () = %@1 = 0k,i,, We write
N ~
81113' Xy (V) = 8%‘Xil (¥) = Z a%’Xk‘(d}) a@z}k f1 (d’)h@:x(d;)'
k=1
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The induction hypothesis gives

Oy, f2(x Z 0, X1(¥) 05, F2(V) 52 ()

Inserting this above and using that 0y, Xk () is even we obtain

B, F(X()) = By, (f12) = Za%x;g (05, 1(D)) L(8) = [i(D) (95, /2(9)

[P=x(t)
N
=>_ 0y, 03, (F112) 5= xwy
k=1
which concludes the proof of (7).
(74) Using the definition [2.5 we write
q1,-- QN
Flow) = flar ) = Y I W
q1,-- N>0
In the case p = 1 we compute
(@ (g
B, £ ( =0y, > f => ! |( )awjn(w.
q>0 : o 7
We argue, using Lemma and the fact that n(1) is even,
By;n? = q (Dy,m) nT™" = q (9y,9(9)) nT,
where in the last step we used 0y, g(1)) = Oy, (z + n()) = 9y;n. Hence
@ (z B @ (z
90, 10(0)) = (Dy,900)) 2 T2 it = oy ) 32 s — 0, 000)) 510+ m).

— 1! !

The case of general p works in the same way (exercise).

2.6.3 Linear transformation of Grassmann variables

Let {¢1,...,¥N,&1, ..., &N} be a basis for V. We consider the Grassmann algebra Gk [V].
Let @ € G&N[&, ..., &)V *Y such that body(Q) = {body(Qm)}” 1 € KV*N s invertible.

Then x := Q is an invertible linear transformation of . In particular y; € G&4[V] Vj and
{x1s---s XN, &1,-..,&N} is a set of generators for Gk [V] (exercise).

Proposition 2.18. Let {¢1,...,UN,&1,...,En'} be a basis for V. We consider the Grassmann
algebra Gg[V]. Let Q € G &y, ..., En )™M *N such that body(Q) is invertible and set x(¢) :=
QY.

For any function f = f(x) = f(x1,---,xn) € Gx[V] we have

N 1 N
J 1w 100 =g [ T avs r@w.
=1 j=1
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Remark Note that in the case of IV real variables x = x1,...,xn we have

/Hdmj _detQ/ de] (Qy).

In the Grassmann case we have instead of ﬁ det Q). This is due to the fact integrating in a
Grassmann variables is the same as deriving in the variable.

Proof. Remember

N N N
J TLdws £@e) =T[2s, @0 = [T o0, Fx(w)
j=1 j=1 7j=1

where we defined x;(¢) :== (Qv);. Using Prop. we argue

O FOX)) =~ (O X () D F (X)) = ZQkN3ka X) x()

k

where we used Oy, xk(¢) = Oy, (QV)r, = Qrn. Repeting for each derivative we get

N
[10s f@¥) = 3" Qui- Quyn0y, - Oy F )=y
j=1

kiye.skn

N N
= > 1@ 000
j=1

c€P(N)j=1

N
- Z HQU(J ,JHaxyf detQ/Hde ()
j=1

o€P(N) j=1

where in the second line we removed the information y = Qv since the result of N derivatives

in y is independent of x. This concludes the proof. O
[7: 05.11.2024]
8, 07.11.2024]

2.6.4 Translations by even elements

Definition 2.19. Let U C R be an open subset and n = (ni,...ny) with n; € G V] \ R Vj
a nilpotent even element for all j. We define

U+n:={v=(v1,...0) € (G| v; = 2j + nj,x = (x1,...,21) €U}
For any function f € CN(U;K) with 2N > dimV, and f(@--%) e LY (U) sz g <N, we

define o
HJ nJ] (q15-5qK)
/U+ndvf /d:vf:n—l—n Z H]qj-/def ()

4N

where the sum is automatically restricted to Zj qj < N since Hj n?j = 0 otherwise.
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Proposition 2.20. Let U C R* be an open ans bounded subset with smooth boundary and
n = (ni,...ng) with n; € G[V] \ R Vj a nilpotent even element for all j. Let k; > 0 the

unique integer such that nj-:j #0 and nfﬁl =0. Let f € CN(U) with N > k := Z]- kj.
If in addition fgg’“"q’“) =0 for all 0 < ¢; < k; then

/UJrndvf(v):/Uda?f(x).

The same result holds for unbounded domain as long as the function and all the relevant deriva-
tives are integrable and vanish at infinity.

Proof. Apply Gauss theorem and the fact that the function and enough derivatives vanish on

the boundary of U.
O

Application: Fourier/Laplace transform of a real/complex Gaussian measure
Theorem 2.21.

(i) Assume A € C{,Y;%I and set C := A™1. Then, for allv € G [VIN we have

[ ducarton = o,
RN
(ii) Assume A € (CJJYXN and set C := A=Y, Then, for all v,w € gEven[V]N we have
/ dpc(p, 7)e@0)Twe) — (wCw),
(CN

Proof.
(¢) Since v; € G&'"[V] Vj we have (p,v) = Z;VZI @ € G&°[V] and hence e(¥V) € Geen[V].
Each v; admits the unique decomposition v; = x; +n; with z; € C and n; nilpotent. Hence

(p,v) = (o, 7) + (@, n).

Inserting this in the integral we get

N
/ dpc(p)e®?) = Vet A / [T des Feo) e,
RN RNj:l

with
F(p) == e 3(0A9) S(0x)

We argue, by completing the square,

F((p) 6(90733) — e—%((go—Ailn),A(gp—Afln))eé(n,Cn)e((Lp—Afln),ac)e(n,Cac) — F(@_A_ln)e%(nvcn)+(n70$)

Inserting this in the integral above we obtain
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/RNduC((P)e(%) 03 (.Cn)+(n,C2)\ /qet A / Hd% (o — A"ln)

_ e%(n,C’n)+(n,C$) detA/ | | doj F
RN .
j=1

%(n Cn)+ (n,C’:r)/ d/LC(SO)e(% x) _ %(n Cn)+ (n,Cz)+%(x,Cx) _ %(v Cv)
RN

where in the second line we used Prop. [2.20L This is applicable since —A~'n is even and F

together with all its derivatives is integrable and vanishes at infinity.

(74) reformulate the integral in terms of real and imaginary part of ¢ and argue as in (7).

2.6.5 Fubini

Proposition 2.22. Let {11,..,9n} be a family of generators for the Grassmann algebra Gg[V]
and f(¥) = X jcq. Ny vib! a function. Let U C RF and assume vy € LY(U;K) for all

Ic{l,...,N}. We write f = f(¢,x). Then, for all J C {1,..., N} we have

/Hd%/dxfw, /dm/Hde (¥, )

jeJ jeJ

Proof. The result follows from

H%/ vr(z )¢I):</ dz vy (z )H%

JjeJ jeJ

2.7 Average of the determinant for GUE

We consider the measure on Cﬂ\r] xN

N
H deje,% Jj H dHZ]dH e*NH”H” dH 67%“H2
' 1<j=1

where dH := Hf;l dH}; H,f\;jzl dH;jdH;;. We will use the notation

1 7E’I‘I‘ H?2
<f>N-—§ CNdeHe 2 f(H)
herm
where Z := f NxN dH e~ >™H” ig the constant normalizing the measure.

Lemma [T.1]] that “for all z € C, we have

1 VN ye2 1
<det(z—H)>N:\/ﬂ/ﬂz{dae NQW.

We have seen in

We will use now the Grassmann calculus to prove a dual formula for the average of the deter-

minant.
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Lemma 2.23. For all z € C it holds

2
(det(z — H))y = \/\/; /Rdb e N (2 —ib)N
Proof. Using Theorem we write
det(z — H /Hd¢ dap; e~ (W=
hence
_ —(,(z—H)y
(det(> — H))x = /cthN dH/Hd@/dewJ (1))
1
7 o dH/Hdw]dwg £, H),
where B _
. ) = e e e = T ()T
I,Jc{1,..,N}

Each function v; 7(H) has the form Pol(H, z)e_%TrHQ, where Pol(H,z) is a polynome in the

matrix entries and z. Hence v; 7 € Ll((Cgefn]X ) and, by Prop we can exchange the integration
order. We otain

N
(det(z — H))y = / T 0, dye = B0
7j=1

We compute, using Theorem [2.21

(e(B-HY)) H/de o= Y H, JHi,0; H/dH]kd —NHjI? (Hyoth i+ H byt
i<k
— Heﬁ(¢j¢j)2 H eﬁ(wj’l/)k)(wk?/)j) — 6W ij(%wk)(%wj)'
J J<k

Using (qu/)k)@k;z;j) = —(@j%)(akwk) and Theorem we reorganize the quartic term as
follows

oo S @G _ o[, G _ VN / b o= 2 S (B50))

Inserting this above we get

N
i - 2
det(z — M)y = [ ] d,d .—Z(WP)VN/ b e Y0 b5, ()]
(det(z — H))w /j=1 vidvse Vor

VN (T o
-/ Ed%dl‘“/ﬂ@db S0

where

v _Np2 (s —I
f<w, ) =~ (¢7¢)€ I;b2e b[ZJ(%%)] — Z Ulj(b)quv/} ,

I,Jc{1,...,N}
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with .
v, 7(b) =e 2" Pol(b,2) € L'"(R)  VIC{l,...,N}.

Hence, by Prop we can exchange the integration order. We obtain
V N Nb2 N — ib) (U V N Nb2 N
(det(z — H))y = — / dbe 2 /H . — / db e 2" (2 — ib)N.
V2r Jr Jaie V2 Jr
This completes the proof.

Proposition 2.24. For all z = E + ie, with E € R and € > 0 it holds
(B +ic—H)gy)n =
(—i) / [dede)Y / (AGdp]™ pup, " Lot st 5i) e~ g Lo (Byont,00) @uses +uvs),
CcN

where we defined

[dpde]N = ¥ 42;de; dpdipN = Y b dip;
7] .—AH1 o [dvdy] .—lej.
]: ]:

Proof. We argue, since ReA := —i(z — H)=¢>0

e — H),, = (—i)A;, = (—i)de
(B +ic— H);) = (—i)Az) = ( )th/C

— AN —  _(3,A
ldgde)™ g, 7049
= (=) / [dzdy]™ / [d0dy]" papye” P AP AV

CN
= (=) / [dpdp] ™ / ()N 9o, el Eam Fiestv)
CN

. H 67%Hjj(¢j@j+¢7j%)’ H o N (ij(@jWkJFEjwk)+Hiﬂc(¢k@j+Ekwj))
J J<k

Inserting this in the average and exchanging the integrals (argue as in previous lemma) we obtain

the result. O
[8: 07.11.2024]
[9: 12.11.2024]

2.8 Average of the resolvent for random Schrodinger with Cauchy distribu-

tion
Fubini does not always apply. As an example consider the matrix H € Ré\;an of the form
H=T+\V
where T € Ré\;an is a deterministic matrix, V' = diag (A1,...,An) is a diagonal matrix with

random diagonal entries and A > 0 is a parameter. When {1,..., N} is replaced by A cC Z¢
and T by —A with A = the lattice Laplacian this is called discrete random Schrédinger operator,
or Anderson model.
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In the following we assume the random variables Vi,...,Vy are independent identically dis-
tributed with probability measure absolutely contibuous with respect to Lebesgue i.e.

N
= [[avie(V))
j=1

where p € L'(R;[0,00)) and [, dzp(z) = 1.
We denote by (f(V))v = [gn dp(V) (V) the corresponding average.

Theorem 2.25. Assume p(z) = %1+1x2 (Cauchy distribution,).

For all z € C4 the following identities hold.

(i) <det(z ) W= det(erlz')\fT)’
(ii) ((z=H)z)v = (2 +iA=T)zy

In particular, setting z = E + ie the limits € — 0+ are well defined

1 1
li = li —H) Ny =(E+iN—T)1!
I e T wmErany S v = (BT,

Remark 1 The integrals above are well defined for all ¢ > 0. Indeed z € C4 = 2z = F + ie
with € > 0. Since the eigenvalues of H are all real we have

1 _ N
g .
|det(E +ic — H)| =

Moreover, using Cauchy-Schwartz and |le;|| = |ley|| = 1,

(2 = H)gy| = (8, (2 = H)7'6,)| < (= = H) 16y, (2 — H)7'6,)2 = (8, (B — H)? +%)715,)2.

Since (E — H)? = (E — H)*(E — H) > 0 as a quadratic form we conlcude (E — H)? + &2 > &2
and hence

—1 1 1 1

|(Z - H)xy‘ < (53/7 ?63/)2 - g

Remark 2 Instead of reformulating the averages above as a new integral we obtain exact
formulas, hence the oservables det(z — H)™' and (z — H), are called integrable. Note that
there is no exact formula for (|(z — H);}|?)v. This average gives information on the spectral

Ty
type of H in the limit N — oco.

Facts on the Cauchy distribution

1 [ SI—
= —arctanz|>, = L.

e Normalization: = fR

e Moments: the integral % fR dx 1‘_?':2 is finite for all 0 < a < 1 and diverges for all a > 1.

In particular the first moment is not well defined.

e The Laplace transform is not well defined.
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e Fourier transform: p(t) = 1 [o dxﬁem = ¢l vt € R. This function satisfies p €
C=(RA\A{0}).

Proof The function (22 + 1)~!e®* is holomorphic on C \ {i, —i}, therefore we use contour
deformation. For all ¢ € R we have

1 1 1 (R 1,
p(t) = / dx e = lim / dx el
7 Jrg 1422 Roocom [_p 1422

Assume now ¢ > 0 and consider the contour vg = [-R, R] U Cr where Cr = [0, 7] with
0 — v(6) := Re'. For R > 1 we have, using the Cauchy formula,

56 et _ f(z) — et
v 1422 yp 21

where f(z) := e!*?(z +4)~!. Finally

eitz
/CR 14 22

For t < 0 we repeat the argument with v = [-R, R] U Cr where Cr = ~[0, 7] with
0+ () := Re .

R " —tRsin 0 TR

e Extension to the even Grassmann subalgebra: since p € C°(R\ {0}) we can define p(v)
Yo € Gg'°"[V] such that body(v) # 0. In particular, for all v =t +n with ¢t € R\ {0} and
n? = 0 we have

pt+n) = p(t) + 4 (.

Remark 3 Since det(z — H) is a polynome in V, ... Vy the corresponding average is not well
defined.

Proof of Theorem |2.25,
(1) z€ CL = z=FE +ic with € > 0. Set A := —i(z — H). We compute

—q N . o (5 .
) = L = (_Z)N/ |dpdp]™ e~ @A2) = (—Z)N/
N C

N

N
[dpdp]N /@ (=T)e) H e~ Vidlesl?

j=1
Inserting this in the average we obtain

1
1 _ (_AN : — N
ety = G [TV, [ el Fie.v),
J

with
i(@,(z2— —iViMpj|?
F(p,v) = @09 (lee Vi) ) _
J

The corresponding absolute value is

— 12
P =TT (" )
J
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and is integrable both in V and ¢. Therefore we can exchange the integrals and obtain

(qer=m)v = ()7 /CN dzdp]N @EEDOTT p(Ae;]?)
i

_ ()N /C ldgdg] (=D [T el = ()Y /«: ] {E DT
J

_ (=) _ 1
= det —i(z+in"T) — det(z+ir—T)

where in the second line we used |A|p;|?| = A|¢;j|? since A > 0. This concludes the proof of (4).
(ii) We argue as above

. 1 | . N — _—(g,A
(E+ie— H),, = (—i)A, = (—i) detA/CN[@dw] Py (®:A¢)

= (—1) /@N [d¢d¢]N/[d¢d¢]N %%e—(@fw—(@,w)

(=) / (dzdigy / ()Y 9,5, ¢ PE—ORHDGE—00) TT VM@t s0s),
CcN h
J

Inserting this in the average we obtain

(B vie- iy = oy [ TTav [ laead™ [@an 5 oo’

I,Ic{1,...,N}
with
(@, (z=T —iVi Mg, |? _
v 1l V) = @ )“")H <1+1V]2€ A )POZI,I(V)7
J
where Pol I,T(V) is a polynome of degree one in each variable Vi,..., V. The absolute value is

—elos |2
o)1 = IT (e " ) [Pot, 7).
J
This function is not integrable in V, hence we cannot exchange the integrals. To solve the
problem we introduce a regularization of the V' distribution. Note that
e~ ViX “/})\ijja

therefore we only need to regularize enough to make the fist moment in each variable finite.

[9: 12.11.2024]
[10: 15.11.2024]

We replace p with p,, n > 0 defined via

1 1 1

Pnl) = PO sy = T AT A )

We have 0 < p,(z) < p(x) € L! hence, by dominated convergence

iy [ dz py0)f(2) = [ do plo)f(0)

'r]—>0 R R

for any function such that [, dz p(z)|f(z)| < co.
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Facts on p,

e Normalization: [, dzp, < [pdxp=1.

e Moments: the integral [, dx|z|* p, is finite for all 0 < o < 3 and diverges for all o > 3.
In particular the first moment is well defined.

e The Laplace transform is not well defined.

e Fourier transform: for all 0 < n < 1,t € R we have

; 1 L
O = itx = — _|t| — f‘ﬂ
py(t) : /Rda:pn(x)e T (e ne Vi > .

This function satisfies p,, € C*°(R \ {0}).

Proof exercise. Use again contour deformation but note that this time there are four poles.

e Extension to the even Grassmann subalgebra: since p, € C*°(R\ {0}) we can define p,(v)
Vv € Gg'"[V] such that body(v) # 0. In particular, for all v =t + n with ¢t € R\ {0} and
n? = 0 we have

Pyt +n) = py(t) + /3;7(75)"

e Bounds on p, and p(t) : we have

S _ - s Al (1) — A4 — =l
Jm py(t) = p(t), - lim py(t) = p(t) = o(t)e

pointwise a.e., where o(t) is the sign of t. Moreover, for all t 0 and 0 < n < 1
PO =p0) <1, o) <205(t) <2, | (D)] < 2py(t) < 2.

We use now the above facts to complete the proof of (i7). With the notation
G Vb= [ TLao(V3) fVhee Vi)
J

we have

. —1 T . —1
(B +ie — H)gyhv = lim (B +ie — H)zhy

= (=i) lim | ldpdg]” / [dBdu]™ opye @I EOD [T 5, (N5 + 505))
J

=) Jim [ tagagl” [ (dian)” Fie)

where we used the fact that for all 7 > 0 we can exhange the integrals. The function F, (¢, )
can be written as

Fy(e, ) = Z %J,j(@)iﬂ@?

I,1c{1,..,N}
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with v, 1 7(¢) given by
v, 11(p) = @A Pol (2 — ) Z HA"Jp Alei ).

Using the bounds on p,, and /3;7 we obtain
v, r7(e, V)| < Const(z,T, N, A) He_g“p?‘.
J
Therefore we can bring the limit inside the integral. As a result we get
(B ie = M)y = (i) [ agagl® [ldai o.,e @ 00000 T o0 +5,)
J

— (~i) / ddi] / )N 9., PEOOHE D ABOAGY) = (2 4 i) - T);L.
(CN

This concludes the proof of the theorem. O

3 Asymptotic analysis of purely bosonic integrals

3.1 Scalar Laplace principle
Proposition 3.1 (Laplace’s principle (I)). Let f,g € C*(R) be two given functions. Assume

(a) [ admits a unique global minimum in xo and f"(xg) > 0,

(b) inf; 10cal min f(.%’) - f(.%’g) >0

T#xT0
(¢) 3Ny > 0 such that [, dz e Nof @) < 00 and [ dv e~ No/@)|g(2)| < oo.
Then for N — oo we have

(i) fRdl‘ e Nf(@) — o=Nf(wo) V21 __ ) (1 + O (%))

Nf”(xo
) Judz e~ NF@)g(z) " N (w0) fO (a 20)f@ (2
(i) g) = Jpdz em NI = 9(zo) + 2LN [3]””((232% -7 (]2/)(:(:0)g o 9(4(})”(130)(20)] to (%)
If we have k global minima 1, ..., y, under the same assumptions for each minimum, we obtain
— x k — €T 2
(i [fpdz e NI@ = ok NI »% (1+0(%)),

iy _ 1 k 1 Ny 1 [ g @B @) gl () 1
(@) o) = g2, s 2= T (96ap) + g |65 — P — Gl 40 (3)

Informal proof of (i) For N > 1 the measure concentrates on a small region near the

minimum point xg
/ dz e N/ (@) f:/ do e N @),
R lz—zo|<e

For small € the function is well approximated by its Taylor expansion

(z — xo)Q.

f(@) ~ f(xo) + f"(w0) 5
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Hence

/ dz e N/@) ~ / de e N/ @) ~ e_Nf(xO)/ d o~ NI (o) =50
R |z—zo|<e |lx—z0|<e

We claim we can replace above the integral on R

/ dz e~ NF@) o o= Nf(o) / dz o~ NI @) T30 N f(wo) / dr e~ NI" @)% _ ~Ni(wo) 2
R lz—zo|<e

R

Proof.
The integral in (i) is well defined VN > Ny since

/ de e~ NF@) _ ,~Ni(zo) / de e~ NU@ 1) < o~Ni(zo) / de e~ No(F (@)~ F(0))
R R R

— o~ (N=No)f(xo) / d e Nof(@) < oo,
R

where we used f(z) — f(xo) > 0. The same argument shows that the integrals in (ii) are
well defined VN > Ny. In the following we can assume f(zg) = 0. If f(xg) # 0 we consider

fi=f = f(xo).

. . . —Nf(z) — ,—Nf(zo) __2m 1
() We will show the weaker estimate [, dz e e TS (1 +o ( )) :
We define

Iy := /Rdx e NI@ ey = (), I = Vim dy e~ 3V,
With this notation we need to prove
VNIy = I (1 + o(N—%)) . (3.1)
We look for e such that

o limy ,o0eny =0,

.ff
.ff

e NI@) = O(N_%)

|z— xo|>aN

v e NI = [ (1 + o(N—%)) .

|z— xo|<aN

[10: 15.11.2024]
[11: 19.11.2024]

Region far from the minimum
By (a) and (b), there exists €9 > 0 such that V0 < ¢ < ¢y we have

f(x) = f(z) — f(xo) > min{ f(zo +¢), f(xo —€)} V] —20] > €. (3.2)
For ¢ < 1 we have

fleo£e) = S (@ —20)* + Ollr —wol’) = T+ O(*) = Ze2.
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Inserting this bound in the integral and choosing N > 2N, we get

VN de e N @) < /N sup e_g,f(”)/ dy e~ Nof(®)
lx—zo|>en |x—z0|>e le—zo|>eN
<VN sup e~ 2 f(@) / dx e Nof(@) — C’f\/ﬁ sup e~ 3 /@ <Cy Ne &M%
|z—zo|>en R lx—zo|>eN
We take 5
N 1

2

Then limy_,s0 ey = 0, and

VN de e N @) < C'f\/NfF%N(S =o(N™%) Va > 0.

|lx—xo|>eN

Region near the minimum: first try
We write

Nf(z) = %N(x —20)% + Ry(z),  with Ry(z) == Nf(z) — %ZN(Q; — 20)%

We have, for all |z — x| < ¢,
[Ry(w)] < ON&® = CN =19,
where C' > 0 is a constant independent of € and N. To ensure Ry is a small correction we require

lim Ne3, = 0.
Ngnoo eN

This holds if we assume § < %. With this assumption we argue
VN de e V@) = /N dr e~ 3 N@=w0)? o~Rn (),
lz—zo|<en lx—zo|<en

Performing the coordinate change y = VN (x — o) we obtain

VN de e N = / dy e~ TV e AN W),
lyl<VNen

lx—xo|<en

Note that limy_ o V Neny = oo hence the integral is well approximated by the integral on R.
To make this precise we argue

/ dy e~ BV R I, + 1y
ly|<v/Nen

with

&
I

/ dy e~ BV = I — / dy e~ By
ly|<vNey ly|>vNey

Iy = / dy e~ 3V’ (e’éN(y) - 1) .
lyl<VNen
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The first integral equals I (1 + Err), where the error term Err is bounded by

1 c c c
— dy e~ 3V < e~ TN NConst = e~ 1 Const = o(N™9) Va > 0.
I ly|>VNen

The second integral is bounded by
|I,| < Const Ne3y = O(N_%JFS‘S).
Putting all this together we obtain

VNI = Le (14 O(N"3%) + 0( M) )

There is no choice of ¢ ensuring Ry = o(N _%) hence we cannot get anything better than
O(N _%+35) in the correction term above. To obtain a smaller correction we must expand more.

Region near the minimum: correct argument

fl//(l,o)
3!

Setting c3 := we can write

Nf(z) = %N(w—xg)2+03N(az—x0)3+RN(a:), with Ry (z) := Nf(l’)—%N(x—$0)2—03N($—$0)3.

We have, for all |z — x| < ¢,
|[Ry(z)| < CNet = CN~HH,

where C' > 0 is a constant independent of € and N. To ensure Ry is o(N _%) we need —1+46 <
—1. This holds for § < 3.

We argue
VN de e M@ = /N dx e~ 3 N(@=20)? g=caN(2=20)* o~ Rn (@)
|z—z0|<en |z—z0|<en
|y|<\/N€N
where
|y\<\/N5N

I, = / dy e~V e vwY (e*RN(y) — 1) .
|y\<\/N5N

The second integral is bounded by
|Ib’ <K N&A}VQCNE‘}V / dy e_%zyQ - K stlVGCNs%Ioo _ O(N_%),
R

for some constants K, C > 0. To study the first integral we argue as follows.
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c 1 .3
/ d?/e 22y2 <€ CSVNy *1)
‘y|<\/N€N |y|<\/N€N

c 1 €2,.2
_ dy e 3V — c3—— dy e 2y’ + O ((Ne})®
/?J|<\/N5N VN Jiyj<v/Ney ( )

= dy e~ 3V + 0 ((Ne)?
/?J|<\/N€N ( N )

1 (14 0™+ o(NH) 4.0 (Ne%)?))
where in the second line the middle integral vanishes by symmetry and we used in the last line
1
(N3 =N"10 c N2 Vo< i< o

This shows that the error term is o(N _%) To obtain O(N 1) write the explicit terms of the
Taylor expansion up to order 4

f(z) = %(1: — :1:0)2 + cs3(x — x0)3 + cq(x — 1:0)5 +O(|lx — 9:0|5),

then expand in the region near the saddle up to order 1/N (exercise).

(73) Since g(x) = g(xo) + g(z) — g(x0), proving (ii) is equivalent to prove

L[ g
[f”(wo) 7 (w0)? % M-

N{(g(z) — g(x0))) = 3

We will show that

SN [ dalyta) - glan)] e V0 — [0 TEGTEIN o)

) r) _1q il
1/ o /Rd:ve + 0 N/

which holds by (), this yelds the result. To prove (3.4) we set e = N =3 with 0 < 6 < 1 small
enough and distinguish the region far and near the minimum.

Together with

Region far from the minimum
As in (i) we estimate

N
CQN/ dz |g(z) — g(xo)] e N < KN3e 0N = o(N™%) Vo > 0.
27 lt—xo|>en
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Region near the minimum

Necoy / Necoy
—=N dz [g(z) — g(zg)] =\ 5 /
27 lt—xo|<en [ ) ( 27 |z— xo\<5N

/!
: [Ng/(xo)(x —mp) + LY (;O)N(x x0)? + O(Neys )] e~ 3 N(@—w0)? g—esN(a—w0) LO(NeR)

/!
R = / dy = 'R O [Wg’(xo)y + 230 (xO)y2 + O(Ng?v)]
27 ly|<vNen 2

/62/ dy e~ 3V ONeR)
27 y|<\/>€N

70 (V)| [V Ganly + C507 1 ove)

- .

(&) _c2,.2 4
=/ dy e 2Y |14+ O(Ney)
2m /y|<VN€N [ N]

: [\/Ng’(xo)y - % (9" (xoy® — 2c39' (wo)y) + O ((Ne)(Nek)) + O ((Ne?v)2N6N)]

c 1
— \/2?2/ dy e 2V’ [ (9”(%3/2 - 2039’(1‘0)?%4) + 0(1)} )
™ JR 2

where we used f‘y| “VNen dy e_%yQy = 0 by symmetry. Inserting now the values of ¢s,c3 and
performing the Gaussian integral yelds the result. O

[11: 19.11.2024]
[12: 22.11.2024]

3.2 Application 1: mean field Ising model

Consider the model introduced in Section [1.2.5] with n = 1. To each spin configuration o =
(01,...,0n5) € {—1,1}V we associate the weight

B N ) N
pnp(o) = e2N Y ik=190k gh 352105

where 8 = + is the inverse temperature and h € R is the magnetic field. The average of a
function f(o ) is defined by

B = w3 mwalo)f(o)

oe{—1,1}N

*ﬂ\

where

Zy(h) =2 Y. (o) (3.5)

oe{—1,1}N

In particular, the magnetization is defined by

My (h) = My (h, 8) = LE% [Z{V 0]} .

J=1
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Note that when h = 0 pno0(—0) = pn (o) and hence My (0) = 0. This means the spins o; have

no preferred value. Moreover E;Vh’ﬂ [flo)] = Eg}ﬁ [f(=0)] hence My(—h) = —Mpn(h). We show
now that M (h) > 0 for all h > 0.

My (h) = szl\,(h) QLN Z MN,h(U)(Zj Uj) = szl\,(h) %QLN Z (Z] Jj)(:UJN,h(U) - UN,h(_U))

oe{—1,1}N oe{-1,1}¥
BN .
= ama D, e k(zg‘ o) sinh (hzj aj) '
oe{-1,1}V

For h > 0 we have zsinh(zh) > 0 Vo € R\ {0}. Hence My(h) > 0. Finally the map h — My (h)
is continuous and hence limy,_,o My (h) = My(0) = 0.

Question 1: does the limit M (h) := limy_,00 My (h) exist?
Question 2: in case the limit exists do we have limy_,o M (h) = 07

The answer to the first question is yes. The answer to the second question depends on the value
of 8. This is the content of the next theorem.

Theorem 3.2.
(i) For all 5 >0 and h € R the limit M(h) := limy_oo My (h) exists.
For h =0 the limit is M(0) = 0.

For h > 0 the limit is
M (h) = tanh (z(h, B)),

where x(h, B) is the largest positive solution of

z—h

= tanh z.

For h < 0 the limit is M(h) = —M(—h) = — tanh (x(—h, 3)) .
The function h— M(h) is continuous on R\ {0} and satisfies

lim M(h)==+1 for h=0.

B—00

(i) For all 0 < B <1 the map h — M(h) is continuous in 0 i.e. limy_,o M(h) = M(0) = 0.
For all 1 < 8 the map h — M(h) is discontinuous in 0

lim M (h) = M — tanh
i (h) +(B) = tanh g,

where xg > 0 is the unique stricly positive solution of

T
— = tanhz.

B

Moreover

lim xzg = oo, lim My (8)=1
B—o0

B—00

limxzg =0, lim M =0.
i’ o Mo (8)
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Remark. For g > 1 the measure uy exhibits spontaneous symmetry breaking as N — oo since
there are at least two possible limit measures, one favoring positive spins, the other favoring
negative spins.

Proof. We reformulate My (h) as a dual integral.
al 1
My(h) = £EN | oj| = O InZy(h),
j=1

where Zx(h) is the partition function defined in (3.5). We proved in Lemma the identity

2
1 —N(L;h) —1n](4p)>

o Z ,U/N,h(o'):(%Ng>2/RdSpe ? ;

oce{-1,1}N
where ]
I(p) = 3 Z €?? = cosh .
o==+1
Therefore f Nf(o)
dp e ¥ g(p)
_ . JR
MN(h) - <g>N . fR d(p e_Nf(SO) )
with ( h)2 )
Y — Y —
=-"—2 —Incosho, =
fe) 55 v 9() 5

Both functions are smooth and
Lo e <oe, [ dpe NPy < o0
R R

hold for all N > 0. To check if we can apply Proposition [3.I] we need to study the minimum
points of f.
We have

Flo) =25 tamhp, ()= -

Note that f” is independent of h.
Case 1: h = 0. In this case we have f(—¢) = f(¢) while g(—¢) = —g(¢), and hence (g) ; = 0.
We try to recover this result via Proposition We have

O:f'(gp)zf—tanhcp &= fztanhap.
s g
Comparing the two curves % and tanh ¢ we see that, if % > 1 there is only one solution ¢ = 0,

while for % < 1 there are three solutions: ¢ = 0 and ¢ = +xg with g > 0. Using cosh¢ > 1

we argue
1
f// (p Z - 1‘
(¥) 2 3

e For 8 <1 we have f”(¢) > 0 Vo # 0 and hence f has a unique (global) mininum in ¢ = 0.
Moreover, for % > 1 we have f”(0) > 0, hence by Proposition

(@y=90)+ONH=0N"")  forp<1.
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e In the case § > 1 f has two (global) minimum points in ¢ = 23 and one local maximum in
@ = 0. Therefore we must have

We show that f”(xz3) > 0. By contradiction assume f”(xg) = 0. Then

r— 3
Fl&) — Fla) = £ T 4 ol ).

By direct computation f”’(zg) > 0, hence we would obtain f(z) < f(zg) for < g, which con-
tradicts the fact that x4 is a minimum point. Therefore f”(zg) = f”(—xp) > 0 and Proposition
yields
(9)n = 9(zp) + 9(=2p) + O(N™!) = O(N ),

since g(xg) + g(—xzg) = 0.
Case 2: h > 0. We have

—h —h

0=f'(p)= v-n —tanhy < v tanh .

8 g
e For 8 < 1 the function f has a unique (global) minimum in ¢,, = z(h, 3) > 0. Since f"(¢) >0
except eventually in ¢ = 0 we also have f”(p,,) > 0 and hence Proposition yields

x(h’vﬁ) —h
p

This implies that the limit N — oo is well defined and

(9) = 9(x(h)) + O(N 1) = +O(N™1) = tanha(h, ) + O(N ).

M(h) = lim Mpy(h) = tanhz(h, 5).

N—oo

The function h — z(h, ) is continuous on R and

li h =0.

}ggx( ,0)
hence

lim M (h) = 0.

hl0

e For > 1 there exists a hg > 0 such that:
for 0 < h < hg the function f has 3 critical points z_(h) < zg(h) < 0 < 24 (h),
for h > hg the unique critical point is x4 (h),
for h = hg there are two critical point in x_(hg) < 0 < x4 (hg).

Note that hmh¢0 $o(h) =0, limhio xi(h) = :i:xlg, and lithhﬁ xo(h) = lithhB $_(h)
For all h > 0 the function has a unique global minimum in z (h) plus eventually a local minimum
in x_(h), therefore f”(xz4(h)) > 0. Arguing as in the case h = 0 we obtain f”(z4(h)) > 0, hence
Proposition [3.1] yields

$+(h) —h

(9)n = 9(z4(h) + O(NT!) = 5 " O(N™') = tanhz (h) + O(N7).
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This implies that the limit N — oo is well defined and

M(h) = lim Mpy(h) = tanhxy (h).

N—oo

The function h — x4 (h) is continuous on R\ {0} and

1' h = 0 1. h =
imz (h) =25>0,  lim @y (h) = oo,

hence

lim M (h) = tanhzg > 0, lim M(h) = 1.
hl0 B—00

0
[12: 22.11.2024]

3.3 Application 2: mean field O(n) model, n > 2

[13: 25.11.2024]

Consider the model introduced in Section [1.2.5] with n > 2. To each spin configuration o =

(01,...,0n) € (S" 1)V we associate the weight

B N ) N 4
— 3N 2jk=173"Tk gh 21 73,

pwnh(0)

where 8 = % is the inverse temperature, h > 0 is the intensity of the magnetic field and é € S"!
is the direction of the magnetic field. The average of a function f(o) is defined by

h75 -— 1 d
EN' U= zm /(Sn_l)N o pnn(0)f(0),
where do = H;VZI doj, [gn-1doj =1, and

Zn(h) 1—/ do pin,n(0).
(Sn—l)N

In particular, the magnetization is defined by

My (h) = My (h, 8) = LENP [Z;V:l aj} .

By construction |My(h)| < 1. Note that each spin o; can be decomposed as
oj =05+ U]J-'

where UjL - ¢ = 0. The measure satisfies

unp(0%,07) = pnp(o®,—o) VA >0,

hence

1.e.

(3.6)

[May 1, 2025]



Moreover, for h = 0 we have My (0) = 0 by the symmetry o — —o. We show now My (h)-é > 0
for all A > 0. Indeed

Va0 = sy [, Ao a5 = w4 (3,05 )awale) —wa(=o)

1 LS _ L ojo AN s .
NZN(h)/(Sn_l)N dor e7 Zsk=1 7 k(ZJ 5+ €)sinh <hzj Uj.e)'

For h > 0 we have xsinh(zh) > 0 Vz € R\ {0}. Hence Mny(h

) - é > 0. Finally the map
h i+ Mny(h) - € is continuous and hence limj_,o My (h) = My (0) = 0.

Question 1: does the limit M (h) := limy_,oo My (h) exist?

Question 2: in case the limit exists do we have limy_,q M (h) = 07

As in the case of the Ising model, the answer to the first question is yes. The answer to the
second question depends on the value of 3. Before we can state the result we need a multivariable
version of the Laplace principle.

Proposition 3.3 (Laplace’s principle (II)). Let H,g € C°(R™;R) be two given functions.
Assume

(a) H admits a unique global minimum in @, and H"(om) > 0 as a quadratic form, where
H"(p) € R™™ is the hessian matriz defined via H"(¢)ij = 0y, 0p, H(p).

(b) inf<,o,lo<:alrnin H(QO) - H(SOm) >0
pFPm

(¢) 3Ny > 0 such that [, dy e~ NoH(¥) < o0 and Jgn do e NoH ()| ()| < oo.

Then for N — oo we have

, _NH(p) _ ~NH(pm)____(2m)% 1
(’L) fRn ng € v =€ v det(NH”(me)) (1 + O (N)) :

.. ndp e NH(2)
(ii) (g) = B2l = g(om) +O (%)

If we have k global minima ©1,..., 0, under the same assumptions for each minimum, we
obtain

(Z)/ f]Rn e_NH(@) - e_NHm Z?:l det(é:/r;{?”(wj)) (1 + O (%)) ) where Hm = min@ H(SD) = H(SOJ)
j=1,....k

g SE_ (det H (7)) 2 ()
i)’ = =
(@)’ 9) S (det H (i) "2

+0(

)

Proof. Works as in the scalar case (exercise) O

=i

Theorem 3.4.
(i) For all 3> 0 and h >0 é € S" ! we have

. Jen dp e NP g(p)
My(h) &= (9), = Jgn dp e NHG)
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In particular F(p) = f(|¢|) with

f(r) ::ln/ ds e,
Sn—l
where Sy is the first component of the vector S. In the following we set r = r(p) = |p| and

L, dS e517g(S
(g(s)), = Jsnor 5 e 9(5)
T fsn—lds esS1r

(ii) For all 3 >0 and h >0 é € S"~! the limit M(h) := limyn_,oo My(h) eists.
For h =0 the limit is M(0) = 0.
For h > 0 the limit is

M) = 1 (ri(h B)) € = (S1),. .5

where r4(h, 3) > 0 is the unique solution of

u(r) = — with  u(r) :=

The function h— M (h) is continuous on (0,00). Moreover
o if B <mn limyo M(h) =M(0)=0,
e if f>n limy o M(h) = f'(rg)é, where rg > 0 is the unique solution of u(r) = 0.

Remark. For § > n the measure uy exhibits spontaneous symmetry breaking as N — oo
since there are uncountably many limit measures, one for each direction é.

Proof. Proof of Theorem (i) We have My (h)-é = %0y, In Zx(h). We proved in Lemma m

the identity

The result follows taking the derivative of this function in h.
O

To prove the second statement we need some properties of f, which are collected in the next
theorem.

Theorem 3.5. Let f: [0,00) = R be defined via f(r) =In [s, ., dS 5"
The following statements hold:

(i) f'(r)>0Vr >0, f/(0) =0 and lim, , f'(r) =1,
(ii) f"(r)>0Vr >0, f'(0) =1 and lim,_, f"(r) =0,
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(iii) f"'(r) <0 Vr >0,
(iv) 0 < f"(r) <L vr>o.

Proof.
(i) We compute

o1 dS eS1msy o1 dS St sinh(Sir
_JS _JS

fl(r) = (S1), = Jn_1dS €517 - Jsn-1dS cosh(Syr)

It follows that f’(r) > 0 Vr > . Moreover f'(0) = (S1), = 0 by symmetry.
To show lim,_,~ f’(r) = 1 note that for all function f(S7) we have
_JLd5i(1- 8T e f(S)

(f(51)), f—ll dsi(1— S%)nTig)erfh

(3.7)

and perform asymptotic analysis. Note that in this case we integrate on (—1, 1) instead of R.

(7i) We compute
f'(r) = (88), = (S1); = (($1 = ($1),)%), > 0.

Moreover )
£1(0) = (S2), = /SM ds 2 — :L/Sl ds; 52— %
To compute the limit as 7 — 0o note that lim, o (S1)> = 1 by (7). We argue
(s, =1-(-st),=1- B

To prove the identity <1 — 52 >r = % use the representation and integrate by parts.

(7it) see Theorem D.2 in Appendix D of Phase Transitions in Quantum Spin Systems with
Isotropic and Nonisotropic Interactions F. J. Dyson, E. H. Lieb, 2 and B. Simon, in Journal of
Statistical Physics, Vol. 18, No. 4, 1978.

(iv) Follows directly from (i) and the fact that f”(0) = 1.

Proof. Proof of Theorem (ii) The first and second derivative of H are given by

0utite) = (5- T e o w0 = (5- )1 (10 - ) 1oy,

where

)l = =0 ®
PP = P
lo?
is the projection on the direction . The matrix H” () has two eigenvalues. The first is
) [l

1

Aip) = = = f"(r),
g
with multiplicity 1. The corresponding eigenvector is ¢. The second eigenvalue is
1 f(r)
A =—— )
2(¢) 5,
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with multiplicity n — 1. All vectors in the space o are eigenveectors of H” () with eigenvalue
X2(¢p). Note that, since f/(0) = 0 we have

f'(r) 1

1~ — 1 — .
lim = F0) =, (3-8)
and hence ) ]
A =)\ = - - =
1(0) = X2(0) 5 n

[13: 25.11.2024]
[14: 29.11.2024]

Case 1: h = 0. In this case we have My (0) = 0 by symmetry. We try to recover this result via
Proposition We have
1 /
0,H(p)=0 <& ( - f(T)> o =0.

I} r

The value ¢ = 0 is a solution. We check now if there is also a solution ¢ # 0. In this case ¢ = rw
where 7 > 0 and w € S™! and the critical point equation becomes

0= (; - f’(r)> w=ulr)w < ur)=0.

We compute .
u(0) =0, u(r) == — f'(r) = M(r), u(r) = ria(r).

g
Using f”(r) < 2 ¥r >0 and f”(0) = 2 we deduce
1 1 1 1
’LL/(O) = E - E, U/(T) > UI(O) = B - E Vr > 0.

e For f < n we have u(r) > 0 Vr > 0 and hence H has a unique critical point in ¢ = 0. It
follows, since H(¢) —|y|—o00 00, that ¢ = 0 is the unique global minimum. The hessian matrix
at ¢ =0is

H(0) = (;— 1) >0 VB<n.

n
By Proposition it follows, for B < n,
(9), =9(0)+O(N"") =O(N1).
e In the case 8 > n v/(0) < 0 and lim, oo u(r) = % > 0. Since u”'(r) = —f"(r) > 0 Vr > 0,
it follows that there exists a unique rg > 0 solution of u(r) = 0. Therefore ¢ = rgw is a
2
critical point Vw € S"~1. Note that, since h = 0, H is rotation invariant: H(rgw) = ;—g — f(rg)
Vw € 8"~ 1. The hessian matrix at ¢ = 0 is
1 1
H'(0)=(>—-=)1d <0,
o-(5-3)

so ¢ = 0 is a local maximum and hence {rgw}, ecsn-1 is a manifold of global minima. The
eigenvalues at rg are

Ai(rg) =u'(rg) > 0, Xo(rg) = =0.
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So we can apply asymptotic analysis only in the radial direction.

Case 2: h > 0. We have
_ L fim)\  _h,

The value ¢ = 0 is no longer a solution. The solution must be of the form ¢ = +ré, for some
r > 0. The critical point equation becomes

h h
tu(r)é=—é & u(r)==-.

B B

e For 5 < n we have u(r) > 0 Vr > 0, so there is a unique solution r (h, 5) > 0 of u(r) = % and

there is no solution for u(r) = —%. Hence there is a unique global minimum in ¢,, = ré. The
eigenvalues at the minimum are
u(ry) h

=—>0
T+ BT

Ai(ry) =u'(ry) >0, Ao(ry) =

therefore H” (y,) > 0 and Proposition [3.3| yields

(9), = 9lom) + O(N ).
We compute

9(om) = ;«om —he)-e = T b fr) = (S, € (0,1).

This implies that the limit N — oo is well defined and

M(h) = lim My(h) = f'(ry).

N—oo

The function h — 74 (h, 3) is continuous on [0, c0) and

li h =
éfOlTJr( 56) 07

hence

lim M (h) = 0.
hl0

e For 8 > n we have seen that ' is monotone increasing,

u(r) <0 Y0 <r<rg, and u(r) >0 Vr>ra.

Let uy, := min,~ou(r) < 0. We distinguish three cases.

For h > pPu,, there is a unique solution r4(h,3) > rg of u(r) = % and there is no solution
for u(r) = —%. Hence there is a unique global minimum in ¢, = ryé. The eigenvalues at the
minimum are b
u(r
M(ry) =u'(ry) >0, Ao(ry) = ) _ h o,
T rf3

therefore H” (¢,,) > 0 and Proposition [3.3| yields
(9), = 9(pm) +O(N"") = f'(r1) + O(N7).
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For 0 < h < Bu,y, there is a unique solution r (h, 5) > rg of u(r) = % and there are two solutions
0 <ro(h,B) <r_(h,B) < rg for u(r) = —%. Hence there are three critical points:

P+ = T‘+é, Y- = —Tr_¢€, o = —Topé.

The eigenvalues at the three points are

A(ry) =u(ry) >0, do(ry) = U(::) >0,
M) =u(ro) >0,  lo(r.)= “Ef“_‘) <0
u(ro)

)\1(7“0) = u,(’I"()) < 0, )\2(7’0) =

hence there is a unique (global) minimum in ¢,, = 7€ and H”(¢,,) > 0. Proposition |3.3| yields

(@), = 9(em) +O(NT") = f'(ry) + O(N ).

For h = fu,, there is a unique solution r(h,3) > rg of u(r) = % and a unique solution
0<7r_(h,B) <rgforu(r)= —%. Hence there are two critical points:
Yt =T4€, o= —T_E.
The eigenvalues at the two points are
M) = () >0, a(ry) = W 5 g
T+
/ u(r-)
A(ro) =u'(r-) =0, Xo(r_) = < 0

hence there is a unique (global) minimum in ¢,, = r4+é and H"(¢,,) > 0. Proposition |3.3| yields
(9)y = 9(pm) + O(NTH) = f'(r4) + O(N ).
This implies that the limit N — oo is well defined for all 8 > n,h > 0 and
M(h) = lim My(h) = fre).
The function h — 74 (h, 3) is continuous on [0, 00) and

li h =
I%\ILBIT'F( 7/6) Tﬁ>07

hence

lim M (h) = rgé # 0.
lim M (h) = rgé #

O

[14: 29.11.2024]
[15: 02.12.2024]
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3.4 Asymptotic analysis of complex integrals

Theorem 3.6. Let U be an open set with R C U C C, f,g: U — C two analytic functions and
~v: R — U a smooth path. Assume the following assumptions hold.

(a) €*Nf’ ,ngfg7 e*NfO’Y7 e*NfO’Yg oy € Ll(R; C) VN > 0 and
/Rdm e N :/Rdl" Y (z) e NG, /Rdx g(z)e N @) = /Rdx'y( ) g(y(x))e NOE),

(b) The function x — H(x) := Re f(vy(z)) admits ¢ > 1 global minimum points x1,...,x,
with H"(zj) >0Vj=1,...,q and
inf [H(x) — Hp] >0, where H,=H(z;)Vj=1,...,q

z local minimum
THEL1,...,Tq

(¢) The point zj := ~y(x;) is a critical point of f (i.e. f'(z;)=0)Vji=1,...,q
Then as N — oo we have, setting fy := fo~y and g, :=go~,

q
() V[ e N | S i) T o ()
R 2w =1 (fO’y)”(.ﬁU]) N

q

i VN [ dz o(z)e Nf@ = ¢~NHmn o iNTmf(z)) 9(%’)7,(%) )
)V [ e gt > (Fo)a)

| 1 [ @) g A @) 1
(g( )+ [f”<$j) f»/y/(xj)Q 4ffy’(xj)2 O<N) :|’

where the square denotes the principal root.

Remark 1 Since Ref(z;) = H(z;) = Hy, Vj =1,...,q we have

o~ NHm o tNImf(z Nf(z zj)
;; W i=eni ﬁww z} = w&%>

This sum may even vanish since the phases e “VI™f (%) are strongly oscillating.

Remark 2 The assumption (c¢) ensures
(f om)"(wj) = F'(z)0" () + £ (257 (2)* = £ (27 ().

The assumption H” (z;) > 0 then ensures that Ref”(z;)7'(z;)? > 0. Note that, if /" (2;)7 (z)% =
f"(z;)7'(x;) holds, we get
v (z5)

V(for)(z;) WW@
This happens for example when Rev/(z;) > 0 and Ref”(z;) > 0 hold.
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Proof.
We only sketch the argument for (7). (i4) works on the same way. As in the proof of Prop.
we decompose R = U?I}Ij, where [ := {|z —z;| <en} for j=1,...,qand I;1; = R\U?Zlfj

We set ey = N® 2 with 0 < o < & so that Ne3; = o(N71).

e The region I, is far from all minima hence we bound the absolute value of the integral

NHm

<Vw [ ¢~ NUH (@)~ o).
r ¥ (@)

\/>/ (z) e —Nf(y(z))
Iqt1

Using H(z) — H,, > ¥ man 1. H"(x;) = €% C with C > 0, the last integral is bounded by

VNe™ NEQC/

| g @] W = 0 (),

for some constant ¢ > 0.

e In the region I;, j = 1,...,q, we replace f o and +' by the corresponding Taylor expansions
up to a finite order

4
NF(1(@) ~ NRe f(z3) = iNTm () + 3 - (f 7)™ (a5) N(z — ;)" + O(Ne},),
2

V(@) =+ () + 7" () (@ — < 75

The corrections of order 1, 1/v/N and 1/N are extracted explicitely, the remaining terms are
estimated in absolute value. O

As an example of application we consider the average of det(E — H) where H € (ChNefT]: is a
random matrix in the GUE ensemble. We have proved in Lemma [2.23] the identity

2
(det(E — H)) r/ db e NT(E — ib)N =: In(E). (3.9)
By the symmetry b — —b we have
IN(—E) = (-1)NIN(E).

Moreover, for ¥ = 0 we have

v w2y [0 if N odd
In(0) = (=" 77 Jabe b _{(N—l)!!NZY if N even. (3.10)

Using Stirling’s approximation formula we get
N
In(0) =0 <€_7> —N—oo 0.

It remains to study the case ¥ > 0. We will need the following preliminary lemma.

Lemma 3.7. Let F': C — C be defined via

F(z):= e_%zQ(E —iz)V.
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 Forall c € R it holds: [pdx F(z) = [p,, dz F(z) = [pdz F(x +ic).

e Fizc € R and define H(z) := —+ In|F(z +ic)|. Then

-2 1
H(x) = 5 _5111 [(E+c)? + 2]
H/(x) = m [:U2 — (1 - (E—f—C)Z)]
H”(:C) =14+ $2 - (E+c)2

[2? + (B +¢)?]

Proof. Exercise. For (i) use the fact that F' is analytic on C and Cauchy theorem. (ii) follows

by direct computation.
O

Theorem 3.8. Let E > 0 and consider the integral In(E) defined in (3.9) above.
(i) For E > 2 we define By := % + \/ETQ — 1. We have
O0<FE_<1<EL<E, EFE-F, =F_, E.E =1,

and, as N — o0,

/B2
i) For 0 < E <2 we define E4 := £ + — £ We have
2 4
|gi| :17 5— :Z7 E_g—i-:g—, 5+g_:17

and, as N — oo,

Remark Note that Re€? = Ref? = —(1 — %2) <0 for 0 < E < /2 and hence
2
IN(E)=0 (e_g(l_g))> S Nosoo 0

for 0 < E < /2. On the contrary, for E > 2 the integral diverges exponentially as N — oco.

Proof.

We write F(z) = e N/() with
2
z

f(z) = 5 = In(E — iz).

We start by looking for the critical points of f. We compute

64 [May 1, 2025]



Hence f/'(z) =0 iff

E E?
tz=— =31/ — —1.
2 4
Case 1: E > 2. In this case the critical points are
Ze = —’L'Ei.
Via a complex translation we can cross only one of the two points. Setting ¢ = —E_ (resp.

—FE. ) the path crosses only —iE_ (resp —iFE..)
e Set c = —iFE_. We argue

E4+c=E-E_=E;>1=1-(E+c¢?=1-FE% <0,

and hence, using Lemma[3.7] the function H(z) = —In|F(z —iE_)| a unique (global) minimum
in x = 0. Hence the unique global minimum is at the critical point z; = —iFE_. We compute,
using Lemma again,

H'(0)=1-E2 >0
since 0 < E_ < 1. Thm. [3.6| now yields the result.
e Note that setting ¢ = —iF; does not work. Indeed, in this case we get E+c=E-F; =F_ <1

and hence H has two global minima in z = £,/1 — E2, while 0 is now a local maximum. So we
cannot apply Thm.

Case 2: 0 < E < 2. In this case the critical points are
Zec = _/L-gia

—%, we see that the

function H admits two global minima in z = £4/1 — ETQ (wich correspond to the two critical
points for f) and a local maximum in x = 0. Moreover

E? E?
H'(£4/1-=—)=2(1-—=— 0.
(£4/ 4) < 4>>

Thm. now yields the result.

and the complex translated path R — z% crosses both points. Setting ¢ =

O]

[15: 02.12.2024]
[16: 06.12.2024]

4 Supermathematics

4.1 Supervectors and supermatrices

Recall the definition of Grassmann algebra and generators Def [2.1] and
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Definition 4.1 (Complex conjugate). Consider a Grassmann algebra G = Gg[V] of even di-

mension and let B B
{¢17w11' . -7¢N7¢N}

be a set of generators.

(i) We define the complex conjugate operation on the generators via
- —C .
1/};:1/)]7 ¢]:—¢]7 ]:1,,N

The complex conjugate of a product of generators is defined via
(&
IToill%;| =11¢s 1195 =119 v
icl  jeJ icl  jed iel j€j

For any element v € G, we have the unique decomposition

v=" Y w0y

I,Jc{1,...N}

We define complex conjugate operation on v via

c._ Z 7 [¢IEJ:|C:

voi=
I,Jc{1,.,N}

_ —I
Yo g (gt
I,Jc{1,..,N}

where v7_j is the standard complex conjugare in C.

(i) An element v € G is called real if v¢ = v.
Lemma 4.2. Consider a Grassmann algebra G = Gg[V] of even dimension and let

{@171/}17"'7EN7¢N}

be the set of generators we use to define the complex conjugate. The following statements hold.

(i) (W) = —y and (T = —; ¥ =1,....N.
(i) We have
VU E geven ,UC E geven and (,UC)C EX))
Vo € godd ve € GO and (v°)¢ = —w.

(iii) For all v,v' € G we have
(vv)¢ = v, (v +0")¢ = (v + VD).

(iv) Let
Z vr,J lﬁI@J €g.

1,Jc{1,...,N}

v =

Then v is real iff vy; = vr7 (=)D w1 {1,... N}.
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Proof. B B B
(i) We compute (1$)¢ = ¢j = —t; and (¢})° = —¢¢ = —¢; Vj =1,...,N.

(i) The statement follows from ((¢/97)¢)¢ = (=1)I ("7 )e = (=) (7).

(iii) Let v,v’ € G°4. We compute, using (ii),

(V)¢ = —vv® = v, (v +0")¢ = (=0’ — V¢ = (v 4+ V"W).

(iv) The statement follows from

D I A G T S w A Ca SR

I,Jc{1,..,N} JIc{1,..,N}

Definition 4.3. Let {11,%1,..., %N, UN,&1,€1, ..., Enr, EN'} a set of generators.
We consider the three Grassmann algebras

QZQK[%W%‘--,@N,@@N,L .
g/:gK[ﬁbl?ﬂ)l:"-LwNawNaélvfla"'>§N’>§N/]

A= gK[glaglv v 7£N’7£N/]'
Fiz m,n € N.

(i) A (m|n) graded vector (or supervector) on G is a vector with m components in GV and

n components in gedd .

®1

_ (I)b _ (P _ me even\m odd\n __. ~om|n
= ()= )= [t omrein o

Xn
We call p = @y, the bosonic component and x = ® the fermionic component of ®.

We define

C

P .= <§C> , Pl .= (got,xt) , >t =3

(ii) A linear transformation L: G™" — G"™' ™" must have the form L(®) = M® where

M= (Mbb be> — (CL U) a € (Aeven)m’xm’b c (Aeven)n’Xn’o_ c (Aodd)m’xn’p c (.Aodd)n’Xm‘
be Mff P b

M 1is called a supermatriz. We write M € A ) (min) " ywre cqll a = My, the boson-boson
block, b = My the fermion-fermion block, o = My the boson-fermion block and p = My,
the fermion-boson block.

(iii) For M € Ammx(mn) e define the analog of trace, determinant, transpose and adjoint
as follows.
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(a) The supertrace is defined by Str M := tra — trb.

(b) Assuming b is invertible, the superdeterminant is defined by

det(a — ab~1p)
det b

Assuming both a and b are invertible, we also have

Sdet M =

deta

(c) The transpose/adjoint is defined by

s 4 A B A A R e 4

Remark. By construction ®*® is a real element in G°V°". This follows from
SOC ()0 m n
¢ = ( c) ( > = et Y Xk
X X j=1 k=1

In the same way ®*® + ®*® is a real element in G for all &, d' € gmin,
Lemma 4.4.
(i) Str is uniquely defined by the following two requirements:

(a) the Str is a linear combination of elements from the diagonal of M and
(b) Strd @ &* = *d Vo € A",

Moreover we have

Str My My = Str MoMy Y My, My € Amm)x(min) (4.1)

(ii) Sdet is uniquely defined by the following two requirements:

(a) Sdet M € Aven,
(b) Sdet (M;Ms) = Sdet M;Sdet My VM, My € AmIm*(min) gpnq

(¢) InSdet (M) = Str In(M) for all M such that with a,b hermitian and positive definite
(see also Remark 1 below).

Moreover we have

Sdet M! = Sdet M ¥YM e Amm*(min),
(iii) Setting (&, M®) := ®*M®, M is uniquely defined by the requirement
(&, M®) = (M*®,®) Vb e g™l

Remark 1 Note that Sdet M € A°V°", hence In Sdet M can be defined as in Example 4 at the
end of Section 2.2

The function In M takes values on supermatrices and is defined via

_1\k
InM = _Z (kl)(M _ 1)k e Amln)x(mln)
k>1
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Remark 2 Note that (M*)* = M but (M?*)! # M. Indeed

oy = () = (00 =),

where we used (a*)}; = (a$;)¢ = a;j since a;; € A" (same for (b*)*) and —(c*)}; = —(0F;)¢ =

ij — (@
since 0;; € A° (same for —(p*)*).

On the contrary
t £\t
tht a p . a —0
ary = (% n) = () )

)

Proof of Lemma [].4)
() We compute

To satisfy (a) we must have
n n
Strd ® & = Z ajp;ei + Z BixjiX;
j=1 Jj=1
for some given parameters oy, ..., a,, 51,..., 8, € C. We also have

n m n m
OB =Y Gloi+ > XXk = Y@ — DX
j=1 k=1 Jj=1 k=1

Therefore we have Str #@®* = @*® forall @iffa; =1Vj=1,...,nand B = -1Vk =1,...

(4.1)) follows by direct computation (exercise).
(7i) We distinguish three cases.

Case 1. Consider M = <a 0) and a, b are both hermitian and positive definite.

0 b
Then, using also ([2.9),

Ina O deta
In Sdet M = Str In M = Str ( 0 lnb) =trlna—trlnb=1In qoth
Therefore we obtain q
a O eta
Sdet = —,
¢ (0 b) det b
. 1 o . 0 o
Case 2. We consider the case M = <,0 1) =14+ X with X = <p 0) . We compute
2k _ ((Up)k 0 ) 2+ _ < 0 (Up)k0> k>0,
0 (po)*)’ (po)fp 0 -

Using

_1\k
InSdet (1 +X) =Str In(14+ X) =) (kl)Ster,
k>0

(4.2)
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we argue
Str X% = tr (0p)* — tr (po)* = 2tr (op)F = —2tr (po)*
Str X2k+1 =,

hence

1 1
InSdet (1 + X) = — Z ﬂStrX% =— Z Etr (0p)* =tr In(1 — op) = Indet(1 — op)

k>0 k>0
1
= Z %tr (po)¥ = —tr In(1 — po) = —Indet(1 — po).
k>0

Therefore we obtain
1

1 o

Case 3. Finally consider the more general case <a J) with a, b hermitian and positive definite.

b
We argue
a 0 1 alo 1 ob~! a 0
=6 5) G 1) )G D) 43
hence
a 0 a 0
Sdet M = Sdet <O b> Sdet (1 4+ X) = Sdet <0 b> Sdet (1 +Y),

with

0 alo 0 ob~1
X_<blp 0 ) Y_<pa1 0 >

The formula now follows from the previous special cases.
Using the formulas for the Sdet one can show that Sdet M* = Sdet M (exercise).

[16: 06.12.2024]
[17: 09.12.2024]

(7i1) We compute
M = p ap + ¢ ox + X pp + X"bx
= (a"@)"p = (07)" x + (P"X) ¢ + (0"X)"x-
The result follows. O

a o

Lemma 4.5 (Inverse of a supermatrix). Let M = (p b) e Atmnxmin pe o supermatriz with

a,b invertible. Then M is invertible and

(MY (M (a—ob~'p)~! —(a—abtp)~tab~!
M _<(M_1)fb (M_l)ff) <—(b—f>a_10)_lpa_1 (b—pato)! >

Moreover we have the relations

(1—obtpa ) tob™t =ob (1 — pa~tob™)
(b—pato)t=bt+b p(a— b lp)tob

1

and hence we can express M~' in terms of (a — ob~'p)~t or (b— pa~to)~! only.
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Proof.

Case 1. Consider M = <a 0

0 b) . In this case

where the inverse of a (resp. b) was defined in Example 2 of Section

Case 2. Consider M = (; T) =1+ X. In this case we define
M=) (-1 xR
k>0

The sum above is finite and satisfies M 1M = MM~! = 1. Using the exact formulas in (4.2)
we compute

_ 1—op)™ b —(1—-0p)o
ML= Zsz _ ZX2k+1 — (_((1 B p(ﬂj))_lp (1(_ pg)ﬂ_)1> '

k>0 k>0

Moreover

(1—op)'o=> (0p)fo = o(po)* =o(1—po)~".

k>0 k>0

Similarly we argue (1 — po)~'p = p(1 - po)~" and

(1=po) ' =14 (po)f =14p> (op)fo=1+p(1—0p) 0.
k>1 k>0

g

Case 3. Consider M = <a
p b

) . The result follows from (4.3)) together with Case 1 and 2. [

Theorem 4.6 (Gaussian integral). Consider the supermatric M = (Z Z) € Almin)x(min)
(1

and the supervector ® = <i> with ¢ € C™ and ¢ = | | € (God)". Set Y5 = ;, hence
Un

O = (0*, ") = (P1y -+, Py U1, - - - ). We define

e TT 95005 T 7 o (AR n
dd*dd ._g%gdmdwk— (%) (dpdip)" .

Assume Relbody(a)] > 0. Then we have

/d@*d@ oM _ det(b — pa_'o)
deta

If in addition b is invertible we have

* 1
d®*dd ¢~ T MP — .
/ € Sdet M
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Notation. Assume Re[body(a)] > 0 and b is invertible. Then M is invertible. The normalized
Gaussian measure on ® with mean zero and covariance M1 is defined as follows:

dpipy-1(®*, ®) := (Sdet M) d®*dP e~ * M2, (4.4)

Proof.
We show that the integral above is well defined.

* —P* dpd " — N _oraw —o*oh—* po—ih*
/d@d@eq’f‘“’:/<‘gﬂw> (dipdy)" e 00— @" TV Py

- ¥ / ( W) (dddy)" vrs ()0 "

I,Jc{1,...n

where
1 () = e ¢ PV @ P, ).

This function is integrable since Re[body(a)] > 0.
To prove the statement we can proceed in two ways.

Proof 1. We integrate the ¢ variables first.

/ d¢d¢ e—cp*aape—go*m/)—w*pso — / d@dgo e—@,w)e—(@v)e—(ms@)
m 2 m 2

_ b may L ursatow
det a det a '

Integrating now the 1) variables we obtain

/ (dadw)" e—w*bwew*pa*w

(dpdy)" =" (bmpa i) -

/ dd*dd e~ P MP —
det a

det(b — pa~'o)

d ta deta

Proof 2. In the case also b is invertible, we can integrate the 1 variables first.
/ (dpdep)" e ¥ Pbem oV vIre = / (dipdyp)"™ e~ @0 =) =(Bv)
= detb Bt = et h e# 0P,
Integrating now the ¢ variables we obtain

/ d®*d® e M® = det b / <d‘§d‘p> e~ @a9) e b lpe — et / <d‘§d¢> e~ (@la=at™i0))
m ™ m ™

B det b 1 det(b—pa'o)
~ det(a — ob1 ) Sdet M deta '
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Theorem 4.7. Consider the supermatric M = (Z Z

parameter supervectors. Assume Re[body(a)] > 0 and b is invertible and define C' := M~
Then, for all v,w € C we have

) € AWIX(i) and &6 € A" fuo

/dHC((I)y (I)*)ezcb*@’—&—w‘f*@ — QAW Cf*C‘b/. (45)

In particular:
(i) (Laplace transpose) [ duc(®, P*)ed Y +E® _ (B1CP
(ii) (Fourier transform) [ duc(®, $*)ei(@ ¥ +8"P) _ o~ O
(iii) (second moment) [ duc(®, %) 0P = Cop-

Proof. To prove (4.5) complete the square and translate ¢ and . To prove (iii) derive the
Laplace transform (exercise). O

Remarks Assume now m = n so that we have the same number of bosonic and fermionic
components.

(i) If 0 = p =0 and a = b we obtain

a 0 deta
Sdet =—=1
¢ (O a) det a

and

/ d®*dd e T M® = / 4pdp " ~(@ap) / (dipdap)" e (Po¥) = deta
n \ 2w det a

(ii) For any supermatrix M € A™M*(") it holds (exercise)

Sdet (AM) = Sdet M VA€ K. (4.6)

[17: 09.12.2024]
[18: 13.12.2024]

4.2 Dual representation for the averaged resolvent: GUE case

Recall that a random matrix in the GUE ensemble is a hermitian matrix H € ChNe:ﬁ with
probability measure proportional to dH e~ FtrH? (cf. Section .

Facts about GUE . Since H* = H the matrix is diagonalizable with real random eigenvalues
A, ..., An. The corresponding joint probability distribution can be computed explicitely (see
the book of Mehta)

N
dPGUE()\lw--a/\N):CNHd)\j H‘)\j—)\k|267%2§\;1)\?,
j=1 j<k
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where Cy is the normalization constant. A random matrix ensemble whose eigenvalue statistics
(in the appropriate scaling limit) coincides with the one for the GUE ensemble is said to belong
to the Wigner-Dyson § = 2 universality class.

If the GUE ensemble is replaced by the GOE ensemble (i.e. H € RY*Y) we have instead

herm

N
_N SN y2
dpcor(M, .. An) = Cn [[dr; [ 1A — Ml €72 == %]
j j<k
A random matrix ensemble whose eigenvalue statistics (in the appropriate scaling limit) coincides

with the one for the GOE ensemble is said to belong to the Wigner-Dyson 5 = 1 universality
class.

Both measures above contain two competing effects: the factor e™ 2 pRIERY is maximized when
all \; are small (of order \F) while the term [, |A; —M\|? (with 8 = 1,2) is maximized when

the distance between the eigenvalues is large (repulsive interaction). As a result the eigenvalues
are approximately uniformly distributed on the interval (—2,2).

Information of the position of the spectrum for a hermitial random matrix can be inferred from
the averaged integrated density of states

1ho E
ZAE"N’\E] :/OO dpn (E).

In the case of GUE one can show dpyn(F) = dE pn(E), where

N
Z/RNHd/\k (M, AN) 6(\j — E)=E %Za(Aj—E) : (4.7)

k=1 j=1

is called the averaged density of states. We argue

1 Y 1 1Y

NJZJW—E) = im E NJZZI P re (48)
1 N 1

= Ny I E ZE*“‘ 7| = i T E o (B e — )T

Therefore we need to study the average of the resolvent. The following theorem gives a dual
representation for this average.

Theorem 4.8. For E € R and € > 0 we define z = E + ic. We denote by R the (1]1) x (1|1)
supermatrizc
R:= <Z zpb> ,  with a,b € R, p, p Grassmann.

We also define
da db

dR = o

dpdp.
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With this notation

, . _ _Ngir B2
(4) IE[(E—H&—H) 1}:51-0]-0 AR ¢330 gt o (4.9)

Joto

= Gigjo o / dady e~ ¥+ g =D

1
1070 271 (z—a)N [1 B (z—a)(z—ib)} ’

. _ —Ngtr R 1 _ N — X (a®+b?) (z=ib)Y 1
(i1) 1—/dR€ R ey L zﬂ/dadbe e e L - |

Proof. We proved in Proposition the identity

10J0

E {(E +ie — H); ! } = (=) /dCI)*dq) 0io%io €2 2001 (Bi0i+5v) o5 Xkt (B ort00) Brps +nty)
where we defined N
do.dy; _
dD*dd = <‘P217f3) (dpd)™ .

To write the formula above in a more compact way we define

D) = @j) . 0= (35) -
Then

E [(E +ie — H); ! ] = (—i) / dD*dD p;,F;, €2 Dot ¥ %o Lolem (¥ 21 (¥725)

2070
We reorganize this integral as follows.

N N N
(B5Dk) (D4 D;) = Y Str (D @ B})(®; @ F) = Str (D &, @ F)? = Str M?,
]7k:1 ],kil j:l

N N -
o <A 2> _(Z= |51 290ty )
r B s ¥ =1 iy
Note that ¥ =I'° and A° = A, B¢ = B, and hence M* = M. We compute
Str M? = A? — B? 4 2I'“T.
Using (1.16]) we write

e_%AQ = 7N / da e_%aQe_iaA = 7\/N / da e_%GZe_iZ;V:l P;ap;
V2m Jr V2m Jr

Using Theorem [2.21| we write
Q%Bz g 7\/N / db 6_%b2ebB = 7\/N / db 6_%b267i2§v=laj(ib)wj
V2 Jr V2m Jr
Using Theorem [2.13
S S / d5dp e~ Nooe—i@r+re) _ 1 / ddp e~ NPre—i I @ st 005).
N N
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Putting these identities together and using

a’+ % +2pp = Str B>, @jap; + ¥, (ib)yy; + ;00 + ¢;pp; = PSR,

we obtain o~ VSt _ /dR e~ NS R i, R
and hence
E|(E +ic — H);O;O} = (—i)/dq)*dq)/dR CiBiy ef%StrRQGiZf’ L 1 (z—R)®;
- Z /N(d‘PdSO)N(dl/JW)N /]R2 dadb dpdp vr; (@, p,a, b)¢IEkaﬁkl,

1Jc{1,...N} kkefo,1}”C

where . s N
v11(B, @, a,b) = e =25 [Pl E ) 25 o5 o= 5 (P 4b VPr ks (@, 0, b),

and Pr jp i (@, 9,b) is a polynome. Therefore vy; € LY (CN x R?) for all ¢ > 0 and we can
exchange the integration oder:

E (E—|—Z€— H);f);o:| /dR e *StFR /dq) dd (102090] ZZJ 1@;‘(2 R)®;
N N-1 N
= (5i0j0(—i)/dR e 2SR (/ dP7dd, e Pil— R)qh) /d@*{d@l‘gpl‘Qeﬂl(z—R)fh

In particular this shows that [(E +ie—H)_ L } is independent from jo. We argue

Jojo

. _ . _ 1 ) _
E [(E +ie — H)m;o} = Siso [(E +ie — H)joﬁo} = DigjoE [or (B +ie — H)7'].

Moreover

1
~E [tr (B +ie — H)™ /d<1> d(b/dR ¢~ 2SR ZW 2] X R,

/d(I) d(I)/dR e TSt R g (i35 @ (—R)®;

/dcb d(b/dR e B SR (i35, (- R)®;

where we applied integration by parts with respect to the variable a. Exchanging the integrals
we obtain

N
E |:(E+i€—H)i_();-0} = 5iojo/dR ef%StrRza (/d(‘:[) dd, ei®1(z—R)®1 )

N 2 1 N 2 1
= ;i dR —3StrR =8 . /dR -&¥strpz, L
J/ © 7 Y (Sdet (—i)(z — R))N _ Yoo ¢ " (Sdetz - RN’
where in the last two steps we used (4.5)) and (4.6). This completes the proof of (4.9). To prove
([4.10) we integrate in p, p. We compute, using also (pp)? = 0,
(z —ib) 1 ib)

StrR? =a® —b> + 2pp, Sdet (z — R)_1 = - I — (2 = eppi(zfib)l(zfa).
(Z—a)l—PPm (z —a)

76 [May 1, 2025]



Then (4.10) follows from

~Nop(l- = =ay) 1
dpd o) =N[(1- —— ).
/ pep e ( (z—z'b)(z—a))

This concludes the proof of (i). The proof of (i7) works in the same way. O

[18: 13.12.2024]
[19: 16.12.2024]

4.3 Dual representation for the averaged resolvent: band matrix case

To set up the model, let A = Ay := [~L, L]*NZ< be a finite cube in Z¢. We consider a random
matrix H € Cﬁgfn whose matrix elements are independent not identically distributed. Precisely,

the probability distribution is given by

N 15512
dP(H) ccdH e 2 7% i
where | |
e 0 ifli—gl>w
Therefore, the matrix elements are non-zero only in a band of width W centered around the
diagonal. The parameter W is called the band-width. These models arise in condensed matter

physics in the context of disordered conductors (cf. for example the review by Spencer Random
banded and sparse matrices).

Heuristics. We define N = |A| and consider two extreme cases.
e If W =1 the matrix is diagonal hence the eigenvalues are i.i.d. random variables

dp(A1, ..., AN) x HdAje—z—;A?,
J

In this case the eigenvalue spacings satisfy Poisson statistics in the limit N — oo. For ex-
ample, the probability there is no eigenvalue in the interval (E,E + 3;) is proportional to

(1-— c’%)N — Nosoo €°¢. In particular the probability converges to 1 when s — 0.
o If W > N the matrix is in the GUE ensemble whose eigenvalue distribution is
_1y2
dp(h, . An) o [JTaM] T = 2 [T e >,
J 1<j J

In this case the eigenvalue spacings satisfy Wigner-Dyson statistics in the limit N — oco. For
example, the probability there is no eigenvalue in the interval (E, E + §;) is proportional to

se™*° in the limit N — oo (see the book of Mehta). In particular it converges to 0 when s — 0
(level repulsion).

In the general case we expect a phase transition between Poisson and Wigner-Dyson statistics
depending on W and the dimension d of the lattice in the limit N — co. Precisely:

(i) for d = 1 the model exhibits Poisson statistics for W < N 2 and Wigner statistics for
W > Nz (proved);
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(ii) for d = 2 the model exhibits Poisson statistics for W < In N and Wigner statistics for
W >1In N (conjecture);

(iii) for d > 3 there eixists a Wy > 0 independent of N such that the model exhibits Poisson
statistics for W < Wy and Wigner statistics for W > Wy (conjecture).

Here we show a dual representation for the averaged resolvent.

Theorem 4.9. Let

\ij|2

B = [ e ),

herm

where we assumed that Ji; = Jj, > 0 Vjk, and Z > 0 is the normalization constant. Assume in
addition that J > 0 as a quadratic form.

For each lattice point j € A, we introduce the (1|1) x (1|1) supermatriz R;

R; = (a]: Z’?) ,  with aj,b; € R, p;, p; Grassmann.
pPj  0j

We also define

dadb\* _ _
dR::Hde:< o ) (dpdp)™, (R, JT'R) = (J7")jxR;Ry.
i ik

With this notation the following identities hold for all z = E + ie, with E € R and € > 0.

) _ —1Str(R,J 1 _
(i) E [(Z—H)jogo} :5i0j0/dR e~ 2SR TR) ( la)joﬂm (4.11)
J

dadb\™ 10 ~tares I-1b (o—ib)
= 52‘03'0/ < ) e~ 2((a,J 7 a)+(b,J ))(J_la,)jo ——2 1 det (J_l — D) ,
R2A

2T ; (z—ay)
(4.12)
where D = diag {Dj}jea and
1
D;:=1- i
! (z — a;)(z — iby)
(i) We also have
_lgy -1
1= /dR em2Pr (I R)H Sdet;Rj
J
dadb\* 1,1 4 —ibs
—7((a,J 7 a)+(b,J b)) (z—ib;) -1 _
_/]R2A< 27 > ¢’ 1;[ (z—a;) det (J D)'
Proof. Exercise. Works as in the case of GUE. O
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4.4 Asymptotic analysis of the dual represenations

Theorem 4.10. Let U be an open set with R* C U C C", F,g: U — C two functions analytic
in each variable separately and ~v: R™ — U a smooth path. Assume the following assumptions
hold.

(a) e NF e NEg o=NFoy o=NFovg o~ ¢ LYR™;C) VN > 0 and
/ dz e~ NF'@) :/ dz det(dv(z)) e NFOE),

/ dz g(x)e V@ = / dz det(9v(z)) g(y(z))e NFOE@),

(b) The function x — H(z) := Re F(y(x)) admits ¢ > 1 global minimum points x1, ..., x4
with H" (xj) € R™™ strictly positive Vj =1,...,q and

inf [H(x) — Hp] >0, where Hy,=H(z;)Vj=1,...,q.
z local minimum
THLL,..., Tq

(¢) The point z; := ~y(z;) is a critical point of f (i.e. Of(z;) € C™ vanishes) Vj =1,...,q.

Then as N — oo we have

n

N2 —NF(z) — ,~NHm 4 _—iNImF(z;)__detdy(z;) 1
(1) Gy Jrn @ € ‘ { =1° Tty O )]

) NZ _NF(z) _ ,—~NHpn, —iNImF(z;) 9(z;) det 0v(x;) 1

where the square denotes the principal root.

Proof. Exercise (works as in the scalar case)
O

Application 1: averaged DOS for GUE. Recall the definition of the averaged density of
states (DOS) in (4.7) and its equivalent formulation (4.8). Using the dual representation from
Theorem [4.§ we can write

1
E)=—= lim Im In(E +i
pn(E) — Jim Im N(E +ie),

where we defined

a, (4.13)

. . N _N a24b2 (E+i€—ib)N 1
IN(E +ie) = %/da db e ) (E +ie —a)V [ ~ (E+ie—a)(E+ie—ib)

Our goal is to study this integral as N — oo. Note that
IN(E + iS) = IN(E — is) = IN(—E + i€),
and therefore it is sufficient to consider the case E > 0.

[19: 16.12.2024]
[20: 20.12.2024]
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We introduce, for k = 0,1, the two integrals

k ; VN _N,2 1
I](\,’)a(E—i—ze) ::F/dae 2 E+z’5—a)N+ka

I()E—i—za /dbe 2b (E+ic—1b
( Nor N~

With this notation, we can reformulate I (E + ic) as

IN(E +ie) = Iy, (E +ie) IG)(E +ig) — IV (E +ie) I (E + ic).

We define
1§ =10 (B) = lim IS (E+ie),  I¥) = I$)(E) = lim I$)(E +ie).

@ ’ e—0+ Ny

The asymptotics of IJ(\(,))b was studied in Theorem (for E > 0) and equation (3.10]) (for £ = 0).
In the last case a direct computation also gives

0 if N —k odd

(N—k—1DUN""2" if N—Fkeven,

2

For E € (0,00), with E # 2, using the same arguments as in Theorem we obtain the
following.
e For F > 2 we define F'4 ::%i %2—1. We have
O<E_<1<Ef<E, EF-E =FE_, ELE_=

and, as N — o0,

(k) Npz By 1
Iny(E) = e> N 1+0(%)]- (4.14)
oForO<E<2wedeﬁne€i::%:|:i 1—%2.Wehave
€4 =1, E. =&, E-& =& EL8_=1
and, as N — o0,
k Ngo gN-k Nga gN-k o2
IW)(E) = e S et g 10 (), (4.15)

The next result gives the asymptotic behavior of I](le(E) for £ >0, E # 2.
Theorem 4.11.

(i) For E € R we consider two complex paths:
VR = (—00,E—R)UCRU(E+R,00),  Cg:={E—Re }oco,R>0 (4.16)

R —ic:= {x —ic}yer, ¢ > 0. (4.17)
Then, for all R > 0 and ¢ > 0 we have

\/ﬁ N _ 2 1
lim 7{) :/ da e 2% ———
04 N ﬁ N O

1
da e 2% —— g
V2T /]R ic (E - a)N+k
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(i) For E > 2 we have, as N — oo,

) N 12

IPD(E)y=ec>"E —=—_[1+0(L)]. (4.18)

e

(i1i) For 0 < E < 2 we have, as N — o0,

1E) = Hete Sy onneto (1) (1.9

Proof.
(1) exercise: use the fact that the function z — e 27 (E+ie—2z)~N~%is analytic on C\ {E +ic}.

(79) Fix E > 2. We study the function

f(a) = % +In(E — a).
We compute
, 1 a’ - FEa+1 ” 1
f(a) a E—a a—E 9y f(a) (E_a)2

The critical points are real: a = F.. If we consider f as a function on R, f has a local minimum
in E_, a local maximum in F; and converges to —oo as a — E. To ensure our integration path
reaches a critical point we use the contour vr. Our goal is to choose R such that Ref along the
path vr has a unique global minimum in @ = E_. Therefore we study

E? —2RFE cosf + R2cos 20
5 .

H(A):=Re f(E—Re ) =InR+

We compute
H'(6) = Rsinf (E — 2Rcos) .

Since Rsinf > 0 for all # € (0,7) we only need to study F — 2R cos . This function is strictly
positive on (0,7) if E — 2R > 0, i.e. R < £.1In this case we obtain H'(f) > 0 on (0,7) and
hence H(#) > H(0) = Re f(E — R).

Since E_ < £ we can set R := E_. With this choice H(f) > f(FE;) which is a local max for f
on R, and hence Re f along v admits a unique global minimum in E_. Moreover f’(E_) =
1 — E? > 0. The result now follows from Theorem

(7i7) Fix 0 < E < 2. The critical points are complex: a = £;. Only £_ lies in C_. In this case it

is more convenient to use the contour R — ic with ¢ :=4/1 — %2 Therefore we study

H(a) :== Re f(a—i\/l—bf).

For E? < 22 this function admits a unique global minimum in @ = £ and H”(5) = Re f"(£_) =
Re (1 —&2) > 0 (exercise). In this case the result follows from Theorem
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For %2 < E? < 2 the point % becomes a local minimum while the global minimum moves to
a = E. This happens because we are approaching the real axis and hence the pole. To solve the

. . 2 _; . 2 .
problem we can perform a contour rotation a — iy/1 — ET —ae W —j\/1— ET (for details see

Disertori: Density of states for GUE through supersymmetric approach).

Corollary 4.12.
(i) In(E) :=lim. 04 IN(F + ic) is well defined.

(i) For E > 2 we have, as N — o0,
1
IN(E)=E_+0O ¥/

(i11) For 0 < E < 2 we have, as N — 00,

IN(E)=E_+0 G]) .

Proof. To prove (i) we multiply the corresponding formulas for I](\];)a and I](\]f)b.

(79) We compute

N—k 2 N+k
EYFph

k k B2k
I (B)IGHE) = B- =+ O (%) = B-=525 + O (&)

Hence
0 0 1 1 1-E2
In(E) = I\ (E)IV)(E) — I, (E)I)(E) = B- =gz + 0 (§) = E-+0(%).
(7it) We compute
k k . _Ng2 Nga gN-k Nga gN-k
BB = e ¥y [ehe S A S [ o (4)
g2 N(g2_g2 e 1
=& [1_52+62‘ ! )mw] +0(x)-
Hence
1-£2
In(B) = IO, (B)I,(B) — Iy (E)IG(B) =& gz + O (%) =€ +0 (%)
Remark 1

(iii) = pn(E) = 11/1 - B + O (%) for E € (-2,2).

The limit is called semi-circle law.
(i1) = pn(E) =0+ O (%) for |E| > 2. More precise extimates show

pn (E) oc e N9E)

Y

where the function g(FE) is known explicitely.

O
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Remark 2 limg_ o /1 — = =0. Setting £ =2 — Nt25 with t > 0 8 > 0, we get

E? 1
1= =0 ()

A more careful asymptotic analysis of the integral gives, for 0 < § < %

t 1 E? 1
Pv\2- e ) = oV T PO\ mrem )

For 0 < 8 < % the first term is still dominant. For g > % the first term is as small as the

correction so we have to change the formulation.

Setting £ =2 — # with ¢ € R one can prove (see Disertori: Density of states for GUE through
3

supersymmetric approach).

t 1 1 1
:ON< 2>:O<1>:1F(t)+0( 2>7
N3 N3 N3 N3

where F'(t) can be explicitely written in terms of Airy functions and F'(0) # 0.

Application 2: averaged DOS for band matrices. Recall the definition of random band
matrix H € C2A ' with A = [~L, L]* N Z%, in Section and consider the covariance

herm?’
Jjk = (-W2A 4+ 1))
where —A is the lattice Laplacian with periodic boundary conditions at the boundary of A. This
matrix satisfies Jjp > 0 Vj, k and J > 0 as a quadratic form. Moreover

J—kl

: , _I
0<Jjx=f(l7—kD) < Pw(lj—k))e” 7,

where Py (|7 — k|) is a prefactor (with at most polynomial growth) depending on the dimension.

For example ind= 3 PW(|] — k’) X m
We want to study
1 -1
pA(E) == — ;Eli%gr |A|ImE[tr(E+z€—H) ]
where, using Theorem
L g o (E +ie— H)™!
Tl ]
dadb\™ 1,1 o S,
= -5 ((a,J"ta)+(b,J~1b)) ]0 (E+ie— zb -1 D
/RQA < 2T ) e ? (E+ic—ay det (J )
dadb\* 1,1 ]
_ 1 —L(a,J " a)+(b,J b)) (E+ie—ib; ) -1
Al /]RzA < 2 ) em2 a (E+ic—a; det (J B D)
Jo J

dadb\® _1 ad=Lta)+(b.J~1b (E4ic—ibj) —1
:/RQA( 2W> e BT 0 gy | T] ey | geq (571 - D),
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where

1
(E +ie — aj)(E + i — ib;)’

D= diag {Dj}jEAa Dj =1

in the third line we used
S (T a), = WAL —-Aa) + Y a,
Jo Jo
together with —A 1 =0 and in the last line we used translation invariance. Note that

_ w? 2 _1
e—2(0d71) = o= Xjjoki=mi(@i—an)® =3 35 af

Hence, if we assume W >> 1, this function is very small whenever |a; — ai| > ﬁ for some
nearest neighbor pair j, k. Therefore we expect the integration measure to concentrate near the
configuration a; = a and b; = b Vj. Fixing A we compute

- dadb\* o~ L (@) (6,1 10)) (Eie—ibj) | 04 (J7' - D)
W—o0 Jr2A ’ j W)
j

_ / da dbe_%(a2+b2)a ((%‘FlE*Zb))'A‘ <1 _ ‘ 1 . . ) '
R 27 (E+ie—a) (E+ie —a)(E + ic —ib)
The last integral is the dual representation we obtained in the GUE case. We studied the
corresponding asymptotic as N = |A| — oo in the previous section. Our problem is to prove a
similar result fixing W (it may depend on N) and taking the limit N = |A| — oo first. This is

done via a combination of cluster expansion (to reduce the main computation to a finite volume
A independent of A) plus saddle analysis in the finite volume Ag.

[20: 20.12.2024]
[21: 07.01.2025]

5 Supersymmetry

5.1 Linear transformations on complex supervectors
Remember that Cy(R; C) is the set of continuous functions vanishing at infinity.

Lemma 5.1. Let f € CYR;C) N Co(R;C) with f, ' € LY(R) and Let ¥,v be Grassmann

variables. Then

dpdp — —
[ e dgav 10+ 90) = £(0).
Proof. We prove first that the integral above is well defined. Since (37))? = 0 we have

f(@o+0y) = f(Be) + [ (@e) . (5.1)

Therefore we only need to check that

/(C dpdo| fP () < 00 k=0,1.

We argue, using dpdy = 2dx dy with ¢ = x + iy,
[ dwdelr® @) =2m [ awdr (06D =2 [ du |70w) < .
C 0 0
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To prove the lemma we argue
dedp — - ded v
| G dvav roe+Tv) = | 5050, [1(5e) + 1 @eiv)
ded >
—— [ BErwe == [ 2ar 167 = 10
O

Remark. The following two examples show that the argument above works only if we have
perfect grading, i.e. the same number of bosonic and fermionic variables.

Example 1: 4 fermionic and 2 bosonics variables. Assume f € C? f,f', f" € LY(R) and
11 € Cy(R; C) Let 11,1y, 12,19 be four Grassmann variables. We compute

F(@p + 101 + Yatha) = f(@e) + [ (@) (W11 + Yoth2) + [ (@) 131 hatbe.

Hence

dipd — — dod
[ 555205,00,05,00. 1 B + Tuwn + i) = [ GEES"G0) = 1'0) £ 1(0),

Example 2: 2 fermionic and 4 bosonic variables. Assume f(z),zf'(z) € L' and zf €
Co(R; C). We compute

dprdprdpades dprdp1dpadps
c2 (2m)? c2 (2m)?

3 3 ¢ 3 > / _ 2 3 > U U
Gl [ ey - <2w>2’8'/0 duuf'(w) = ol [ du ) # 110).

2
B30 f( Z j ) = f'(@1e1 + Pagn)

One-parameter groups of transformations Remember that a linear transformation on
® € g™ is represented by a supermatrix. For a given X € A(Mx(mn) we consider the
function

R R — Almn)x(m|n)
t = R(t) := etX.
This function defines an abelian group. Moreove R is smooth with R’(0) = X.
Definition 5.2. Let X € A™WX(mIn) pe o given supermatri.

(a) even if o =0 = p,
(b) odd if a=0=0b.
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(iii) Let ©1,...,0m € C, 1,91, ..., 0n, b, a family of generators for G and remember

LSy
I
N
< S
N———
|
1
VR
<[]
N————
|
*
a
<

Lemma 5.3. Consider the group t — R(t) = !X

(i) We have

1@(%20 = X® = dd = (d‘p> ,

)
dt dip '

d_ o
ZB(t)jmp = X T =1 dB = (dw
(ii) For any function F(®,®) reqular enough we have

4 @), B0 =S (deidy, + dpj05, ) F + 3 (w0, + dirdy, ) F.

J:]_ =1

(11i) Assume now X is odd.

(a) R(t) leaves the function ®*® invariant < R(t) is unitary i.e. R(t)*R(t) =1Vt € R

S X =-X &

(b) Assume R(t) = e'X with X as above. Then

d o m
th((I)( )?q)(t))hf:O = Z (a]lel + ang]l) F,
j=11=1
where we defined
DJZ - wlaﬁﬁj - Spjaqz“ b]l = ¢la¢j + 30]87!% (5'2)
Proof.
(7)(i7) exercise
(7i7)(a) We argue ®*(t)®(t) = &*® Vt & X* = —X. Since
0o\ [0 p
p 0) \—-0* 0)’
we obtain ¢ = —p* and p = ¢*. The first condition follows from the second. The result follows
setting o = a.
(732)(b) The result follows from
doj = (a); =Y agh,  dp; = (@), = Zaﬂ@,
I=1
dy = (%) =Y @, diy = Z%l%
j=1
O
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In the following we concentrate on the case m = n (perfect grading) and pj; = d;,p;, hence

In this case we can reorganize the supervector as ® = {Qj}j:h._,n with
(D_< )7 @A_(j>7 (p_ 907¢ )
J Wb J b J ( J J)

and

Definition 5.4. Consider the unitary rotation R(t) = {R;(t)}}_, introduced above.

(i) R(t) is called a local rotation. The action of the infinitesimal transformation on a function

s given by
n

4 rG), =3 (a;D; + @D F,

Jj=11=1

(i) If Rj = R = X with X = <2 (0;) for all 3, we call R(t) a global rotation. Then the

action of the infinitesimal transformation on a function is given by

d

%F@(t), O(t))ji—0 = aDF +aDF, D= ZDj’ Do— %:D

Proposition 5.5 (properties of D).

(i) Consider ®;(t) o= e with X; defined above. We have ®;(t)*®;(t) = Pr0; Vi and
D; ®1®; = 0 = D; &1®;.

(i) Consider a global rotation ®;(t) := X with X defined above. We have QL) Px)(t) =
QiP, VI, Vi, k=1,...n and D P;P, =0 = ﬁq);q)k.

(iii) Let F(®,®) be a function

F@,®) = >  w@ew ' = Y gy’

IJc{1,...,n} IJc{1,...,n}

where p; = xj + iy;. Assume gr; € CHR?*™) N Co(R*™) and dyg17,0y915 € L (R*™). Then

/d@;dobj D;F=0 Vj=1,...,n.

Proof.
(7)(i7) exercise

(7i7) We have

™

« dpdyp
/d(I>jd<I>j DjF:/(C ; 05 Oy, D;F.
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We compute

05, 0p; DiF = 05 9y, (¥;0,, _@a@j)F = 9%,0,90, (W5F).

J J

The result now follows from
1 _
/ded@@@jvu(so,@ = /RQ 2djdy; (9r; = 0y;) vis(p(x,y), @(x,y)) = 0.
O

Remark. In (iii) we need gy, differentiable to ensure D;F' is well defined, 0,915,0y915 €
LY(R?") to ensure &pj%ijF € LY(R?") and gr; € Cy(R?") to ensure that [ d®%d®; D;F = 0.
Note that we do not really need 9,977, 9ygrs to be continuous.

[21: 07.01.2025]

[22: 10.01.2025]

Theorem 5.6 (localization theorem I). Let F(®,®) be a function

= _ — —J
F@,8)= > wu@ewd' = S gy’
IJc{1,..,n} IJjc{1,...,n}

where p; = x; + 1y;. Assume

(a) gry € CHR?™) N L= (R?*™) N LY(R?*™), |¢|*gr; € L' (R*™), |p|grs € Co(R*™) and d(pg1s) €
LI(RQn),
(b) DF = 0.
Then
/ (d*d®)" F = F(0), (5.4)

where we defined
@j dp;
27

(dD*dD)" = ﬁ

j=1

dip ;).

Example Consider a function f: C" — C such that
e f is analytic in each variable z;; separately.

e The function h(z,y) := [],; a7 (2)z:;=p,0, With ¢ = x + iy, satisfies the assumptions (a)
of the theorem above.

Then DF({@;‘@J»}%ZI) — 0 and

[aorasy s((@i0,35) = £0).
Proof of Theorem [5.6. We define, for t > 0,

I(t) == / (dD*dD)" e " F (D, D).
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For ¢t = 0 we recover the integral we want to study.

e We show that I'(t) = 0. We compute
I't) = —/(d(I)*d(I))” e PP D F(D,D).

This integral is well defined also for ¢ = 0 since |¢|%g;; € L'(R?"). Note that
;= Dj(—p;P;),  hence ' =D &3P, =DX, A:i=—> o).
J J

Therefore
') =— / (d*d®)" (D)) e " F(3,F) = — / (d®*d®)" D (Ae*tq’*q’F(@@)) ,

where we used D (e '*"®F(®,®)) = 0. The result now follows from Prop 5.5
e Since I'(t) = 0 we have
I=1(0)= tll)rgol(t).
We compute, by scaling,
* — x 1 1 —
I(t) = [ (d®*d®)" e " °F(®, D :/ dP*dP)" e PR (—d, — ).
(1) = [ (a0*de) (@) = [ (a0 a®) (5595
Note that d®*d® is scale invariant because we have perfect grading. We have
1 1 1 1 1 —J
F(—®,—®) = Z — gV (@ <P) Wiy
) |+ J )
VEVE Ty VBT AT
By the assumptions on F' the function vy is bounded, hence
1 1 = _
Cry ::sup/ dodp)vry < ,> e ¥ <lvrs Loo/ dodp)" e %% < 0o VI, J,
Sup (dpdep)”| NAdVAd | [orsll (dpdep)
and therefore all contributions with || 4 |J| > 1 vanish in the limit ¢ — oco. Using
- _
H%%e V=1,
J
and . .
tlggo vrJg <\/E% \/Zgo) = v77(0,0) pointwise VI, J,

we obtain by dominated convergence

) L dpdp\" 5, (1 1 _ B dpdp\" 5,
tllglof(t)—tllglo Cn< 27 ) c F(ﬁ@’ \/%w,0,0)—F(O) n e = F(0).

Remark. We need gr; € L'(R?") to ensure the starting integral is well defined, g;; differen-
tiable to ensure D;F is well defined and d(pgrs) € L' (R*) to ensure the integral I’(t) is well
defined for all ¢ > 0. . Finally we need |¢|gr; € Co(R?")(R?") to ensure [ D; (Ae™'®"®F) = 0.
Note that we do not really need 0,97, 09ygrs to be continuous.
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5.2 Linear transformations on real supervectors

We consider now the real Grassmann algebra G = Grl)1, ..., ¥N].

Definition 5.7. For m,n > 1 we consider the real vector space G™2" of all supervectors ® of

the form
T

Lm,
S
m

with 1, ... xm € GV and &1y, . .. Epnn € GO,

&n
Mn
We endow this space with the bilinear form
gm|2n % gm|2n —y geven
(@, ®') = @@ =300 gl 4+ 30 (G + &mp)

Lemma 5.8.
(i) - is symmetric ® - ' = o' . .
(i) It holds ® - & =371, 23+ 23 &mi. Moreover body(® - ®) > 0 and
body(® - ®) =0« body(z;) =0Vj=1,...,m.
Proof.
(¢) This follows from &my + &my = &) + &mi-
(7i) The statement follows from body(® - ®) = Z;nzl body(:L‘j)2.

Remark. Note that ®-® = 0 does not imply ®; = 0.

We restrict now the the case m = 2n (perfect grading). In this case we can reformulate ® € G2*I2»
as @ = {®;}7_; with

Lj
o= Y% [eg.
£
j
The corresponding bilinear form is

D - Oy i= wjTE + Yijyk + e + Ernje

We can reformulate ® =

me 8

€G22 = gﬁ'z in terms of two complex supervectors ®,, ®. € g’”l,

n
where G’ = G’ is a complex Grassmann algebra, as follows. Setting
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we define

0= (9). o= 9.

PO, =P+ =a 4y +2n=3-d (5.5)
DL+ V1D, =B + P o+ Y+ = 2w’ +yy + & + &) =20 @

The inverse transformation is defined via

We compute

_et® L _e-P

2 YT
- v+ Y — 1/)
=, M=

Remember that, setting ®.(t) := /X ®, with X = < > AMDXAN) e have

d
SOL.(1) =

_ _ (de\ _ (o = (dp\ (o
o)) 2 -(5)

Definition 5.9. We define

and

0
_ vt
t— O(t) = £
n(t)
_ o(t) +o(t) ) _ o(t) — (1)
$(t) - 9 > Zy(t) 5
ﬂ@:w@;wm’ mﬂfwwgww

Proposition 5.10. Set § := % 8= O‘Qj The following statements hold.
(i) It holds

d _|dy| _ | —t(BE+ By
aq)(t)ltzo “lac| = —gx —I—Biy)
dn Bz — Biy

(i) L& (t)- (t) =0 Vt.

(i1i) For any function F(®) regular enough we have %F(q’(t))u:o = (8D + BD)F, with
D := £0, — im0y + iy0¢ + x0,
D = ndy — i€y — xdg — iy,

(iv) [go dvdyde0yDF =[5 dxdyded,DF =0

Proof. exercise 0
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Remark. We can generalize the results above to n supervectors ®;,...®,, € Qﬂé‘z as follows

(exercise).
(i) It holds )
da; Bi&i + Bimj
d dy; —1i ( B;&5 + Bjnj .
0 —Bjzj + Byiy
K Birj — Bjiy;
(ii) %q)j(t) -®;(t) =0Vt and Vj =1,...,n. Moreover, if 8; = 3 and Bj = B Vj we also have
d
%Qj(t)-fbk(t):o VteR, Vj,k=1,...,n
(iii) For any function F(®y,...,®,) regular enough we have
d . 5 =
2 (@()j=0 = > (8;D; + B;D;)F,
j=1
with

Dj := &0y, — in;0y; +1y;O; + x50y,
Dj =10, — &0y, — x;0¢; — iy;oy,.

Moreover, if 3; = 8 and Bj =8 Vj we also have

d
ZF(@()m0 =5 ZD F+8 ZD )F.
(iV) ng dmjdyjﬁgjﬁnijF = ng dxjdyjagjanijF:O.
Theorem 5.11 (localization theorem II). Let F(®) = F(®4,...,®P,) be a function
F@) = Y unse )y’

Ijc{1,..n}

Assume

(a) viy € CYR?™) N L=®(R*) N LY(R*"), [(z,y)|*9r; € L*(R*), |(z,y)lgrs € Co(R*™),
Ou (zjg15) € LN(R?*™), Oy, (z915) € L*(R*™), Oy, (yj915) € LYR*™), Oy, (yi915) € L' (R*™),

(v) DF = (Y, D;)F =0.

Then
/ (dB)" F = F(0), (5.6)

where we defined

n dz;dy;
(d®) :=H dgjdn;.
j=1

O]

Proof. exercise

[22: 10.01.2025]
[23: 14.01.2025]
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6 The H?? model

6.1 Motivation: random walks with memory

Definition 6.1. Let A C Z% a finite or infinite set and Ep = {e = {i,7}|i # j € A} the set of

unordered pairs (undirected edges).

ZjeA\{i} Wi; satisfies 0 < W; < oo Vi € A. We define for each i # j pij = VVI%
particular p;; € [0,1] and ZjEA\{i} pij =1 VieA.

(i) Let W = {Weleer, C [0,00)57 be a family of non-negative weights such that W; :

In

The random walk (RW) on A in the environment W is a countable family of random
variables X = { X, }nen € AN where n is a discrete time and X,, can be seen as the position
of the random walker at time n. The time evolution is defined as follows. Setting Xg = ig
the starting point, the probability the random walker follows the trajectory ig, ..., %, up to

time n 1s

w , , SN
Pi (Xn = tny X1 = in—1,..., X0 = 10) := Digi1 Pirio =" Pin—1in-

The random walk is simple if W;; = W1,_j—1. In this case we have p;j = ﬁlﬁ_j‘:l, for

A =79

(ii) Let du(W) be a probability measure on [0,00)FA such that 0 < W; < oo Vi € A p—almost
surely. The random walk in random environment (RWRE) on A starting at iy with mizing

measure i is a countable family of random variables X = { X, }nen € AN such that

Py, (X; =1i;Vj =1,...n) ::/ du(W) PY (X; =i;¥5 =1,...n).
[0,00) A

(iii) Let a = {ac}ecr, C [0,00)PA such that 0 < djea(iy @ij < 00 Vi € A. We introduce n—

depedent weights

Wo(n) = 0 if ae =0
¢ . Ae + Te(n) if ae >0

where T,(n) is the number of s the walker has crossed e (in any direction) up to time n.

Setting Wi(n) :=>_ e\ (i3 Wij(n) we define the time-dependent crossing probabilities

pij(n) == WW/;;;((:)) .

The linearly edge-reinforced random walk (ERRW) is a countable family of random vari-

ables X = { X, }nen € AN such that

PiRRW (Xj = Z]Vj =1,... n) = Digiq (1)pi1i2 (2) © o Pin_in (n - 1)'

For more random walk models with reinforcement see also the review by G. Kozma Reinforced

random walk https://arxiv.org/abs/1208.0364.

Remark 1 The behavior of a random walk in a random environment is determined by the

mixing measure du.

For example, if the measure is supported near W;; = W1j;_;_; then X behaves as a simple

random walk.
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Remark 2 The random walk has no memory: the conditional probability

PY (Xni1 = | Xn = i, X1 = int,..., Xo = i)
PE)/ (X1 =7, Xn =1, Xn-1=ip-1,..., X0 =i0)

= ; : : N — Pinint1
]P’E/X (Xn =1, Xn—l = Zn—th—l = In—1y--- ,Xo = Zo)

does not depend on { X } ! The random walk in a random environment and the edge-reinforced
random walk are both hlstory—dependent. In particular the ERRW is more likely to cross edges
it has already crossed in the past (reinforcement towards the past).

Theorem 6.2. Let ES := {e € Ep| a. > 0}.
Assume A C Z% is finite and (A, E$) is a connected graph.
Then the ERRW is a RW in a random environment. Precisely

PERRW (X, =iNj=1,...n) = /d,u(w) PY(X;=iVj=1,...n),

where the random weights are parametrized as wi; = 1 jyers Wijetitui  where W = {We}eeEg €
[0,00)%1, u = {u;}jen € RA, and we defined

H d’)/ae d:U’A zo( )

e€eEY}
where
dWw,
e, (We) 1= W Haee e
7 e(W ) F(ae) e € We>0
j —U‘ —FW U
dpy o (w) = do(us,) [ r 1e7 N (V) ety (An(u)),
JEM\{io}
Z Wij(cosh(u; —uj) — 1)
{ij}eE}

and Ap(u) € RMA s defined via

AA(u)ij = —1{ij}€E1a\Wij6ui+uj + 1,':]' Z Wikeui—l—uk.
keA\{i}

Finally det;,;, A is the determinant of the matriz obtained by removing the row and column i
from A.

Proof. See C. Sabot, P. Tarrés: FEdge-reinforced random walk, vertex-reinforced jump process
and the supersymmetric hyperbolic sigma model J. Eur. Math. Soc. 17, 2353-2378. O

Remark. The weighted Laplacian —A% on A is defined by

(=28%)ij = —Liggwij + Lizj Y wir.

keA\{i}
Hence Aj(u) = —AY{ with weights w;; = 1{ij}€EXW}je”i+“J'. The matrix restricted to A;, :=
A\ {ip} can be written as

AA(U)‘AZO XA'L’O — _ALXlO + m c RAZO XA'LO’
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with

mij = 05 Wig,e"
Note that, since W, > 0 v, —almost surely we have £ = E} and the graph (A, E}) is
connected almost surely. We compute for ¢ € R0}

(@ (=A%, +m)p) = > Wye'ti(pi—p)’+ Y Wie"igf >0.
{iYeEY (o) jeM\{io}

Therefore det;i, Aa(u 0. We show now that the determinant is strictly positive. Indeed

) >
(p, (— A“’Z_O—i-m) @) =0 iff
® ©; = p; Vi # j € Aj, such that W;; > 0, and

e ¢; =0Vj e A such that Wj;; > 0.

Since (A, EXV) is a connected graph almost surely, the above conditions hold only for ¢ = 0.
Hence det;yi, Ap(u) > 0.

Theorem 6.3. Let A C Z% be a finite set.
Let W = {We}ecr, € [0,00)Pr and ¢ = {&;}jen € [0,00)" be two family of weights such that
(A, EYY) is a connected graph and > jen€i > 0.

We define
FXY (Vu) Z Wij(cosh(u; —uj) — 1) (6.1)
{Z]}EEW
S(u) = Zej(cosh(uj) -1) (6.2)
JEA
Da = Da(u) i= —AS™ 4 gt ¢ RAA (6.3)
where )
w(u)ij = I/I/ijeui+uj, éij = 6ij5j7 6% = 5ij€uj

We consider the measure on R

a5 () o= T e F (V)= M5 /et D ) (6.4)
]GAm

The following statements hold.
(i) [pa dpA =1 VYW, e such that (A, EY) is a connected graph and > jen€i > 0.

(i1) dp s, (w) = d8(uig)dpy\ 7,0y (w) with £ := Wi, for all j € A\ {io}.
Proof.
(i3) follows by replacing u;, = 0 is F}V(Vu) and M5 (u) and remarking that det;;, Aa(u) =
det DA\{io}'
To prove (i) we need to reformulate [pa de/’E(u) as an integral over bosonic and fermionic

variables and then use the localization theorem [B.11l This will be done in the next section.
O

[23: 14.01.2025]
[24: 17.01.2025]
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6.2 A hyperbolic nonlinear sigma model

Remember that, in the classical O(N) model, the spin S; at point j € A is an element in the
Hilbert space (RN ,+), where - is the euclidean scalar product. The spin must satisfy in addition
the nonlinear constraint S; - S; = 1. The corresponding energy functional is

1
H(Sy) = §Zij’Sj — Sil? +Zhj <S5 = —ZijSj - Sk +Zhj - Sj + const.
Jk J Jk J

We replace now S € RY with v € G312 where G is a real Grassmann algebra i.e

2y, 2 € GOV &, € GO, (6.5)

<
I
I mou e 8

The euclidean scalar product is replaced by
(v,0) == za’ +yy — 22"+ &0 + &y, (6.6)

This a a Grassmann extension of the classical Minkowski inner product in 2 space dimensions.
In particular we have
(v,v) = 2% + y? — 22 + 2.
Note that body((v,v)) may also be negative. The nonlinear contraint S-S = 1 is replaced by
(v,v) = —1. This holds iff
22 =142+ + 2.

Since body(1 + 22 + y? + 2¢n) > 1 we can define the square root of the above expression. Hence

(v,v) =—1 & z=+14 22+ y2 + 2.

There are therefore 2 even (x,y) and 2 odd (£, n) independent variables (perfect grading). Note
that, without the Grassmann part we would obtain the standard hyperbolic plane H?2.
For all v, v’ satisfying (v,v) = (v/,v") = —1 we compute

(v—2"v =) ==2(v,v) - (v,v) — (V,v) = =2(1 + (v,0")). (6.7)
Definition 6.4. We say that the vector v € G312 belongs to the hyperbolic space H?? if
(v,v) = —1, and  body(z) > 0.

Lemma 6.5.

(i) ve H?R iff 2 = \/1+ 22 + 42 + 2.
(i) For all v,v' € H?? it holds

(a) body((v —v',v —0")) >0 and
(b) body((v —v',v — ")) =0 iff body(z) = body(2’) and body(y) = body(y').
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Proof. We abbreviate zg := body(x), yo := body(y), 20 := body(z).

(7) (v,v) = —1 implies z = :l:\/l + 22 4 y2? 4 2¢n. The result now follows from the constraint
29 = body(z) > 0.

(73)(a) Using and (6.7) we have
body((v —v',v — ")) = —2body(1 + (v,v")) = —2(1+body((v,v"))) = —2(1+x0zH+YoYh —202))

We show now that 1 + zoxf + yoy, — 202, < 0 and hence body((v —v',v —v’)) > 0. Indeed,
setting Vj := (1, 20,90) and V{ := (1,z(,y,) we argue

1+x0x6+yoy6—zoz6:1+azox6+yoy6—\/1+x%+y§\/1+x’02+y62

=Vo- Vg — Vol [Vg] <0,
where in the last line we used Cauchy-Schwarz.

(7)(b) We have body((v —v',v —v)) = 0 iff Vi - Vj — |Vo| V| = 0 iff there exists a A > 0 such
that Vo = AV{j. Since the first components of Vp, Vjj coincide, we must have Vj = Vj. The result
follows.

O]

Definition 6.6. Let A C Z% be a finite set.
Let W = {We}eer, € [0,00)P2 and e = {g;}jen € [0,00)* be two family of weights such that

(A, EY) is a connected graph and > jen€i > 0.
With these parameters we define
dVXV’E(v) = H dvj eiHXV’E(”) (6.8)
JEA
where
dx;dy; 1 c 1
dvj 1= ——=+dg;dn; — HYS(v) = 3 Y Wiklvj —vkvj — o) + Y ei(z = 1), (6.9)
J {jkyeEY JEA

and z; = \/1 + a?? + y]z +2&n;. We use the notation

(e = [ @1 0)
Theorem 6.7. Under the same assumptions as above, the following statements hold.

(i) 11; Z%e_HXV’E(”) is integrable.

(ii) [ dvy*(v) =1

(117) <Hi,jeA (14 (vi —vj,v — vj))mj> = 1Vi,je A and m;; € R.
eUuc
Proof.
(1) We integrate over z;,y; € R. Hence
1
body(z;) = vV1+ 22 4+y> > 1, and zj = body(z;) + mﬁjnj.
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Inserting this expansion in the formula

H () == > Wi+ zjm, + yjye — 2z + Eme + &mi) + Y £5(z — 1),
{jk}eEY JEA
we obtain
11 ie_HXV’E(v) = > olx,y) &y’
i I,JCA
where vy is of the form

Z{jk}eEXV ij(1+$]'$k+yjyk—bOdy(Zj)bOdy(Zk))e_ > ea £5(body(z;)—1) _P(body(2))

vy =e€ T, body ()7

for some polynome P in the variables z and some integers n; > 0. Setting ¢; = (z;,y;) € R? we
can reformulate this as

IJ:eZ{jk}eEXV Wik (1+j-or—+/1+]e;? 1+|50k|2)efzje/\sj( T+|p;12—1) P(/1+]951)

T .

I, (1+lp;12) 7

v

Since 1 + |¢;|> > 1 we have

[P(y/1+]|p;]2)] C H(1_|_ |g0j|mj)

7]' _—
T, (1+l; 1) 2 -

3

for some constant C' > 0 and some powers m; > 0. Let jo be a point such that ¢;, > 0, which
must exist since ;€5 > 0. Let T" be a subset of EXV forming a spanning tree for A. T must
exist since (A, E}) is a connected graph. Using

L+ @i =/ T4+l PV 1T+ ]prl2 <0, /14 w2 =120,
we can bound

lupg| < e S0V IHle*~1) o H(1+ o™ H e~ Wik(V 1+l PV 1+ ler* —ej-pr—1)
J {jk}eT

For each j € A let y; be the unique path in the tree connecting j to jo. We use this paths to
endow A with a partial order as follows: for i # j we say ¢ < j if ¢ € ;. For each e € T" we write
e = (ie, je) where i, < j.. With this notation

urg] < C e S WIHRRP=1)(1 4 |, i) I1 e WelV1HeicPV1Hesc P=ic 2ie=1) (1 4 |, |™ae),
ecT

Our goal is to use this bound to show
/ | |dg0j lvrg] < oo.
R2A j

We perform the integral over ¢; € R? starting from the maximal elements j in A (the leaves of
the tree) and repeating recursively until we reach the minimal element jo (the root of the tree).
The resul follows from the following two bounds.

19 1= [ dp M WIERRVIIFE 001 1 p7) < G (1410171

e,m>

I :z/ dip e =VIFIPE=D (1 4 g™) < €L
R2
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where Cyym, Cjy,. > 0 are some contants and m > 0 is an integer. To prove the first bound we

VIHPVIHER ¢ ¢ —1>|ol(V1+ @2~ |¢]) — 1

argue

hence
I(QO/) S €W d(p e—W(1/1+\¢/‘2_|¢/|)‘¢|<1 + ‘@’m) _ 27TeW /oo dr e—W(,/l+|(p/|2_|¢/|)r7a<1 + rm)
R2 0

w ! (C1 + G
1
W(H/1+¢'? = ¢']) W (/1 + ¢ = |¢'])™

We have (exercise)

= 2re

VIH]E P —1¢ 2

N | =
—_

+ ¢l
Hence
I(¢") < Cw(L+ | )™

To prove the second inequality we argue, using /1 + |¢|? > ||,
o= / dp (1 + o) = Cem.
R2

(73) Setting

Lj
D= gj 00 = yy + i + iy,
nj
we have
5 =V1+ @ (v o) =0 B — /T4 By B/ 1+ By - D,
and 1
dvj = dPj ————.
1+ q)j . (I)j
Therefore

[ = [@ersia; - .

The function f satisfies the assumptions of Theorem Hence

/dVA F(0)=1.

(747) As in (i) we use the localization theorem The result follows from

(’Ujavk):@j'q)k_\/1+<I>j'q>j\/1+¢)k:'¢)k:_1 for = 0.
O

[24: 17.01.2025]
[25: 21.01.2025]
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6.3 Horospherical coordinates

Lemma 6.8. Let f € CY(R) N L' (R) and &, 1 two odd elements in a real Grassmann algebra.
Then Yg € CH(R) such that (fg) € LY(R) and (fg) € Co(R) it holds

/ dz f(z) = / dz f( + Eng()) (1 + Eng/ ().
R R

Proof. We compute
fl(@+&ng(z)) = f(z) + Enf'(z)g(z),

hence

f(@+&ng(@)) (1+&ng'(2)) = f(2) +&n (f(2)g9(z) + f(2)g () = f(z) +&n (f9)'(2)

Inserting this in the integral above we obtain

/R dz f(z + Eng()) (1 + Eng/(x)) = /R dz f(x) + €n (fg)(x) = /R dz f(z) + €0 /R dz (fg)'(z) = /R dz f(x).

O
Theorem 6.9. Let G be a real Grassmann algebra. Consider the nonlinear map
g2|2 N g2\2
u x
o= |_— — ®(P) =
v @=1¢
(4 U
defined by
r :=sinhu —e" (% +@@ZJ)
y i=els (6.10)
§ =e"
no=ey.
We define
2=2(®) =V1+® D =/1+a2+y2+ 2, 20(®) == V1422 + 42
The following statements hold.
(i) z = z(®(P)) = coshu + e (% + @1?) . The transformation is invertible with
u =In(x+ 2)
s =Y
- T (6.11)
¢ = Ttz
Moreover ¢ ¢
— B o _
¢_x+z_x+zo’ v r4+z T2
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(ii) For any function
F(®) = vo(z,y) + vi(x, y)§ + v, y)n + vs(z, y)&n
with v; € CL(R?) N LY (R?) N Co(R?) Vj = 0,...3, it holds

/ dxdyded, F(®) = / dudsd;0, e*uz(@(é))p’(@(é))]. (6.12)
]RQ R2

Remark. There are three standard parametrizations for the hyperbolic plane H? N {z > 0}.
1. Euclidean coordinates: the independent variables are z,y € R and z = /1 + 22 + 32.

2. Polar coordinates: the independent variables are ¢t > 0,6 € [0, 27) and

x = sinht cosf, y = sinht sin 6, z = cosh t.

3. Horospherical coordinates: the independent variables are u, s € R and

2 2
mzsinhu—e“%, y = se¥, z:coshu+e“%. (6.13)

Above we use a Grassmann extension of the horospherical coordinates.
The Jacobian of the coordinate change (z,y) — (u, s) is

Oux  OsT coshu — e%S  _els s
= 2 = e"(coshu + e“—) = e"z.
det <3uy 85y> ( et o e"(coshu + e 5 )=¢e"z

The coordinate change is invertible with (exercise)

Yy
x+z

u=In(x + 2), s =

(6.14)

Note that u is well defined since z + 2 = x + /1 + 22 + y2 > 0. Therefore, for any integrable
function f(z,y) we have

/ dxdy f(x,y) :/ duds [e "z f(z(u,s),y(u,s))]. (6.15)
R2 R2

Proof of Theorem [6.9,

(i) exercise

(7i) Remember that we want to end up with z = sinhu — e“% — e“yYnp. Note that

& _ &
r+z  x+2(z,)

e = Ene " =

since €2 = 0. For any function f € C1(R?) N L'(R?) N Cy(R?) and any fixed y € R, we have,
using Lemma [6.8]

Jaer@r= [ aos <x - +§”<y>> (1 - 5”6fx+z§<x,y>)

B _&n 1
_/Rdxf(x $+ZO> <1+€778$20(30+20)>7
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where we also used (exercise)

1 1

‘w4 20(m,y) 20z +2)
‘We obtain

B & o
/}R2 dxdyoe0, F(x,y,&,n) = /}R2 dxdyd:0, F <£L' x+zO,y,£,77> <1+f7720($+20)>.

We perform now the classical coordinate change (z,y) — (u, s) introduced in (6.13). We obtain

&n 1
/RZ dxdyded, F (m - M,y,£7n> <1 + 5778%0(x+zo))
- . e L
= /R2 duds0:0, (€"z) F' <x(u,s) T olus) 4 zO;Q(%S);&W) <1 +€7720<x(u7 9+ Zo)) 5

where (e"zp) is the Jacobian (see (6.15)). Finally, for a fixed u we perform the linear coordinate
change

Yp=et,  p=etn
In particular £n = 11pe?*. The corresponding Jacobian is
Dc0y = OOy e 7.
Inserting this in the integral we obtain

E,lbeQu

z(u,s) + 2o’

/]1@2 dudsdz0y (e “z0) F (z(u, s) — y(u,s), e“, euib) <1 +J¢e2uz ! >

0($(ua 5) + ZO)
= /R2 duds%@w (e7"z)F (w(u,s,@,w),y(u, s), €', e“w),

where we used

e2u _ 20, —u __ . u
T T Ppe*te = yYnpe (6.16)
ol o 2U 1 _ YA AN ol
20 <1 +¢7/)€ ZQ(I’(U, S) +Z0)) - (ZO +¢¢6 ) - Z(uasvwﬂ/)) (617)
2haly o2
9) = 2PN = a9) = e = (5., (6.19)
This concludes the proof. O

Corollary 6.10. Remember that Yv,v' € H?? we have (v,0') = ® - &' — 2(D)2(P).

(i) Yv,v' € H*? we have, replacing ®, ®' with ®(d), ' (9'),

—(v,v") = cosh(u — v) + % <(S 5

—§2 _
)+ww—¢xw—wﬁ.

(ii) It holds

I

A
/ T] dv; e 0@ = / <dud8 050 e—u) o PR (V) =M (u) ,— 3 (5,Da (w)s) ,— (DA (w)¥)
27
jEA R2A

where FYV' . M5, D (u) were defined in (6.1])(6.2)) (6.3]).
A A
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(iii) For all functions F(x,y,&,n) of the form F(x,y,§,n) = f({x; + 2j}jen), with f reqular
enough, we have

D= [ @R @1@) = [ dol*f (e en)

where dva’e is the measure introduced in (/6.4

Proof.
(i) exercise

(i) Remember the formula for H(v) (6.9). Using (i), (6.12) and Theorem [6.9i), we have

1 _
— > Wi+ (v,u)) = Y Wik (cosh(u; —up) — 1) + 5 (s — A g) 4 (P, —A%My)
{ikyeE} {ikreEY

Zsj(zj 259 coshu; — 1) + (s gells) + (¥, et)
jEA JEA

dxdy 1 duds u

dv =
v 2 4

The result follows.

(iii) Since F = f({zj+ 2 }jen) = f({€“ }jen), the function is independent of s, 1), 1. These last
three variables are Gaussian so we can integrate them out exactly.

A
/ ( ds > heDaws) _ L
RA \ V2T det Dp(u)
_ - A
/(dwdw)Ae_(vaA(u)¢) — (%&P) e~ (W:DAWY) — dot Dy (u).

The result follows.

O
We are finally ready to complete the proof of Theorem
Proof of Theorem[6.3 Setting f = 1 we argue, using also (u),
1= [0 = W = [ dk ().
which concludes the proof. O

[25: 21.01.2025]

[26: 24.01.2025]
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6.4 Ward identities and some applications

We need some notation. Set

W,e
(Fewst = / (@) 0 5(0)
duds A\ w ME = _
For = d?ﬂd?ﬁ u o FY (V) o= M5 (u) o= 5 (5,Da(u)s) o~ (4, Da(w)th) f(u, s,,)
B [f] ( ) =P (V) g~ M) =3 (5. D(9) et Dy (u) F(u, 5)
B [f] / ot = [ (G ”)A A (TR det Dy () S (w)
— u).
RA 2 ALY
Proposition 6.11. Fori # j € A we define
(Si — Sj)2 uitu;
Bij = Bij(u,s) = cosh(u; — uj) + e, (6.19)
A it 1
Vij. Fij € RY - Vig(k) ==e 2 (6i(k) — 6;(k)), Fiyj=—==Vi.

With these notations, the following statements hold.
(i) For all i # j it holds —(vi,vj) = Bij + (¥, Vij) (Vij, V).
(ii) (Ward identity) For all i # j and m € R, we have

m —
E* [Bf} (1 —m(Fy, D™' Fyj))] = E* [ng (1_ B, VP 1%))} -t
ij

Remark By construction B;; > 1 and the matrix D is invertible, hence the axpressions above
are well defined.

Proof.
(¢) follows from Cor. and

€ (G, — ) (W — ) = (&, Vig) (Vi ).

(41) Remember that Yu,v" € H?? we have (v,v') = ® - &' — 2(®)2(®'). We argue

(=05 0)™) ey = (= @i - 5 + 2(24)2(®)))) oy = (-0 +1)™ =1,

where in the last step we applied the localization theorem Passing to horospherical coor-
dinates we obtain

1= (=0}, 0))™) ey = ((Bij + (1, Vij)(Vig, )™,
Since (¥, Vij) € G4 we have (¢, V;)? = 0 and hence
(Bij + (. Vig)(Vig» )™ = B + mBI\ (@, Vig) (Vig. ) = B! (1 + V)V w>>

= BZLQBTJ' $:Vi)(Vig ) - Bg}em(EvFij)(Fijﬂp).
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It follows )
1= <Bg-Lem(vaij)(Fij,¢)>

hor '

Integrating over the Grassmann variables and using Lemma [6.12|(i7) below, we obtain

/ (dipdap) ™ e~ (PONE) (@ F)(Fiit) — det (D — mFy; ® Fyj)
= det D det (1 —mD™'Fy; ® Fy;) = det D (1 —m(F;;, D™\ Fy)).

Therefore

1= <B;;,lem@7Fij)(Fij»¢)> — s [BZL (1 —m(Fy, D_lFij))]

hor

which concludes the proof. O

Remark Since D > 0 as a quadratic form we have (Fjj, D*IFZ-]-) > 0, hence, in the case m > 0,
the expression 1 — m(Fj;, D~F;;) may be negative. We will show that, when {ij} € E} and
0 < m < Wj; this expression is strictly positive.

Lemma 6.12. Let M € RYXN with M > 0 as a quadratic form.

sym

Given n vectors v1,...,v, € RN we define K € R, via

Kij = (’UZ', M_lvj).
Let Py; be the projection on v; defined by Py, (v) := m(v,v;)v;. The following holds.
(i) M—=>"" P, >0« 0<K <Id, where the inequalities are intended as quadratic forms,
(ii) det(M — > 0 | Py,) =det M det(l — K).

Proof.
(1) Since M is real and symmetric, it is diagonalizable with M = UAU* where A = diag (A1, .., An)
and U'U = 1. Since M > 0 all eigenvalues of M are strictly positive and hence

M3 = UA2U*

is well defined and strictly positive. Set w; := M _%vi. We argue

n n
M=) P,>0 & (v,Mv)=> (v,0)>>0 YveR"
=1 =1
n n

& |M%v]2 - z:(M%v,w,;)2 >0 WeR" & |u]*- Z(vai)2 >0 YweR"

=1 =1

n
& Id-) P, >0
i=1
Each vector v € R™ can be decomposed as v = Z?Zl a;w; + vt where ai,...a, € R and

(vt ,w;) =0Vi=1,...,n. Therefore

n n

n n n n n
02 =) (ww)? = o P+ D) sl =D O ajwiwi)? = el =) O agws,wi)?.
i=1 =1

i=1 i=1 j=1 i=1 j=1
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Therefore it is sufficient to consider v =) " ;| ayw;. We argue

n
|Z aw;|® = Z ajaj(wi, wj) = Zaiaj(vh M~"v)) = (o, Ka),
i=1 ij ij
n n
SO ojwiwi)? =D ajoar Y (wh,w) (wi, wg) = (o, Ka).
=1 j=1 ik i

Hence

n
Id-) P,>0 & K-K>>0.
=1

Sice K is real symmetric, it is diagonalizable and admits an orthonormal basis of eigenvectors.
Therefore
K-K*>0 &  pj—pu >0

for each eigenvalue ;. This is possible only if 0 < pu; <1Vj =1,...,n. The result follows.
(ii) We argue,
n n L N
det(M — > P,,) =det M det <1 -y MsziM2>
i=1 =1
We consider now the two functions Fi, Fo: R — R defined by

Fi(t) := det <1 - tZMiniM§> . By(t) = det(1 — tK),
i=1

and prove that there is a v > 0 such that
R(t) =) Yt <y

The identity for general ¢ follows noting that both functions are polynomes in ¢.

There is a § > 0 such that
Fi(t) >0 Vte[-0,6]Vj=1,2.

Set X :=>", M~2P, M~z. For |t| < min{d, | X|~'}, we have
td
InFy () = Indet(1 — tX) = tr In(1 - tX) = = > —tr X°.
q
q=0

The series above is absolutely convergent since [¢| < || X||7!, with || X| := sup, > | Xyl By
direct computation we obtain
tr X7 = tr K1 Vq,

hence " 1
mF(t)=-Y —trX9=-> —tr K7 =1InFyt).
=0 1 4>0
Therefore Fy(t) = Fy(t) V|t| < min{d, | X||~'}. This concludes the proof. O
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6.4.1 One pair with positive W

Proposition 6.13. Fiz an ordering on the edges in E >, .
ui+uj

For each e = {ij} € Ex withi < j and each u € R® let V, = V. (u) :== e 2 (§; — §;) € RA.
Ife€ EY (i.e. W, > 0) it holds

1

SWE V’U,ERA

0< (Ve, D(u)~'Ve)
Proof. Set V. := /W.V.. Then

1 - -
(Ve,D(u)_lve)gW s (Vo,Dw)™'V) < D — Py >0,

where in the last step we used Lemma We have

(v, Ppv) = (v, Ve)? = Wije" ™™ (v; — vj)*.

Therefore
(v, (D — P‘;ve)v) = (v, Dv) — (v, 176)2 = Z Wige" T (v — vy)? + Z epeh v — W;jeit (v; — vj)2
kleEY keA
> Z Wkleuk+ul (vk — Ul)2 >0, (6.20)
kle B \{ij}
where in the last step we used e € EXV This concludes the proof. ]

Corollary 6.14. For each e € EY (i.e. W, > 0) it holds
1

1_m

E“ [B™] < Y0 < m < W..

S

Remark. The bound holds uniformly in the volume |A].
Proof. By Proposition [6.11] we have
1 =E"* [B"(1 - m(F.,D7'F,))].

Proposition and B, > 1, yield

1 1 1
F.,,D'F)=—(V.,D'V,) < < —.
( e e) Be( ) e) = BeWe > We
Putting all this together we obtain
1 —E“ [BI(1 - m(F., D)) 2 (1 - m) B (B
e

from which the result follows.

Using this estimate we can prove probability bounds.
For any £ measurable set in R?, its probability is defined as

Py 5 (€) == E"[1e(u)] = py *(£).
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Theorem 6.15. Let e = {ij} € EY. Then, for all § > 0 we have

PK/’E<COSh(U¢ —uj) > 14+ 5) < - (6.21)
(1+0)=2
In particular, for any 0 <n <1 and We > 1 we have
1 1-n
]P’/V\V’E(cosh(ui —uj) > 1+ W”) <2e T (6.22)
e

Proof. Tt holds
x

<
L146,00)(7) < (1 +6) Ym >0

pointwise. Assume now 0 < m < W,. Inserting this in the probability we obtain

W h(u; —u;)\™
- s < pu | (cosh(ui —
Py (cosh(ul uj) > 1+5) <E S

1 1
— u M <
atom 5)mIE [cosh(u; —u;)™] <

1 1
1= (Lo

WE *[Bj] <

where in the last two steps we used cosh(u; — uj) < Bj;; pointwise, E* [cosh(u; —u;)™] =
E"* [cosh(u; — uj)™] and Proposition which is applicable since e = {ij} € EY and we
assumed 0 < m < W,. Taking m := WQ/E yields . To prove set 6 = W™ and argue
1
(1+ 6)%
where we used In(1 +6) > 26 for 0 < § < 1.

W, W, 1
— e 2 (49 < o= o

O

[26: 24.01.2025]
[27: 28.01.2025]

6.4.2 Many pairs with positive W

Theorem 6.16. For each e € EY we introduce a power m. € [0, W,). Then it holds

Fws H B;ne < H 1_].M

eeEXV eEEXV We

Proof. Fix an ordering on A and for e € Ej set e = {icj.} with ic < je. Define V, := V_;,,
w w
F, := F;_j,. We introduce the two matrices M, K € RsEyf}nXEA defined by
Kee’ — Kee’(u7 3) = (_Fe’_Dfl_Fe/)7 Mee’ = 6ee/me.

Using the same arguments as in Proposition [6.11] we argue

1 =< I1 (—(vievvje))me> =< 11 (Bieje+(¢,‘/e)(%,w))me>

w w
c€Ey eucl c€by hor

— " | T B det (Id —\/MK\/M) :

eGEXV
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where in the first step we used the localization theorem [5.11] in the second step we passed to
horospherical coordinates and in the last step we integrated out the Grassmann variables and
used

det | D= Y meFe®F, | =det | D= Y /mcF,® Foy/me | =det D det(Id —vVMEVM)
eEEXV eeEXV

The result now follows from the following two claims.

Claim 1. Set W € REX *EY with W..s := 6, W,. Then

1
K< (6.23)

as a quadratic form, for almost every configuration (u,s) € R*
Claim 2. Let A, B € RVXN two given matrices with A > B > 0 as a quadratic form.

sym
Then
det A > det B. (6.24)

We show how the two Claims imply the result.
By Claim 1 we have

1 M .
VMEVM < VM—VM = — = diag (m) .
W W We

Since m,. < W, we also have % < Id and hence
M
Id —-vVMKvVM>I1d — W > 0.

Then, by Claim 2, we have

det (1d — VMK VM) > det (Id - g) - 1I (1 _ m)

pointwise a.s. This concludes the proof of the Theorem.

O
Proof of Claim 1. We argue
1 = =
K< VWKVW <Id & D- > P >0,
ecEY
where the last < holds by Lemma We compute
(v, (D — Z Pm)v):zgje“w? >0 Yo € RA.
eEEXV JEA
This completes the proof of the claim. O
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Proof of Claim 2. Since A, B are real, symmetric and positive, they are both diagonalizable
with real eigenvalues a1 > a3 > --->ay >0, by > by > --- > by > 0. By minmax theorem for
eachk=1,...,N,

ay = max min (v, A, v), by, = max min (v, B, v).
MERN | dim M=k vEM MERN | dim M=k vEM

Since A > B we argue (v, Av) > (v, Bv) Yv, hence ap > by Yk = 1,..., N. Since in addition
B > 0 we have ay, > b, > 0 for all £ and therefore

N N
det A = Hak > ku:detB.

Corollary 6.17. For each e € EY we introduce a parameter v, > 0. It holds
2
IP’KV’E(]uie —uj.| > /e, Ve € EXV) < H —
e€EY 8. t.7e>0 (1 + %) 2

Proof. For each x € R we have

x? x?
hrz—-1=—+ E >
cosh x 5 2 2

hence

< cosh(u; — uj) < Bjj = Byj(u,s) Vi,j € A,Vu,s € R?A,

(u; — uy)?
1 ~ - J7
* 2

Inserting this bound in the probability above we obtain

(1 . W)m . Dl [HeEEXV Bzmj]

1+% HeGE’XV (1+%)m

P (Juie =il = v, Ve e BY) <Eo* | ]

eGEXV

where we take m. > 0 Ve such that v, > 0 and m. = 0 otherwise.
The result follows from Theorem by setting m. := Vge Ve such that v, > 0. O

6.4.3 Pairs with zero W

We consider now the case of a pair {ij} ¢ EXV To simplify the notation, in this section we
consider only the case of uniform nearest-neighbor interaction W, i.e.

W Vi—4l=1
Wij = i3l (6.25)
0 otherwise.

Remember that, by Proposition [6.11
E"* [Bij (1 —m(Fy, D71 Fy))] = 1

for any m € R and for any 4,j € A. Setting C > 0 a constant we argue, using Lemma [6.12
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We compute, as in ([6.20)),

(v, (D — P\/épij)v) = (v,Dv) — C (v, Fy)* = Z Wie" T (v, — vy)?
kleEY

C

Uk .2 Ui+ ([, N2

+ g epetuy — B¢ i(v; — vj)
keA u

=W Z Wkleuk—H” (’Uk — ’1)1)2 —
kleEY

et (v = 0))? £ epet g,
Bij keA

where in the last step we used Wy, = W1, —1.
o If |i —j| =1, thenwehaveD—P\@Fij >0 forany 0 < C < W.

e If |i — j| > 1, then for any given C' > 0 there may be u,s configurations such that
D — P\/GF” < 0.
In the case |i — j| > 1 we argue in three steps.

Step 1 We identify a constant C' = C;; > 0 and a subset A;; C R2A of configurations such that
(Fy;, D7'E;) < & V(u, s) € Ajj. As a result

L™

E" [1a, (u, ) By (1 - m(Fy, D™ Fy))] = ( =

) E®* [lAij(u, s) Bfﬂ >0,

for m > C.

Step 2 We reformulate the characteristic function 14,; in such a way to be able to apply the
localization theorem As a result we will show (see below)

1> E*“* [14,(u,s) B} (1 —m(F;, D7'Fy))] .

Step 3 We use other arguments to show

Es [1 sz, (1, ) B;ﬂ <1

Putting these three steps together we obtain E** [1 AS (u, s) BZ-’;? < const, which allows to derive

probability bounds similar to the ones proved in Corollary We will prove these three steps
in the case when d = 1 and W is large enough.

Heuristics If W > 1 we expect the dominant configuration is u; = v and s; = s Vj € A.
On this configuration we have B;; = 1 and

D = We?(=A) + e'é = We <—A + eWe> ,

where é = diag ({¢;}ea). Therefore
. 1 e \ 7! 1 =
(Fijy D7 Fy) = 5 | (G = 05), [ =B+ 557€ ) (6i=0)) | < 37 ((c& —05), (=A) " (6 — 5j)) :

111 [May 1, 2025]



Note that although —A has a zero eigenvalue and hence is not invertible, it is invertible when
restricted to the subspace

1 ={peRY(p,1) = >, = 0}, (6.26)

Since §; — 6, € 1+, ((5, —6;), (=A) (6 — 5j)> is well defined and finite. By general properties

of the infinite volume discrete Laplacian it holds

o [l =t
- sy A5 say) I o
Algg(j((éz 5;), (=A) (6, 5J)) A mli—j| d=2

Cq d=>3

where Cy > 0 is a constant depending only on the dimension. Hence, for d > 3 we argue, on the
constant configuration and for large enough volume,

C C W
(F;,D7'Fy) > =4 = 1-m(F;,D'F;)>1- 950 Yo<m< —,VijeA.
W W Cy

If W > 1 the bound above holds for large power m. On the contrary, for d = 1 we get

Cq

(Fij, D™'Fy) > W 1 —m(F;;,D" Fy) >1— mli = jl >0 YO<m<

w Cali — j|
Therefore we can take the power m large only if W/|i — j| > 1 i.e. for |i — j| < W.

[27: 28.01.2025]
[28: 31.01.2025]

Fluctuation bounds in the case of dimension 1 We assume now A = Ay = [-L, L] NZ.
Proposition 6.18. Let w = {wij}ijier, € [0, o0) A a family of edge weights such that w;; =

CL)ji>0 @ﬁ‘z—j‘ =1.
Remember that the corresponding weighted discrete Laplacian —AY is defined by

L1
(¢, (A%)p) = Z Waq+1(tPg — Soq—i-l)z'
q=—L
(i) On the set 1+ defined in (6.26)), the matriz —A¥ is invertible.
(ii) Vi < j € A it holds

. o 1
(0= 87). (=) 6 = 4)) < > G

Proof.
(i) exercise
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(i7) Set C := S~} L We argue, using Lemma [6.12

9=t wgqt1
(6= 5. (-2 (5= 5)) <O & A%~ %P&_&j >0
& (0 (-A%)0) ~ Slpi- 9?20 Vp e RN
We compute
j—1 j—1 ) )
L A ;‘Pq — Pgt+1 = ;(% - ¢q+1)\/m\/ﬁ =V.V,
where V,V € R{7=1} are defined as
Vo = (9q = qr1)v/Waqt1, Vo= \/c%'

It follows, by Cauchy-Schwartz inequality,

j—1
(i =) = (V- VP Z|VPVP =C | wogii(pg — 0q41)”
q=1
We also have
L-1 7j—1
@, (—A%)p) = Z waq+1(Pq — ¢q+1)2 = quqH(S@q - 90q+1)2 + Z Waq+1(Pq — ‘Pq+1)2-
q=1

qg=—L q<i,92J

Putting all this together we obtain

1
(9, (-A%)p) = 5ei = 9)* 2 D wagr1(g = $g41)* 2 0.
q<i,q>j
This completes the proof of the proposition. O

Remark Remember the definition of D in (6.3). For i < j we argue, using Proposition
above,

Uit -1
(Fy D™ ) = - ((5,~ = 8), (A% 4 2et) (5 - 5]-))
< ettt ((f& — ), (-A“’(“))_l (0; — 5j)>
< eu‘z;uy‘ Zé equuqﬂ _ ;/Zéeuruqew_uq“ < ;/gem—uqew—uqﬂ _
It follows, using |u; — uq| + |uj — ug+1] < Zi: lug — ugy1| Vg =1,...,5 — 1,
(Fy. D7 Fy) < LA sl (6.27

w
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In particular, if |ug, — up41| < /7 Yk =14,...,7 — 1 we obtain the bound

7=l -
(Fij, D™\ Fyj) < = el 7V,
We formulate now the constraint |uj — ug41| < /7 in terms of By as follows. Since

(Uk - Uk+1)2

1
* 2

< Big+1,

it holds 5
Biry1 <1+ 5 = lur, — upt1] < /7.

Let 0 < v < 1 be a parameter. For ¢ < j we define

A= { () € R Beyr <1+ g k=i 1] (6.28)
7j—1

;X;}::: 1/4%4:: ]TI 113kk+1f§14’%' (6.29)
k=i

Theorem 6.19 (constrained estimate). Remember that, for each i < j € A, = [-L, L|NZ, the
notation {i,7} denotes an unordered edge in E™ while (i, j) denotes an open interval in R.
Let ey = {i1,j1},...en = {in,jn} € EM be n not-nearest-neighbor pairs such that

o iy <jrandjr,—i,>2Vk=1...,n,
o (ig,jr) N (i, ji) =D VE£E, kK =1,....n
Let €y = {i},#y +1},...e), ={il,, i, + 1} be n’ nearest-neighbor pairs such that
o (i, i + )N ()i +1) =2 VE#E kK =1,...,n/
o (it il + 1) (g jw) =@ Vh=1,... .0/ K =1,....0.
Setting E := (UP_, (i, jx))U (UZ::l(ik/,ik/ + 1)) , we consider the matrices K,C' € REXE defined
by
Keer i= (Fo, D7'Fu),  Cowr i= 8eerCe,
. m { Z]q’“ Zkl s Mgty Tt fe=¢,, k=1,...,n
W ife=ey, K=1,...,n
Note that K is a function of (u,s) and C is a function of u. The following statements hold.
(i) K(u,s) < C(u) as a quadratic form for all (u,s) € RN,
(ii) It holds
Ce, (u) < Cy, V(u,s) € Np_ Al

T Jk

where, setting ly := ji — ig, the constant Cy is defined as

Cp = ZWkel’“ﬁ. (6.30)
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(i1i) Fix my,...,my, and p1,...,py such that

1

0< <— Vk=1,...,

mp c n
0<pk/<W Vk’:l,...,n’.

We consider the matrixz M € REXE defined by Moo = 0per M with

mp ife=ep, k=1,...,n
M, = k f F
pw  ife=ey, K=1,...,n.

Remember the definition of ij in (6.28). It holds
ik
! D! 1 ¢ 1
() B (T Xy, By, Ty Bl | < T b Tl

Proof.
(1), (ii) exercise

(a) 1> E"* [HZ=1 Xipjo Bis [T B, 1 det <1 - \/MK\/MH

(#41) To simplify the formulas we assume n = 1 and n’ = 0. In this case we study

o [XZJ.BZ‘ (1— m(Fy, D*lFij))} .

We have

Bkk+1>

lBkk+1§1+% = 1(00 ( 1+ %

The function 1(_ ;) is not C', hence we cannot upgrade it to a map on even elements of the
Grassmann algebra. To solve the problem we introduce a smoothing as follows.
Let x € C*°(R;[0,1]) be a smooth function such that

x(x) =1, Ve <1, x(x)=0,Vx>2, X' (z) <0 V.

We consider the family {x:}.>o the family of smooth functions defined as

This function satisfies
® Xe(z) =1Vr <1, xe(x) =0 Vo > 1+ ¢ and lim. g xe = 1(_0,1] Pointwise,
e \.(z) <0VxeR.

With the above notation, it holds
1oy (200) = tim . (Petsafe))

pointwise for all (u,s) € R?. Since xc(z) < 1(_(z) V& € R and Ve > 0, by dominated
convergence we have
j—1
_ . - B
s [BZ’ (1 —m(F;;, D 1Fij)) X;yj} = EgEU,s Bg’;(l —m(Fy;, D lFij) H Xe (1]1“2;;1)] .
k=i
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Remember the definition of Vj; from (6.19) and v with its product 1' Since x. is
differentiable, the function

B Vi) (Vig B B ©,Vig) (Vg
XE( kk+1+<;ﬁ+j>( m)) Xs( fi“f) +X;( ﬁf) © 1]>+(%Jw>

is well-defined. Moreover, since x.(z) = 1 Vz < 1, we have

1
X€(>—1 Yy > 0.
1+ 3

We argue, using Theorem

<(Bij + (¢, Vij) (Vij, o ) H e (Bkk+1+ w,YCf?)(qu+1,w)>>
hor
j—i
:< U“U] HXE( (Uk,Uk+1))> — xe (1—{1_3) _1

eucl

Integrating out the Grassmann variables v, 1) we obtain (exercise)

i1 D-Y"lp, —mP )
1 = Fws | pm H Y <Bkk+1> det ( Z MR,
K e T\ 1+3 det D

where we defined

1 Brks1

Xe ( 1+7

N (Bkk+l> Fag+1:
£ 1+%

> 0 as a quadratic form we have

P, =

Since X' < 0 and Pg,

qq+1
D - Py—mPp, > D—mPp,.

Setting

l
C = Welﬁ,

and using (7),(4) and the assumption on 0 < m < C~! we have

l:=j—1,

m(Fy;, D™ lFij) <mC <1 V(u,s) € AZJ

Hence, by Lemma D —mPp,; >0 as a quadratic form. By Claim 2 in the proof of Theorem

we have
- P, -mPp, | = det(D—mPp,) = detD( m(F,;, D~'F; )),

on the (u, s) configurations in -’47] It follows

7—1

By ] x (Bfifgl) (1 - m(FijaDile'j)>

k=i

1 Z Eu,s

116 [May 1, 2025]



Taking the limit € | 0 we obtain
1> E“ {BZ]XU ( m(Fy;, D™\ F; ))}
Finally, inserting 1 — m(F;;, D7'F;;) > 1 —mC > 0 for all (u,s) € A;Yj, we argue
12 B | By, (1= m(Fy, D7Fy))| = (1= mC) B BN |

and hence 1

Fws [BZ]XU} <{T=C

This proves (4i7) in the special case n = 1,n’ = 0. The general case is proved in the same way. []

Theorem 6.20 (unconstrained estimate). There exists a constant Wy > 0 such that YW > W)
it holds
E*“* [Bf}] <2

forallm < W1 and all i < j with j —i=1< WA.

Proof. We argue, for any v > 0,

j—1 izl pp
kk+1
L=+ (0 =x3) <035+ D g3 <G +Z+7)p’
k=i k=i 2

where the power p > 1 will be fixed later. Inserting this in the average above we obtain

j—1
1
B (B <E B | + >
¢ Ay
. 1 1 . .
Remember [ = j — ¢ < W4 and m < Wi1. Using Theorem we obtain

1
~—1-—mC’

5EY* B By ] (6.31)

Ews |:BmX1]:|

where C' := %el\ﬁ and the inequality above holds Y0 < m < C~!. Set now

’y T \/W,
where ¢ > 0 is a parameter (independent of W) to be fixed later. With this choice we get

ct= ?e*l\ﬁ = ?e*"’ > Wiee.

Hence m < C~ 1! for all m < Wi, with W large enough. The bound above becomes
1
_— 1 _ C < eC .
" i

To bound the sum in (6.31)) we argue, using Lemma below,

E®s [Bmxl]]

Bi; < 2 H Bgg+1-
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Therefore, for ¢ =14,...5 — 1, we have

k—1

U, m P ml pu,s p+m

B [B Bkk+1] < 2 E® Hqu+1 Bkk:+1 H qu+1
q=1 q=k+1

Setting p = % we have m < m +p < % and hence, by Theorem

p+m l
Hqu+ k-1 H Bl =2

q=k+1
Putting all this together we obtain
S 1 2migl]
B B] < s + a7
VW 2
Note that
_w
Y\ 7P c 4 W n(1+ ) VL
1+ 7> = (1 + ) —e 2F <e 16
< 2 VW
and , )
ol « QW1 _ W1 in2 oml < VW _ VW In2
Setting ¢ = 32 In2 we get
2mi2l < Wiewzle znzeﬂ/W( — In2) _ W46W4 In2 7\/7ln < }
1+ 2P — =5
(1+3)

for W large enouhg. So we choose Wy such that the above bound holds and in addition
% <1+ %
1=

holds for all W > Wj. This concludes the proof.

Remark. Setting W > 1 the bound above imples, for all |j — | < Wiand0<e < i,

Ews [BW‘I‘]
1, ¢ v T w
P(|ui—uj\ ZW7§+§> < - < 2e wi ™t =2e 1T K1,

( 4 )
2W7_E

where we used In(1 + §) > 1+g for 0 <6 < 1.

Lemma 6.21. For any three points i, j, k € Z% we have

Bij < 2 szBkj V(’U,,S) S RZZd'

118 [May 1, 2025]



Proof. Remember that H2 N {z > 0} can be parametrized via a vector v = (z,v, 2) where the
independent variables are z,y € R, z = 1/1 + 22 + 32 and the bilinear form is

(vi,vj) =% + YilYy; — =ziz5.

Passing to horospherical coordinates, the independent variables are u,s € R, and the bilinear
form becomes
(vi, vj) = —Bij.

The expression B;; = —(v;,vj) > 1 has an interpretation as the hyperbolic cosine of the geodesic
distance on H?
dist (v;, v;) = cosh™'(—(v;,v;)) = cosh™(B;;),

where dist (v, v;) is the minimal length of any curve on H 2 connecting v; and v;. This distance
satisfies the triangle inequality hence

dist (vs,v5) < dist (v;, vg) + dist (vg, v5)
for all 4, j, k. It follows, using cosh(a + b) < 2coshacoshb for all a,b > 0,
B;; = cosh (dist (v4, vj)> < cosh (dist (vi, vg) + dist (vg, vj)) < 2By By,

which concludes the proof. O
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