Chapter 3

Higher dimensional
problems

In one dimension, the transfer matrix approach garantees the existence of the
infinite volume limit, as long as the transfer operator is regular enough. When
in addition we can show that this operator is “near” to the harmonic cristal,
then we can obtain precise estimates of the limit.

In dimension larger than one, the transfer matrix approach does not apply
but as in the 1d case, many techniques use some kind of comparison with the
harmonic cristal. We will then start the chapter reviewing the results we ob-
tained for the harmonic cristal in d = 1 with a different approach that, contrary
to the transfer matrix, can be directly generalized to any dimension.

3.1 Gaussian integrals in 1d

3.1.1 The harmonic cristal as a gaussian integral

The Hamiltonian for the harmonic cristal we introduced in the previous chapter
can be written as a quadratic form

L—-1 L

PG = 0 AL = S 6o = S Bl D mih

J,k=—L j=—L j=—

= (¢a _ﬁAAQS) + (¢am21A¢)v

where (¢, Y)a = Zfzi 1 ®j1; is the real euclidean scalar product on A and —Ax
is the discrete Laplacian defined by

-1 li—jl=1

ZkeA, [k—j|=1 L i=j

(—Ap)ij = {

1
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Inserting the boundary conditions the Hamiltonian becomes

Dirichlet: — H(¢) = HY(¢) + ¢2 1 + ¢7 = (¢, [-BAY +m*1]¢)
periodic:  HE(¢) = HA" () + (¢ — 6-1)° = (&, [~BALT + mP14]9)
Neuman:  HY(6) = H" (9) = (¢, [-BAY + m*L]¢)

where
1 -1 0 0 2 -1 0 0
AN _ -1 2 -1 0 _AD _ -1 2 -1 0
Av = 0 -1 2 -1 AT = 0 -1 2 -1
0 0 -1 1 0 0 -1 2
2 -1 0 -1
-1 2 -1 0
_ APer _
A 0 -1 2 -1
—1 0 -1 2
Note that

0 < (f, =AY ) < (f,=APf) < 2(f, —APf)

where in the last inequality we used 2(f2; + f#) = (f_r — f-1)*. Moreover the
constant vector is in the kernel of both AN and APer

—ANf= AP =0 if f; = fVj,
while (f, —AP f) > 0Vf € RA. Therefore only the meaure duf(¢) with Dirichlet
boundary conditions is well defined also for m = 0.
3.1.2 Gaussian integrals and correlations
In the following we will need some basic facts about gaussian meaures.

Lemma 1 Let A be a N x N real symmetric matrixz such that A > 0 as a
quadratic form. Let d¢p = vazl de; the Lebesgue measure on RYN. Then

_1
J e—3(049) 4, _ (QW)N/Q’ Spw € 2(¢’f¢)¢j1¢j2d¢ _ A1
RN \/det A SRN ez (&40 d¢ i

More generally let j1,...,5, € {1,..., N} n (not necessarily different) points.
Then

e A e Lo
Sev e~ 3(6,A¢) 4 2p H(Q»B)EP A;ajﬁ n=2m

where P is a pairing of the set the set {1,...,2m}, i.e. a partition into m subsets
of size 2.

Example
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Proof Since A is real and symmetric, there exist an real orthogonal matrix U
(Ut = U™') and a real diagonal matrix A such that A = U'AU and

f @*%(¢,A¢)d¢ _ e’%(U¢’5‘U¢)d¢ _ 67%(&)’5‘@|th U*1|d(,z~$
RN RN RN

)N/ o) N/2
_HJB PNdidg, = 4% )\i_(\Q/d.)stA'

where we performed the change of variable ¢ = U¢ and we used |detU| = 1.
To prove the other relation we may use integration by parts. We have

b, e~ F(6:49) ZAm T3 ($A49),

Inserting this relation in the integral we obtain

N
—3AD) y 4 g -1 0~ i(hAP
JRNe (040 . & dep = ;AJ’”’JRN s 55-€ 5(6,49) g

N
- —1(p,A¢) & B i (oas
= Z Jit J‘ N € 2 ¢)@¢sz¢ A]1]2 JRN e 2(¢ )d¢

The proof for the general case is similar. Alternatively one may use the gener-
ating function S : {fJ}é\[:1 - R
S]RN 67%(¢’A¢)€(¢’f)d¢
fon € 1@A0)dg
— A7 ], A[p— A1
AT S]RNB 3([¢ 1Al f])d¢ _ A
fon 2949 dg
Since S is smooth in f; Vj we have
S e=2(0A) g b d _ on
S]RN 6_%(¢7A¢')d¢ 6fj1 s 6fjn

S(f) =

S(f))f=0-

3.1.3 Partition function and correlations

With these formulas we can now compute the partition function and correlation
functions for the harmonic cristal in d = 1

2041
Z[(\bAC.):J‘ “BH(9) g — f (6 Ar0)a g = \/ﬁ
c. e ¢7AA¢ ¢2 d(b -
B[] = 4 = 54 e

Se (¢, A89)a dg

& AnD)A d
[¢x¢y] Sese ¢,AA¢¢ (qu ¢ - %(Axl)xy
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where the matrix Aj depends on the boundary conditions. The problem is then
converted in the study of the determinant and inverse of Ay as A — Z.

3.1.4 Finite volume computation: periodic boundary con-
ditions

In the case of periodic boundary conditions we can compute the eigenvalues and
eigenvectors of the discrete Laplacian by taking the Fourier transform.
Discrete Fourier transform

Any function f € R? can be seen as a periodic function of period T' = 2L + 1,
ie. feRZ with f(x +nT) = f(x) Vn € Z. Let Pr(Z) the corresponding set of
functions.

Definition 1 (Discrete Fourier transform) The discrete Fourier transform
s a linear functional

F: PT(Z) —>PT(Z)

L
f — F[fl(n) = f(n) =1 D, flz)e *n
x=—1L
wherene€ A ={—L,...,L}, k, = 22L7rf1 and ci > 0 is a normalization constant.
This functional is invertible and
F-L. PT(Z) — PT(Z)
L
g - Fgl@) = g(z) =ca Y. glhn)et "
n=—1L

where the constants c1,co > 0 must satisfy cica = ﬁ

There are several possible conventions. One may take ¢; = ¢co = (2L + 1)*1/2,

orcy =1and cy = (2L +1)7 L.
With these definitions we have the following properties

Convolution. Let f,g € Pr(Z). The (discrete) convolution is defined by

L

frglx)= Y] fla—y)gy)
The corresponding Fourier transform is

[F(f # 9)l(kn) = e1e3 (2L + 1) f (k)

Na)Y
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Scalar product. Let f, g€ Pr(Z). We consider the real scalar product on A
(f.9) = X*__, f(@)g(x). Then we have

L

(f.9) = (2L +1) Z

»—tw‘ =

SPAC

Fourier transform of the Laplacian. Note that the matrix —AL" is trans-
lation invariant i.e.

(=AX ey = (ALK )z—yoF(jz = y])

since the value of this matrix element depends only on the distance |z —y/|, then
it acts as a convolution

(AR 1) = S (=AF" )0y fly) = [F + F1():
The Fourier transform is then
FI=A) 1) = [FF # )] (kn) = ~F (ko) f (k).

C1

Therefore, by translation invariance the Laplacian is a diagonal matrix in Fourier
space and the eigenvalues are given by

1 -
An = —F(ky,
C1
To compute the eigenvalues
1. L : 4
—F(ky) = Z eT (AR, o = [2 - et _ elk“] = 2[1 — cos(ky)]
! r=—L

Note that by symmetry there are L + 1 distinct eigenvalues: A, = 2[1 —cos(k,)]
with n = 1, .., L each of multiplicity 2 and Ay = 0 of multiplicity 1.
Let M = —BAR*" + m2I,. From above we have

——

[Mf](kn) = 3 M, f (k) = (k) f(kn) = [u-f1(kn) — where p(ky) = 26(1—cos ky)+m®.

Hence Mknkm = Opmit(kn)/c1 is a diagonal matrix and

1 ~
k).
Therefore

) =Y My f(y) = F M7 () = F ' " - fl(@)
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As a conclusion we obtain

L
My = F Hu )z —y) = cc Z —#(,ﬁn)em"(“y)
n=—L
L L

_ 1 Z 1 gikn(z—y) _ _1 Z ethn(@—y)
T 2L+1 wikn) T 2L+1 2B(1—cos kyn)+m?2 "
n=—1L n=—1L

This result is independent from the choice of ¢y, cs.

Remark. The arguments above are false if we take Dirichlet or Neuman
boundary conditions.

Finite volume partition function and correlations

With the definitions above we can now explicitely compute some quantities.
Since we are considering periodic boundary conditions we have Ay = M. More-
over each eigenvalue except 1(0) has multiplicity 2, then

L
det M = p(0) H p(kn)? = m® 1_[ pu(kn)?.

n=1 n=1

Then

L
(per) Inm
2L1+1 InZ7"” =Iny/m — 2L+1 2L1+1 Z In pu(kn)
n=1

L
er - 1
EX" (03] =3(M™aw = gz + ﬁn; (k)
- B L cos(kn(z — 1))
R [0aty] =3 (M ™)y = gy + 17 2 11(kn)

where |A| = 2L + 1 and we used k_,, = —k,, and p(k,) = pu(—kn).

Some elementary estimates on the two point function: spectral gap
Contrary to the continuous Laplacian, the discrete Laplacian has a spectral gap,

pu(kn) — p(ko) = 28(1 — cos(5757)) = O(L™?) >0 Vn #0.

Using this fact we can prove the following estimates.
Lemma 2 There exist constants C1,Co such that
er er CH

|Ei [¢w¢y]__Ei [¢w¢x“ < ;;

|E1A€T[¢w¢u] - Eﬁe7-[¢w¢y+l]| < Oy (3'1-2)
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for any choice of m, |A|, x and y. The factor m~" is due to the properties of
the one dimensional Laplacian and cannot be avoided. Precisely, there exist two
constants K1, Ko such that

K1 K2

Br P [g, 0] — b | < 22 1.
m [¢ ¢ ] 2m?2|A| m (3 3)

for any choice of m and |A|. The points on the boundary play a special role and
the corresponding two point function has nicer a priori bounds. Precisely there
exists a constant Cs such that

Cs

= (3.1.4)

m Eﬁer[ﬁbw(ﬁiL] — m‘ <
for any choice of m A and x.

Proof.

~

[BX" [020y] — BX [29:]] =

Z [cos(kn(z—y))—1] (oc y —1]

n:l

L
< Z 25(1 cosk71 +m?2

2 1 2 1
S A Z 2B(1—cos kn)+m? + TAT Z 2B(1—cos k) +m?
1<n<L/10
To estimate the second sum notice that
1 —cos(k,) = 1—cosm/10 + O(L™') = Const YV L/10<n < L.

Then

2 1 2L I
TA] A —cos k) rm? S 3541 SUP 33A—cosk T S Const.
L/10<n<L L/10<n<L

To estimate the first sum notice that we can find a small number p > 0 such
that
1 — cos(ky) = pk? vV n< L/10.

Then

2y , iz ¥ ,

[A] 2B(1—coskyn)+m?2 = 7 [A] 2Bpk2+m?
< 1<n<L/10
b b 28p
L m

1 1

<1 1 k=

= ‘n'L 2Bpk2+m? dk mﬂ'\/26 o255 k2+1dk
L m
1 brxn Const

=1 ™ ons

= — mp[arctan(k‘)] v S O
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where we set ay, = zz%v by = %OLA). The estimate (3.1.3]) is proved in the
same way. To obtain the lower bound notice that 1 — cos(k,) < pk2 for some
constant p for all 1 < n < L/10 and 1 —cos(ky,) < 2 for all 0 < n < L. To prove
(13.1.2))

L
B [6000] — ER020y0] = iy 3 Tetiatemigpniateml
L
Z cos(kn (z—y))[1—cos(ky)]—sin(k, (z—y)) sin(k,,)
— #(kn)
Then
2 [ c | sin(kn (z—y)) sin(kn)|
er er 1—cos sin(k, (x—y)) sin(k,,
IEX" [¢20y] — EX" [ dy+1]] < Z_: erﬁ ) ST —cos(ka]) 1 s
2 (kn)|
S 2801 2L+1 Z 52“[13 e CQJOSy blimz

To estimate the last term we break it as before in two sums >, - and >.- ;.
where

nzm A<z —yl« L= |k| <L, and |ko(z—y)|<E Vn<a

The last sum is bounded by a constant. The first sum is bounded by

K k3 lo—yl lz—y|n
A D mamrrar SKGT <K

1<n<n

where K and K are some constants. Finally to prove (3.1.4) note that

er ky, I o (o _
Ei [(bw(bL]_m‘:% # :|T1\ %
n=1
< L
B % Z Fn)| = ﬁ Z f(kan) = fkzn-1)| < ﬁ Z |f(kny1) — f(kn)|-
n=1 1<n<L/2 =
where o
cos|k(z—1/2
f(k) = 281 _cos(k))tm?"
Now

f(kn+1) - f(kn) = fl(k*)éka kn < k* < kn+17 ok = 2511~
There exist constants Ci(z, 8), Ca(x, 5) such that

, | sin(k(z —1/2))| | cos(k(x —1/2))||sin(k
[F R < [28(1 — cos(k)) + m?] + [28(1 — cos(k)) + m?
<{ Ci(z, B) 7|T;c|

10
C2(£aﬂ) [2ﬁpk§+m2 + [2Bpk2k+m2]2:| VO< k< iE]

)|
P

<k<mw
s
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Inserting these bounds in the sum above we obtain

L 7/10|x|
ﬁ Z |f(kn+1) - f(kn)| S Cl(x; 6)51{ + CQ(I,,B)(S]CJ,O [2ﬂpk§+’m2 + [2ﬂpk2k+m2]2:| dk
n=1

= O(L™") + 0L ")|Inm| + O (77) = 0 (7z) -

m2L m mL

This proves the result.
]

3.1.5 Infinite volume limit for periodic boundary condi-
tions

When L — oo the Riemann sums become integrals

L
(per) _ Inm
2L1+1 InZy7"” =In/m — 2L+1 2L1+1 Z In p(kn)
n=1

= Lo InNT— 5= J In[26(1 — cos k) + m?]dk.
0

L
1 T 1
BT o 1 1 Hﬁ;LJ dk
A [¢z] 2m|A] [ |n§1 ,u(kn) Lo® 37 0 25(1 —COSk) + m?2
L
cos(kn(z —y))
EX"[¢cdy] = s + a7
A Y 2m|A] | |T;1 ,U(kn)
T cos(k(x — 4 etk(z—y)
—mwﬁf 5 e —v) g _ 1 Sdk
o 2B8(1 —cosk) +m . 2B(1 —cosk) +m
Lemma 3 The limits obtained above coincide with the results we obtained by
transfer matrix approach. In particular the two-point correlations are given by
lim EX"[¢2] = 1
Lo A z 40[
1
. per _ |z|
A By [¢ady] = =~
where
2 2 2
a=(1+2)-\/(1+%) -1
Proof. The two point function is symmetric under exchange of  and y so we
can always choose x —y = 0.
Q ik(z—y) , 2Ty dz
lim E2" [, ZLJ‘ e dk=jf dz
Lo A [0xy] = 27 _» 2B(1 — cos k) + m?2 A7 ) B2 —z—z7)+m? 2

z—y
i z

dz = =i J A
= = — — dz
AT o B2z — 22 — 1) + m2z A8 Jo (2 — 21)(22 — 2)
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where C' = {z = ¢ € C|6 € [0,2n[} is the circle of radius 1 and

p =(1+M—2)— (1+m—2)2—1=(1+m—2)—2<1
1 23 28 28 B ’

and a = \/(6 +m?2/2)2 — 52 was introduced in Chapter 2. Since z —y > 0 the
function inside the integral is holomorphic on the whole plane C except at the
two points z = z1, 2z where it has a simple pole. Therefore

. per _—i2mi 2TV i le—y]
JLIL%EA [¢z¢y]— AP 29 — 21 40421

3.2 (Gaussian integrals is d > 1.

3.2.1 The harmonic cristal in d > 1.

For d > 1 we consider the cube Ay = {—L,..., L}%. The set of possible config-
urations is now Q5 = {¢ : A —> R}. The energy associated to a configuration
is

BHYO(9) = ) B(o; —)> + Y. m26? + FO)(¢)

j~keA JeA
where j ~ k is ||j — k| = 1 (with the euclidian norm |z|* = Zzzl x?) and

D e Bl — ¢por)? periodic b.c.

lz=z">1]2—=2"|p=1

F(b.c)((b) = Ziem,zhe/\c ﬂ(@bz - Qf)z')iz,:o = Z]E(‘AthEAC 6¢§ Dirichlet b.c.
22 =1 z—z'|=1

Neuman b.c.

where |z — 2’|, is the norm on the periodic torus Z?/Ay. All these expressions
can be written as quadratic forms

BH) (¢) = (0, AV g), AV = A 4 m?1d,.

where —A, is the generalization of the discrete Laplacian to dimension d > 1.
The formulas for Gaussian integrals generalize directly to any dimension. In
particular

bc be)y —
EV)[do0,] = L(AV))7L
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3.2.2 Periodic boundary conditions

In the case of periodic boundary conditions we can apply discrete Fourier trans-
form (as in d = 1) to prove

ei(knﬂ(mfy))

28 Zﬁzl(l — coskh) +m?

EXDN) [Pay] = gméw + ﬁ Z

nen

n#0
where n = (ny,...nq) € A, k, = (kL,... k) and k? = 2221"1 By the same
arguments we used in d = 1 we can show that for small m
O(k) d=1
(Ag\pe'f));; _ m21|A|‘ =4 O(|lnm|) d=2 (3.2.5)
o(1) d=3

the main reason being that for small n ie |n| < L/10 the Fourier sum can be
approximated by the integral

/10 kdfl

1 ,[ 1
= ~ —d%k = Oy f ———dk.
. méuo 2830 (1—coskf) +m?  Jppg<nsio [K]? +m? o K +m?

This integral is linearly divergent in d = 1, log divergent in d = 2 and bounded
ind>3.

Infinite volume

Asin d =1 when L — o0 and m is kept fixed the Riemann sum converges to
an integral

i(k,(z—y))
. (per) _ 1 €
Jim ES[0:0,] = 5o

dk.
2(2m)? J[—w,n]d 26 Zzzl(l — coskP) +m?

With some extra work one can show that the limit exists also if we let m — 0
and L — oo simultaneously as long as mL — 00. Precisely we have

. (per) BT . (per)
o lmER [0200] = i, fitg, c(m)En [6001]
mL—

where
m d=1
efm)=1+ |lnm| d=2
1 d=>3

To prove this result one has to compare the Riemann sum with the integral.
The difference can be expressed as sum over gradients f(k) — f(k,) which in
turn give some decay improvement by the same arguments we used to prove eq.
(3.1.4).
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3.2.3 Existence and uniqueness of the thermodynamic limit.

Theorem 1 The thermodynamic limit for the 2 point correlation function
per m. [Pxty] exists Vd = 1 and is independent of the boundary conditions:

T [E@er (62641 ~ ER u[6:0,1] = Jim [EX5)[0.6,] X, [6:0,1] = 0,

for any fited m > 0. This remains true also is we let m — 0 and L — o
simultaneously with mL — oo0. Precisely

dimom) [BY[006,] —ER u[000,]] = Tim c(m) [EQ5 [620,] — BN, [620,]] =0
mL >0 mL—x

Proof. Existence follows directly from the results of the previous section
in the case of periodic boundary conditions. To prove uniqueness let MP =
—BAR + m? and MY = —BAY + m? and M = —BAR” + m? the matrices
corresponding to Dirichlet, Neuman and periodic boundary conditions. We
remark that MP and M differ only on the boundary of A. The same is true for
MV . Precisely

MP=M+X, MVN=M+X

where
Xa:y = Z /8[6I zéy,z’ + 6az,z’6y,z]a
z,2'€dA
[z=2"|>1]z—2"] =1
Xzy = Z B[dx,z(sy,z’ + 61,2’5%2 - 51:#25%2 - 6m,z’5y,z’]~

z,z'€dN
lz=2">1|]z—="[,=1

For any two matrices A and B (with A and A + B invertible) we have
(A+B)'—A'=—(A+B)'BA".
Applying the relation above

(MP)z) = My} = (M + X)) = M| ==Y (M+ X)X M,

zz!

—— Y B[Ptz + (P |
1S o 1 2=

(MN) M = (M +X)ac M:cyl = _Z(M"_X);zl)zzz'M;’;

== BN = M) M) - Mz

z,z'eéA
lz=2"|>1]2—2"][,=1
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Case of fixed mass. By Combes-Thomas estimate (see the next subsection)
there exists a constant fi,, ¢ that depends only on m and d such that, for any
boundary condition
bep—1 2 —|o—y|m,
(M) | < et

uniformly in the volume. Then

d—
|(MD);y1 _ Mx_y1| < %e—um,@ 10 0

for some constant C'. The same holds for M.

Case of vanishing mass with Dirichlet b.c. For m small the factor u,, ~
m? so the Combes-Thomas estimate gives a decay in Lm? which is not enough
to prove the convergence. By matrix-tree thorem (see the next subsection) we
can prove

(MP),0 20 Vz,yel, and > (MP),} < VeeAl

Ty
zEON

Moreover, by Fourier analysis (see eq. (3.2.5]) above) one can show that

—1
c(m) | My, | —>n0.0-2 0
mL—w

Putting together these estimates

c(m) |(MD);y1 — M;yl <p Z (MD);Z1 ¢(m) sup |Mz_yl| —me0,1—0 0.

2€0A z€0A mlL—w

3.2.4 Combes-Thomas estimate

Theorem 2 (Combes-Thomas) LetT be a finite or countable set, M =
T + U a self-adjoint operator on 1*>(T), with U an arbitrary diagonal operator
and T an off-diagonal operator. Let |x — y| the distance in I'. If there ezists a
parameter n > 0 such that

sup Z |Tpyle® ¥ = S < o0

zel yel'
then for any E outside the spectrum of M with dist{M,E} = A >0

An
A+2S°

2
(M - E);}| < Ze—”‘ﬂ”—yl, with =

Proof. Let e, € [*(T') the function defined by e, (y) = d,—,, then

(M — E)gy = (e, (M — E)7"ey).



14 CHAPTER 3. HIGHER DIMENSIONAL PROBLEMS

Let R :13(T') — [*(T") the multiplication operator defined by
[Rf](y) = """ f(y),  where |z — y|y = min{|e -y, N}.

The parameter N makes R a bounded operator also when I" is a countable set.
At the end of the proof, we will take N to infinity. Then

(M = E)zy e!*=v = (e,, (M — E)™'e,) e"l"7¥I¥ = (R7'e,, (M —E)™" Re,)
_ _ _ 1
= (s, R (M —E) 'Rey) = (es,[R"'(M—E)R]
Then

ey)

1 1
M — E)71| erlz—vly < -
(=B e =i =m ==l
where we used R™!UR = U. The kernel of [R™1TR — T is given by k(z,y)

[R'TR - T|f ZT [e” |z=aly— Iy~ E|N>—1] £(2)

=Zk y,2)f

Since ||z — z|§ — |y — z|n| < |y — 2|n We have
‘emz—m—w—xm) _ 1‘ < max [(emz—ym —1),(1— e—mz—ym)]
= etlz—uly _ 1.

Then the kernel k(y, z) satisfies

sup 3 [k(y, 2)| = sup Y k(y, 2)| < sup ) [Tye] (e oIy —1)
Yy 2 z Y y 3
< I:SuP 6*77|u| <6M|u| _ 1):| SUPZ |Tyz|6'r]\zfy|N
u Yy >

< S (U)f < S

n—p \ n n—p
since i < n. Then by the Schur’s bound we have

I[RT'TR-TJ| < £ = 5 since = 525z
On the other hand

I[M = Efll = Alf] V[ el(I).
With these bounds we obtain
1 2

< “
— B TR T B S A
infy I

H [R—lTRf%“]Jr[MfE] H =

since
IR 'TR—T\f +[M — Elf| = |[[R"'TR - T\f| - |[[M — E]f||.

These bounds do not depend on the N, so we can take N — oo. This completes
the proof. m
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Application of Combes-Thomas: bound on the two point function.

Let Ay = —BAX)'C) + m?I,. For any choice of the boundary conditions we can
write
AA =T+ U, where |Tx7y| = ﬁd‘z,m:l,

where |z — y| is the euclidean norm in Z?. In the case of periodic boundary
conditions |z —y| is the euclidean norm on the torus Z¢/A . Moreover ||A[ > m?
and

DIV IT yle™ ¥ < 2dBe” = S < o0

Yy z
for any choice of 7 > 0 and for any choice of the boundary conditions. Then we
can apply Combes-Thomas estimate with £ = 0

1

b.c. _ e e
‘EE\ )[¢z¢y]‘=§|(AA1)xy| < Lyermleyl
where )
mon
Hm = 107 & ddBen (3.2.6)

and 1 > 0 is arbitrary. This bound holds uniformly in the volume A and for
any dimension d > 1.

3.2.5 Matrix-tree theorem

Let A be a finite set of points. Let Ex = {(¢,7)| 7,7 € A,7 # j} be the set un
undirected edges ¢ = (i,7) = (j,4) on A. For each edge e € E5 we denote its
endpoints by e, je.

Definition 2 A subset E c E\ of edges forms a loop (cycle) if we can order
its edges E = (e1,...,epn) such that ic, = jo,_,, Yl =2,...n and i¢; = jo, -

Definition 3 A forest F on A is a subset of Ex with no cycle. Let F[A] be
the set of forests on A.

Definition 4 A spanning tree T on A is a forest on A such that for each pair
x,y € A there exists a path in T connecting x toy. Precisely there exists a subset
v, = (e1,...en) C T such that ic, = x, jeo, =y and ic, = je,_, VI =2,...,n.

Characterization of a forest. A forest F' can be uniquely determined by
the following information.

1. We fix a partition P of the set A.
2. Inside each element X of the partition we choose a spanning tree.

The forest is then obtained taking the union over the spanning trees. Note
that this implies there is no edge connecting points in different elements of the
partition. On the contrary any two points inside X € P are connected by a path
in the forest. The elements X € P are also called connected components of the
forest. For each forest F' we denote by P(F) the corresponding partition.
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Theorem 3 (matrix-tree) Let M be a N x N symmetric invertible ma-
triz (not necessarily positive or real). Let A = {1,...,N}. Then

det M= > [[l-Mi;] ] [D B

FeF[A] eeF XeP(F) reX
My det M = > [][-Mi,;.] H [ B/]
FeF,y[A] e€F XeP(F),xz¢X reX
where
B, = ) M,
jeA

and Fyy[A] is the set of forests such that x and y belong to the same connected
component. Alternatively one may write

dwrr= ¥ 11 3 [, 5

PeP[A] XeP | TeT[X] eeT reX
MpldetM = ) > TIEMiad | T 20 TI-Miadl)) B
PeP,y[A] | TET[X,] eeT ;(g)l; TeT[X] eeT reX

where P[A] is the set partitions of A, T[X] the set of spanning trees on X,
and finally Py, [A] is the set of partitions such that © and y belong to the same
element of the partition: this special element of the partition is denoted by X,.

Remark. The general matrix-tree theorem applies also to non-symmetric and
non invertible matrices, with a slight modification in the definitions.
With these definitions we can prove the following result.

Lemma 4 Let A = {—L,...,L}* and Ay = —BAY +m?I5 a matriz on A x A,
where —AR is the discrete Laplacian with Dirichlet boundary conditions. Then

0< (A ey  Va,yeA (3.2.7)

and )
DA<z VaeA (3.2.8)

2ECA B

Proof. Applying the matrix-tree theorem we can write

ey T [Srerpe Heerl=41.3.0) Txgg { Srerpa eerl =405 [Srex B
A Jzy =

Sperp Hixer {Srerp eerl=4is S ex B

Note that —A,_j, = B when i, ~ je, i.e |ic — je| = 1 and zero otherwise (since
ie # je for any edge e in the forest). Then only nearest neighbor edges give
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a non zero contribution. Let P¢[A] the set of partitions of A into connected
components and T[X] the set of trees on X made only of nearest neighbor pairs
i ~ j. Finally note that

B, =) Aj, =m® + fd,
jeA

where

et 3 d, =0 if r e A\OA
dr =#{j€ A°| [j —r|=1} so {dre{l,...,d} if r € OA.

Then Y, . B, = m?|X| + Bdx, where

dx = > dp,  hence |X n0A|<dx <d|X noA|.
reX

Inserting all this we obtain

_ Y pepe, [A] [ZTE%[X,T] B‘Tl] H;;; {ZTE%[X] AT m?| X | + 5dX]}

Y pepeia] [ xer {ZTef’[X] BITH [m?|X | + 5(1){]}

(Ax Dy

This expression is manifestly positive hence (3.2.7). Let

w(X) = [m?X|+pdx] Y, BT

TeT[X]

Then
_ HXEP w(X)
o) 2pepeia) I Lxep w(X)

is a probability measure on P¢[A] and (Axl)w can be expressed as an average

AxNey = X, P(P)ppiraan]
PePe, [A]

To prove (3.2.8)) we replace y by z and sum over all z € A

D@ e =2 D) PP perxaEa

2ECA z€@A PePS[A]
B 1 _ |XzndA]
= 2 Y MPextmaa = Y PP e S
PePE,,\[A] 26X nOA PePZ A [A]

since dx, > | X, n 0A|. This ends the proof. m

1
B
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3.3 Perturbation around a gaussian integral

3.3.1 The O(n) model

Let A = {—L,...,L}* a cube inside Z¢. To each lattice point j we associate a
spin S; € S,, taking values in the unit n—dimensional sphere. The three main
examples are

1. n = 1: in this case S; = +1 and we obtain the Ising model;

2. n = 2: the spin takes values on the unit circle. This is the so called XY
(or rotator) model;

3. n = 3: the spin takes value on the sphere. This is the so called Heisenberg
model.

The space of configurations is Qy = {S: A — S,,} and the corresponding Gibbs
measure is

" (S) = [T d2a(S)) €2 Zowa Jin(55:50) g1 Xyen 55) (3.3.9)
JEA

where (.,.) is the euclidean scalar product in R™, h € R™ is the magnetic field
and Jj, is a collection of real interaction constants such that

Jik=Jr; 20V j,keA
and there exists a constant ¢ > 0 independent of the volume A such that

0< Y Jg<e VjeA
keA

One can understand this constraint by regarding Jj;, as the probability to jump
from j to k. Then }, _, Jjr = 1 since it is the probability of jumping to any
point. Finally df,, is the invariant measure on the sphere S,,, normalized to 1.
In particular

1. for the Ising model the measure is discrete: {dQ; = %Zo:il;
2. for n = 2 we can parametrize the circle by one angle: {dQ, = % 5” do;
3. for n = 3 we can parametrize the sphere by two angles: {dQ; = ﬁ 577 do Sg dfsinf.

Phenomenology and symmetries.

Since Jj; = 0 the interaction favors the configurations with spins aligned (we
have a so called “ ferromagnetic interaction”).
When h = 0 the Gibbs measure is invariant under global rotation

Sj - USJ V] U*U = Ian (3310)
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for any n > 2. In particular it is invariant under flip S; — —S; Vj (this is true
also for n = 1). Then

EY"=018;] = —ER°[S;]1 = ERC[S;,]=0Vjie A, Vn=1, Vd =1,

and we say that the average magnetization is zero (the spins are not aligned).
For general h, the finite volume magnetization Eﬁh[ﬁ > .cn Sj] is a smooth
function in each component of the vector h hence

jeA

1
im  lim E°" | =
A1—>1 zd flbl—>0 A l|A| Zsjl 0
JEA

If we invert the limits we may have two results:

1 0
. Bh 1 gh | L =
A A 0, B l|A| EZASJ] { M #0.

In the first case there is no magnetization. This means the infinite volume
measure limy _,za dua, g, recovers the flip symmetry when A — 0. In this case we
say the symmetry is restored. In the second case we have magnetization. Then
the infinite volume measure limy_,z4 dpip g, does not recover the symmetry
when h — 0. Then we say we have spontaneous symmetry breaking.

One can show that at high enough temperature (i.e. 5 small) there is never
a magnetization, since the thermal fluctuations are too strong. On the contrary
at low temperature (i.e. [ large) the forces trying to align the spins may be
strong enough to create a magnetization. In this case we say we have a phase
transition.

Mermin-Wagner: low dimensional systems.

Phase transitions are harder to observe in low dimensions. This is the con-
tent of the so called Mermin-Wagner theorem (also known a Mermin-Wagner-
Hohenberg theorem or Coleman theorem). It is a series of papers that can be
summarized in the following statement:

Continuous symmetries cannot be spontaneously broken at finite temperature
in systems with sufficiently short-range interactions in dimensions d < 2.

Application to O(n) with short range interaction.
Let us consider the O(n) model defined above with Jj;, = 1 when |j — k| =1
and Jj; = 0 otherwise. Then

du(S) = Hdﬂn(Sj) &P 2~ (55:58) o (B2 jen Sj)’
jeA
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where j ~ k means the two points are nearest neighbors in Z%. For n > 2 this
measure has a continuous symmetry at h = 0, so by Mermin-Wagner theorem
we cannot expect a magnetization (hence a phase transition) in d < 2. The
theorem does not apply to n = 1 (Ising model) since there the symmetry is
discrete (o0 — —0).

In d = 2 one may still observe a softer version of phase transition known as
Kosterlitz- Thouless transition that corresponds to a change in the decay rate of
two point correlations. More precisely

lz|
. 8,0 ) e € Tx»l1iepf«1)
Ali{%d By [505:] = { 2 T« 1(1.e.8> 1) as |z > 1.

Bk

for some constants ci,c2,&,n > 0.

3.3.2 A first example of perturbation around a Gaussian
measure: the O(2) model in d = 2

Let A = Z%/{—L,...,L}? a cube in Z? with periodic boundary conditions. The
space of configurations is Q5 = {S : A — Sz} and we consider the Gibbs measure

du(S) = [ [ da(S;) e Zomr(55:50)
JEA

where j ~ k are pairs at distance one in the torus. For this model one can prove
a Kosterlitz-Thouless transition. More precisely we have

Theorem 1 [Mc Bryan, Spencer (1977)]. For any 0 < € < 1 there exists
a Bop(€) > 0 such that for all 8 > By(e)
1
. 8.0
Alinzld [EV" [S0S:] | € —— (3.3.11)

o] 55

Theorem 2 [Frohlich, Spencer (1981)]. There exists a a Sy > 0 and a
constant ¢ > 0 such that for all 8 > By

c

lim |E?°[S,8.]| = .
Aim B [S0S0] | s

Theorem 3. There exists a a 8y > 0 such that for all 3 < 3y

||

dim ERC[S0S,]| < Cpe

In this section we will review the proof of Theorem 1. This is based on two
steps. The first is non rigorous and consists in approximating the measure by a
Gaussian integral. The second step is rigorous and consists in mimicking some
of the operations we did to compute the (non-rigorous) Gaussian approximation
in a rigorous context. The key step is a complex deformation.
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Proof of Theorem 1 (based on [Mc Bryan, Spencer]) Using polar co-
ordinates the average above can be written as

1 .
ER° [S0S.] = 7e P 2yi c0505=951) cos (6, — 6p) [ T a0,
A J[0,27]IAl jen
1
=—( I_
2ZA( ++ 1)

where the partition function is

75 = J €'sz~j/ cos(0;—0;) de.
[0,271']|A‘ J;‘[\ !

and we defined

I, = J ef Lyt 00500 etoC=0) TTdp;, o = +1.
[0,27]1AI Jen

Preliminary heuristic arguments. Using some non rigorous arguments we
establish what kind of behavior we expect from the integrals above. Since
1 > cos(0; —6;;) = —1 and B » 1, the function exp[Scos(f; — ;)] is expo-
nentially small unless 6; — 6;; ~ 0 or 27. Inspired by this fact we perform two
approximations.

a). We take the Taylor expansion up to order 2 and neglect the remainder.
Then

By cos05—0;1) o ,=BON) =5 T, ;0 (05-6;)° _ ,=BC(A) o= 5 (0,—A40)
where C(A) = >, ;1 is a constant independent of # and —Aj is the discrete
Laplacian on A with periodic boundary conditions.

b). We replace the interval [0, 27] by R in the integral, for each j € A.

Inserting these two approximations both in the numerator and in the partition
function above we obtain

—5(,— 10 (0p—
Ii - S]R'A‘e 2(9’ AAe)e (0\3 90) H]EAdaj

“Bio_
Za Spia e72 (0= [1jen d6;

where the normalization is

_B(g.—AL
N=[ e #0-s0 T ap,.

RIAl jen

These two integrals are ill defined since —Aj is not invertible! One may give a
sensible definition of a Gaussian measure even in this situation, but since here
we are doing non rigorous arguments we ignore the problem. We introduce now
the two functions

v: A—>R a: AN—>R

: , : - 3.3.12
J = vj = djz = djo j = aj = [(=BAx) " v];. ( )
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Note that > ;v; = (1,v) =0, v € ker(—Ax)*, therefore the function « is well
defined, even if (—Ay) is not invertible. Then (6, — 6p) = (v,0) and

I, = e~ 3(a(=BAN)a) f e~ 3((0—ica),—BAN(0—ica)) H do; = ezl (=BAN)) \f
RIAI ;
JEA
where in the last step we perform the complex traslation
9j—>9j+iaaj, VjeA.
Now inserting the definition of «

(@, (=BAx)a) = (v, (=BAN)'v)

= 5 (A0 = (A0 + (A3 — (An)z]
_ 1 Z 2(1 = cos(kpx))
B(2L + 1) 2(1 = cos(kn1)) + 2(1 — cos(knz2))

’I’LEAL\O

1 1 1
= 2m1n [l [1 +0 (r Hm”)] ~ 2% In ||z |z| » 1

With these approximations we would obtain
I+ 1 1
QZA - |l‘|ﬁ

ES° [S0S.] . o> 1

Step 2. Inspired by the non rigorous arguments above we perform the follow-
ing complex translation in the integral I,:

Gj—>9j+i00[j, VjEA,

where o is defined in (3.3.12)). Remember that the definitions given in (3.3.12)
make sense even though (—A) is not invertible. The integral becomes

I, = e—((x,—ao) eﬁzj~j’ Cos(9j79]4+i(ajfaj/))eio(9z—90) H dej
[0,27]1Al jeA

In order to close the contour in the complex plane we need to add the integrals
along the paths y; = iz, z; € [0,00;] and y; = 27 + iz;, z; € [0,0a;]. By
periodicity they cancel each other. Since

cos(0;—0; +i(aj—ajr)) = cos(8;—0;) cosh(oj—ayj)—isin(f;—0; ) sinh(o; —ovjr)

after inserting absolute values we have

|Ia| < ef(azfozg)J‘ eﬁzj~j’ cos(0;—0,1) cosh(aj—ar) Hdoj
[0,27]1Al jen
< o—(0—a0) B,y [cosh(a;—a,)—1] J ¢ Zymyr x50, T ),
[0,27]1Al jeA

_ ZAe—(ax—ao)eB >t [cosh(a—ayr)—1]
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where in the second line we use
cos(8;—0;/)[cosh(a;—a;) —1]+cos(8;—0;/) < [cosh(a; —a)—1]+cos(6;—0;).

Now

1 K
A0 = (A)50] + [(FA) — (-A)ll < 5

for some constant K independent of x and A. This last inequality can be
obtained by the same kind of arguments in the Fourier sum we used to prove
the estimate in Lemma Since § is large we can make |a; — o] as
small as we want. To complete the argument note that for any 0 < € < 1 there
exists a d(e) > 0 such that

| — | <

1+¢€/2
2

where the factor 1/2 in front of € is just a convenient choice to control some
additional error terms later in the proof. From the bound above there exists a
Bo such that |o; — ajr| < 6 for all j ~ j” and for any 3 > fy. Inserting this in
our estimate we obtain

cosh(t) — 1 < 2 Yt <9

B0 15051 | < LD ¢ omtarman 8,y 2420000
¢ VAN

= ¢ (az—ao0), M2 (o, BAr)

R T 22 1n o) [1+0 (17 IIm\I)]
1

] 57

< e sEmlal _

where in the last line we use (o, — ) = (v, ), a = (—BAx)'v and we take
|z| large enough to ensure

[1+0(hg) ] = (1= e2).

This concludes the proof.

3.3.3 An example of phase transition: the mean field case
In this section we consider the O(n) model defined in (3.3.9) with non zero

magnetic field h € R™ and with interaction parameter

T = Vi, j € A.

1
A
With this choice

0< Y Jp<1l  VjeA
keA
Note that in this case we have long range interactions since Jjj, is constant for
any pair jk € A. Then the Mermin-Wagner theorem does not apply and one
may have a phase transition also in d = 2.
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Duality

The partition function in the mean field O(n) model can be reformulated as an
integral over n real variables

Lemma 5 For any dimension d = 1 and any n > 1 we have

8 8,h 1 AR 2m 3 1Al
Z5 . (h) :fduA:n(S) - 5J i e AIF s @) i Ay — <|A|> ’

F,g: R*xR* —R
Z—hl?
(.h) = Fageh) = L5t — (1)
and
I Rt — Rt
t _’Jn(t) = cosht if?”L: 1
=3 SOE (sin@)"=2 cosh[t cos0]d0 if n = 2

Proof Since J;; = |A|! Vi, j we can write

8 2 A
eg ea ik (S5:8%) _ eW” Diea Sil? _ Nl J d"x e—‘QTglutze(m’ZjeA S;)
An,B JR™

Exchanging the integrals we obtain

[A
Zf,n(h) _ NAl : J ' 6—%|Iw\|2 [f 9., (S) e(m+h¢5)]

1 f " —Blz—n|? [1[ A2, (S) (x S)]lA|
= re 2 " e\™
NA,n,B n

When n = 1 we have

JdQl(S) e = Z e®? = cosh(x) = cosh(|z]).
o=+1

N

When n = 2 we have
@s) L [T jafcoso L™ jafcoso 2 (%
dQs(S) e'*?) = — e dd=—1 e d0 = = | cosh(|z| cos®)do,
2w 0 ™ Jo ™ Jo

where in the first passage we perform a rotation in order to have x parallel to
the vertical axis, then go to polar coordinates. Similarly for n > 2 we have

1 [ 2
JdQH(S) el = = ,[ (sin @)™ 2elzlcosfgp — = fz (sin )" 2 cosh(| | cos 8)d6.
T Jo T Jo

O
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Remarks. The duality reduces the problem to the study of a n variable in-
tegral (compared to nlAl variables in the initial representation). Moreover, for
large |A| the integral will be concentrated around the minimal with respect to
x of the function F,(x, k), therefore a saddle point analysis is possible.

Generating function

Using the dual representation above the average magnetization at finite volume
can be expressed as

Sgn d"a (x — R)e 1A Fros (@:h)

B:h | 1 |- 1 3 _ 1
EL llAl ZI:\SJ] = ‘A‘ahanAﬁz(h) =3 [ d CTATE @) (3.3.13)
jE n

Phase transition

Theorem The O(n) model in the mean field case has a phase transition in
any d = 1. Precisely

1 Z g |2 0 if 8 <1 (high temperature)
I Md,ﬁ,n >0

. . ghr| L
lim lim E} |A| if 8> 1 (low temperature)

h—0+ A—Zd

JEA

Proof In the following we set h > 0. By (3.3.13|) the problem can be reduced
to the rigorous saddle analysis of a n variable integral. For simplicity we will
restrict here to the case n = 1. Then

(z —h)?
2B

and the equations for the first and second derivative are

Fi(xz,h) = —Incoshz

1

azFl(x, h) = h) tanh z, aiFl(xvh) = % " (coshx)?*

B

Note that .
2F (x,h) < 3 vV, h. (3.3.14)

Case 1: 8 <1 (high temperature). In this case F} is a convex function in z

2Fy (x,h) > 952 v, h (3.3.15)

therefore Fy has only one minimum at the point xo(h) satisfying

% = tanh xg.
At h = 0 29 = 0 is a solution of this equation, therefore limj_,o zo(8,h) = 0.
By a Taylor expansion with integral remainder

Fy(2,h) = Fi(x0, h) + (@ — 20)? L (1= )62 F) (20 + H(z — x0), h) dt.
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Inserting (3.3.14) and (3.3.15) we obtain Yz, h

Fy(wo,h) + g5 (x — 20)* > Fi(w, h) > Fi(xzo, h) + 52w —20)2. (3.3.16)

28
Now we can reexpress (3.3.13|) as

_ h)e-lAlFLa ()

B.h | 1 4 _1SRd’I (x —h)e _ wo(Bh)—h

. lAzAsjl_ﬂ doe Wrsen = 5 T RGRAD,
je

where ALF 5 (@)
d _ - n, BT,
R(Ba h7 |A|) _ S]R €z (:L‘ .’L‘0)6
SR dx e*‘A‘Fn,ﬁ(Lh)

Inserting absolute values, and the upper and lower estimates from (3.3.16|) we
obtain

[A[(1=5)

— (z—w0)?
_ 28
IR(3.h A < ke P
§ dzx e~ 28 (7 0)
L NGB .
:2sodxxe 2B _ 3 2B 4
[z e 29" I VER(LB) Al
gdre
Finally
n L BA | LS| gy emh _
hlgg+ All»HZld Ea [W ;SJ] B hli%lJr g0

Case 2: f>1 (low temperature). In this case the function Fy(x,h) has two
minimum points x1(h), z2(h) satisfying

xz1(h) <0, x2(h) >0, }llin%] x2(h) = — lim z1(h) = zo(5) > 0.

h—0

At h =0 F} is symmetric in  so the two minimums are at the same height

Fl(—xo(ﬁ),()) = Fl(xO(ﬁ)’O) = F.

To see what is the approximate value of the two minimum points at h # 0, we
expand near h = 0 (remember that at the end we will take the limit & — 0)

l‘](h) = 0% + (5Jh + O(hQ), oy =-—1, oo =1.
Inserting this relation in the saddle point equation we obtain

0= azFl(xj(h)>h)
= 0,Fy(2;(0),0) + 02F1(2;(0),0) d;h + 0,0, F1(2;(0),0) h + O(h?)
= h (02F1(2;(0) 0; + 0,0, F1(2;(0),0)) + O(h?)
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since 0, F1(x;(0),0) = 0. Note that

2
92 F1(25(0),0) = 5 — orasm? =

are independent of j then

0p =02 =0= 7[,}[1(&) > 0.

Inserting these results in the expression for F; and expanding around h = 0 we
obtain

Fi(z;(h), h) = Fy(2,;(0),0) + 8, F1 (2;(0),0)5h + 8, F1(2;(0), 0)h + O(h?)

= F1(z;(0),0) — mjﬁ(o) h+O(h?) = F,, — 0 ‘roéﬁ) h + O(h?)
Then on
Fu(w1(h), h) — Fu(a(h), h) = xﬂo(ﬁ) >0, since h> 0,

and Fy has a global minimum at x2(h). As in the case 8 < 1 we extract the
contribution of the minimum

£ [k 2, Sj] = =20t 4 B3, A
jEA
where
SR d:L' |.’L' — x2|e_|A|[F1($ah)_F7n] N

|R(ﬁ7h, |A|)| < S]R dx e |AI[Fi(z,h)—Fpn] - 5

To estimate the integral in the numerator we distinguish three regions

Iy = Azl e—za(h)| <€}, Ip={z|lz]| > M}, I3 ={z||z] <M, |z—z2(h)| > €}
where € and are chosen in order to have Io N [, = J,
B2F(z,h)>c1>0 VYoel, and [Fy(z,h)— Fn]> %;& Yz € Is,

for some constant ¢y, co. It is not difficult to see that such regions exist for the
function F;. Then

_ _ _1Aley
f dz |z — xo|e” AR =Fn] SJ dz |z — zo|e” 2
11 11

[Aley

_ _ _Alea 2
,[ dx |z — xo|e” AL @R =Fn] SJ de |z —xo|le” 2"
12 12

_lalepn? _12lea 2 _IAlepn?
<e 4 Jdaz|x—x2|e T =" 1 O 14—
R V1Al

dz |z — zole” MIP@M=Ful < 901 sup [|x _ $2|67|A|[F1<z,h>me]] < e 1Ale(he, M),
I3 z€l3

(51?7(1;2)2 Sj de |.’E—[L'2|€7 5 (w7w2)2:
R
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In the third line we used |z — z2(h)| = € > 0 Yz € I3 and for some constant
€ > 0, since F(x,h) is at a finite distance from the minimum. Putting all these
bounds together we obtain an upper bound for the numerator

N=O(ﬁ).

To estimate the denominator note that

1
02F (z,h) < = Va,h
B
then
dz e WMIF @ =Ful 5 [ gy o W @—w)® _ 278
R R [A]
hence
A
Finally

. . Bh| 1 - z2(B,h)—h _ zo(B)
gy, E lA ;\SJ] T ER

This concludes the proof. O
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