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Chapter 1

Introduction

The main subject of this course is the study of certain functional integrals arising
in statistical mechanics and physics.

1.1 Some motivation: an example of Gibbs mea-
sure

Let us consider the atoms in a perfect cristal. At equilibrium the atoms are
located at the sites x P Λ where Λ � Zd is a finite set. Thermal fluctuations
and other perturbations may cause the atoms to move a bit away from their
equilibrium position. The atom at site x is displaced to a postition x � ~ϕpxq,
where ~ϕpxq P Rd. The collection of all displacements tϕpxquxPΛ is called a field
(vector valued)

ϕ : Λ Ñ Rd
xÑ ϕpxq

Each function ϕ P pRdqΛ is a possible configuration for the deformed cristal.
The set of all possible configurations will be denoted by

Ω � pRdqΛ.
Atoms “prefer” to remain near their equilibrium position so it takes some effort
to displace them. This is encoded in the energy functional

HΛ : pRdqΛ Ñ R
ϕÑ Hpϕq � 1

2

°
x�yPΛ }~ϕpxq � ~ϕpyq}2 (1.1.1)

where we use the L2 norm }v}2 � °d
j�1 v

2
j and x � y denotes a pair of nearest

neighbors on the lattice }x� y} � 1. Note that if we deform each atom by the
same amount ~ϕpxq � ~ϕ @x then we are doing a global translation of the cristal
(no deformation) and the corresponding energy is zero.

We assign to each configuration ϕ a weight (probability density) proportional
to expr�βHΛpϕqs where β � 1{T and T is the temperature. Is this choice
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6 CHAPTER 1. INTRODUCTION

consistent with our intuition? For a large deformation the energy is large and
the corresponding probability is small, as we should expect since it is “hard”
to deform a cristal. The insertion of the β parameter is also consistent. Indeed
for small temperature the atoms are “frozen” and moving them is “hard”: the
corresponding β is large thus giving a small probability. For high temperature
the atoms are “exited” and move very easily: the corresponding β is small thus
giving a large probability.

Boundary conditions The cristal is connected to the external world through
the boundary of the volume Λ. This interaction translates into boundary con-

ditions on HΛ. The corresponding energy functional will be denoted by H
pbcq
Λ .

All the above arguments can be made precise by introducing a probability
measure on pΩ,Fq defined by

dµ
pbcq
Λ,β pϕq �

e�βH
pbcq
Λ pϕq

ZΛ,β
dϕ (1.1.2)

where Ω is the set of all possible configurations (in our case deformations of the

cristal), F is a σ�algebra on Ω and dϕ � ±
xPΛ

±d
j�1 dϕjpxq is the Lebesgue

measure. Finally ZΛ,β is the normalization constant ensuring that µ
pbcq
Λ,β pΩq � 1.

This constant is called the partition function

ZΛ,β �
»

Ω

e�βH
pbcq
Λ pϕqdϕ.

Remark 1 If we insert in the definition above the energy functional (1.1.1),
the corresponding integral is divergent! The boundary conditions will ensure
the integral is finite.

Remark 2 The energy functional (1.1.1), is a quadratic form

HΛpϕq � pϕ,Aϕq �
¸
x,yPΛ

ϕpxqAxyϕpyq

where for any pair x, y of sites not on the boundary of Λ we have

Axy �
$&% �1 }x� y} � 1

2d x � y
0 }x� y} ¡ 1

The corresponding measure (1.1.2) is called a gaussian measure. Most of the
problems we will consider will be given by some form of gaussian measures, or
perturbations of gaussian meausures.
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1.2 Thermodynamic limit

The measure defined in (1.1.2) is called a finite volume Gibbs measure. If now we
take a sequence of growing volumes Λn with Λn Ñ Zd we can ask the following
quastions

• Does the sequence of measures converge to some infinite volume measure?

• If yes, does the limit depend on the choice of the boundary conditions?

The answer to this question gives informations on the existence of a phase
transition in the model (ex: liquid/gas or cristal/liquid).

1.3 Functional integrals

The object of this course if the study of a class of functional integrals of the
type (1.1.2) . These are integrals over spaces of functions.

Going back to our initial example, cristal deformations, let us consider d � 1
and Λ � p1, 2, . . . , Nq. An element of the space of configurations ϕ P Ω is a
function function ϕ : Λ Ñ R, but we can see it also a set on N real numbers
ϕ � pϕp1q, . . . , ϕpNqq corresponding to the values of the function at each point.
Any function

F : Ω Ñ R
ϕÑ F pϕq

can be seen as a function on N real variables F pϕq � F pϕp1q, . . . , ϕpNqq. The
Lebesgue measure on Ω is then the Lebesgue measure on the product space RN .

dϕ �
N¹
j�1

dϕpjq.

Using Fubini’s theorem we can define the integral»
fpx1, . . . , xN qdx1 � � � dxN

indipendently of the integration order, for any integrable function f : RN Ñ
R (

³ |f | is finite). This construction can be generalized to a countable set of
variables.

When d ¡ 1, let Λ a finite set of sites in Zd. At each site we have d
variables ϕ1pxq, . . . .ϕdpxq. Since Λ is finite we can define the product Lebesgue
measure on the d|Λ| variables corresponding to a cristal deformation ϕ. The
thermodynamic limit then can be seen as the problem of defining the integral
over an infinite number of variables.
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Functions in the continuum . The arguments above concern only spaces of
discrete functions ϕ � tϕpxquxPΛ, where Λ is a set of lattice sites. Let us suppose
now that the atoms are not in a solid phase but rather in a gas state. Then
each atom could be anywhere in a region Λ � Rd of finite volume. The function
ϕpxq P R� may represent the number of particles in a small neighborhood of x.
Then a configuration of the system is given by ϕ � tϕpxquxPΛ an uncountable
set of real variables. Measure theory teaches us how to construct sigma-algebras
out of countable products. In order to make sense of a measure on a uncountable
product space we introduce spaces of distributions.

1.4 Role of the boundary conditions

Boundary conditions fix how the region Λ we are studying is connected to the
outside. In our example we could say that on the boundary of our cristal we are
attached to a very stable material where atoms are practically frozen. Then we
have ϕpxq � 0 for all sites x on the boundary of Λ (Dirichlet type b.c.)

The role of b.c. in the measure dµ
pb.cq
Λ when Λ gets big is analog to the

initial conditions in a PDE. let us consider two famous PDEs: the heat and
wave equations in one dimension:

Btupx, tq � α2B2
xupx, tq, upx, 0q � u0pxq, x P R, t ¥ 0,

Bttupx, tq � v2B2
xupx, tq, upx, 0q � φpxq, utpx, tq � ψpxq x P R, t ¥ 0.

The solution for the first (heat) equation is independent of the details of the
initial condition u0pxq: in particular any irregularities of u0 are instantaneously
smoothed out. This means we loose information. On the contrary, the solution
of the second (wave) equation depends very strongly from the initial conditions.
Actually, in this case the initial profile φ travels without ever changing shape.
This means information is transferred without losses.

In the language of measures, the independence of the limit from the boundary
conditions means there is only one possible measure describing our system at
very large volume (one possible phase) , the dependence means that there are
several possible measures at large volume (hence several possible phases).

1.5 Multiscale analysis

Let us look again at the cristal energy H
pb.cq
Λ pϕq � 1

2

°
x�yPΛ }~ϕpxq� ~ϕpyq}2 with

ϕpxq � 0 for all x on the boundary, meaning that x P Λ but there exists at least
one site y P Λc with x � y. In this functions only nearest neighbor sites x � y

interact. Then the corresponding density e�βH
pbcq
Λ is maximal when the variables

ϕ are approximately constant on small regions (otherwise the probability is
small). In other words the integral over dµ is concentrated around regions in Ω
corresponding to configurations that are “locally constant”.
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In particular the boundary conditions can affect only a small number of sites
near to the boundary of Λ. If the fraction of sites on the boundary |BΛ|{|Λ|
vanishes as Λ Ñ Zd, (take for instance a growing sequence of cubes), then it
is reasonable to expect that boundary conditions will have no influence on the
limit. Boundary conditions may change the limit only if they are able to interact
effectively with all sites in Λ. When this happends we say that a short range
interaction becomes effectively long range.

The analysis of the large volume limit can then be translated in the analysis
of multiscale effects (short range interactions becoming effectively long range).

Note that, except in some special cases, we cannot compute the integrals in
a closed form! We need tools to get estimates as precise as possible.

1.6 Plan of the course

We will consider some examples of functional integrals arising from statistical
mechanics and physics, and learn techniques to construct the limit as the number
of variables tends to infinity.

In models coming from statistical mechanics the measure is always a proba-
bility measure (real positive and normalized to 1). The field ϕ may take values
in a discrete set (ex: �1), in a bounded set (ex: ϕpxq � cospθxq, with θ P r0, 2πr),
in an unbounded set ϕpxq P R.

In models coming from physics, the measure may become complex valued,
though still normalized to 1. The field ϕ may be a real or complex vector, a
matrix and some components of ϕ may even be Grassmann variables (anticom-
muting numbers ab � �ba).

In many cases the energy is of the form

Hpϕq �
¸
x,y

Jxy}ϕpxq � ϕpyq}2 �
¸
x

V pϕpxqq,

where Jxy � Jyx ¥ 0. The first term creates an interaction between different
sites, the second term gives a set of independent constraints on each variable (it
is called the diagonal term). When Jxy � 0 @x, y, the measure e�βH factors in a
product of measures. When V � 0, the integral cannot be factored. Depending
on the relative size of the parameters, we will see that the integral is dominated
by the interaction term or the diagonal term. These two situations correspond
to different physical properties in the underlying model.

Some examples of potential V are

• V pϕq � m2}ϕ}2 � λ}ϕ}4 (single well)

• V pϕq � λp}ϕ}2 � µq2 (double well or mexican hat)

• V pϕq � λ lnp1� }ϕ}2q (log potential)

In the first two cases the potential is a convex function, for large }ϕ}, in the last
case, the function becomes concave, adding additional problems.
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1.7 Digression: why choosing an exponential weight?

We will motivate the choice of an exponential weight in the simpler case of a
finite set of possible configurations. On can justify the same arguments in the
general case (see for instance the lecture notes by Stefan Adams, chapter 7,
http://www.mis.mpg.de/preprints/ln/lecturenote-3006.pdf).

Let ΩΛ the set of all possible configurations for our finite system (the cristal
in our example) and let H : Ω Ñ R be the corresponding energy functional.
Since Ω is finite, in order to define a probability measure we only need to give
a set of numbers tµpωquωPΩ such that 0 ¤ µpωq ¤ 1 and

°
ω µpωq � 1. Let us

consider how the system is connected to the external world.

Case 1: Isolated system The only way to change the energy of the system
is to “give away” some of it or “take in “ some of it from outside. But an
isolated system has no exchange with the exterior so in this case the energy is
fixed Hpωq � E @ω P Ω. Then there is no way to decide which configuration is
preferable (they all have the same energy) and the most reasonable choice for µ
is the uniform distribution that assigns the same weight to each configuration:

µpωq � 1

|Ω| @ω P Ω, where|Ω| � cardinal of Ω.

Case 2: system in contact with a reservoir at fixed temperature T In
this case the energy can change, but since the temperature outside is fixed the
average energy of our system is given by

ErHs �
¸
ωPΩ

µpωqHpωq � EpT q. (1.7.3)

This time a uniform measure would not work since we expect large deformations
(large energies) to be more unlikely than small deformations (small energies).
The correct choice is to take a measure “as uniform as possible” under the
constraint (1.7.3). To quantify how “uniform” a measure is we use the entropy.
Let MpΩq be the set of probability measures on Ω, then the entropy is defined
as

S : MpΩq Ñ R
µÑ Spµq � �°ω µpωq lnµpωq.

To see the kind of information we obtain from S let us consider two extreme
cases:

(a) µpωq � 1{|Ω| the uniform measure. Then we have the same propability
of being anywhere inside Ω: this means we have as little information as possible.
In this case Spµq � lnp|Ω|q, that is a large number when Ω is large.

(b) µpωq � δωω0 a measure localized on just one element ω0 of Ω. Then we
know (with probability 1) that we must be exactly on the configuration ω0: this
means we have the maximal information. In this case Spµq � �µpω0q lnpω0q � 0.

In general, the more “uniform” our measure is, the larger S. Therefore we
choose the measure µ that maximizes Spµq, under the constraint (1.7.3).
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Lemma 1 Let H be a (non constant) energy functional,

νβpωq � e�βHpωq

Zβ
, Zβ �

¸
ω

e�βHpωq.

a Gibbs measure and set

f : s0,�8s Ñ R
β Ñ fpβq � Eνβ rHs.

Then we have the following results.

(a) For each E P Rangepfq there exists a parameter β̄ such that for β � β̄
Eνβ̄ rHs � E.

(b) For any probability measure satisfying EµrHs � E we have Spµq ¤ Spνβ̄q.
Equality holds only for µ � νβ̄.

Remark When H is constant (Hpωq � H @ω) then the Gibbs measure νβ
coincides with the uniform measure for any choice of β.

Proof Let H̄β � Eνβ rHs. In order to prove (a) note that

f 1pβq � �Eνβ̄
�pH � H̄βq2

� � �
¸
ω

νβpωqpHpωq � H̄βq2   0,

since νβpωq ¡ 0 @ω and there is at least one ω where pHpωq � H̄βq2 ¡ 0
(otherwise H would be the constant function). Then f is injective, hence (a).

To prove (b), note that

Spµq � �
¸
ω

µpωq lnµpωq � �
¸
ω

µpωq ln
µpωq
νβ̄pωq

�
¸
ω

µpωq ln νβ̄pωq.

Now using the definition of νβ the second term is

�
¸
ω

µpωq ln νβ̄pωq �
¸
ω

µpωq lnZβ̄ � β̄
¸
ω

µpωqHpωq � lnZβ̄ � β̄E � Spνβ̄q

Inserting this we have

Spµq � Spνβ̄q�
¸
ω

µpωq ln
µpωq
νβ̄pωq

� Spνβ̄q�
¸
ω

νβ̄pωqΦpXpωqq � Spνβ̄q�Eνβ̄ rΦpXpωqqs

where we set

Φpxq � x lnx, Xpωq � µpωq
νβ̄pωq

.

Now Φ2pxq � 1{x ¡ 0 so by Jensen’s inequality

Eνβ̄ rΦpXpωqqs ¥ Φ
�
Eνβ̄ rXpωqs

	
� Φp1q � 0.

Since Φ is strictly convex, equality holds only when Xpwq is a constant func-
tion, that means there exist a constant K such that µpωq � Kνβ̄pωq @ω. But°
ω µpωq �

°
ω νβ̄pωq � 1, then K � 1. This completes the proof of (b). 2
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Chapter 2

One dimensional problems

When d � 1 our finite region Λ is a finite chain of points Λ � p�L,�L �
1, . . . 0, 1, . . . , Lq. The techniques applying to 1d systems can be generalized to
quasi-one dimensional systems, such as strips of finite width. The material in
this chapter is mostly based on the lecture notes by A. Kupiainen [?] (for the
Ising model part) and on the book by B. Helffer [?] (for the part on integral
operators).

2.1 Ising model

We will define the model in general dimension and later specialize to d � 1. Let
L̄ � pL1, . . . Ldq P Nd and Λ � r�L1, . . . , L1s�� � � r�Ld, . . . Lds a rectangle in Zd
centered around the origin. To each site x P Λ we associate a spin (the analog of
ϕpxq in the cristal example) taking only two values �1,�1. The configuration
space is then ΩΛ � t1,�1uΛ and a configuration of the finite system is

σ : Λ Ñ t1,�1uΛ
x Ñ σpxq,

where σpxq is called the “spin” at site x. Let Ω � t1,�1uZd be the set of spin
configurations on the whole lattice.

The energy for a configuration σ P ΩΛ, is given by the finite volume Ising
Hamiltonian H σ̄

Λ : ΩΛ Ñ R

HI
Λpσq � �J

¸
x�yPΛ

σxσy �
¸
xPΛ

hσx, J ¡ 0, h P R

The first term in HI represents an interaction between nearest neighbor sites
and the parameter J is called the coupling constant. The last term is a sum of
independent contributions at each site. The parameter h is called the external
magnetic field.

13
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Phenomenology The coupling term in HI is minimum when all spins σx
have the same orientation σx � �1 @x, or σx � �1 @x: in both cases the
coupling contribution is �J°x�yPΛ 1. On the other hand, the second sum in

HI is minimum when all spins have the same sign as h, hence for h � 0 the only
spin configuration minimizing the energy is σx � signphq @x P Λ. In this sense,
h plays the role of an external magnetic field for a ferromagnetic material: when
h � 0 the spins try to align, but since they do not know which direction to take
(�1 or �1) they end up being half �1 and half �1 so the average orientation is
zero. When an external field h is present, the spins align with it.

Note that when J   0 nearest neighbor spin pairs try to take opposite spin
orientations. This is called paramagnetic behavior.

History The Ising model was introduced to describe ferromagnetic materials,
but it proved to be relevant in a wide variety of problems, from lattice gases, to
biology, economics and image analysis.

2.1.1 Boundary conditions

Let σ̄ P t1,�1uZd a fixed configuration on the infinite lattice.

Definition 1 The boundary of Λ is defined by

BΛ � tx P Λ| Dy P Λcwith }x� y} � 1u

Definition 2 The Ising Hamiltonian with σ̄ boundary conditions is H σ̄
Λ :

ΩΛ Ñ R
H σ̄

Λpσq � HIpσq � J
¸
xPBΛ

¸
yPΛc,y�x

σxσ̄y

where σ̄ P Ω is some fixed infinite volume spin configuration.
The Ising Hamiltonian with periodic boundary conditions is Hper

Λ : ΩΛ Ñ R

Hper
Λ pσq � �J

¸
x�yPTL̄

σxσy � h
¸
xPΛ

σx

where TL̄ � Z{L1 � � � � � Z{Ld is a torus.
Finally The Ising Hamiltonian with free boundary conditions is

Hfree
Λ pσq � HI

Λpσq.

2.1.2 Probability measure and thermodynamic limit

Let HpbcqΛ be the finite volume Ising energy with some fixed boundary condi-
tions. We define a probability measure on ΩΛ by

µ
pbcq
Λ,β pσq �

e�βH
pbcq
Λ pσq

Z
pbcq
Λ,β
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where the normalization factor

Z
pbcq
Λ,β �

¸
σPΩΛ

e�βH
pbcq
Λ pσq

is called the partition function. Let tΛnunPN be a growing sequence of regions
s.t. Λn � Λn�1 @n and limnÑ8 Λn � Zd.

We denote by Fn the sigma algebra on ΩΛn and by F the (infinite volume)

sigma algebra on Ω. Then each measure µ
pbcq
Λn,β

on Fn can be extended to a
measure µ̃n on F with the following definition

µ̃npAq � 0 if AX ΩΛn � H
� µ

pbcq
Λn,β

pAX ΩΛnq otherwise.

In order to study the thermodynamic limit we will consider the following class
of functions.

Definition: local functions. A function f : Ω Ñ R is local if it depends
only on the spin value on a finite set of lattice points. Precisely, f is local if D
a set X � Zd with |Xf |   8 and a function F : ΩX Ñ R s.t.

fpσq � F pσXq @σ P Ω,

where σX � tσxuxPX is the restriction of the configuration σ to the set X.

Example The functions f1pσq � σx1 and f2pσq � σx1σx2 (where x1, x2 are
fixed lattice points) are both local functions with X � tx1u, tx1, x2u respec-
tively. We will see below that all local functions can be obtained from functions
of this form.

Lemma For any function f : Ω Ñ R depending only on spins inside the finite
set X, there exists a family of real parameters taAuA�X associated to each
subset of X satisfying

fpσq �
¸
A�X

aAσA

where
σA �

¹
xPA

σx.

Proof. Let 1�pσxq � 1tσx�1upσxq and 1�pσxq � 1tσx��1upσxq. This can be
written in the more condensed form

1σ1xpσxq � δσx,σ1x � 1σxpσ1xq, σx, σ
1
x � �1.

Let χ1 � p1� � 1�q{2 and χ2 � p1� � 1�q{2. Then

1σ � χ1 � σχ2, with σ � �1.
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and the function

1σ1pσq �
¹
xPX

1σ1xpσxq �
¹
xPX

1σxpσ1xq �
¹
xPX

�
χ1pσ1xq � σxχ2pσ1xq

�
�
¸
A�X

¹
xPA

σx
¹
xPA

χ2pσ1xq
¹
xPxzA

χ2pσ1xq

equals 1 when σ � σ1 and equals 0 otherwise. Then

fpσq �
¸
σ1

1σ1pσqfpσq �
¸
σ1

1σ1pσqfpσ1q

�
¸
σ1
fpσ1q

¹
xPX

�
χ1pσ1xq � σxχ2pσ1xq

�
�
¸
A�X

¹
xPA

σx

$&%¸
σ1
fpσ1q

¹
xPA

χ2pσ1xq
¹
xPxzA

χ2pσ1xq
,.-

�
¸
A�X

¹
xPA

σxaX

where aX is a constant independent of the configuration σ.

Definition: thermodynamic limit We say that the sequence of measures

µ
pbcq
Λn,β

converges to a measure µ on Ω if

Eµ̃nrf s �
¸
σ

µ̃npσqfpσq ÑnÑ8
¸
σ

µpσqfpσq � Eµrf s

for all local functions f : Ω Ñ R.
By the lemma above, it is enough to prove the existence of the limit for

EµrσX s for any subset X with |X|   8.

2.2 Transfer matrix for the Ising model in one
dimension

Let Λ � r�L, . . . , Ls. The finite volume Ising Hamiltonian in d � 1 can be
written

HI
Λpσq � �J

L�1̧

x��L
σxσx�1 � h

¸
xPΛ

hσx, J ¡ 0, h P R

The boundary is reduced to two points BΛ � t�L,Lu, therefore the Hamiltonian
with σ̄ (resp. periodic, free) boundary conditions is

H σ̄
Λpσq �HIpσq � J rσ�Lσ̄�L�1 � σLσ̄L�1s

Hper
Λ pσq �HIpσq � JσLσ�L

Hfree
Λ pσq �HI

Λpσq.
where σ̄ P Ω is some fixed infinite volume spin configuration.
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2.2.1 Partition function

Let Z
pbcq
Λ,β be the partition function at finite volume with some fixed boundary

conditions. Then we have

Lemma 2 The limit as L Ñ 8 of |Λ|�1 lnZ
pbcq
Λ,β is finite and independent of

the boundary conditions

Proof We will prove this result for σ̄, periodic and free boundary conditions.
In the case of σ̄ and periodic boundary conditions, the partition function can
be written as

Z
pbcq
Λ,β �

¸
σPΩΛ

e�βH
pbcq
Λ pσq �

¸
σPΩΛ

F lefth pσ�Lq
�
L�1¹
x��L

Thpσx, σx�1q
�
F righth pσLq

�
�
F lefth , T 2L

h F righth

	
where Th is a 2� 2 matrix

Th �
�
eβ�hβ e�β

e�β eβ�hβ



, Thpσ, σ1q � e

βhσ
2 eβσσ

1
e
βhσ1

2 , (2.2.1)

while F
left{right
h are 2 component vectors encoding the boundary conditions

F lefth pσq � eβσσ̄�L�1e
βhσ

2 , F righth pσq � e
βhσ

2 eβσσ̄L�1 for σ̄ b.c.,

F lefth pσq � F righth pσq � e
βhσ

2 for free b.c. (2.2.2)

Finally p , q denotes the real euclidean scalar product . In the case of periodic
boundary conditions

Z
pperq
Λ,β �

¸
σPΩΛ

e�βH
pperq
Λ pσq �

¸
σPΩΛ

�
L�1¹
x��L

Thpσx, σx�1q
�
ThpσL, σ�Lq

� Tr T 2L�1
h

To study the large volume properties of the partition function then, we have to
study a 2 � 2 matrix, reducing the problem from 22L�1 to 2 spins only. The
matrix Th is real symmetric hence diagonalisable. The eigenvalues are

λ1 � eβ coshpβhq �
b
reβ sinhpβhqs2 � e�2β ,

λ2 � eβ coshpβhq �
b
reβ sinhpβhqs2 � e�2β , 0   λ2   λ1.

Let v1, v2 the corresponding normalized eigenvectors and P1, P2 are 2 � 2 ma-
trices corresponding to the orthogonal projections on v1, v2:

P1pσ, σ1q � v1pσqv1pσ1q, P1pvq � pv1, vqv1, @v P R2.
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The definition for P2 is similar. Since they are orthogonal projections P1, P2

satify

P 2
1 � P1, P

2
2 � P2, P1P2 � P2P1 � 0.

Moreover, the eigenvector v1 for the largest eigenvalue has the following addi-
tional property, that will be crucial for our proof:

v1pσq ¡ 0 @σ.

Indeed let v1 � px1, y1q. Then we obtain

y1 � x1C1 where C1 � eβ
�b

reβ sinhpβhqs2 � e�2β � reβ sinhpβhqs
�
.

(2.2.3)
Since C1 ¡ 0 for any choice of β, h the two components x1 and y1 must have
the same sign. Inserting the spectral decomposition T � λ1P1 � λ2P2 in the
expression for Z we have

Z
pbcq
Λ,β �

�
F lefth , T 2L

h F righth

	
� λ2L

1

��
F lefth , P1F

right
h

	
�
�
λ2

λ1


2L �
F lefth , P2F

right
h

	�

�λ2L
1

��
F lefth , v1

	�
v1, F

right
h

	
�
�
λ2

λ1


2L �
F lefth , P2F

right
h

	�

To complete the proof we need two ingredients

• the first term in the parenthesis is strictly positive. Indeed pF lefth , v1q �°
σ F

left
h pσqv1pσq ¡ 0 since v1pσq ¡ 0 and F leftpσq ¡ 0 for all σ. For the

same reason pv1, F
right
h q ¡ 0.

• the second term in the parenthesis disappears in the limit L Ñ 8. This
holds since |λ2|   λ1.

Using these two ingredients we obtain

lnZ
pbcq
Λ,β

2L� 1
� 2L

2L�1 lnλ1 � 1
2L�1 ln

�
pF lefth , v1qpv1, F

right
h q �

�
λ2

λ1

	2L

pF lefth , P2F
right
h q

�
ÑLÑ8 lnλ1 � ln

�
eβ coshpβhq �

b
reβ sinhpβhqs2 � e�2β

�
Since the boundary conditions appear only in F left{right, the result is the same
for free, or for any choice of σ̄ boundary conditions.

In the case of periodic boundary conditions

Z
pperq
Λ,β � Tr T 2L�1

h � λ2L�1
1 Tr P1 � λ2L�1

2 Tr P2 � λ2L�1
1

�
1�

�
λ2

λ1


2L�1
�
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Therefore

lnZ
pperq
Λ,β

2L� 1
� lnλ1 � 1

2L�1 ln

�
1�

�
λ2

λ1

	2L�1
�
ÑLÑ8 lnλ1.

The limit exists for any choice of β, h and coincides with the result obtained
with free or σ̄ boundary conditions. 2

2.2.2 Average magnetization

The finite volume average magnetization at position x is defined by

EΛrσxs �
°
σPΩΛ

e�βH
pbcq
Λ pσqσx°

σPΩΛ
e�βH

pbcq
Λ pσq

We have the following result

Lemma 3 The average magnetization has a limit

EΛrσxs ÑLÑ8 Mβphq � 1� C2
1

1� C2
1

(2.2.4)

where C1 is given in (2.2.3). The limit Mβphq is independent of x and the
boundary conditions, is a smooth increasing function of h satisfying

� 1  Mβphq   �1 @h P R,
lim
hÑ8

Mβphq � �1, lim
hÑ�8

Mβphq � �1,

and has the same sign as h. In particular Mβp0q � 0.

Remark 1 This result is consistent with the physical intuition saying that
the spins try to align with the magnetic field h. When h becomes very large all
spins align hence the magnetization becomes �1 (resp. �1) depending if h ¡ 0
or h   0.

Remark 2 The function M : R Ñs � 1, 1r is invertible, so we could use the
magnetization M as a parameter in our measure instead of h: µβ,hpMq,

Proof For simplicity we consider x ¡ 0. The same arguments then hold for
x ¤ 0.

As in the case of the partition function we can express EΛrσxs in terms of
the transfer matrix Th:

EΛrσxs �

�
F lefth , TL�xh Σ TL�xh F righth

	
�
F lefth , T 2L

h F righth
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where Th, F
left
h , F righth were defined in (2.2.1) and (2.2.2) above. The 2 � 2

matrix Σ encodes the new term σx

Σ �
�

1 0
0 �1



, Σσ,σ1 � δσσ1σ.

Inserting the spectral decomposition T � λ1P1 � λ2P2 we get

EΛrσxs �

�
F lefth ,

�
P1 �

�
λ2

λ1

	L�x
P2

�
Σ

�
P1 �

�
λ2

λ1

	L�x
P2

�
F righth



�
F lefth ,

�
P1 �

�
λ2

λ1

	2L

P2

�
F righth




ÑLÑ8

�
F lefth , P1 Σ P1F

right
h

	
�
F lefth , P1F

right
h

	 � pF lefth , v1qpv1, Σv1qpv1, F
right
h q

pF lefth , v1qpv1F
right
h q

� pv1, Σv1q �
¸
σ

v1pσq2σ � v1p�1q2 � v1p�1q2,

where we used as before pF lefth , v1q ¡ 0, pF righth , v1q ¡ 0 and |λ2|   λ1. Using
(2.2.3) we see that

v1p1q2 � v1p�1q2 � 1� C2
1

1� C2
1

where C1 ¡ 0 is a smooth function of h and satisfies

C1   eβre�βs � 1 when h ¡ 0

C1 ¡ eβre�βs � 1 when h   0

C1 � 1 when h � 0.

Therefore Mphq has the same sign as h and Mp0q � 0. Moreover

C 1
1 � e2ββ coshpβhq

�
eβ sinhpβhq?

peβ sinhpβhqq2�e�2β
� 1

�
  0 @h,

then M 1phq � � 4C1C
1
1

p1�C2
1 q2 ¡ 0 @h. Finally

C1phq � e2β sinhpβhq
�b

1� e�4β

sinh2pβhq � 1

�
� O

�
1

sinhpβhq
	
ÑhÑ8 0

C1phq � e2β | sinhpβhq|
�
2�O

�
1

sinh2pβhq
	�

ÑhÑ�8 �8

hence limhÑ�8Mphq � �1. This completes the proof. 2

2.2.3 Spin-spin correlation

The two spin correlation is defined by

CΛ
xy � EΛrσxσys � EΛrσxsEΛrσys.



2.2. TRANSFERMATRIX FOR THE ISINGMODEL IN ONE DIMENSION21

This quantity is zero when σx and σy are independent. We have the following
result

Lemma 4 The infinite volume limit for CΛ
xy exists, is independent of the bound-

ary conditions and satisfies

lim
LÑ8

CΛ
xy � Cxy � Ke�

|x�y|
ξ

where ξ ¡ 0, K ¥ 0 are constants independent of x and y. The parameter ξ
gives the distance where the spin correlation starts to become small and is called
the localization distance.

Proof As in the previous subsections we use the transfer matrix representa-
tion. Without loss of generality we can consider y ¡ x. Then

EΛrσxσys �

�
F lefth , TL�xh Σ T y�xh Σ TL�yh F righth

	
�
F lefth , T 2L

h F righth

	
where F

left{right
h , Th and Σ are defined above. Inserting the spectral decompo-

sition T � λ1P1 � λ2P2 we get

EΛrσxσys �

�
F lefth ,

�
P1 �

�
λ2

λ1

	L�x
P2

�
Σ

�
P1 �

�
λ2

λ1

	y�x
P2

�
Σ

�
P1 �

�
λ2

λ1

	L�y
P2

�
F righth



�
F lefth ,

�
P1 �

�
λ2

λ1

	2L

P2

�
F righth




ÑLÑ8

�
F lefth , P1 Σ

�
P1 �

�
λ2

λ1

	y�x
P2

�
Σ P1F

right
h



�
F lefth , P1F

right
h

	
� pF lefth , P1 Σ P1 Σ P1F

right
h q

pF lefth , P1F
right
h q �

�
λ2

λ1

	y�x pF lefth , P1 Σ P2 Σ P1F
right
h q

pF lefth , P1F
right
h q

The first term in this sum gives

pF lefth , P1 Σ P1 Σ P1F
right
h q

pF lefth , P1F
right
h q � pF lefth , v1qpv1,Σv1qpv1,Σv1qpv1, F

right
h q

pF lefth , v1qpv1, F
right
h q

� pv1,Σv1q2 �Mβphq2 � lim
LÑ8

EΛrσxs EΛrσys.

Therefore limLÑ8 CΛ
xy � Ke�|x�y|{ξ with

K � pF lefth , P1 Σ P2 Σ P1F
right
h q

pF lefth , P1F
right
h q � pv1,Σv2q2, ξ � 1

ln λ1

λ2

.

The values of K and ξ do not depend on Fh so the result is the same for all
boundary conditions. Similar arguments hold in the case of periodic boundary
conditions.
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Comparison with the case of no interaction If we set J � 0 instead of
J � 1 in the Ising Hamiltonian we obtain a product measure on ΩΛ

µJ�0pσq �
L�1¹
j��L

eβhσx ,

and all correlation functions are easy to compute. In particular

ZJ�0
Λ �

L�1¹
j��L

¸
σxPt1,�1u

eβhσx � r2 coshpβhqs2L�1

EΛ,J�0 rσxs �
°
σxPt1,�1u e

βhσxσx°
σxPt1,�1u eβhσx

� sinhpβhq
coshpβhq �Mphq

CxyΛ,J�0 �0 @x, y, @Λ.

As in the J � 1 case the magnetization Mphq is invertible, and we can define
h as a function of M , i.e. the magnetization we want to obtain: hpMq �
1
β tanh�1pMq. All correlation functions are zero because the measure is factored
over a product of local measures. The infinite volume measure exists and is
given by

µJ�0
β,M pσq �

¹
xPZ

eβh0pMqσx , h0pMq � 1
β tanh�1pMq.

In the case J � 1, we have see that two point correlations decay exponentially
and one can show the same result for all correlation functions. This means that
the infinite volume measure µβ,J�1 is “approximately” the product measure (in
a sense to be made precise)

µβ,J�1 �
¹
xPZ

eβh1pMqσx , h1pMq �M�1
β,J�1pMq,

where the magnetization h1 is now fixed by the function (2.2.4). Therefore the
measure “looks like” what we get in the J � 0 case, with a modified parameter
h. We say the magnetic field parameter has been “renormalized”.

2.2.4 Generalizations: transfer matrix in a strip

Let Λ � t�L, . . . , Lu � t1, . . . ,W u. When L Ñ 8 this becomes an infinite
strip. Its properties are similar to 1d chain, hence this is called a “quasi-one
dimensional” problem. A point ~x P Λ is identified by two coordinates ~x � px, yq
with x P t�L, . . . , Lu, y P t1, . . . ,W u. The space of configurations is ΩΛ �
t1,�1uΛ and the Ising Hamiltonian on the strip is

HIpσq � �J
¸

~x�~yPΛ

σ~xσ~y � h
¸
~xPΛ

σ~x

� �J
L�1̧

x��L

�
W̧

y�1

σx,yσx�1,y

�
�

Ļ

x��L

�
J
W�1¸
y�1

σx,yσx,y�1 � h
W̧

y�1

σy

�
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where in the first term we have the (horizontal) interactions between spins at
the same height y, and in the second term we put together all terms involving
only spins on the same vertical line corresponding to x. To make the transfer
matrix easier to see, we define

Xxpyq � σx,y, y P t1, . . . ,W u
the vector made with all spins on the vertical line x. The configuration σ can
be written in terms of X

σ � tσx,yupx,yqPΛ � tXxuLx��L
and we can write HI as

HIpσq � HIpXq �
L�1̧

x��L
IpXx, Xx�1q �

Ļ

x��L
DpXxq

where the interaction I and the diagonal D terms are

IpX,X 1q � �J
W̧

y�1

XpyqX 1pyq, DpXq � �J
W�1¸
y�1

XpyqXpy�1q�h
W̧

y�1

Xpyq.

Then the partition function can be written as

ZΛ �
¸
σPΩΛ

e�βH
Ipσq �

¸
Xp�Lq,...XpLq

F leftpX�Lq
�
L�1¹
x��L

T pXx, Xx�1q
�
F right

� pF left, T 2LF rightq.

where F leftpXq � F rightpXq � e�
β
2DpXq and

T pX,X 1q � e�
β
2DpXqe�βIpX,X

1qe�
β
2DpX1q.

Instead of a 2� 2 matrix this time we have a 2W � 2W matrix and computing
the eigenvalues and eigenvectors may become cumbersome. To avoid doing the
explicit we apply the following result

Theorem 1 (Perron-Frobenius) [without proof] Let T be a N�N real
matrix with Tij ¡ 0 @i, j. Then

1. λ � }T } is an eigenvalue of T

2. for any eigenvalue λ1 � λ we have |λ1|   λ,

3. λ is simple and the corresponding eigenvector can be chosen so that vj ¡ 0
@j.

4. let v be an eigenvector for λ1 � λ. Then v must have some negative or
zero components.
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In our case T is a real symmetric matrix, hence there exists a orthonormal basis
of eivenvectors. Morevoer T pX,X 1q ¡ 0 @X,X 1 so the theorem ensures that the
top eigenvalue (in absolute value) λ1 is positive, simple and the corresponding
eigenvector v1 satisfies v1pjq ¡ 0 @j. Then

T �
2W¸
j�1

λjPj , T 2L � λ2L
1

��P1 �
2W¸
j�2

�
λj
λ1


2L

Pj

��
where Pj are orthogonal projections and |λj |{λ1   1 @j ¥ 2. Then

1
|Λ| lnZΛ � 2L

W p2L�1q lnλ1 � 1
|Λ|

��pF left, P1F
rightq �

2W¸
j�2

�
λj
λ1

	2L

pF left, Pj , F rightq
��

ÑLÑ8 lnλ1

W

since pF left, P1F
rightq � pF left, v1qpv1, F

rightq ¡ 0. The magnetization and
correlation functions can be studied in a similar way.

Remark The argument works since W is kept fixed while L Ñ 8. If we try
to send W to infinity at the same time several problems appear. Among them:
(a) the ratio |λj |{λ0 depends on W and may converge to 1, (b) the size of the
matrix T diverges and we have to ensure the sum over orthogonal projections
remains well defined. Far from being just a nuisance, these problems signal that
something fundamentally different may happen in higher dimensions.

2.3 Transfer matrix for continuous spin

Let us now go back to the first example we gave in Ch. 1, namely the deforma-
tions inside a perfect cristal.

Let Λ � t�L, . . . , Lu as before. The spin σx � �1 at the position x P Λ is
now replaced by the atom displacement φx P R. The finite volume set of spin
configurations tσ P t1,�1uΛu becomes now

ΩΛ � RΛ � tφ|φ : Λ Ñ Ru

We consider the energy functional

HΛpφq �
L�1̧

j��L
rφj � φj�1s2 � m2

β

Ļ

j��L
φ2
j

This corresponds to the hamiltonian (1.1.1) for a cristal in one dimension, with
an additional term m2

°
x φ

2, favoring configurations with φx near zero for each
x. Intuitively, this means that each atom wants to remain near to its equilib-
rium position on the lattice, independently of what the other atoms do. The
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parameter m ¡ 0 is called the mass, and we rescaled by β in order to simplify
the formulas.

We will consider first the case of free boundary conditions: H
pfreeq
Λ � HΛ.

We define a probability measure

dµΛpφq � e�βHΛ

ZΛ
dφ

where dφ �±L
j��L dφj is the product Lebesgue measure and

ZΛ �
»
R2L�1

e�βHΛdφ �
»
R2L�1

e�β
°L�1
j��Lrφj�φj�1s2e�m

2 °L
j��L φ

2
jdφ

is the normalization constant. The integrand inside Z is strictly positive, so
Z ¡ 0. Moreover rφj � φj�1s2 ¥ 0 for any choice of φ then

0   ZΛ ¤
L¹

j��L

»
R
e�m

2φ2
jdφj �

�c
π

m2


2L�1

  8.

Hence the measure is well defined.
As we did in the Ising model, we start by studying lnZ{|Λ| as Λ Ñ Z. Our

goal is to mimick the strategy we developed in the Ising model. We can write
ZΛ as

ZΛ �
»
R2L�1

F leftpφ�Lq
L�1¹
j��L

kpφj , φj�1q F rightpφLq (2.3.5)

where

kpφ, φ1q � e�
m2

2 φ2

e�βpφ�φ
1q2e�

m2

2 φ12 F leftpφq � F rightpφq � e�
m2

2 φ2

.
(2.3.6)

This expression is identical to what we obtained in the Ising case, but sums
are now replaced by integrals and the arguments we applied to not generalize
automatically.

2.3.1 From matrices to integral kernels: transfer operator

In the Ising case we defined the transfer operator as

T : R2 Ñ R2

v Ñ rTvspσq � °σ1 Tσσ1 vpσ1q

where T is a 2�2 matrix acting on R2 endowed with the norm }v}2 � °σ vpσq2.
The natural generalization in this context is the integral operator

K : L2pRq Ñ L2pRq
f Ñ rKf spφq � ³ dφ1 kpφ, φ1q fpφ1q (2.3.7)



26 CHAPTER 2. ONE DIMENSIONAL PROBLEMS

where
k : R� R Ñ R

px, yq Ñ kpx, yq
is called the integral kernel. While the matrix operator T was trivially well
defined, here we need to check that: (a) the function kpφ, φ1qfpφ1q is integrable
and (b) the function kf is still in L2pRq.

A simple criterion is given by the Schur’s bound below.

Lemma 5 [Schur’s bound.] Let k : R� RÑ R satisfy the two bounds

M1 � sup
x

»
R
|kpx, yq|dy   8 (2.3.8)

M2 � sup
y

»
R
|kpx, yq|dx   8.

Then Kfpxq � ³ kpx, yqfpyqdy defines a bounded linear operator from L2pRq to
L2pRq, with

}K} ¤
a
M1M2 (2.3.9)

Proof Let f P L2pRq. By Cauchy-Schwartz inequality

rFf spxq2¤
�»

|kpx, yq||fpyq|dy
�2

�
» a

|kpx, yq|
a
|kpx, yq||fpyq|dy

¤
�»

|kpx, yq|dy
� �»

|kpx, yq|fpyq2dy
�
¤ M1

»
|kpx, yq|fpyq2dy

Using Fubini’s theorem we have»
dx

»
dy|kpx, yq|fpyq2 �

»
dy fpyq2

»
dx |kpx, yq| ¤M2}f}2   8.

As a consequence
³ |kpx, yq| fpyq2dy and hence also

³ |kpx, yq| |fpyq|dy exist for
all x, (except eventually on sets of measure zero). Then rKf spxq is well defined
and

}Kf}2 ¤M1M2}f}2
so Kf P L2pRq and }K} ¤ ?

M1M2. 2

Symmetric kernels When the kernel satisfies (2.3.8) and has the additional
property kpx, yq � kpy, xq we can write for any f, g P L2pRq

pf,Kgq � pKf, gq, where pf, gq �
»
fpxqgpxqdx

is the real scalar product on L2pRq.
In the case of the cristal the kernel given by (2.3.6)

kpx, yq � e�
m2

2 x2

e�βpx�yq
2

e�
m2

2 y2
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is symmetric and satisfies

M1 �M2 � sup
x

»
|kpx, yq|dy ¤

»
e�

m2

2 y2

dy �
c

2π

m2
  8

Then K defines a symmetric bounded linear operator on L2pRq and we can write
the partition function as

ZΛ � pF left,K2LF rigthq. (2.3.10)

2.3.2 Expanding in a sum of projections

In the Ising case we used the expansion T � λ1P1 � λ2P2, where P1, P2 are
orthogonal projections. For an integral operator this decomposition in general
does not exist. An integral operator “looks like” a finite matrix when it is
compact. Precisely

Definition: compact operator. An operator K : L2pRq Ñ L2pRq is com-
pact if it is the limit in norm of a sequence of finite rank operators, i.e. there
exists a sequence tKNuNPN such that KN : L2pRq Ñ L2pRq, its image has finite
dimension for each N and

lim
NÑ8

}K �KN } � 0.

There is an easy criterion to check if an operator is compact.

Criterion for compactness. If K is Hilbert-Schmidt then it is compact.

Definition: Hilbert-Schmidt operator. An operator K : L2pRq Ñ L2pRq
is called Hilbert-Schmidt if the kernel satisfies»

R�R
|kpx, yq|2dxdy   8

In our example»
R�R

|kpx, yq|2dxdy �
»
R�R

e�m
2x2

e�2βpx�yq2e�m
2y2

dxdy

¤
»
R
e�m

2x2

dx

»
R
e�m

2y2

dy � π

m2
  8.

Then K is a compact operator.
The following theorem gives conditions to ensure we can write K a a linear

combination of orthogonal projections.

Theorem 2 [without proof] Let K : L2pRq Ñ L2pRq be compact, symmetric
and injective. Then
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1. there exists a decreasing (in modulus) sequence tλjujPN of eigenvalues
|λj | ¥ |λj�1| with limjÑ8 λj � 0.

2. There exists a corresponding sequence of eigenvectors vj P L2pRq such that
tvjujPN forms an orthonormal basis of L2pRq.

3. Let KN � °N
j�0 λjPj, where

rPjf spxq � vjpxq pvj , fq �
»
vjpxqvjpyq fpyq

is the orthogonal projections on V ectpvjq. Then

lim
NÑ8

}K �KN } � 0 � K �
8̧

j�0

λjPj .

In our case we already checked that K is compact and symmetric. It remains
to verify that K is injective. We will prove the following stronger result.

Lemma 6 Let K : L2pRq Ñ L2pRq be defined by the kernel kpx, yq given by
(2.3.6). Then K ¡ 0 as a quadratic form i.e. pf,Kfq ¡ 0 for any function
f P L2pRq except the zero function fpxq � 0 @x.

Proof

pf,Kfq �
»
R�R

fpxqkpx, yqfpyqdxdy

�
»
R�R

gpxqe�βpx�yq2gpyqdxdy �
»
R
gpxqrF � gspxqdx

where we defined

gpxq � fpxqe�m2

2 x2

, F pxq � e�βx
2

.

The exponential factor ensures that g P L2pRqXL1pRq so the Fourier transform
of g is well defined and»

R
gpxqrF � gspxqdx �

»
R
ĝpkq {rF � gspkqdk �

»
R
|ĝpkq|2F̂ pkqdk

where we used

ĝpkq � 1?
2π

»
R
gpxqe�ikxdx, {rF � gspkq � F̂ pkqĝpkq.

Finally

F̂ pkq � 1?
2π

»
R
e�βx

2

eikxdx � 1?
2π
e�

x2

4β

»
R
e�βpx� ik

2β q2dx � e�
x2

4β 1?
βπ

¡ 0.
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To perform the last integral we deform the contour in the complex plane and use
the fact that e�βz

2

is analytic, hence the integral over any closed path equals
zero. Putting this results together we see that

pf,Kfq �
»
R
|ĝpkq|2F̂ pkqdk ¥ 0

Since F̂ pkq ¡ 0 @k, then pf,Kfq � 0 iff ĝpkq � 0 @k, iff gpxq � 0 @x, iff fpxq � 0
@x. 2

Consequences. Since K ¡ 0 we have 0 � pf, 0q � pf,Kfq ¡ 0 for any
f P kerK. Then kerK � t0u, hence K is injective and the theorem above
applies. Moreover, K ¡ 0 implies that all eigenvalues of K must be stricly
positive.

As a conclusion, in the case of our example, there exists a decreasing sequence
of positive eigenvalues tλjujPN and a correspoding sequence eigenvectors tvjujPN
forming an orthonormal basis such that

lim
NÑ8

}K �KN } � 0 where KN �
Ņ

j�0

λjPj .

As a consequence limNÑ8 |pu,Kwq � pu,KNwq| � 0 for all u,w P L2pRq and
(2.3.10) becomes

ZΛ � pF left,K2LF rightq � lim
NÑ8

Ņ

j�0

λ2L
j pF left, PjF rightq

2.3.3 Infinite volume limit

In the Ising case we needed two additional ingredients to control the limit as LÑ
8: (a) the largest eigenvalue is simple and (b) the corresponding eigenvector
has strictly positive components. Since the elements of T are striclty positive
Perron-Frobenius theorem ensures that both (a) and (b) are verified. Here we
need a generalization of Perron-Frobenius result to integral operators.

Definition. An operator K on L2pRq with integral kernel kpx, yq is said to
have strictly positive kernel if for any function f P L2pRq such that fpxq ¥ 0
@x and f ¡ 0 on a set of positive Lebesgue measure, then rKf spxq ¡ 0 @x,
almost surely (i.e. except eventually on a set of measure zero). This means in
particular that kpx, yq ¡ 0 @x, y a.s.

Theorem 3 (Krein-Rutman) Let K be a bounded compact symmetric
operator on L2pRq with strictly positive kernel. Let λ � }K}. Then

1. λ is the largest eigenvalue (in absolute value) of K,

2. there exists an eigenvector v for λ such that vpxq ¡ 0 @x P R,
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3. λ has multiplicity one.

4. for any eigenvalue |λ1|   λ, let w be an eigenvector. Then there are two
sets I1 and I2 in R of positive Lebesgue measure such that wpxq ¡ 0 @x P I1
and wpxq   0 @x P I2.

Proof Since K is compact and symmetric, then the largest eigenvalue (in
absolute value) λ0 satisfies }A} � |λ0| ¡ 0. We suppose now λ0 ¡ 0. We
will see at the end that this must always be the case. Let v be a normalized
eigenvector for λ0. Since K is symmetric we can take v real. Then

0  pv,Kvq � |pv,Kvq| �
����» vpxqkpx, yqvpyq dxdy���� (2.3.11)

¤
»
|vpxq| kpx, yq |vpyq| dxdy � p|v|,K|v|q.

where |v|pxq � |vpxq|, in the first passage we used K ¡ 0 (as a quadratic form)
and in the last one we used kpx, yq ¡ 0 (pointwise). Since v is an eigenvector
for λ0 we also have

λ0}v}2 � pv,Kvq ¤ p|v|,K|v|q ¤ }K} } |v| }2 � }K} }v}2. (2.3.12)

But λ0 � }K} then pv,Kvq � p|v|,K|v|q. Now let vpxq � v�pxq � v�pxq where

v�pxq � vpxq1vpxq¡0, v�pxq � �vpxq1vpxq¤0

hence v�pxq ¥ 0 for all x, |v| � v� � v� and

pv�,Kv�q � pv�,Kv�q �
»
v�pxqkpx, yqv�pxqdx ¥ 0

since all integrands are non negative. Inserting these expressions inside pv,Kvq �
p|v|,K|v|q we get

0   pv,Kvq � pv�,Kv�q � pv�,Kv�q � pv�,Kv�q � pv�,Kv�q (2.3.13)

� pv�,Kv�q � pv�,Kv�q � pv�,Kv�q � pv�,Kv�q � p|v|,K|v|q
ñ pv�,Kv�q � pv�,Kv�q � 0.

Therefore

0 � pv�,Kv�q � pv�,Kv�q �
»
v�pxqrKv�spxqdx.

We remember that v�pxq ¥ 0 and v�pxq ¥ 0. We have two possible cases: (a)
v� ¡ 0 on a set of positive measure, then rKv�spxq ¡ 0 @x, then the integral
above equals zero only of v�pxq � 0 @x, hence vpxq � v�pxq ¥ 0 @x. The second
possibility (b) is that v�pxq � 0 @x, then vpxq � �v�pxq ¤ 0 @x. We conclude
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that v can be chosen to be non negative vpxq � |v|pxq ¥ 0 @x. To prove strict
positivity vpxq ¡ 0 we observe that λ0 ¡ 0 then

vpxq � 1
λ0
rKvspxq � 1

λ0

»
kpx, yqvpyqdy ¡ 0

since vpyq ¥ 0 and there is a set I of non zero measure such that vpyq ¡ 0 @y P I.
To prove that the eigenvalue λ0 is simple, suppose λ0 is not simple and let v1

be another eigenvector. Then we can always choose v1 such that pv, v1q � 0.
Applying the arguments above to v1 we conclude that v1pxq ¡ 0 @x. But then

0 � pv, v1q �
»
vpxqv1pxqdx ¡ 0,

that is impossible. Then λ0 is simple. Finally, let w an eigenvector for |λ1|   λ0.
Since K is symmetric we must have

0 � pw, v0q �
»
v0pxqwpxqdx.

Since v0pxq ¡ 0 @x, w must take both positive and negative values to ensure
the integral is zero.

It remains to prove that λ0 ¡ 0. Suppose λ0   0. Then repeating the
same arguments as in (2.3.12) we find �pv,Kvq � |pv,Kvq| � p|v|,K|v|q. Then
(2.3.13) becomes pv�,Kv�q�pv�,Kv�q � 0, hence using strict positivity of the
kernel v�pxq � v�pxq � 0 @x. This ends the proof. 2

Using the results above we can prove the following lemma.

Lemma 7 Let K : L2pRq Ñ L2pRq be defined by the kernel kpx, yq given by
(2.3.6). Let λ0 be the largest eigenvalue λ1   λ0 the next eigenvalue. Let v0 be
the normalized eigenvector for λ0 with v0pxq ¡ 0 @x and P0 the corresponding
orthogonal projector. Then

K � λ0P0 �K1

where K1P0 � P0K1 and }K1} � λ1.

Proof By Th. 3.3.11 and 3 we have

K1 �
¸
j¥1

λjPj � KH1 : H1 Ñ H1

where H1 � vK0 is the subspace orthogonal to v0 and 0   λj ¤ λ1   λ0 for all
j. The result follows. 2

2.3.4 Partition function and moments

Partition function Using the results of the previous sections we can write

ZΛ � pF left,K2LF rightq � pF left,K2LF rightq � λ2L
0

�
pF left, P0F

rightq � pF left, K2L
1

λ2L
0
F rightq

�
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Since

|pF left, K2L
1

λ2L
0
F rightq| ¤ }F left}}F right}

�
}K1}
λ0

�2L

� }F left}}F right}
�
λ1

λ0

�2L

ÑLÑ8 0

pF left, P0F
rightq � pF left, v0q pv0, F

rightq ¡ 0,

we can write

lim
LÑ8

lnZΛ

|Λ| � lnλ0.

Magnetization Contrary the the Ising model here by symmetry we have

EΛrφjs � 0 @j, @Λ.

To get some non trivial result we must consider φ2. In the Ising case EΛrσ2
xs � 1

trivially since σ2 � 1. On the contrary here

EΛrφ2
j s �

pF left,KL�jΣ2KL�jF rightq
pF left,K2LF rightq

where we suppose j ¡ 0 and we defined rΣ2f spxq � x2fpxq. Note that rΣ2f s R
L2pRq in general. Let

SpRq � tf P C8pRq| sup
x
|x|q|f ppqpxq|   8 @q, p ¥ 0u

be the Schwartz space on R. Then Σ2 : SpRq Ñ SpRq Moreover Kf P SpRq for
any f P L2pRq (as long as m ¡ 0). Then for each finite volume Λ the expression
above is finite and

lim
LÑ8

EΛrφ2
j s �

pF left, P0Σ2P0F
rightq

pF left, P0F rightq � pv0,Σ
2v0q �

»
x2v2

0pxqdx (2.3.14)

Here comes a new problem: though in the discrete case the final expression was
obviously finite, here the information v0 P L2pRq is not enough to garantee that
the integral is finite. We will need to determine more precisely the properties
of v0pxq. This will be done in the next subsection.

Two point correlation Let us suppose now pv0,Σ
2v0q   8 and consider the

correlation

CjlΛ � EΛrφjφls � pF left,KL�jΣKl�jΣKL�lF rightq
pF left,K2LF rightq

where we set 0   j   l and rΣf spxq � xfpxq. As in the case of Σ2 we have
Σ : SpRq Ñ SpRq and Kf P SpRq for any f P L2pRq, then

lim
LÑ8

EΛrφjφls �
pF left, P0ΣKl�j

λl�j0

ΣP0F
rightq

pF left, P0F rightq � pv0,Σ
Kl�j

λl�j0

Σv0q

� pv0,Σv0qpv0,Σv0q � pv0,Σ
Kl�j

1

λl�j0

Σv0q � pv0,Σ
Kl�j

1

λl�j0

Σv0q

¤ }v0Σ}2
�
λ1

λ0

	l�j
� pv0,Σ

2v0q e�
|l�j|
ξ
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where ξ � rln λ0

λ1
s�1.

2.3.5 Eigenvalues and eigenvectors of K

Top eigenvalue

Since the kernel kpx, yq is written as product of gaussians, we can try to find an
eigenvector with a gaussian form.

Lemma 8 The function gαpxq � e�αx
2

, α ¡ 0 is an eigenvector of K iff α

α �
a
βm2 �m4{4. (2.3.15)

The corresponding eigenvalue is

µα �
b

π
α�pβ�m2{2q . (2.3.16)

Proof If we apply K to ga we obtain

rKgαspxq � e�x
2pβ�m2{2q

»
e�y

2rα�pβ�m2{2qse�2βxydy

�
b

π
α�pβ�m2{2qe

�x2pβ�m2{2qe
4β2x2

4rα�pβ�m2{2qs

�
b

π
α�pβ�m2{2qe

�x2
�
pβ�m2{2q� β2

α�pβ�m2{2q

�

Then rKgαspxq � µgαpxq iff µ � µα and

α � pβ �m2{2q � β2

α� pβ �m2{2q iff α2 � pβ �m2{2q2 � β2.

2
Note that gαpxq ¡ 0 @x then by Krein-Rutman theorem µα must the top

eigenvalue µα � λ0 � }K}. Let

v0pxq �
�

2α
π

� 1
4 gαpxq (2.3.17)

be the corresponding normalized eigenvector. Then the expression pv0,Σ
2v0q in

(2.3.14) is

pv0,Σ
2v0q �

b
2α
π

»
x2e�2αx2

dx � 1

2α
  8,

the limLÑ8 EΛrφ2
j s is finite and limLÑ8 EΛrφjφks ¤ Ce�|j�k|{ξ.
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Other eigenvalues

In order to estimate the localization lenght ξ in EΛrφjφks we need to know also
the second eigenvalue λ1. In our example, we can actually find all eigenvalues
and the corresponding eigenvectors.

Lemma 9 The eigenvalues of K are the sequence

λj � µαλ
j
α, j P N, λα � β

pβ �m2{2� αq .

Each eigenvalue is simple and the corresponding eigenvector vj can be written
as

vjpxq � pa�qjv0pxq, where a� � � d

dx
� 2αx,

and v0 is given in (2.3.17) above.

Proof We remark that gα is the solution of g1αpxq � 2αxgαpxq � 0. Let a �
d
dx � 2αx and

SpRq � tf P C8pRq| sup
x
|x|q|f pnqpxq|   8 @q, p ¥ 0u

be the Schwartz space on R. Then a : SpRq Ñ SpRq and

pf, agq � pa�f, gq @f, g P SpRq.
Since v0 P SpRq, uj � a�v0 P L2pRq @j ¡ 0. Morevover for any f P SpRq

ra�Kf spxq �
�
� d

dx
� 2αx

� »
kpx, yqfpyqdy

� 2

» �
x
�
β �m2{2� α

�� yβ
�
kpx, yqfpyqdy

rKa�f spxq �
»
kpx, yq

�
� d

dy
� 2αy

�
fpyqdy

� 2

» �
xβ � y

�
β �m2{2� α

��
kpx, yqfpyqdy

� β

pβ �m2{2� αq ra
�Kf spxq

where we used α2 � pβ �m2{2q2 � β2. Taking f � v0 we obtain immediately
that vj is a sequence of eigenvectors for the eigenvalues λj . Since λj � λk
@j � k and K� � K the eigenvectors are orthogonal

λjpvj , vkq � pKvj , vkq � pvj ,Kvkq � λkpvj , vkq.
More precisely, using ra, a�s � 4αId and

ra, pa�qks � ra, a�spa�qk�1�a�ra, pa�qk�1s � 4αpa�qk�1�a�ra, pa�qk�1s � 4αkpa�qk�1
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we obtain

pvj , vkq � δjk
p4αqj
j!

.

Finally we remark that vjpxq � pjpxqe�αx2

where pjpxq is a polynomial of order
j and »

e�2αx2

pjpxqpkpxq � cjδjk,

where cj is some positive constant. Precisely

}gα} pjpxq � eαx
2pa�qje�αx2 � e2αx2 �� d

dx

�j
e�2αx2 � p2αqj{2Hjpx

?
2αq

where we used �� d
dx � 2αx

�
eαx

2 � eαx
2 �� d

dx

�
and

Hjpxq � e�x
2 �� d

dx

�j
e�x

2 � e�
x2

2

�� d
dx � x

�j
e�

x2

2

is the Hermite polynomial of order j. Since Hermite polynomials span L2pRq,
by Th. 3.3.11 above the family tvjujPN contains all eigenvectors. 2

2.4 Conclusions, remarks

In this chapter we have considered the one dimensional version of two models:
the Ising model and the harmonic cristal. In both cases we have applied the
transfer matrix approach to study the infinite volume limit. Below is a summary
of the results we obtained.

2.4.1 Hamiltonians

The starting hamiltonians for the Ising (resp. harmonic cristal) model are

HI
Λpσq � �

L�1̧

j��L
σjσj�1 � h

β

Ļ

j��L
σj , σ P ΩΛ � t1,�1uΛ

Hhar
Λ pφq �

L�1̧

j��L
pφj � φj�1q2 �m2

Ļ

j��L
φ2
j , φ P ΩΛ � RΛ

Boundary conditions. In the Ising case we have considered three types of
boudary conditions:

σ̄: H σ̄
Λpσq � HIpσq � J pσ�Lσ̄�L�1 � σLσ̄L�1q

periodic: Hper
Λ pσq � HIpσq � JσLσ�L

free: Hfree
Λ pσq � HIpσq.
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The corresponding boundary conditions in the case of the harmonic cristal are

Dirichlet: HD
Λ pφq � Hhar

Λ pφq � φ2
�L � φ2

L Ñ φL�1 � φ�L�1 � 0

periodic: Hper
Λ pφq � Hhar

Λ pφq � pφL � φ�Lq2
Neuman: HN

Λ pφq � Hharpφq Ñ r∇φsBΛ � 0.

2.4.2 Partition function

In both models we wrote the partition function in terms of a transfer operator.
As a result

lim
LÑ8

lnZIΛ
|Λ| � lnλ1 � lnreβ coshh�

b
peβ sinhhq2 � e�2βs

lim
LÑ8

lnZharΛ

|Λ| � lnλ0 � 1
2 ln π

α�pβ�m2{2q , α �
b
m2β � m4

4 ,

where λ1 (resp. λ0) is the largest eigenvalue of the transfer matrix T (resp.
the transfer operator K). These limits are independent from the boundary
conditions.

2.4.3 Magnetization

For the magnetization we obtained

lim
LÑ8

EΛrσjs � pv1,Σv1q �Mphq Ñ
" �1 hÑ �8

0 hÑ 0

lim
LÑ8

EΛrφjs � 0

lim
LÑ8

EΛrσ2
j s � 1

lim
LÑ8

EΛrφ2
j s � pv0,Σ

2v0q � 1
4α Ñ

"
0 mÑ8
�8 mÑ 0

In both cases the result is independent from the position j and from the bound-
ary conditions. Note that though the averages spin is always finite, the average
φ2 diverges as mÑ 0, reflecting the fact that φj is an unbounded variable and
the fluctuations become very large when m is small.

2.4.4 Correlations

We have considered only two point correlations functions:

lim
LÑ8

pEΛrσiσjs � EΛrσisEΛrσjsq � Ce�
|i�j|
ξ , ξ � 1

ln λ1

λ2

Ñ
#

0 hÑ �8
1

ln cosh β
sinh β

hÑ 0

lim
LÑ8

pEΛrφiφjs � EΛrφisEΛrφjsq ¤ 1
4αe

� |i�j|
ξ , ξ � 1

ln β�m2{2�α
β

Ñ
"

0 mÑ8
�8 mÑ 0
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Note that the correlation length ξ is always finite in the Ising model (unless
β Ñ 8). On the contrary, ξ diverges as m Ñ 0 in the harmonic cristal. Since
the prefactor 1{α also diverges it is better to consider the expression

lim
LÑ8

pEΛrφiφjs � EΛrφisEΛrφjsqb
EΛrφ2

i sEΛrφ2
j s

¤ e�
|i�j|
ξ .

It is important to remark that the divergent quantities in the harmonic cristal
appear for any choice of the boundary conditions.

2.4.5 Generalizations

The transfer matrix approach may be applied to much more general situations.
One may for example replace the quadratic potential m2φ2 by some function
V pφq such that

• V pφq Ñ 8 as |φ| Ñ 8
• V p0q � 0 and V has a unique minimum at φ � 0.

These conditions garantee that V pφq � m2φ2 � Opφ3q near φ � 0. Then when
β is large the transfer matrix is well approximated (see [?, Ch. 5] for more
details) by the harmonic transfer matrix we already studied. Some examples of
such potential are V pφq � φ4 or V pφq � lnp1 � φ2q. Note that in the second
example we cannot study high order correlation functions since EΛrφni s since
the log-potential does not garantee that the integral remains finite. More work
is needed when the potential V pφq has several minima.

When the transfer matrix is real but not symmetrix, or complex but not
self-adjoint, then most of the theorems we used do not apply! Situations when
one can still do something are

• the transfer operator K is real with (non strictly) positive kernel (not
necessarily symmetric) such that some power of K has strictly positive
kernel.

• the transfer operator is complex and normal.
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Chapter 3

Higher dimensional
problems

In one dimension, the transfer matrix approach garantees the existence of the
infinite volume limit, as long as the transfer operator is regular enough. When
in addition we can show that this operator is “near” to the harmonic cristal,
then we can obtain precise estimates of the limit.

In dimension larger than one, the transfer matrix approach does not apply
but as in the 1d case, many techniques use some kind of comparison with the
harmonic cristal. We will then start the chapter reviewing the results we ob-
tained for the harmonic cristal in d � 1 with a different approach that, contrary
to the transfer matrix, can be directly generalized to any dimension.

3.1 Gaussian integrals in 1d

3.1.1 The harmonic cristal as a gaussian integral

The Hamiltonian for the harmonic cristal we introduced in the previous chapter
can be written as a quadratic form

βH
pharq
Λ pφq � pφ,ApharqΛ φqΛ �

Ļ

j,k��L
φjA

pharq
Λ jk φk �

L�1̧

j��L
βpφj � φj�1q2 �

Ļ

j��L
m2φ2

j

� pφ,�β∆Λφq � pφ,m2IΛφq,

where pφ, ψqΛ � °L
j��L φjψj is the real euclidean scalar product on Λ and �∆Λ

is the discrete Laplacian defined by

p�∆Λqij �
" �1 |i� j| � 1°

kPΛ, |k�j|�1 1 i � j

39
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Inserting the boundary conditions the Hamiltonian becomes

Dirichlet: HD
Λ pφq � Hhar

Λ pφq � φ2
�L � φ2

L � pφ, r�β∆D
Λ �m2IΛsφq

periodic: Hper
Λ pφq � Hhar

Λ pφq � pφL � φ�Lq2 � pφ, r�β∆per
Λ �m2IΛsφq

Neuman: HN
Λ pφq � Hharpφq � pφ, r�β∆N

Λ �m2IΛsφq
where

�∆N �

����
1 �1 0 0

�1 2 �1 0
0 �1 2 �1
0 0 �1 1

��� �∆D �

����
2 �1 0 0

�1 2 �1 0
0 �1 2 �1
0 0 �1 2

���

�∆per �

����
2 �1 0 �1

�1 2 �1 0
0 �1 2 �1

�1 0 �1 2

���
Note that

0 ¤ pf,�∆Nfq ¤ pf,�∆perfq ¤ 2pf,�∆Dfq
where in the last inequality we used 2pf2

�L� f2
Lq ¥ pf�L� f�Lq2. Moreover the

constant vector is in the kernel of both ∆N and ∆per

�∆Nf � �∆perf � 0 if fj � f @j,
while pf,�∆Dfq ¡ 0 @f P RΛ. Therefore only the meaure dµDΛ pφq with Dirichlet
boundary conditions is well defined also for m � 0.

3.1.2 Gaussian integrals and correlations

In the following we will need some basic facts about gaussian meaures.

Lemma 10 Let A be a N � N real symmetric matrix such that A ¡ 0 as a
quadratic form. Let dφ �±N

j�1 dφj the Lebesgue measure on RN . Then»
RN

e�
1
2 pφ,Aφqdφ � p2πqN{2?

detA
,

³
RN e

� 1
2 pφ,Aφqφj1φj2dφ³

RN e
� 1

2 pφ,Aφqdφ
� A�1

ij .

More generally let j1, . . . , jn P t1, . . . , Nu n (not necessarily different) points.
Then ³

RN e
� 1

2 pφ,Aφqφj1φj2 � � �φjndφ³
RN e

� 1
2 pφ,Aφqdφ

�
"

0 n odd°
P

±
pα,βqPP A

�1
jαjβ

n � 2m

where P is a pairing of the set the set t1, . . . , 2mu, i.e. a partition into m subsets
of size 2.

Example
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Proof Since A is real and symmetric, there exist an real orthogonal matrix U
(U t � U�1) and a real diagonal matrix λ̂ such that A � U tλ̂U and»

RN
e�

1
2 pφ,Aφqdφ �

»
RN

e�
1
2 pUφ,λ̂Uφqdφ �

»
RN

e�
1
2 pφ̃,λ̂φ̃q|detU�1|dφ̃

�
N¹
i�1

»
R
e�

1
2λiφ̃

2
jdφ̃i � p2πqN{2±N

i�1

?
λi
� p2πqN{2?

detA
.

where we performed the change of variable φ̃ � Uφ and we used |detU | � 1.
To prove the other relation we may use integration by parts. We have

φj1e
� 1

2 pφ,Aφq � �
Ņ

i�1

A�1
j1i

B
Bφi e

� 1
2 pφ,Aφq.

Inserting this relation in the integral we obtain»
RN

e�
1
2 pφ,Aφqφj1φj2dφ � �

Ņ

i�1

A�1
j1i

»
RN

φj2
B
Bφi e

� 1
2 pφ,Aφqdφ

� �
Ņ

i�1

A�1
j1i

»
RN

e�
1
2 pφ,Aφq B

Bφiφj2dφ � A�1
j1j2

»
RN

e�
1
2 pφ,Aφqdφ

The proof for the general case is similar. Alternatively one may use the gener-
ating function S : tfjuNj�1 Ñ R

Spfq �
³
RN e

� 1
2 pφ,Aφqepφ,fqdφ³

RN e
� 1

2 pφ,Aφqdφ

� e
1
2 pf,A�1fq

³
RN e

� 1
2 prφ�A�1fs,Arφ�A�1fsqdφ³
RN e

� 1
2 pφ,Aφqdφ

� e
1
2 pf,A�1fq

Since S is smooth in fj @j we have³
RN e

� 1
2 pφ,Aφqφj1φj2 � � �φjndφ³
RN e

� 1
2 pφ,Aφqdφ

� Bn
Bfj1 � � � Bfjn

Spfq|f�0.

2

3.1.3 Partition function and correlations

With these formulas we can now compute the partition function and correlation
functions for the harmonic cristal in d � 1

Z
pb.c.q
Λ �

»
e�βH

pb.c.q
Λ pφqdφ �

»
e�pφ,AΛφqΛdφ � pπq 2L�1

2?
detAΛ

Epb.c.qΛ rφ2
xs �

³
e�pφ,AΛφqΛ φ2

x dφ³
e�pφ,AΛφqΛ dφ

� 1
2 pA�1

Λ qxx

Epb.c.qΛ rφxφys �
³
e�pφ,AΛφqΛ φxφy dφ³
e�pφ,AΛφqΛ dφ

� 1
2 pA�1

Λ qxy.
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where the matrix AΛ depends on the boundary conditions. The problem is then
converted in the study of the determinant and inverse of AΛ as Λ Ñ Z.

3.1.4 Finite volume computation: periodic boundary con-
ditions

In the case of periodic boundary conditions we can compute the eigenvalues and
eigenvectors of the discrete Laplacian by taking the Fourier transform.

Discrete Fourier transform

Any function f P RΛ can be seen as a periodic function of period T � 2L � 1,
i.e. f P RZ with fpx� nT q � fpxq @n P Z. Let PT pZq the corresponding set of
functions.

Definition 1 (Discrete Fourier transform) The discrete Fourier transform
is a linear functional

F : PT pZq Ñ PT pZq
f Ñ Frf spnq � f̂pnq � c1

Ļ

x��L
fpxqe�iknx

where n P Λ � t�L, . . . , Lu, kn � 2πn
2L�1 and c1 ¡ 0 is a normalization constant.

This functional is invertible and

F�1 : PT pZq Ñ PT pZq
g Ñ F�1rgspxq � ǧpxq � c2

Ļ

n��L
gpknqe�iknx

where the constants c1, c2 ¡ 0 must satisfy c1c2 � 1
2L�1 .

There are several possible conventions. One may take c1 � c2 � p2L � 1q�1{2,
or c1 � 1 and c2 � p2L� 1q�1.

With these definitions we have the following properties

Convolution. Let f, g P PT pZq. The (discrete) convolution is defined by

f � gpxq �
Ļ

y��L
fpx� yqgpyq

The corresponding Fourier transform is

rFpf � gqspknq � c1c
2
2p2L� 1q2f̂pknqĝpknq � 1

c1
f̂pknqĝpknq.

Then
F�1rf � gspxq � c1pf̌ � ǧqpxq.
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Scalar product. Let f, g P PT pZq. We consider the real scalar product on Λ

pf, gq � °L
x��L fpxqgpxq. Then we have

pf, gq � c22p2L� 1q
Ļ

n��L
f̂pknqĝpknq � 1

c21

1

2L� 1

Ļ

n��L
f̂pknqĝpknq

Fourier transform of the Laplacian. Note that the matrix �∆per
Λ is trans-

lation invariant i.e.

p�∆per
Λ qx,y � p�∆per

Λ qx�y,0F p|x� y|q
since the value of this matrix element depends only on the distance |x�y|, then
it acts as a convolution

rp�∆per
Λ qf spxq �

¸
y

p�∆per
Λ qx,yfpyq � rF � f spyq.

The Fourier transform is then

Frp�∆per
Λ qf spknq � rFpF � fqspknq � 1

c1
F̂ pknqf̂pknq.

Therefore, by translation invariance the Laplacian is a diagonal matrix in Fourier
space and the eigenvalues are given by

λn � 1

c1
F̂ pknq.

To compute the eigenvalues

1

c1
F̂ pknq �

Ļ

x��L
e�iknxp�∆per

Λ qx,0 �
�
2� e�ikn � eikn

� � 2r1� cospknqs

Note that by symmetry there are L�1 distinct eigenvalues: λn � 2r1�cospknqs
with n � 1, .., L each of multiplicity 2 and λ0 � 0 of multiplicity 1.

Let M � �β∆per
Λ �m2IΛ. From above we have

{rMf spknq �
¸
m

M̂knkm f̂pkmq � µpknqf̂pknq � rµ�f̂ spknq where µpknq � 2βp1�cos knq�m2.

Hence M̂knkm � δnmµpknq{c1 is a diagonal matrix and

rM̂�1f̂ spknq � rµ�1 � f̂ spknq � 1

µpknq f̂pknq.

Therefore

rM�1f spxq �
¸
y

M�1
xy fpyq � F�1rM̂�1f̂ spxq � F�1rµ�1 � f̂ spxq

� c1
�
F�1pµ�1q � f� pxq � c1

¸
y

F�1pµ�1qpx� yqfpyq
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As a conclusion we obtain

M�1
xy � c1F�1pµ�1qpx� yq � c1c2

Ļ

n��L

1
µpknqe

iknpx�yq

� 1
2L�1

Ļ

n��L

1
µpknqe

iknpx�yq � 1
2L�1

Ļ

n��L

eiknpx�yq
2βp1�cos knq�m2 .

This result is independent from the choice of c1, c2.

Remark. The arguments above are false if we take Dirichlet or Neuman
boundary conditions.

Finite volume partition function and correlations

With the definitions above we can now explicitely compute some quantities.
Since we are considering periodic boundary conditions we have AΛ �M . More-
over each eigenvalue except µp0q has multiplicity 2, then

detM � µp0q
L¹
n�1

µpknq2 � m2
L¹
n�1

µpknq2.

Then

1
2L�1 lnZ

pperq
Λ � ln

?
π � lnm

2L�1 � 1
2L�1

Ļ

n�1

lnµpknq

EperΛ rφ2
xs � 1

2 pM�1qxx � 1
2m2|Λ| � 1

|Λ|

Ļ

n�1

1

µpknq

EperΛ rφxφys � 1
2 pM�1qxy � 1

2m2|Λ| � 1
|Λ|

Ļ

n�1

cospknpx� yqq
µpknq .

where |Λ| � 2L� 1 and we used k�n � �kn and µpknq � µp�knq.

Some elementary estimates on the two point function: spectral gap
Contrary to the continuous Laplacian, the discrete Laplacian has a spectral gap,

µpknq � µpk0q ¥ 2βp1� cosp 2π
2L�1 qq � OpL�2q ¡ 0 @n � 0.

Using this fact we can prove the following estimates.

Lemma 11 There exist constants C1, C2 such that

|EperΛ rφxφys � EperΛ rφxφxs| ¤ C1

m
(3.1.1)

|EperΛ rφxφys � EperΛ rφxφy�1s| ¤ C2 (3.1.2)
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for any choice of m, |Λ|, x and y. The factor m�1 is due to the properties of
the one dimensional Laplacian and cannot be avoided. Precisely, there exist two
constants K1,K2 such that

K1

m
¤
���EperΛ rφxφxs � 1

2m2|Λ|
��� ¤ K2

m
(3.1.3)

for any choice of m and |Λ|. The points on the boundary play a special role and
the corresponding two point function has nicer a priori bounds. Precisely there
exists a constant C3 such that

m
���EperΛ rφxφ�Ls � 1

2m2|Λ|
��� ¤ C3

mL
(3.1.4)

for any choice of m Λ and x.

Proof.

|EperΛ rφxφys � EperΛ rφxφxs| �
����� 1
|Λ|

Ļ

n�1

rcospknpx�yqq�1s
µpknq

�����
¤ 2

|Λ|

Ļ

n�1

1
2βp1�cos knq�m2

¤ 2
|Λ|

¸
1¤n¤L{10

1
2βp1�cos knq�m2 � 2

|Λ|
¸

L{10 n¤L

1
2βp1�cos knq�m2

To estimate the second sum notice that

1� cospknq ¥ 1� cosπ{10�OpL�1q ¥ Const @ L{10   n ¤ L.

Then

2
|Λ|

¸
L{10 n¤L

1
2βp1�cos knq�m2 ¤ 2L

2L�1 sup
L{10 n¤L

1
2βp1�cos knq�m2 ¤ Const.

To estimate the first sum notice that we can find a small number ρ ¡ 0 such
that

1� cospknq ¥ ρk2
n @ n ¤ L{10.

Then

2
|Λ|

¸
1¤n¤L{10

1
2βp1�cos knq�m2 ¤ 1

π
2π
|Λ|

¸
1¤n¤L{10

1
2βρk2

n�m2

¤ 1
π

» bL
aL

1
2βρk2�m2 dk � 1

mπ
?

2βρ

» bL
?

2βρ

m

aL
?

2βρ

m

1
k2�1dk

� 1
mπ

?
2βρ

rarctanpkqs
bL

?
2βρ

m
aL

?
2βρ

m

¤ Const
m
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where we set aL � 2π
2L�1 , bL � π�OpL�1q

10 . The estimate (3.1.3) is proved in the

same way. To obtain the lower bound notice that 1 � cospknq ¤ ρk2
n for some

constant ρ for all 1 ¤ n ¤ L{10 and 1� cospknq ¤ 2 for all 0 ¤ n ¤ L. To prove
(3.1.2)

EperΛ rφxφys � EperΛ rφxφy�1s � 1
|Λ|

Ļ

n�1

rcospknpx�yqq�cospknpx�y�1qqs
µpknq

� 1
|Λ|

Ļ

n�1

cospknpx�yqqr1�cospknqs�sinpknpx�yqq sinpknq
µpknq

Then

|EperΛ rφxφys � EperΛ rφxφy�1s| ¤ 1
|Λ|

Ļ

n�1

r1�cospknqs
2βp1�cospknqq�m2 � 1

|Λ|

Ļ

n�1

| sinpknpx�yqq sinpknq|
2βp1�cospknqq�m2

¤ L
2βp2L�1q � 1

|Λ|

Ļ

n�1

| sinpknpx�yqq sinpknq|
2βp1�cospknqq�m2

To estimate the last term we break it as before in two sums
°
n¤n̄ and

°
n̄¤n¤L,

where

n̄ � L
10|x�y| , 1 ¤ |x� y| ! Lñ |kn| ¤ L

10 , and |knpx� yq| ¤ L
10 @ n ¤ n̄.

The last sum is bounded by a constant. The first sum is bounded by

K
|Λ|

¸
1¤n¤n̄

k2
n|x�y|

2βρk2
n�m2 ¤ K |x�y|n̄

2βρ|Λ| ¤ K

where K and K are some constants. Finally to prove (3.1.4) note that���EperΛ rφxφLs � 1
2m2|Λ|

��� � 1
|Λ|

����� Ļ
n�1

cos knpx�Lq
2βp1�cospknqq�m2

����� � 1
|Λ|

����� Ļ
n�1

cosrknpx�1{2q�nπs
2βp1�cospknqq�m2

�����
� 1

|Λ|

����� Ļ
n�1

p�1qnfpknq
����� � 1

|Λ|

������
¸

1¤n¤L{2
fpk2nq � fpk2n�1q

������ ¤ 1
|Λ|

Ļ

n�1

|fpkn�1q � fpknq| .

where
fpkq � cosrkpx�1{2qs

2βp1�cospkqq�m2 .

Now

fpkn�1q � fpknq � f 1pk�qδk, kn ¤ k� ¤ kn�1, δk � 2π
2L�1 .

There exist constants C1px, βq, C2px, βq such that

|f 1pkq| ¤ | sinpkpx� 1{2qq|
r2βp1� cospkqq �m2s �

| cospkpx� 1{2qq|| sinpkq|
r2βp1� cospkqq �m2s2

¤
#
C1px, βq @ π

10|x| ¤ k ¤ π

C2px, βq
�

k
2βρk2�m2 � k

r2βρk2�m2s2
�

@0 ¤ k ¤ π
10|x|
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Inserting these bounds in the sum above we obtain

1
|Λ|

Ļ

n�1

|fpkn�1q � fpknq| ¤ C1px, βqδk � C2px, βqδk
» π{10|x|

0

�
k

2βρk2�m2 � k
r2βρk2�m2s2

�
dk

� OpL�1q �OpL�1q| lnm| �O
�

1
m2L

� � 1
mO

�
1
mL

�
.

This proves the result.

3.1.5 Infinite volume limit for periodic boundary condi-
tions

When LÑ8 the Riemann sums become integrals

1
2L�1 lnZ

pperq
Λ � ln

?
π � lnm

2L�1 � 1
2L�1

Ļ

n�1

lnµpknq

ÑLÑ8 ln
?
π � 1

2π

» π
0

lnr2βp1� cos kq �m2sdk.

EperΛ rφ2
xs � 1

2m|Λ| � 1
|Λ|

Ļ

n�1

1

µpknq ÑLÑ8 1
2π

» π
0

1

2βp1� cos kq �m2
dk

EperΛ rφxφys � 1
2m|Λ| � 1

|Λ|

Ļ

n�1

cospknpx� yqq
µpknq

ÑLÑ8 1
2π

» π
0

cospkpx� yqq
2βp1� cos kq �m2

dk � 1
4π

» π
�π

eikpx�yq

2βp1� cos kq �m2
dk

Lemma 12 The limits obtained above coincide with the results we obtained by
transfer matrix approach. In particular the two-point correlations are given by

lim
LÑ8

EperΛ rφ2
xs �

1

4α

lim
LÑ8

EperΛ rφxφys � 1

4α
z
|x|
1

where

z1 �
�

1� m2

2β

	
�
c�

1� m2

2β

	2

� 1.

Proof. The two point function is symmetric under exchange of x and y so we
can always choose x� y ¥ 0.

lim
LÑ8

EperΛ rφxφys � 1
4π

» π
�π

eikpx�yq

2βp1� cos kq �m2
dk � �i

4π

»
C

zx�y

βp2� z � z�1q �m2

dz

z

� �i
4π

»
C

zx�y

βp2z � z2 � 1q �m2z
dz � �i

4πβ

»
C

zx�y

pz � z1qpz2 � zqdz
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where C � tz � eiθ P C|θ P r0, 2πru is the circle of radius 1 and

z1 �
�

1� m2

2β

	
�
c�

1� m2

2β

	2

� 1 �
�

1� m2

2β

	
� α

β   1,

z2 �
�

1� m2

2β

	
�
c�

1� m2

2β

	2

� 1 �
�

1� m2

2β

	
� α

β ¡ 1

and α �apβ �m2{2q2 � β2 was introduced in Chapter 2. Since x� y ¥ 0 the
function inside the integral is holomorphic on the whole plane C except at the
two points z � z1, z2 where it has a simple pole. Therefore

lim
LÑ8

EperΛ rφxφys � �i2πi
4πβ

zx�y

z2 � z1
� 1

4α
z
|x�y|
1

3.2 Gaussian integrals is d ¥ 1.

3.2.1 The harmonic cristal in d ¥ 1.

For d ¥ 1 we consider the cube ΛL � t�L, . . . , Lud. The set of possible config-
urations is now ΩΛ � tφ : Λ Ñ Ru. The energy associated to a configuration
is

βH
pbcq
Λ pφq �

¸
j�kPΛ

βpφj � φkq2 �
¸
jPΛ

m2φ2
j � F pb.cqpφq

where j � k is }j � k} � 1 (with the euclidian norm }x}2 � °d
ρ�1 x

2
ρ) and

F pb.cqpφq �

$''&''%
°

z,z1PBΛ
}z�z1}¡1}z�z1}p�1

βpφz � φz1q2 periodic b.c.°
zPBΛ,z1PΛc

}z�z1}�1

βpφz � φz1q2φz1�0 �
°
zPBΛ,z1PΛc

}z�z1}�1

βφ2
z Dirichlet b.c.

0 Neuman b.c.

where }z � z1}p is the norm on the periodic torus Zd{ΛL. All these expressions
can be written as quadratic forms

βH
pbcq
Λ pφq � pφ,Apb.c.qΛ φq, A

pb.c.q
Λ � �β∆

pb.c.q
Λ �m2IdΛ.

where �∆Λ is the generalization of the discrete Laplacian to dimension d ¥ 1.
The formulas for Gaussian integrals generalize directly to any dimension. In
particular

EpbcqΛ rφxφys � 1
2 pA

pbcq
Λ q�1

xy .
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3.2.2 Periodic boundary conditions

In the case of periodic boundary conditions we can apply discrete Fourier trans-
form (as in d � 1) to prove

EpperqΛ rφxφys � 1
2m2|Λ| � 1

2|Λ|
¸
nPΛ
n�0

eipkn,px�yqq

2β
°d
ρ�1p1� cos kρnq �m2

where n � pn1, . . . ndq P Λ, kn � pk1
n, . . . , k

d
nq and kρn � 2πnρ

2L�1 . By the same
arguments we used in d � 1 we can show that for small m

���pApperqΛ q�1
xy � 1

m2|Λ|
��� �

$&% O
�

1
m

�
d � 1

O p| lnm|q d � 2
Op1q d ¥ 3

(3.2.5)

the main reason being that for small n ie }n} ¤ L{10 the Fourier sum can be
approximated by the integral

1
|Λ|

¸
}n}¤L{10

1

2β
°d
ρ�1p1� cos kρnq �m2

�
»
}k}¤π{10

1

}k}2 �m2
ddk � Cd

» π{10

0

kd�1

k2 �m2
dk.

This integral is linearly divergent in d � 1, log divergent in d � 2 and bounded
in d ¥ 3.

Infinite volume

As in d � 1 when L Ñ 8 and m is kept fixed the Riemann sum converges to
an integral

lim
ΛÑZd

EpperqΛ,m rφxφys � 1

2p2πqd
»
r�π,πsd

eipk,px�yqq

2β
°d
ρ�1p1� cos kρq �m2

ddk.

With some extra work one can show that the limit exists also if we let m Ñ 0
and LÑ8 simultaneously as long as mLÑ8. Precisely we have

lim
mÑ0,LÑ8
mLÑ8

cpmqEpperqΛ,m rφxφys � lim
mÑ0

lim
LÑ8

cpmqEpperqΛ,m rφxφys

where

cpmq �
$&% m d � 1

| lnm| d � 2
1 d ¥ 3

To prove this result one has to compare the Riemann sum with the integral.
The difference can be expressed as sum over gradients fpkq � fpknq which in
turn give some decay improvement by the same arguments we used to prove eq.
(3.1.4).
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3.2.3 Existence and uniqueness of the thermodynamic limit.

Theorem 4 The thermodynamic limit for the 2 point correlation function

EpperqΛ,m rφxφys exists @d ¥ 1 and is independent of the boundary conditions:

lim
LÑ8

�
EpperqΛ,m rφxφys � EDΛ,mrφxφys

�
� lim
LÑ8

�
EpperqΛ,m rφxφys � ENΛ,mrφxφys

�
� 0,

for any fixed m ¡ 0. This remains true also is we let m Ñ 0 and L Ñ 8
simultaneously with mLÑ8. Precisely

lim
mÑ0,LÑ8
mLÑ8

cpmq
�
EpperqΛ,m rφxφys � EDΛ,mrφxφys

�
� lim

mÑ0,LÑ8
mLÑ8

cpmq
�
EpperqΛ,m rφxφys � ENΛ,mrφxφys

�
� 0.

Proof. Existence follows directly from the results of the previous section
in the case of periodic boundary conditions. To prove uniqueness let MD �
�β∆D

Λ � m2 and MN � �β∆N
Λ � m2 and M � �β∆per

Λ � m2 the matrices
corresponding to Dirichlet, Neuman and periodic boundary conditions. We
remark that MD and M differ only on the boundary of Λ. The same is true for
MN . Precisely

MD �M �X, MN �M � X̃

where

Xxy �
¸

z,z1PBΛ
}z�z1}¡1}z�z1}p�1

βrδx,zδy,z1 � δx,z1δy,zs,

X̃xy �
¸

z,z1PBΛ
}z�z1}¡1}z�z1}p�1

βrδx,zδy,z1 � δx,z1δy,z � δx,zδy,z � δx,z1δy,z1s.

For any two matrices A and B (with A and A�B invertible) we have

pA�Bq�1 �A�1 � �pA�Bq�1BA�1.

Applying the relation above

pMDq�1
xy �M�1

xy � pM �Xq�1
xy �M�1

xy � �
¸
zz1
pM �Xq�1

xzXzz1M
�1
z1y

� �
¸

z,z1PBΛ
}z�z1}¡1}z�z1}p�1

β
�
pMDq�1

xzM
�1
z1y � pMDq�1

xz1M
�1
zy

�

pMN q�1
xy �M�1

xy � pM � X̃q�1
xy �M�1

xy � �
¸
zz1
pM � X̃q�1

xz X̃zz1M
�1
z1y

� �
¸

z,z1PBΛ
}z�z1}¡1}z�z1}p�1

β
�pMN q�1

xz � pMN q�1
xz1
� rM�1

zy �M�1
z1y s
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Case of fixed mass. By Combes-Thomas estimate (see the next subsection)
there exists a constant µm,d that depends only on m and d such that, for any
boundary condition ��rM bcs�1

xy

�� ¤ 2
m2 e

�|x�y|µm,d

uniformly in the volume. Then��pMDq�1
xy �M�1

xy

�� ¤ CLd�1

m4 e�µm,dL ÑLÑ8 0

for some constant C. The same holds for MN .

Case of vanishing mass with Dirichlet b.c. For m small the factor µm �
m2 so the Combes-Thomas estimate gives a decay in Lm2 which is not enough
to prove the convergence. By matrix-tree thorem (see the next subsection) we
can prove

pMDq�1
xy ¥ 0 @x, y P Λ, and

¸
zPBΛ

pMDq�1
xz ¤ 1

β @x P Λ.

Moreover, by Fourier analysis (see eq. (3.2.5) above) one can show that

cpmq ��M�1
xy

��ÑmÑ0,LÑ8
mLÑ8

0

Putting together these estimates

cpmq ��pMDq�1
xy �M�1

xy

�� ¤ β
¸
zPBΛ

pMDq�1
xz cpmq sup

zPBΛ

��M�1
zy

��ÑmÑ0,LÑ8
mLÑ8

0.

3.2.4 Combes-Thomas estimate

Theorem 5 (Combes-Thomas) Let Γ be a finite or countable set, M �
T � U a self-adjoint operator on l2pΓq, with U an arbitrary diagonal operator
and T an off-diagonal operator. Let |x � y| the distance in Γ. If there exists a
parameter η ¡ 0 such that

sup
xPΓ

¸
yPΓ

|Txy|eη|x�y| � S   8

then for any E outside the spectrum of M with disttM,Eu � ∆ ¡ 0

��pM � Eq�1
xy

�� ¤ 2

∆
e�µ|x�y|, with µ � ∆η

∆� 2S
.

Proof. Let ex P l2pΓq the function defined by expyq � δx�y, then

pM � Eq�1
xy � pex, pM � Eq�1eyq.
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Let R : l2pΓq Ñ l2pΓq the multiplication operator defined by

rRf spyq � eµ|x�y|N fpyq, where |x� y|N � mint|x� y|, Nu.
The parameter N makes R a bounded operator also when Γ is a countable set.
At the end of the proof, we will take N to infinity. Then

pM � Eq�1
xy e

µ|x�y|N � pex, pM � Eq�1eyq eµ|x�y|N � pR�1ex, pM � Eq�1 R eyq
� pex, R�1pM � Eq�1R eyq � pex,

�
R�1pM � EqR��1

eyq
Then��pM � Eq�1

xy

�� eµ|x�y|N ¤
���� 1

R�1pM � EqR
���� � ���� 1

rR�1TR� T s � rM � Es
����

where we used R�1UR � U . The kernel of rR�1TR� T s is given by kpx, yq
rR�1TR� T sfpyq �

¸
z

Tyz

�
eµp|z�x|N�|y�x|N q � 1

�
fpzq

�
¸
z

kpy, zqfpzq.

Since
��|z � x|N � |y � x|N

�� ¤ |y � z|N we have���eµp|z�x|N�|y�x|N q � 1
��� ¤ max

�
peµ|z�y|N � 1q, p1� e�µ|z�y|N q

�
� eµ|z�y|N � 1.

Then the kernel kpy, zq satisfies

sup
y

¸
z

|kpy, zq| � sup
z

¸
y

|kpy, zq| ¤ sup
y

¸
z

|Tyz|
�
eµ|z�y|N � 1

	
¤
�
sup
u
e�η|u|

�
eµ|u| � 1

	�
sup
y

¸
z

|Tyz|eη|z�y|N

¤ S µ
η�µ

�
η�µ
η

	 η
µ ¤ S µ

η�µ .

since µ   η. Then by the Schur’s bound we have

}rR�1TR� T s} ¤ S µ
η�µ � ∆

2 since µ � ∆η
∆�2S .

On the other hand

}rM � Esf} ¥ ∆}f} @f P l2pΓq.
With these bounds we obtain��� 1

rR�1TR�T s�rM�Es
��� � 1

inff
}rR�1TR�T sf�rM�Esf}

}f}
¤ 2

∆

since

}rR�1TR� T sf � rM � Esf} ¥ ��}rR�1TR� T sf} � }rM � Esf}��.
These bounds do not depend on the N , so we can take N Ñ8. This completes
the proof.
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Application of Combes-Thomas: bound on the two point function.

Let AΛ � �β∆
pb.cq
Λ �m2IΛ. For any choice of the boundary conditions we can

write
AΛ � T � U, where |Tx,y| � βδ|x�y|�1,

where |x � y| is the euclidean norm in Zd. In the case of periodic boundary
conditions |x�y| is the euclidean norm on the torus Zd{ΛL. Moreover }A} ¥ m2

and ¸
y

¸
z

|Tz,y|eη|z�y| ¤ 2dβeη � S   8

for any choice of η ¡ 0 and for any choice of the boundary conditions. Then we
can apply Combes-Thomas estimate with E � 0���Epb.c.qΛ rφxφys

��� � 1

2
|pA�1

Λ qxy| ¤ 1
m2 e

�µm|x�y|

where

µm � m2η

m2 � 4dβeη
(3.2.6)

and η ¡ 0 is arbitrary. This bound holds uniformly in the volume Λ and for
any dimension d ¥ 1.

3.2.5 Matrix-tree theorem

Let Λ be a finite set of points. Let EΛ � tpi, jq| i, j P Λ, i � ju be the set un
undirected edges e � pi, jq � pj, iq on Λ. For each edge e P EΛ we denote its
endpoints by ie, je.

Definition 2 A subset E � EΛ of edges forms a loop (cycle) if we can order
its edges E � pe1, . . . , enq such that iel � jel�1

, @l � 2, . . . n and ie1 � jen .

Definition 3 A forest F on Λ is a subset of EΛ with no cycle. Let FrΛs be
the set of forests on Λ.

Definition 4 A spanning tree T on Λ is a forest on Λ such that for each pair
x, y P Λ there exists a path in T connecting x to y. Precisely there exists a subset
γTxy � pe1, . . . enq � T such that ie1 � x, jen � y and iel � jel�1

@l � 2, . . . , n.

Characterization of a forest. A forest F can be uniquely determined by
the following information.

1. We fix a partition P of the set Λ.

2. Inside each element X of the partition we choose a spanning tree.

The forest is then obtained taking the union over the spanning trees. Note
that this implies there is no edge connecting points in different elements of the
partition. On the contrary any two points inside X P P are connected by a path
in the forest. The elements X P P are also called connected components of the
forest. For each forest F we denote by P pF q the corresponding partition.
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Theorem 6 (matrix-tree) Let M be a N �N symmetric invertible ma-
trix (not necessarily positive or real). Let Λ � t1, . . . , Nu. Then

detM �
¸

FPFrΛs

¹
ePF

r�Miejes
¹

XPP pF q
r
¸
rPX

Brs

M�1
xy detM �

¸
FPFxyrΛs

¹
ePF

r�Miejes
¹

XPP pF q,xRX
r
¸
rPX

Brs

where
Br �

¸
jPΛ

Mrj

and FxyrΛs is the set of forests such that x and y belong to the same connected
component. Alternatively one may write

detM �
¸

PPPrΛs

¹
XPP

$&% ¸
TPT rXs

¹
ePT

r�Miejesr
¸
rPX

Brs
,.-

M�1
xy detM �

¸
PPPxyrΛs

�� ¸
TPT rXxs

¹
ePT

r�Miejes
�� ¹

XPP
xRX

$&% ¸
TPT rXs

¹
ePT

r�Miejesr
¸
rPX

Brs
,.-

where PrΛs is the set partitions of Λ, T rXs the set of spanning trees on X,
and finally PxyrΛs is the set of partitions such that x and y belong to the same
element of the partition: this special element of the partition is denoted by Xx.

Remark. The general matrix-tree theorem applies also to non-symmetric and
non invertible matrices, with a slight modification in the definitions.

With these definitions we can prove the following result.

Lemma 13 Let Λ � t�L, . . . , Lud and AΛ � �β∆D
Λ �m2IΛ a matrix on Λ�Λ,

where �∆D
Λ is the discrete Laplacian with Dirichlet boundary conditions. Then

0 ¤ pA�1
Λ qxy @x, y P Λ (3.2.7)

and ¸
zPBΛ

pA�1
Λ qxz ¤ 1

β
@x P Λ. (3.2.8)

Proof. Applying the matrix-tree theorem we can write

pA�1
Λ qxy �

°
PPPxyrΛs

�°
TPT rXxs

±
ePT r�Aiejes

�±
XPP
xRX

!°
TPT rXs

±
ePT r�Aiejesr

°
rPX Brs

)
°
PPPrΛs

±
XPP

!°
TPT rXs

±
ePT r�Aiejesr

°
rPX Brs

)
Note that �Aieje � β when ie � je, i.e |ie � je| � 1 and zero otherwise (since
ie � je for any edge e in the forest). Then only nearest neighbor edges give
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a non zero contribution. Let PcrΛs the set of partitions of Λ into connected
components and T̃ rXs the set of trees on X made only of nearest neighbor pairs
i � j. Finally note that

Br �
¸
jPΛ

Ajr � m2 � βdr

where

dr � #tj P Λc| |j � r| � 1u so

"
dr � 0 if r P ΛzBΛ
dr P t1, . . . , du if r P BΛ.

Then
°
rPX Br � m2|X| � βdX , where

dX �
¸
rPX

dr, hence |X X BΛ| ¤ dX ¤ d|X X BΛ|.

Inserting all this we obtain

pA�1
Λ qxy �

°
PPPcxyrΛs

�°
TPT̃ rXxs β

|T |
�±

XPP
xRX

!°
TPT̃ rXs β

|T | rm2|X| � βdX s
)

°
PPPcrΛs

±
XPP

!°
TPT̃ rXs β|T | rm2|X| � βdX s

)
This expression is manifestly positive hence (3.2.7). Let

ωpXq � rm2|X| � βdX s
¸

TPT̃ rXs
β|T |.

Then

ρpP q �
±
XPP ωpXq°

PPPcrΛs
±
XPP ωpXq

is a probability measure on PcrΛs and pA�1
Λ qxy can be expressed as an average

pA�1
Λ qxy �

¸
PPPcxyrΛs

ρpP q 1
rm2|Xx|�βdXx s

To prove (3.2.8) we replace y by z and sum over all z P BΛ¸
zPBΛ

pA�1
Λ qxz �

¸
zPBΛ

¸
PPPcxzrΛs

ρpP q 1
rm2|Xx|�βdX s

�
¸

PPPcxBΛrΛs

¸
zPXxXBΛ

ρpP q 1
rm2|Xx|�βdXx s �

¸
PPPcxBΛrΛs

ρpP q |XxXBΛ|
rm2|Xx|�βdXx s ¤

1

β

since dXx ¥ |Xx X BΛ|. This ends the proof.
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3.3 Perturbation around a gaussian integral

3.3.1 The Opnq model

Let Λ � t�L, . . . , Lud a cube inside Zd. To each lattice point j we associate a
spin Sj P Sn taking values in the unit n�dimensional sphere. The three main
examples are

1. n � 1: in this case Sj � �1 and we obtain the Ising model;

2. n � 2: the spin takes values on the unit circle. This is the so called XY
(or rotator) model;

3. n � 3: the spin takes value on the sphere. This is the so called Heisenberg
model.

The space of configurations is ΩΛ � tS : Λ Ñ Snu and the corresponding Gibbs
measure is

dµβ,hΛ,npSq �
¹
jPΛ

dΩnpSjq e
β
2

°
j,kΛ JjkpSj ,Skqeph,

°
jPΛ Sjq (3.3.9)

where p., .q is the euclidean scalar product in Rn, h P Rn is the magnetic field
and Jjk is a collection of real interaction constants such that

Jjk � Jkj ¥ 0 @ j, k P Λ

and there exists a constant c ¡ 0 independent of the volume Λ such that

0 ¤
¸
kPΛ

Jjk ¤ c @j P Λ.

One can understand this constraint by regarding Jjk as the probability to jump
from j to k. Then

°
kPΛ Jjk � 1 since it is the probability of jumping to any

point. Finally dΩn is the invariant measure on the sphere Sn, normalized to 1.
In particular

1. for the Ising model the measure is discrete:
³
dΩ1 � 1

2

°
σ��1;

2. for n � 2 we can parametrize the circle by one angle:
³
dΩ2 � 1

2π

³2π
0
dθ;

3. for n � 3 we can parametrize the sphere by two angles:
³
dΩ3 � 1

4π

³2π
0
dφ
³π
0
dθ sin θ.

Phenomenology and symmetries.

Since Jjk ¥ 0 the interaction favors the configurations with spins aligned (we
have a so called “ ferromagnetic interaction”).

When h � 0 the Gibbs measure is invariant under global rotation

Sj Ñ USj @j U�U � IdRn (3.3.10)
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for any n ¥ 2. In particular it is invariant under flip Sj Ñ �Sj @j (this is true
also for n � 1). Then

Eβ,h�0
Λ rSjs � �Eβ,0Λ rSjs ñ Eβ,0Λ rSjs � 0 @j P Λ, @n ¥ 1, @d ¥ 1,

and we say that the average magnetization is zero (the spins are not aligned).

For general h, the finite volume magnetization Eβ,hΛ r 1
|Λ|
°
jPΛ Sjs is a smooth

function in each component of the vector h hence

lim
ΛÑZd

lim
hÑ0

Eβ,hΛ

�
1

|Λ|
¸
jPΛ

Sj

�
� 0.

If we invert the limits we may have two results:

lim
hÑ0

Eβ,hΛ lim
ΛÑZd

Eβ,hΛ

�
1

|Λ|
¸
jPΛ

Sj

�
�
"

0
M � 0.

In the first case there is no magnetization. This means the infinite volume
measure limΛÑZd dµΛ,β,h recovers the flip symmetry when hÑ 0. In this case we
say the symmetry is restored. In the second case we have magnetization. Then
the infinite volume measure limΛÑZd dµΛ,β,h does not recover the symmetry
when hÑ 0. Then we say we have spontaneous symmetry breaking.

One can show that at high enough temperature (i.e. β small) there is never
a magnetization, since the thermal fluctuations are too strong. On the contrary
at low temperature (i.e. β large) the forces trying to align the spins may be
strong enough to create a magnetization. In this case we say we have a phase
transition.

Mermin-Wagner: low dimensional systems.

Phase transitions are harder to observe in low dimensions. This is the con-
tent of the so called Mermin-Wagner theorem (also known a Mermin-Wagner-
Hohenberg theorem or Coleman theorem). It is a series of papers that can be
summarized in the following statement:

Continuous symmetries cannot be spontaneously broken at finite temperature
in systems with sufficiently short-range interactions in dimensions d ¤ 2.

Application to Opnq with short range interaction.

Let us consider the Opnq model defined above with Jjk � 1 when |j � k| � 1
and Jjk � 0 otherwise. Then

dµpSq �
¹
jPΛ

dΩnpSjq eβ
°
j�kpSj ,Skqeph,

°
jPΛ Sjq,
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where j � k means the two points are nearest neighbors in Zd. For n ¥ 2 this
measure has a continuous symmetry at h � 0, so by Mermin-Wagner theorem
we cannot expect a magnetization (hence a phase transition) in d ¤ 2. The
theorem does not apply to n � 1 (Ising model) since there the symmetry is
discrete (σ Ñ �σ).

In d � 2 one may still observe a softer version of phase transition known as
Kosterlitz-Thouless transition that corresponds to a change in the decay rate of
two point correlations. More precisely

lim
ΛÑZd

Eβ,0Λ rS0Sxs �
#
c1e

� |x|
ξ T " 1pi.e.β ! 1q

c2
|x|η T ! 1pi.e.β " 1q as |x| " 1.

for some constants c1, c2, ξ, η ¡ 0.

3.3.2 A first example of perturbation around a Gaussian
measure: the Op2q model in d � 2

Let Λ � Z2{t�L, . . . , Lu2 a cube in Z2 with periodic boundary conditions. The
space of configurations is ΩΛ � tS : Λ Ñ S2u and we consider the Gibbs measure

dµpSq �
¹
jPΛ

dΩ2pSjq eβ
°
j�kpSj ,Skq

where j � k are pairs at distance one in the torus. For this model one can prove
a Kosterlitz-Thouless transition. More precisely we have

Theorem 1 [Mc Bryan, Spencer (1977)]. For any 0   ε   1 there exists
a β0pεq ¡ 0 such that for all β ¥ β0pεq

lim
ΛÑZd

|Eβ,0Λ rS0Sxs | ¤ 1

|x| 1�ε
2πβ

(3.3.11)

Theorem 2 [Fröhlich, Spencer (1981)]. There exists a a β0 ¡ 0 and a
constant c ¡ 0 such that for all β ¥ β0

lim
ΛÑZd

|Eβ,0Λ rS0Sxs | ¥ c

|x| 1
2πβ

.

Theorem 3. There exists a a β0 ¡ 0 such that for all β ¤ β0

lim
ΛÑZd

|Eβ,0Λ rS0Sxs | ¤ Cβe
� |x|
ξβ

In this section we will review the proof of Theorem 1. This is based on two
steps. The first is non rigorous and consists in approximating the measure by a
Gaussian integral. The second step is rigorous and consists in mimicking some
of the operations we did to compute the (non-rigorous) Gaussian approximation
in a rigorous context. The key step is a complex deformation.
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Proof of Theorem 1 (based on [Mc Bryan, Spencer]) Using polar co-
ordinates the average above can be written as

Eβ,0Λ rS0Sxs � 1

ZΛ

»
r0,2πs|Λ|

eβ
°
j�j1 cospθj�θj1 q cospθx � θ0q

¹
jPΛ

dθj

� 1

2ZΛ
pI� � I�q

where the partition function is

ZΛ �
»
r0,2πs|Λ|

eβ
°
j�j1 cospθj�θj1 q

¹
jPΛ

dθj

and we defined

Iσ �
»
r0,2πs|Λ|

eβ
°
j�j1 cospθj�θj1 qeiσpθx�θ0q

¹
jPΛ

dθj , σ � �1.

Preliminary heuristic arguments. Using some non rigorous arguments we
establish what kind of behavior we expect from the integrals above. Since
1 ¥ cospθj � θj1q ¥ �1 and β " 1, the function exprβ cospθj � θj1qs is expo-
nentially small unless θj � θj1 � 0 or 2π. Inspired by this fact we perform two
approximations.

a). We take the Taylor expansion up to order 2 and neglect the remainder.
Then

eβ
°
j�j1 cospθj�θj1 q � e�βCpΛqe�

β
2

°
j�j1 pθj�θj1 q2 � e�βCpΛqe�

β
2 pθ,�∆Λθq

where CpΛq � °j�j1 1 is a constant independent of θ and �∆Λ is the discrete
Laplacian on Λ with periodic boundary conditions.

b). We replace the interval r0, 2πs by R in the integral, for each j P Λ.
Inserting these two approximations both in the numerator and in the partition
function above we obtain

Iσ
ZΛ

�
³
R|Λ| e

� β
2 pθ,�∆Λθqeiσpθx�θ0q

±
jPΛ dθj³

R|Λ| e
� β

2 pθ,�∆Λθq±
jPΛ dθj

where the normalization is

N �
»
R|Λ|

e�
β
2 pθ,�∆Λθq

¹
jPΛ

dθj .

These two integrals are ill defined since �∆Λ is not invertible! One may give a
sensible definition of a Gaussian measure even in this situation, but since here
we are doing non rigorous arguments we ignore the problem. We introduce now
the two functions

v : Λ Ñ R
j Ñ vj � δjx � δj0

,
α : Λ Ñ R

j Ñ αj � rp�β∆Λq�1vsj . (3.3.12)
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Note that
°
j vj � p1, vq � 0, v P kerp�∆ΛqK, therefore the function α is well

defined, even if p�∆Λq is not invertible. Then pθx � θ0q � pv, θq and

Iσ � e�
1
2 pα,p�β∆Λqαq

»
R|Λ|

e�
1
2 ppθ�iσαq,�β∆Λpθ�iσαqq

¹
jPΛ

dθj � e�
1
2 pα,p�β∆ΛqαqN

where in the last step we perform the complex traslation

θj Ñ θj � iσαj , @j P Λ.

Now inserting the definition of α

pα, p�β∆Λqαq � pv, p�β∆Λq�1vq
� 1

β

�p�∆Λq�1
00 � p�∆Λq�1

0x � p�∆Λq�1
x0 � p�∆Λq�1

xx

�
� 1

βp2L� 1q2
¸

nPΛLz0

2p1� cospknxqq
2p1� cospkn1qq � 2p1� cospkn2qq

� 2
1

2πβ
ln }x}

�
1�O

�
1

ln }x}
	�

� 2
1

2πβ
ln }x} |x| " 1

With these approximations we would obtain

Eβ,0Λ rS0Sxs � I� � I�
2ZΛ

� 1

|x| 1
2πβ

, |x| " 1.

Step 2. Inspired by the non rigorous arguments above we perform the follow-
ing complex translation in the integral Iσ:

θj Ñ θj � iσαj , @j P Λ,

where αj is defined in (3.3.12). Remember that the definitions given in (3.3.12)
make sense even though p�∆q is not invertible. The integral becomes

Iσ � e�pαx�α0q
»
r0,2πs|Λ|

eβ
°
j�j1 cospθj�θj1�ipαj�αj1 qqeiσpθx�θ0q

¹
jPΛ

dθj .

In order to close the contour in the complex plane we need to add the integrals
along the paths yj � izj , zj P r0, σαjs and yj � 2π � izj , zj P r0, σαjs. By
periodicity they cancel each other. Since

cospθj�θj1�ipαj�αj1qq � cospθj�θj1q coshpαj�αj1q�i sinpθj�θj1q sinhpαj�αj1q
after inserting absolute values we have

|Iσ| ¤ e�pαx�α0q
»
r0,2πs|Λ|

eβ
°
j�j1 cospθj�θj1 q coshpαj�αj1 q

¹
jPΛ

dθj

¤ e�pαx�α0qeβ
°
j�j1 rcoshpαj�αj1 q�1s

»
r0,2πs|Λ|

eβ
°
j�j1 cospθj�θj1 q

¹
jPΛ

dθj

� ZΛe
�pαx�α0qeβ

°
j�j1 rcoshpαj�αj1 q�1s
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where in the second line we use

cospθj�θj1qrcoshpαj�αj1q�1s�cospθj�θj1q ¤ rcoshpαj�αj1q�1s�cospθj�θj1q.
Now

|αj � αj1 | ¤ 1

β
|rp�∆q�1

j0 � p�∆q�1
j10s � rp�∆q�1

jx � p�∆q�1
j1xs| ¤

K

β

for some constant K independent of x and Λ. This last inequality can be
obtained by the same kind of arguments in the Fourier sum we used to prove
the estimate (3.1.2) in Lemma 11. Since β is large we can make |αj � αj1 | as
small as we want. To complete the argument note that for any 0   ε   1 there
exists a δpεq ¡ 0 such that

coshptq � 1 ¤ 1� ε{2
2

t2 @|t| ¤ δ,

where the factor 1{2 in front of ε is just a convenient choice to control some
additional error terms later in the proof. From the bound above there exists a
β0 such that |αj � αj1 | ¤ δ for all j � j1 and for any β ¥ β0. Inserting this in
our estimate we obtain

|Eβ,0Λ rS0Sxs | ¤ |I�| � |I�|
2ZΛ

¤ e�pαx�α0qeβ
°
j�j1

1�ε{2
2 pαj�αj1 q2

� e�pαx�α0qe
1�ε{2

2 pα,�β∆Λαq

� e�
1�ε{2

2 pv,p�β∆Λq�1vq � e
� 1�ε{2

2πβ ln }x}
�
1�O

�
1

ln }x}
	�

¤ e�
1�ε
2πβ ln }x} � 1

|x| 1�ε
2πβ

where in the last line we use pαx � α0q � pv, αq, α � p�β∆Λq�1v and we take
}x} large enough to ensure�

1�O
�

1
ln }x}

	�
¥ p1� ε{2q.

This concludes the proof.

3.3.3 An example of phase transition: the mean field case

In this section we consider the Opnq model defined in (3.3.9) with non zero
magnetic field h P Rn and with interaction parameter

Jjk � 1

|Λ| @i, j P Λ.

With this choice
0 ¤

¸
kPΛ

Jjk ¤ 1 @j P Λ.

Note that in this case we have long range interactions since Jjk is constant for
any pair jk P Λ. Then the Mermin-Wagner theorem does not apply and one
may have a phase transition also in d � 2.
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Duality

The partition function in the mean field Opnq model can be reformulated as an
integral over n real variables

Lemma 14 For any dimension d ¥ 1 and any n ¥ 1 we have

ZβΛ,nphq �
»
dµβ,hΛ,npSq �

1

NΛ,n,β

»
Rn
dnx e�|Λ|Fn,βpx,hq, with NΛ,n,β �

�
2πβ

|Λ|

|Λ|

,

Fn,β : Rn � Rn Ñ R
px, hq Ñ Fn,βpx, hq � }px�h}2

2β � ln Jnp}px}q
and

Jn : R� Ñ R�
t Ñ Jnptq � cosh t if n � 1

� π
2

³ π
2

0
psin θqn�2 coshrt cos θsdθ if n ¥ 2

Proof Since Jij � |Λ|�1 @i, j we can write

e
β
2

°
j,kΛ JjkpSj ,Skq � e

β
2|Λ| }

°
jPΛ Sj}2 � 1

NΛ,n,β

»
Rn
dnx e�

|Λ|
2β }x}2epx,

°
jPΛ Sjq

Exchanging the integrals we obtain

ZβΛ,nphq �
1

NΛ,n,β

»
Rn
dnx e�

|Λ|
2β }x}2

�»
dΩnpSq epx�h,Sq

�|Λ|
� 1

NΛ,n,β

»
Rn
dnx e�

|Λ|
2β }x�h}2

�»
dΩnpSq epx,Sq

�|Λ|
When n � 1 we have»

dΩ1pSq epx,Sq � 1

2

¸
σ��1

exσ � coshpxq � coshp|x|q.

When n � 2 we have»
dΩ2pSq epx,Sq � 1

2π

» 2π

0

e}x} cos θdθ � 1

π

» π
0

e}x} cos θdθ � 2

π

» π
2

0

coshp}x} cos θqdθ,

where in the first passage we perform a rotation in order to have x parallel to
the vertical axis, then go to polar coordinates. Similarly for n ¡ 2 we have»
dΩnpSq epx,Sq � 1

π

» π
0

psin θqn�2e}x} cos θdθ � 2

π

» π
2

0

psin θqn�2 coshp}x} cos θqdθ.

2
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Remarks. The duality reduces the problem to the study of a n variable in-
tegral (compared to n|Λ| variables in the initial representation). Moreover, for
large |Λ| the integral will be concentrated around the minimal with respect to
x of the function Fnpx, hq, therefore a saddle point analysis is possible.

Generating function

Using the dual representation above the average magnetization at finite volume
can be expressed as

Eβ,hΛ

�
1
|Λ|
¸
jPΛ

Sj

�
� 1

|Λ|Bh lnZβΛ,nphq � 1
β

³
Rn d

nx px� hqe�|Λ|Fn,βpx,hq³
Rn d

nx e�|Λ|Fn,βpx,hq
(3.3.13)

Phase transition

Theorem The Opnq model in the mean field case has a phase transition in
any d ¥ 1. Precisely

lim
hÑ0�

lim
ΛÑZd

Eβ,hΛ

�
1

|Λ|
¸
jPΛ

Sj

�
�
"

0 if β   1 phigh temperatureq
Md,β,n ¡ 0 if β ¡ 1 plow temperatureq

Proof In the following we set h ¡ 0. By (3.3.13) the problem can be reduced
to the rigorous saddle analysis of a n variable integral. For simplicity we will
restrict here to the case n � 1. Then

F1px, hq � px� hq2
2β

� ln coshx

and the equations for the first and second derivative are

BxF1px, hq � px�hq
β � tanhx, B2

xF1px, hq � 1
β � 1

pcosh xq2 .

Note that

B2
xF1px, hq ¤ 1

β
@x, h. (3.3.14)

Case 1: β   1 (high temperature). In this case F1 is a convex function in x

B2
xF1px, hq ¥ p1�βq

β @x, h (3.3.15)

therefore F1 has only one minimum at the point x0phq satisfying

px0�hq
β � tanhx0.

At h � 0 x0 � 0 is a solution of this equation, therefore limhÑ0 x0pβ, hq � 0.
By a Taylor expansion with integral remainder

F1px, hq � F1px0, hq � px� x0q2
» 1

0

p1� tqB2
xF1px0 � tpx� x0q, hq dt.
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Inserting (3.3.14) and (3.3.15) we obtain @x, h

F1px0, hq � 1
2β px� x0q2 ¥ F1px, hq ¥ F1px0, hq � p1�βq

2β px� x0q2. (3.3.16)

Now we can reexpress (3.3.13) as

Eβ,hΛ

�
1
|Λ|
¸
jPΛ

Sj

�
� 1

β

³
R dx px� hqe�|Λ|F1,βpx,hq³

R dx e
�|Λ|F1,βpx,hq � x0pβ,hq�h

β �Rpβ, h, |Λ|q,

where

Rpβ, h, |Λ|q �
³
R dx px� x0qe�|Λ|Fn,βpx,hq³

R dx e
�|Λ|Fn,βpx,hq .

Inserting absolute values, and the upper and lower estimates from (3.3.16) we
obtain

|Rpβ, h, |Λ|q| ¤
³
R dx |x� x0|e�

|Λ|p1�βq
2β px�x0q2

³
R dx e

�|Λ|
2β px�x0q2

� 2
³8
0
dx x e

�|Λ|p1�βq
2β x2

³
R dx e

�|Λ|
2β x

2

� 1?
|Λ|

2
?
β?

2πp1�βq Ñ|Λ|Ñ8 0

Finally

lim
hÑ0�

lim
ΛÑZd

Eβ,hΛ

�
1
|Λ|
¸
jPΛ

Sj

�
� lim
hÑ0�

x0pβ,hq�h
β � 0.

Case 2: β ¡ 1 (low temperature). In this case the function F1px, hq has two
minimum points x1phq, x2phq satisfying

x1phq   0, x2phq ¡ 0, lim
hÑ0

x2phq � � lim
hÑ0

x1phq � x0pβq ¡ 0.

At h � 0 F1 is symmetric in x so the two minimums are at the same height

F1p�x0pβq, 0q � F1px0pβq, 0q � Fm.

To see what is the approximate value of the two minimum points at h � 0, we
expand near h � 0 (remember that at the end we will take the limit hÑ 0)

xjphq � σjx0 � δjh�Oph2q, σ1 � �1, σ2 � 1.

Inserting this relation in the saddle point equation we obtain

0 � BxF1pxjphq, hq
� BxF1pxjp0q, 0q � B2

xF1pxjp0q, 0q δjh � BhBxF1pxjp0q, 0q h � Oph2q
� h

�B2
xF1pxjp0q δj � BhBxF1pxjp0q, 0q

��Oph2q



3.3. PERTURBATION AROUND A GAUSSIAN INTEGRAL 65

since BxF1pxjp0q, 0q � 0. Note that

B2
xF1pxjp0q, 0q � 1

β � 1
pcosh x0pβqq2 � Hpβq ¡ 0, BhBxF1pxjp0q, 0q � � 1

β

are independent of j then

δ1 � δ2 � δ � 1
βHpβq ¡ 0.

Inserting these results in the expression for F1 and expanding around h � 0 we
obtain

F1pxjphq, hq � F1pxjp0q, 0q � BxF1pxjp0q, 0qδh� BhF1pxjp0q, 0qh�Oph2q

� F1pxjp0q, 0q � xjp0q
β

h�Oph2q � Fm � σj
x0pβq
β

h�Oph2q

Then

F1px1phq, hq � F1px2phq, hq � 2hx0pβq
β

¡ 0, since h ¡ 0,

and F1 has a global minimum at x2phq. As in the case β   1 we extract the
contribution of the minimum

Eβ,hΛ

�
1
|Λ|
¸
jPΛ

Sj

�
� x2phq�h

β �Rpβ, h, |Λ|q

where

|Rpβ, h, |Λ|q| ¤
³
R dx |x� x2|e�|Λ|rF1px,hq�Fms³

R dx e
�|Λ|rF1px,hq�Fms � N

D
.

To estimate the integral in the numerator we distinguish three regions

I1 � tx| |x�x2phq|   εu, I2 � tx| |x| ¡Mu, I3 � tx| |x| ¤M, |x�x2phq| ¥ εu
where ε and are chosen in order to have I2 X I1 � H,

B2
xF1px, hq ¡ c1 ¡ 0 @x P I1, and rF1px, hq � Fms ¥ c2

2
x2 @x P I3,

for some constant c1, c2. It is not difficult to see that such regions exist for the
function F1. Then»
I1

dx |x� x2|e�|Λ|rF1px,hq�Fms ¤
»
I1

dx |x� x2|e�
|Λ|c1

2 px�x2q2 ¤
»
R
dx |x� x2|e�

|Λ|c1
2 px�x2q2 � 2

|Λ|c1»
I2

dx |x� x2|e�|Λ|rF1px,hq�Fms ¤
»
I2

dx |x� x2|e�
|Λ|c2

2 x2

¤ e�
|Λ|c2M2

4

»
R
dx |x� x2|e�

|Λ|c2
4 x2 � e�

|Λ|c2M2

4 O

�
1?
|Λ|



»
I3

dx |x� x2|e�|Λ|rF1px,hq�Fms ¤ 2M sup
xPI3

�
|x� x2|e�|Λ|rF1px,hq�Fms

�
¤ e�|Λ|cph,ε,Mq.
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In the third line we used |x � x2phq| ¥ ε ¡ 0 @x P I3 and for some constant
ε ¡ 0, since F px, hq is at a finite distance from the minimum. Putting all these
bounds together we obtain an upper bound for the numerator

N � O
�

1
|Λ|
	
.

To estimate the denominator note that

B2
xF1px, hq ¤ 1

β
@x, h

then »
R
dx e�|Λ|rF1px,hq�Fms ¥

»
R
dx e�

|Λ|
2β px�x2q2 �

b
2πβ
|Λ|

hence

|Rpβ, h, |Λ|q| ¤
b

|Λ|
2πβO

�
1
|Λ|
	
Ñ|Λ|Ñ8 0

Finally

lim
hÑ0�

lim
ΛÑZd

Eβ,hΛ

�
1
|Λ|
¸
jPΛ

Sj

�
� lim
hÑ0�

x2pβ,hq�h
β � x0pβq

β ¡ 0.

This concludes the proof. 2
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