
Chapter 3

Higher dimensional
problems

In one dimension, the transfer matrix approach garantees the existence of the
infinite volume limit, as long as the transfer operator is regular enough. When
in addition we can show that this operator is “near” to the harmonic cristal,
then we can obtain precise estimates of the limit.

In dimension larger than one, the transfer matrix approach does not apply
but as in the 1d case, many techniques use some kind of comparison with the
harmonic cristal. We will then start the chapter reviewing the results we ob-
tained for the harmonic cristal in d � 1 with a different approach that, contrary
to the transfer matrix, can be directly generalized to any dimension.

3.1 Gaussian integrals in 1d

3.1.1 The harmonic cristal as a gaussian integral

The Hamiltonian for the harmonic cristal we introduced in the previous chapter
can be written as a quadratic form

βH
pharq
Λ pφq � pφ,ApharqΛ φqΛ �

Ļ

j,k��L
φjA

pharq
Λ jk φk �

L�1̧

j��L
βpφj � φj�1q2 �

Ļ

j��L
m2φ2

j

� pφ,�β∆Λφq � pφ,m2IΛφq,

where pφ, ψqΛ � °L
j��L φjψj is the real euclidean scalar product on Λ and �∆Λ

is the discrete Laplacian defined by

p�∆Λqij �
" �1 |i� j| � 1°

kPΛ, |k�j|�1 1 i � j

1
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Inserting the boundary conditions the Hamiltonian becomes

Dirichlet: HD
Λ pφq � Hhar

Λ pφq � φ2
�L � φ2

L � pφ, r�β∆D
Λ �m2IΛsφq

periodic: Hper
Λ pφq � Hhar

Λ pφq � pφL � φ�Lq2 � pφ, r�β∆per
Λ �m2IΛsφq

Neuman: HN
Λ pφq � Hharpφq � pφ, r�β∆N

Λ �m2IΛsφq
where

�∆N �

����
1 �1 0 0

�1 2 �1 0
0 �1 2 �1
0 0 �1 1

���
 �∆D �

����
2 �1 0 0

�1 2 �1 0
0 �1 2 �1
0 0 �1 2

���


�∆per �

����
2 �1 0 �1

�1 2 �1 0
0 �1 2 �1

�1 0 �1 2

���

Note that

0 ¤ pf,�∆Nfq ¤ pf,�∆perfq ¤ 2pf,�∆Dfq
where in the last inequality we used 2pf2

�L� f2
Lq ¥ pf�L� f�Lq2. Moreover the

constant vector is in the kernel of both ∆N and ∆per

�∆Nf � �∆perf � 0 if fj � f @j,
while pf,�∆Dfq ¡ 0 @f P RΛ. Therefore only the meaure dµDΛ pφq with Dirichlet
boundary conditions is well defined also for m � 0.

3.1.2 Gaussian integrals and correlations

In the following we will need some basic facts about gaussian meaures.

Lemma 1 Let A be a N � N real symmetric matrix such that A ¡ 0 as a
quadratic form. Let dφ �±N

j�1 dφj the Lebesgue measure on RN . Then»
RN

e�
1
2 pφ,Aφqdφ � p2πqN{2?

detA
,

³
RN e

� 1
2 pφ,Aφqφj1φj2dφ³

RN e
� 1

2 pφ,Aφqdφ
� A�1

ij .

More generally let j1, . . . , jn P t1, . . . , Nu n (not necessarily different) points.
Then ³

RN e
� 1

2 pφ,Aφqφj1φj2 � � �φjndφ³
RN e

� 1
2 pφ,Aφqdφ

�
"

0 n odd°
P

±
pα,βqPP A

�1
jαjβ

n � 2m

where P is a pairing of the set the set t1, . . . , 2mu, i.e. a partition into m subsets
of size 2.

Example
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Proof Since A is real and symmetric, there exist an real orthogonal matrix U
(U t � U�1) and a real diagonal matrix λ̂ such that A � U tλ̂U and»

RN
e�

1
2 pφ,Aφqdφ �

»
RN

e�
1
2 pUφ,λ̂Uφqdφ �

»
RN

e�
1
2 pφ̃,λ̂φ̃q|detU�1|dφ̃

�
N¹
i�1

»
R
e�

1
2λiφ̃

2
jdφ̃i � p2πqN{2±N

i�1

?
λi
� p2πqN{2?

detA
.

where we performed the change of variable φ̃ � Uφ and we used |detU | � 1.
To prove the other relation we may use integration by parts. We have

φj1e
� 1

2 pφ,Aφq � �
Ņ

i�1

A�1
j1i

B
Bφi e

� 1
2 pφ,Aφq.

Inserting this relation in the integral we obtain»
RN

e�
1
2 pφ,Aφqφj1φj2dφ � �

Ņ

i�1

A�1
j1i

»
RN

φj2
B
Bφi e

� 1
2 pφ,Aφqdφ

� �
Ņ

i�1

A�1
j1i

»
RN

e�
1
2 pφ,Aφq B

Bφiφj2dφ � A�1
j1j2

»
RN

e�
1
2 pφ,Aφqdφ

The proof for the general case is similar. Alternatively one may use the gener-
ating function S : tfjuNj�1 Ñ R

Spfq �
³
RN e

� 1
2 pφ,Aφqepφ,fqdφ³

RN e
� 1

2 pφ,Aφqdφ

� e
1
2 pf,A�1fq

³
RN e

� 1
2 prφ�A�1fs,Arφ�A�1fsqdφ³
RN e

� 1
2 pφ,Aφqdφ

� e
1
2 pf,A�1fq

Since S is smooth in fj @j we have³
RN e

� 1
2 pφ,Aφqφj1φj2 � � �φjndφ³
RN e

� 1
2 pφ,Aφqdφ

� Bn
Bfj1 � � � Bfjn

Spfq|f�0.

2

3.1.3 Partition function and correlations

With these formulas we can now compute the partition function and correlation
functions for the harmonic cristal in d � 1

Z
pb.c.q
Λ �

»
e�βH

pb.c.q
Λ pφqdφ �

»
e�pφ,AΛφqΛdφ � pπq 2L�1

2?
detAΛ

Epb.c.qΛ rφ2
xs �

³
e�pφ,AΛφqΛ φ2

x dφ³
e�pφ,AΛφqΛ dφ

� 1
2 pA�1

Λ qxx

Epb.c.qΛ rφxφys �
³
e�pφ,AΛφqΛ φxφy dφ³
e�pφ,AΛφqΛ dφ

� 1
2 pA�1

Λ qxy.
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where the matrix AΛ depends on the boundary conditions. The problem is then
converted in the study of the determinant and inverse of AΛ as Λ Ñ Z.

3.1.4 Finite volume computation: periodic boundary con-
ditions

In the case of periodic boundary conditions we can compute the eigenvalues and
eigenvectors of the discrete Laplacian by taking the Fourier transform.

Discrete Fourier transform

Any function f P RΛ can be seen as a periodic function of period T � 2L � 1,
i.e. f P RZ with fpx� nT q � fpxq @n P Z. Let PT pZq the corresponding set of
functions.

Definition 1 (Discrete Fourier transform) The discrete Fourier transform
is a linear functional

F : PT pZq Ñ PT pZq
f Ñ Frf spnq � f̂pnq � c1

Ļ

x��L
fpxqe�iknx

where n P Λ � t�L, . . . , Lu, kn � 2πn
2L�1 and c1 ¡ 0 is a normalization constant.

This functional is invertible and

F�1 : PT pZq Ñ PT pZq
g Ñ F�1rgspxq � ǧpxq � c2

Ļ

n��L
gpknqe�iknx

where the constants c1, c2 ¡ 0 must satisfy c1c2 � 1
2L�1 .

There are several possible conventions. One may take c1 � c2 � p2L � 1q�1{2,
or c1 � 1 and c2 � p2L� 1q�1.

With these definitions we have the following properties

Convolution. Let f, g P PT pZq. The (discrete) convolution is defined by

f � gpxq �
Ļ

y��L
fpx� yqgpyq

The corresponding Fourier transform is

rFpf � gqspknq � c1c
2
2p2L� 1q2f̂pknqĝpknq � 1

c1
f̂pknqĝpknq.

Then
F�1rf � gspxq � c1pf̌ � ǧqpxq.
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Scalar product. Let f, g P PT pZq. We consider the real scalar product on Λ

pf, gq � °L
x��L fpxqgpxq. Then we have

pf, gq � c22p2L� 1q
Ļ

n��L
f̂pknqĝpknq � 1

c21

1

2L� 1

Ļ

n��L
f̂pknqĝpknq

Fourier transform of the Laplacian. Note that the matrix �∆per
Λ is trans-

lation invariant i.e.

p�∆per
Λ qx,y � p�∆per

Λ qx�y,0F p|x� y|q
since the value of this matrix element depends only on the distance |x�y|, then
it acts as a convolution

rp�∆per
Λ qf spxq �

¸
y

p�∆per
Λ qx,yfpyq � rF � f spyq.

The Fourier transform is then

Frp�∆per
Λ qf spknq � rFpF � fqspknq � 1

c1
F̂ pknqf̂pknq.

Therefore, by translation invariance the Laplacian is a diagonal matrix in Fourier
space and the eigenvalues are given by

λn � 1

c1
F̂ pknq.

To compute the eigenvalues

1

c1
F̂ pknq �

Ļ

x��L
e�iknxp�∆per

Λ qx,0 �
�
2� e�ikn � eikn

� � 2r1� cospknqs

Note that by symmetry there are L�1 distinct eigenvalues: λn � 2r1�cospknqs
with n � 1, .., L each of multiplicity 2 and λ0 � 0 of multiplicity 1.

Let M � �β∆per
Λ �m2IΛ. From above we have

{rMf spknq �
¸
m

M̂knkm f̂pkmq � µpknqf̂pknq � rµ�f̂ spknq where µpknq � 2βp1�cos knq�m2.

Hence M̂knkm � δnmµpknq{c1 is a diagonal matrix and

rM̂�1f̂ spknq � rµ�1 � f̂ spknq � 1

µpknq f̂pknq.

Therefore

rM�1f spxq �
¸
y

M�1
xy fpyq � F�1rM̂�1f̂ spxq � F�1rµ�1 � f̂ spxq

� c1
�
F�1pµ�1q � f� pxq � c1

¸
y

F�1pµ�1qpx� yqfpyq
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As a conclusion we obtain

M�1
xy � c1F�1pµ�1qpx� yq � c1c2

Ļ

n��L

1
µpknqe

iknpx�yq

� 1
2L�1

Ļ

n��L

1
µpknqe

iknpx�yq � 1
2L�1

Ļ

n��L

eiknpx�yq
2βp1�cos knq�m2 .

This result is independent from the choice of c1, c2.

Remark. The arguments above are false if we take Dirichlet or Neuman
boundary conditions.

Finite volume partition function and correlations

With the definitions above we can now explicitely compute some quantities.
Since we are considering periodic boundary conditions we have AΛ �M . More-
over each eigenvalue except µp0q has multiplicity 2, then

detM � µp0q
L¹
n�1

µpknq2 � m2
L¹
n�1

µpknq2.

Then

1
2L�1 lnZ

pperq
Λ � ln

?
π � lnm

2L�1 � 1
2L�1

Ļ

n�1

lnµpknq

EperΛ rφ2
xs � 1

2 pM�1qxx � 1
2m2|Λ| � 1

|Λ|

Ļ

n�1

1

µpknq

EperΛ rφxφys � 1
2 pM�1qxy � 1

2m2|Λ| � 1
|Λ|

Ļ

n�1

cospknpx� yqq
µpknq .

where |Λ| � 2L� 1 and we used k�n � �kn and µpknq � µp�knq.

Some elementary estimates on the two point function: spectral gap
Contrary to the continuous Laplacian, the discrete Laplacian has a spectral gap,

µpknq � µpk0q ¥ 2βp1� cosp 2π
2L�1 qq � OpL�2q ¡ 0 @n � 0.

Using this fact we can prove the following estimates.

Lemma 2 There exist constants C1, C2 such that

|EperΛ rφxφys � EperΛ rφxφxs| ¤ C1

m
(3.1.1)

|EperΛ rφxφys � EperΛ rφxφy�1s| ¤ C2 (3.1.2)
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for any choice of m, |Λ|, x and y. The factor m�1 is due to the properties of
the one dimensional Laplacian and cannot be avoided. Precisely, there exist two
constants K1,K2 such that

K1

m
¤
���EperΛ rφxφxs � 1

2m2|Λ|
��� ¤ K2

m
(3.1.3)

for any choice of m and |Λ|. The points on the boundary play a special role and
the corresponding two point function has nicer a priori bounds. Precisely there
exists a constant C3 such that

m
���EperΛ rφxφ�Ls � 1

2m2|Λ|
��� ¤ C3

mL
(3.1.4)

for any choice of m Λ and x.

Proof.

|EperΛ rφxφys � EperΛ rφxφxs| �
����� 1
|Λ|

Ļ

n�1

rcospknpx�yqq�1s
µpknq

�����
¤ 2

|Λ|

Ļ

n�1

1
2βp1�cos knq�m2

¤ 2
|Λ|

¸
1¤n¤L{10

1
2βp1�cos knq�m2 � 2

|Λ|
¸

L{10 n¤L

1
2βp1�cos knq�m2

To estimate the second sum notice that

1� cospknq ¥ 1� cosπ{10�OpL�1q ¥ Const @ L{10   n ¤ L.

Then

2
|Λ|

¸
L{10 n¤L

1
2βp1�cos knq�m2 ¤ 2L

2L�1 sup
L{10 n¤L

1
2βp1�cos knq�m2 ¤ Const.

To estimate the first sum notice that we can find a small number ρ ¡ 0 such
that

1� cospknq ¥ ρk2
n @ n ¤ L{10.

Then

2
|Λ|

¸
1¤n¤L{10

1
2βp1�cos knq�m2 ¤ 1

π
2π
|Λ|

¸
1¤n¤L{10

1
2βρk2

n�m2

¤ 1
π

» bL
aL

1
2βρk2�m2 dk � 1

mπ
?

2βρ

» bL
?

2βρ

m

aL
?

2βρ

m

1
k2�1dk

� 1
mπ

?
2βρ

rarctanpkqs
bL

?
2βρ

m
aL

?
2βρ

m

¤ Const
m
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where we set aL � 2π
2L�1 , bL � π�OpL�1q

10 . The estimate (3.1.3) is proved in the

same way. To obtain the lower bound notice that 1 � cospknq ¤ ρk2
n for some

constant ρ for all 1 ¤ n ¤ L{10 and 1� cospknq ¤ 2 for all 0 ¤ n ¤ L. To prove
(3.1.2)

EperΛ rφxφys � EperΛ rφxφy�1s � 1
|Λ|

Ļ

n�1

rcospknpx�yqq�cospknpx�y�1qqs
µpknq

� 1
|Λ|

Ļ

n�1

cospknpx�yqqr1�cospknqs�sinpknpx�yqq sinpknq
µpknq

Then

|EperΛ rφxφys � EperΛ rφxφy�1s| ¤ 1
|Λ|

Ļ

n�1

r1�cospknqs
2βp1�cospknqq�m2 � 1

|Λ|

Ļ

n�1

| sinpknpx�yqq sinpknq|
2βp1�cospknqq�m2

¤ L
2βp2L�1q � 1

|Λ|

Ļ

n�1

| sinpknpx�yqq sinpknq|
2βp1�cospknqq�m2

To estimate the last term we break it as before in two sums
°
n¤n̄ and

°
n̄¤n¤L,

where

n̄ � L
10|x�y| , 1 ¤ |x� y| ! Lñ |kn| ¤ L

10 , and |knpx� yq| ¤ L
10 @ n ¤ n̄.

The last sum is bounded by a constant. The first sum is bounded by

K
|Λ|

¸
1¤n¤n̄

k2
n|x�y|

2βρk2
n�m2 ¤ K |x�y|n̄

2βρ|Λ| ¤ K

where K and K are some constants. Finally to prove (3.1.4) note that���EperΛ rφxφLs � 1
2m2|Λ|

��� � 1
|Λ|

����� Ļ
n�1

cos knpx�Lq
2βp1�cospknqq�m2

����� � 1
|Λ|

����� Ļ
n�1

cosrknpx�1{2q�nπs
2βp1�cospknqq�m2

�����
� 1

|Λ|

����� Ļ
n�1

p�1qnfpknq
����� � 1

|Λ|

������
¸

1¤n¤L{2
fpk2nq � fpk2n�1q

������ ¤ 1
|Λ|

Ļ

n�1

|fpkn�1q � fpknq| .

where
fpkq � cosrkpx�1{2qs

2βp1�cospkqq�m2 .

Now

fpkn�1q � fpknq � f 1pk�qδk, kn ¤ k� ¤ kn�1, δk � 2π
2L�1 .

There exist constants C1px, βq, C2px, βq such that

|f 1pkq| ¤ | sinpkpx� 1{2qq|
r2βp1� cospkqq �m2s �

| cospkpx� 1{2qq|| sinpkq|
r2βp1� cospkqq �m2s2

¤
#
C1px, βq @ π

10|x| ¤ k ¤ π

C2px, βq
�

k
2βρk2�m2 � k

r2βρk2�m2s2
�

@0 ¤ k ¤ π
10|x|
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Inserting these bounds in the sum above we obtain

1
|Λ|

Ļ

n�1

|fpkn�1q � fpknq| ¤ C1px, βqδk � C2px, βqδk
» π{10|x|

0

�
k

2βρk2�m2 � k
r2βρk2�m2s2

�
dk

� OpL�1q �OpL�1q| lnm| �O
�

1
m2L

� � 1
mO

�
1
mL

�
.

This proves the result.

3.1.5 Infinite volume limit for periodic boundary condi-
tions

When LÑ8 the Riemann sums become integrals

1
2L�1 lnZ

pperq
Λ � ln

?
π � lnm

2L�1 � 1
2L�1

Ļ

n�1

lnµpknq

ÑLÑ8 ln
?
π � 1

2π

» π
0

lnr2βp1� cos kq �m2sdk.

EperΛ rφ2
xs � 1

2m|Λ| � 1
|Λ|

Ļ

n�1

1

µpknq ÑLÑ8 1
2π

» π
0

1

2βp1� cos kq �m2
dk

EperΛ rφxφys � 1
2m|Λ| � 1

|Λ|

Ļ

n�1

cospknpx� yqq
µpknq

ÑLÑ8 1
2π

» π
0

cospkpx� yqq
2βp1� cos kq �m2

dk � 1
4π

» π
�π

eikpx�yq

2βp1� cos kq �m2
dk

Lemma 3 The limits obtained above coincide with the results we obtained by
transfer matrix approach. In particular the two-point correlations are given by

lim
LÑ8

EperΛ rφ2
xs �

1

4α

lim
LÑ8

EperΛ rφxφys � 1

4α
z
|x|
1

where

z1 �
�

1� m2

2β

	
�
c�

1� m2

2β

	2

� 1.

Proof. The two point function is symmetric under exchange of x and y so we
can always choose x� y ¥ 0.

lim
LÑ8

EperΛ rφxφys � 1
4π

» π
�π

eikpx�yq

2βp1� cos kq �m2
dk � �i

4π

»
C

zx�y

βp2� z � z�1q �m2

dz

z

� �i
4π

»
C

zx�y

βp2z � z2 � 1q �m2z
dz � �i

4πβ

»
C

zx�y

pz � z1qpz2 � zqdz
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where C � tz � eiθ P C|θ P r0, 2πru is the circle of radius 1 and

z1 �
�

1� m2

2β

	
�
c�

1� m2

2β

	2

� 1 �
�

1� m2

2β

	
� α

β   1,

z2 �
�

1� m2

2β

	
�
c�

1� m2

2β

	2

� 1 �
�

1� m2

2β

	
� α

β ¡ 1

and α �apβ �m2{2q2 � β2 was introduced in Chapter 2. Since x� y ¥ 0 the
function inside the integral is holomorphic on the whole plane C except at the
two points z � z1, z2 where it has a simple pole. Therefore

lim
LÑ8

EperΛ rφxφys � �i2πi
4πβ

zx�y

z2 � z1
� 1

4α
z
|x�y|
1

3.2 Gaussian integrals is d ¥ 1.

3.2.1 The harmonic cristal in d ¥ 1.

For d ¥ 1 we consider the cube ΛL � t�L, . . . , Lud. The set of possible config-
urations is now ΩΛ � tφ : Λ Ñ Ru. The energy associated to a configuration
is

βH
pbcq
Λ pφq �

¸
j�kPΛ

βpφj � φkq2 �
¸
jPΛ

m2φ2
j � F pb.cqpφq

where j � k is }j � k} � 1 (with the euclidian norm }x}2 � °d
ρ�1 x

2
ρ) and

F pb.cqpφq �

$''&''%
°

z,z1PBΛ
}z�z1}¡1}z�z1}p�1

βpφz � φz1q2 periodic b.c.°
zPBΛ,z1PΛc

}z�z1}�1

βpφz � φz1q2φz1�0 �
°
zPBΛ,z1PΛc

}z�z1}�1

βφ2
z Dirichlet b.c.

0 Neuman b.c.

where }z � z1}p is the norm on the periodic torus Zd{ΛL. All these expressions
can be written as quadratic forms

βH
pbcq
Λ pφq � pφ,Apb.c.qΛ φq, A

pb.c.q
Λ � �β∆

pb.c.q
Λ �m2IdΛ.

where �∆Λ is the generalization of the discrete Laplacian to dimension d ¥ 1.
The formulas for Gaussian integrals generalize directly to any dimension. In
particular

EpbcqΛ rφxφys � 1
2 pA

pbcq
Λ q�1

xy .
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3.2.2 Periodic boundary conditions

In the case of periodic boundary conditions we can apply discrete Fourier trans-
form (as in d � 1) to prove

EpperqΛ rφxφys � 1
2m2|Λ| � 1

2|Λ|
¸
nPΛ
n�0

eipkn,px�yqq

2β
°d
ρ�1p1� cos kρnq �m2

where n � pn1, . . . ndq P Λ, kn � pk1
n, . . . , k

d
nq and kρn � 2πnρ

2L�1 . By the same
arguments we used in d � 1 we can show that for small m

���pApperqΛ q�1
xy � 1

m2|Λ|
��� �

$&% O
�

1
m

�
d � 1

O p| lnm|q d � 2
Op1q d ¥ 3

(3.2.5)

the main reason being that for small n ie }n} ¤ L{10 the Fourier sum can be
approximated by the integral

1
|Λ|

¸
}n}¤L{10

1

2β
°d
ρ�1p1� cos kρnq �m2

�
»
}k}¤π{10

1

}k}2 �m2
ddk � Cd

» π{10

0

kd�1

k2 �m2
dk.

This integral is linearly divergent in d � 1, log divergent in d � 2 and bounded
in d ¥ 3.

Infinite volume

As in d � 1 when L Ñ 8 and m is kept fixed the Riemann sum converges to
an integral

lim
ΛÑZd

EpperqΛ,m rφxφys � 1

2p2πqd
»
r�π,πsd

eipk,px�yqq

2β
°d
ρ�1p1� cos kρq �m2

ddk.

With some extra work one can show that the limit exists also if we let m Ñ 0
and LÑ8 simultaneously as long as mLÑ8. Precisely we have

lim
mÑ0,LÑ8
mLÑ8

cpmqEpperqΛ,m rφxφys � lim
mÑ0

lim
LÑ8

cpmqEpperqΛ,m rφxφys

where

cpmq �
$&% m d � 1

| lnm| d � 2
1 d ¥ 3

To prove this result one has to compare the Riemann sum with the integral.
The difference can be expressed as sum over gradients fpkq � fpknq which in
turn give some decay improvement by the same arguments we used to prove eq.
(3.1.4).
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3.2.3 Existence and uniqueness of the thermodynamic limit.

Theorem 1 The thermodynamic limit for the 2 point correlation function

EpperqΛ,m rφxφys exists @d ¥ 1 and is independent of the boundary conditions:

lim
LÑ8

�
EpperqΛ,m rφxφys � EDΛ,mrφxφys

�
� lim
LÑ8

�
EpperqΛ,m rφxφys � ENΛ,mrφxφys

�
� 0,

for any fixed m ¡ 0. This remains true also is we let m Ñ 0 and L Ñ 8
simultaneously with mLÑ8. Precisely

lim
mÑ0,LÑ8
mLÑ8

cpmq
�
EpperqΛ,m rφxφys � EDΛ,mrφxφys

�
� lim

mÑ0,LÑ8
mLÑ8

cpmq
�
EpperqΛ,m rφxφys � ENΛ,mrφxφys

�
� 0.

Proof. Existence follows directly from the results of the previous section
in the case of periodic boundary conditions. To prove uniqueness let MD �
�β∆D

Λ � m2 and MN � �β∆N
Λ � m2 and M � �β∆per

Λ � m2 the matrices
corresponding to Dirichlet, Neuman and periodic boundary conditions. We
remark that MD and M differ only on the boundary of Λ. The same is true for
MN . Precisely

MD �M �X, MN �M � X̃

where

Xxy �
¸

z,z1PBΛ
}z�z1}¡1}z�z1}p�1

βrδx,zδy,z1 � δx,z1δy,zs,

X̃xy �
¸

z,z1PBΛ
}z�z1}¡1}z�z1}p�1

βrδx,zδy,z1 � δx,z1δy,z � δx,zδy,z � δx,z1δy,z1s.

For any two matrices A and B (with A and A�B invertible) we have

pA�Bq�1 �A�1 � �pA�Bq�1BA�1.

Applying the relation above

pMDq�1
xy �M�1

xy � pM �Xq�1
xy �M�1

xy � �
¸
zz1
pM �Xq�1

xzXzz1M
�1
z1y

� �
¸

z,z1PBΛ
}z�z1}¡1}z�z1}p�1

β
�
pMDq�1

xzM
�1
z1y � pMDq�1

xz1M
�1
zy

�

pMN q�1
xy �M�1

xy � pM � X̃q�1
xy �M�1

xy � �
¸
zz1
pM � X̃q�1

xz X̃zz1M
�1
z1y

� �
¸

z,z1PBΛ
}z�z1}¡1}z�z1}p�1

β
�pMN q�1

xz � pMN q�1
xz1
� rM�1

zy �M�1
z1y s
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Case of fixed mass. By Combes-Thomas estimate (see the next subsection)
there exists a constant µm,d that depends only on m and d such that, for any
boundary condition ��rM bcs�1

xy

�� ¤ 2
m2 e

�|x�y|µm,d

uniformly in the volume. Then��pMDq�1
xy �M�1

xy

�� ¤ CLd�1

m4 e�µm,dL ÑLÑ8 0

for some constant C. The same holds for MN .

Case of vanishing mass with Dirichlet b.c. For m small the factor µm �
m2 so the Combes-Thomas estimate gives a decay in Lm2 which is not enough
to prove the convergence. By matrix-tree thorem (see the next subsection) we
can prove

pMDq�1
xy ¥ 0 @x, y P Λ, and

¸
zPBΛ

pMDq�1
xz ¤ 1

β @x P Λ.

Moreover, by Fourier analysis (see eq. (3.2.5) above) one can show that

cpmq ��M�1
xy

��ÑmÑ0,LÑ8
mLÑ8

0

Putting together these estimates

cpmq ��pMDq�1
xy �M�1

xy

�� ¤ β
¸
zPBΛ

pMDq�1
xz cpmq sup

zPBΛ

��M�1
zy

��ÑmÑ0,LÑ8
mLÑ8

0.

3.2.4 Combes-Thomas estimate

Theorem 2 (Combes-Thomas) Let Γ be a finite or countable set, M �
T � U a self-adjoint operator on l2pΓq, with U an arbitrary diagonal operator
and T an off-diagonal operator. Let |x � y| the distance in Γ. If there exists a
parameter η ¡ 0 such that

sup
xPΓ

¸
yPΓ

|Txy|eη|x�y| � S   8

then for any E outside the spectrum of M with disttM,Eu � ∆ ¡ 0

��pM � Eq�1
xy

�� ¤ 2

∆
e�µ|x�y|, with µ � ∆η

∆� 2S
.

Proof. Let ex P l2pΓq the function defined by expyq � δx�y, then

pM � Eq�1
xy � pex, pM � Eq�1eyq.



14 CHAPTER 3. HIGHER DIMENSIONAL PROBLEMS

Let R : l2pΓq Ñ l2pΓq the multiplication operator defined by

rRf spyq � eµ|x�y|N fpyq, where |x� y|N � mint|x� y|, Nu.
The parameter N makes R a bounded operator also when Γ is a countable set.
At the end of the proof, we will take N to infinity. Then

pM � Eq�1
xy e

µ|x�y|N � pex, pM � Eq�1eyq eµ|x�y|N � pR�1ex, pM � Eq�1 R eyq
� pex, R�1pM � Eq�1R eyq � pex,

�
R�1pM � EqR��1

eyq
Then��pM � Eq�1

xy

�� eµ|x�y|N ¤
���� 1

R�1pM � EqR
���� � ���� 1

rR�1TR� T s � rM � Es
����

where we used R�1UR � U . The kernel of rR�1TR� T s is given by kpx, yq
rR�1TR� T sfpyq �

¸
z

Tyz

�
eµp|z�x|N�|y�x|N q � 1

�
fpzq

�
¸
z

kpy, zqfpzq.

Since
��|z � x|N � |y � x|N

�� ¤ |y � z|N we have���eµp|z�x|N�|y�x|N q � 1
��� ¤ max

�
peµ|z�y|N � 1q, p1� e�µ|z�y|N q

�
� eµ|z�y|N � 1.

Then the kernel kpy, zq satisfies

sup
y

¸
z

|kpy, zq| � sup
z

¸
y

|kpy, zq| ¤ sup
y

¸
z

|Tyz|
�
eµ|z�y|N � 1

	
¤
�
sup
u
e�η|u|

�
eµ|u| � 1

	�
sup
y

¸
z

|Tyz|eη|z�y|N

¤ S µ
η�µ

�
η�µ
η

	 η
µ ¤ S µ

η�µ .

since µ   η. Then by the Schur’s bound we have

}rR�1TR� T s} ¤ S µ
η�µ � ∆

2 since µ � ∆η
∆�2S .

On the other hand

}rM � Esf} ¥ ∆}f} @f P l2pΓq.
With these bounds we obtain��� 1

rR�1TR�T s�rM�Es
��� � 1

inff
}rR�1TR�T sf�rM�Esf}

}f}
¤ 2

∆

since

}rR�1TR� T sf � rM � Esf} ¥ ��}rR�1TR� T sf} � }rM � Esf}��.
These bounds do not depend on the N , so we can take N Ñ8. This completes
the proof.
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Application of Combes-Thomas: bound on the two point function.

Let AΛ � �β∆
pb.cq
Λ �m2IΛ. For any choice of the boundary conditions we can

write
AΛ � T � U, where |Tx,y| � βδ|x�y|�1,

where |x � y| is the euclidean norm in Zd. In the case of periodic boundary
conditions |x�y| is the euclidean norm on the torus Zd{ΛL. Moreover }A} ¥ m2

and ¸
y

¸
z

|Tz,y|eη|z�y| ¤ 2dβeη � S   8

for any choice of η ¡ 0 and for any choice of the boundary conditions. Then we
can apply Combes-Thomas estimate with E � 0���Epb.c.qΛ rφxφys

��� � 1

2
|pA�1

Λ qxy| ¤ 1
m2 e

�µm|x�y|

where

µm � m2η

m2 � 4dβeη
(3.2.6)

and η ¡ 0 is arbitrary. This bound holds uniformly in the volume Λ and for
any dimension d ¥ 1.

3.2.5 Matrix-tree theorem

Let Λ be a finite set of points. Let EΛ � tpi, jq| i, j P Λ, i � ju be the set un
undirected edges e � pi, jq � pj, iq on Λ. For each edge e P EΛ we denote its
endpoints by ie, je.

Definition 2 A subset E � EΛ of edges forms a loop (cycle) if we can order
its edges E � pe1, . . . , enq such that iel � jel�1

, @l � 2, . . . n and ie1 � jen .

Definition 3 A forest F on Λ is a subset of EΛ with no cycle. Let FrΛs be
the set of forests on Λ.

Definition 4 A spanning tree T on Λ is a forest on Λ such that for each pair
x, y P Λ there exists a path in T connecting x to y. Precisely there exists a subset
γTxy � pe1, . . . enq � T such that ie1 � x, jen � y and iel � jel�1

@l � 2, . . . , n.

Characterization of a forest. A forest F can be uniquely determined by
the following information.

1. We fix a partition P of the set Λ.

2. Inside each element X of the partition we choose a spanning tree.

The forest is then obtained taking the union over the spanning trees. Note
that this implies there is no edge connecting points in different elements of the
partition. On the contrary any two points inside X P P are connected by a path
in the forest. The elements X P P are also called connected components of the
forest. For each forest F we denote by P pF q the corresponding partition.
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Theorem 3 (matrix-tree) Let M be a N �N symmetric invertible ma-
trix (not necessarily positive or real). Let Λ � t1, . . . , Nu. Then

detM �
¸

FPFrΛs

¹
ePF

r�Miejes
¹

XPP pF q
r
¸
rPX

Brs

M�1
xy detM �

¸
FPFxyrΛs

¹
ePF

r�Miejes
¹

XPP pF q,xRX
r
¸
rPX

Brs

where
Br �

¸
jPΛ

Mrj

and FxyrΛs is the set of forests such that x and y belong to the same connected
component. Alternatively one may write

detM �
¸

PPPrΛs

¹
XPP

$&% ¸
TPT rXs

¹
ePT

r�Miejesr
¸
rPX

Brs
,.-

M�1
xy detM �

¸
PPPxyrΛs

�� ¸
TPT rXxs

¹
ePT

r�Miejes
�� ¹

XPP
xRX

$&% ¸
TPT rXs

¹
ePT

r�Miejesr
¸
rPX

Brs
,.-

where PrΛs is the set partitions of Λ, T rXs the set of spanning trees on X,
and finally PxyrΛs is the set of partitions such that x and y belong to the same
element of the partition: this special element of the partition is denoted by Xx.

Remark. The general matrix-tree theorem applies also to non-symmetric and
non invertible matrices, with a slight modification in the definitions.

With these definitions we can prove the following result.

Lemma 4 Let Λ � t�L, . . . , Lud and AΛ � �β∆D
Λ �m2IΛ a matrix on Λ�Λ,

where �∆D
Λ is the discrete Laplacian with Dirichlet boundary conditions. Then

0 ¤ pA�1
Λ qxy @x, y P Λ (3.2.7)

and ¸
zPBΛ

pA�1
Λ qxz ¤ 1

β
@x P Λ. (3.2.8)

Proof. Applying the matrix-tree theorem we can write

pA�1
Λ qxy �

°
PPPxyrΛs

�°
TPT rXxs

±
ePT r�Aiejes

�±
XPP
xRX

!°
TPT rXs

±
ePT r�Aiejesr

°
rPX Brs

)
°
PPPrΛs

±
XPP

!°
TPT rXs

±
ePT r�Aiejesr

°
rPX Brs

)
Note that �Aieje � β when ie � je, i.e |ie � je| � 1 and zero otherwise (since
ie � je for any edge e in the forest). Then only nearest neighbor edges give



3.2. GAUSSIAN INTEGRALS IS D ¥ 1. 17

a non zero contribution. Let PcrΛs the set of partitions of Λ into connected
components and T̃ rXs the set of trees on X made only of nearest neighbor pairs
i � j. Finally note that

Br �
¸
jPΛ

Ajr � m2 � βdr

where

dr � #tj P Λc| |j � r| � 1u so

"
dr � 0 if r P ΛzBΛ
dr P t1, . . . , du if r P BΛ.

Then
°
rPX Br � m2|X| � βdX , where

dX �
¸
rPX

dr, hence |X X BΛ| ¤ dX ¤ d|X X BΛ|.

Inserting all this we obtain

pA�1
Λ qxy �

°
PPPcxyrΛs

�°
TPT̃ rXxs β

|T |
�±

XPP
xRX

!°
TPT̃ rXs β

|T | rm2|X| � βdX s
)

°
PPPcrΛs

±
XPP

!°
TPT̃ rXs β|T | rm2|X| � βdX s

)
This expression is manifestly positive hence (3.2.7). Let

ωpXq � rm2|X| � βdX s
¸

TPT̃ rXs
β|T |.

Then

ρpP q �
±
XPP ωpXq°

PPPcrΛs
±
XPP ωpXq

is a probability measure on PcrΛs and pA�1
Λ qxy can be expressed as an average

pA�1
Λ qxy �

¸
PPPcxyrΛs

ρpP q 1
rm2|Xx|�βdXx s

To prove (3.2.8) we replace y by z and sum over all z P BΛ¸
zPBΛ

pA�1
Λ qxz �

¸
zPBΛ

¸
PPPcxzrΛs

ρpP q 1
rm2|Xx|�βdX s

�
¸

PPPcxBΛrΛs

¸
zPXxXBΛ

ρpP q 1
rm2|Xx|�βdXx s �

¸
PPPcxBΛrΛs

ρpP q |XxXBΛ|
rm2|Xx|�βdXx s ¤

1

β

since dXx ¥ |Xx X BΛ|. This ends the proof.
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3.3 Perturbation around a gaussian integral

3.3.1 The Opnq model

Let Λ � t�L, . . . , Lud a cube inside Zd. To each lattice point j we associate a
spin Sj P Sn taking values in the unit n�dimensional sphere. The three main
examples are

1. n � 1: in this case Sj � �1 and we obtain the Ising model;

2. n � 2: the spin takes values on the unit circle. This is the so called XY
(or rotator) model;

3. n � 3: the spin takes value on the sphere. This is the so called Heisenberg
model.

The space of configurations is ΩΛ � tS : Λ Ñ Snu and the corresponding Gibbs
measure is

dµβ,hΛ,npSq �
¹
jPΛ

dΩnpSjq e
β
2

°
j,kΛ JjkpSj ,Skqeph,

°
jPΛ Sjq (3.3.9)

where p., .q is the euclidean scalar product in Rn, h P Rn is the magnetic field
and Jjk is a collection of real interaction constants such that

Jjk � Jkj ¥ 0 @ j, k P Λ

and there exists a constant c ¡ 0 independent of the volume Λ such that

0 ¤
¸
kPΛ

Jjk ¤ c @j P Λ.

One can understand this constraint by regarding Jjk as the probability to jump
from j to k. Then

°
kPΛ Jjk � 1 since it is the probability of jumping to any

point. Finally dΩn is the invariant measure on the sphere Sn, normalized to 1.
In particular

1. for the Ising model the measure is discrete:
³
dΩ1 � 1

2

°
σ��1;

2. for n � 2 we can parametrize the circle by one angle:
³
dΩ2 � 1

2π

³2π
0
dθ;

3. for n � 3 we can parametrize the sphere by two angles:
³
dΩ3 � 1

4π

³2π
0
dφ
³π
0
dθ sin θ.

Phenomenology and symmetries.

Since Jjk ¥ 0 the interaction favors the configurations with spins aligned (we
have a so called “ ferromagnetic interaction”).

When h � 0 the Gibbs measure is invariant under global rotation

Sj Ñ USj @j U�U � IdRn (3.3.10)
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for any n ¥ 2. In particular it is invariant under flip Sj Ñ �Sj @j (this is true
also for n � 1). Then

Eβ,h�0
Λ rSjs � �Eβ,0Λ rSjs ñ Eβ,0Λ rSjs � 0 @j P Λ, @n ¥ 1, @d ¥ 1,

and we say that the average magnetization is zero (the spins are not aligned).

For general h, the finite volume magnetization Eβ,hΛ r 1
|Λ|
°
jPΛ Sjs is a smooth

function in each component of the vector h hence

lim
ΛÑZd

lim
hÑ0

Eβ,hΛ

�
1

|Λ|
¸
jPΛ

Sj

�
� 0.

If we invert the limits we may have two results:

lim
hÑ0

Eβ,hΛ lim
ΛÑZd

Eβ,hΛ

�
1

|Λ|
¸
jPΛ

Sj

�
�
"

0
M � 0.

In the first case there is no magnetization. This means the infinite volume
measure limΛÑZd dµΛ,β,h recovers the flip symmetry when hÑ 0. In this case we
say the symmetry is restored. In the second case we have magnetization. Then
the infinite volume measure limΛÑZd dµΛ,β,h does not recover the symmetry
when hÑ 0. Then we say we have spontaneous symmetry breaking.

One can show that at high enough temperature (i.e. β small) there is never
a magnetization, since the thermal fluctuations are too strong. On the contrary
at low temperature (i.e. β large) the forces trying to align the spins may be
strong enough to create a magnetization. In this case we say we have a phase
transition.

Mermin-Wagner: low dimensional systems.

Phase transitions are harder to observe in low dimensions. This is the con-
tent of the so called Mermin-Wagner theorem (also known a Mermin-Wagner-
Hohenberg theorem or Coleman theorem). It is a series of papers that can be
summarized in the following statement:

Continuous symmetries cannot be spontaneously broken at finite temperature
in systems with sufficiently short-range interactions in dimensions d ¤ 2.

Application to Opnq with short range interaction.

Let us consider the Opnq model defined above with Jjk � 1 when |j � k| � 1
and Jjk � 0 otherwise. Then

dµpSq �
¹
jPΛ

dΩnpSjq eβ
°
j�kpSj ,Skqeph,

°
jPΛ Sjq,
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where j � k means the two points are nearest neighbors in Zd. For n ¥ 2 this
measure has a continuous symmetry at h � 0, so by Mermin-Wagner theorem
we cannot expect a magnetization (hence a phase transition) in d ¤ 2. The
theorem does not apply to n � 1 (Ising model) since there the symmetry is
discrete (σ Ñ �σ).

In d � 2 one may still observe a softer version of phase transition known as
Kosterlitz-Thouless transition that corresponds to a change in the decay rate of
two point correlations. More precisely

lim
ΛÑZd

Eβ,0Λ rS0Sxs �
#
c1e

� |x|
ξ T " 1pi.e.β ! 1q

c2
|x|η T ! 1pi.e.β " 1q as |x| " 1.

for some constants c1, c2, ξ, η ¡ 0.

3.3.2 A first example of perturbation around a Gaussian
measure: the Op2q model in d � 2

Let Λ � Z2{t�L, . . . , Lu2 a cube in Z2 with periodic boundary conditions. The
space of configurations is ΩΛ � tS : Λ Ñ S2u and we consider the Gibbs measure

dµpSq �
¹
jPΛ

dΩ2pSjq eβ
°
j�kpSj ,Skq

where j � k are pairs at distance one in the torus. For this model one can prove
a Kosterlitz-Thouless transition. More precisely we have

Theorem 1 [Mc Bryan, Spencer (1977)]. For any 0   ε   1 there exists
a β0pεq ¡ 0 such that for all β ¥ β0pεq

lim
ΛÑZd

|Eβ,0Λ rS0Sxs | ¤ 1

|x| 1�ε
2πβ

(3.3.11)

Theorem 2 [Fröhlich, Spencer (1981)]. There exists a a β0 ¡ 0 and a
constant c ¡ 0 such that for all β ¥ β0

lim
ΛÑZd

|Eβ,0Λ rS0Sxs | ¥ c

|x| 1
2πβ

.

Theorem 3. There exists a a β0 ¡ 0 such that for all β ¤ β0

lim
ΛÑZd

|Eβ,0Λ rS0Sxs | ¤ Cβe
� |x|
ξβ

In this section we will review the proof of Theorem 1. This is based on two
steps. The first is non rigorous and consists in approximating the measure by a
Gaussian integral. The second step is rigorous and consists in mimicking some
of the operations we did to compute the (non-rigorous) Gaussian approximation
in a rigorous context. The key step is a complex deformation.
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Proof of Theorem 1 (based on [Mc Bryan, Spencer]) Using polar co-
ordinates the average above can be written as

Eβ,0Λ rS0Sxs � 1

ZΛ

»
r0,2πs|Λ|

eβ
°
j�j1 cospθj�θj1 q cospθx � θ0q

¹
jPΛ

dθj

� 1

2ZΛ
pI� � I�q

where the partition function is

ZΛ �
»
r0,2πs|Λ|

eβ
°
j�j1 cospθj�θj1 q

¹
jPΛ

dθj

and we defined

Iσ �
»
r0,2πs|Λ|

eβ
°
j�j1 cospθj�θj1 qeiσpθx�θ0q

¹
jPΛ

dθj , σ � �1.

Preliminary heuristic arguments. Using some non rigorous arguments we
establish what kind of behavior we expect from the integrals above. Since
1 ¥ cospθj � θj1q ¥ �1 and β " 1, the function exprβ cospθj � θj1qs is expo-
nentially small unless θj � θj1 � 0 or 2π. Inspired by this fact we perform two
approximations.

a). We take the Taylor expansion up to order 2 and neglect the remainder.
Then

eβ
°
j�j1 cospθj�θj1 q � e�βCpΛqe�

β
2

°
j�j1 pθj�θj1 q2 � e�βCpΛqe�

β
2 pθ,�∆Λθq

where CpΛq � °j�j1 1 is a constant independent of θ and �∆Λ is the discrete
Laplacian on Λ with periodic boundary conditions.

b). We replace the interval r0, 2πs by R in the integral, for each j P Λ.
Inserting these two approximations both in the numerator and in the partition
function above we obtain

Iσ
ZΛ

�
³
R|Λ| e

� β
2 pθ,�∆Λθqeiσpθx�θ0q

±
jPΛ dθj³

R|Λ| e
� β

2 pθ,�∆Λθq±
jPΛ dθj

where the normalization is

N �
»
R|Λ|

e�
β
2 pθ,�∆Λθq

¹
jPΛ

dθj .

These two integrals are ill defined since �∆Λ is not invertible! One may give a
sensible definition of a Gaussian measure even in this situation, but since here
we are doing non rigorous arguments we ignore the problem. We introduce now
the two functions

v : Λ Ñ R
j Ñ vj � δjx � δj0

,
α : Λ Ñ R

j Ñ αj � rp�β∆Λq�1vsj . (3.3.12)
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Note that
°
j vj � p1, vq � 0, v P kerp�∆ΛqK, therefore the function α is well

defined, even if p�∆Λq is not invertible. Then pθx � θ0q � pv, θq and

Iσ � e�
1
2 pα,p�β∆Λqαq

»
R|Λ|

e�
1
2 ppθ�iσαq,�β∆Λpθ�iσαqq

¹
jPΛ

dθj � e�
1
2 pα,p�β∆ΛqαqN

where in the last step we perform the complex traslation

θj Ñ θj � iσαj , @j P Λ.

Now inserting the definition of α

pα, p�β∆Λqαq � pv, p�β∆Λq�1vq
� 1

β

�p�∆Λq�1
00 � p�∆Λq�1

0x � p�∆Λq�1
x0 � p�∆Λq�1

xx

�
� 1

βp2L� 1q2
¸

nPΛLz0

2p1� cospknxqq
2p1� cospkn1qq � 2p1� cospkn2qq

� 2
1

2πβ
ln }x}

�
1�O

�
1

ln }x}
	�

� 2
1

2πβ
ln }x} |x| " 1

With these approximations we would obtain

Eβ,0Λ rS0Sxs � I� � I�
2ZΛ

� 1

|x| 1
2πβ

, |x| " 1.

Step 2. Inspired by the non rigorous arguments above we perform the follow-
ing complex translation in the integral Iσ:

θj Ñ θj � iσαj , @j P Λ,

where αj is defined in (3.3.12). Remember that the definitions given in (3.3.12)
make sense even though p�∆q is not invertible. The integral becomes

Iσ � e�pαx�α0q
»
r0,2πs|Λ|

eβ
°
j�j1 cospθj�θj1�ipαj�αj1 qqeiσpθx�θ0q

¹
jPΛ

dθj .

In order to close the contour in the complex plane we need to add the integrals
along the paths yj � izj , zj P r0, σαjs and yj � 2π � izj , zj P r0, σαjs. By
periodicity they cancel each other. Since

cospθj�θj1�ipαj�αj1qq � cospθj�θj1q coshpαj�αj1q�i sinpθj�θj1q sinhpαj�αj1q
after inserting absolute values we have

|Iσ| ¤ e�pαx�α0q
»
r0,2πs|Λ|

eβ
°
j�j1 cospθj�θj1 q coshpαj�αj1 q

¹
jPΛ

dθj

¤ e�pαx�α0qeβ
°
j�j1 rcoshpαj�αj1 q�1s

»
r0,2πs|Λ|

eβ
°
j�j1 cospθj�θj1 q

¹
jPΛ

dθj

� ZΛe
�pαx�α0qeβ

°
j�j1 rcoshpαj�αj1 q�1s
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where in the second line we use

cospθj�θj1qrcoshpαj�αj1q�1s�cospθj�θj1q ¤ rcoshpαj�αj1q�1s�cospθj�θj1q.
Now

|αj � αj1 | ¤ 1

β
|rp�∆q�1

j0 � p�∆q�1
j10s � rp�∆q�1

jx � p�∆q�1
j1xs| ¤

K

β

for some constant K independent of x and Λ. This last inequality can be
obtained by the same kind of arguments in the Fourier sum we used to prove
the estimate (3.1.2) in Lemma 2. Since β is large we can make |αj � αj1 | as
small as we want. To complete the argument note that for any 0   ε   1 there
exists a δpεq ¡ 0 such that

coshptq � 1 ¤ 1� ε{2
2

t2 @|t| ¤ δ,

where the factor 1{2 in front of ε is just a convenient choice to control some
additional error terms later in the proof. From the bound above there exists a
β0 such that |αj � αj1 | ¤ δ for all j � j1 and for any β ¥ β0. Inserting this in
our estimate we obtain

|Eβ,0Λ rS0Sxs | ¤ |I�| � |I�|
2ZΛ

¤ e�pαx�α0qeβ
°
j�j1

1�ε{2
2 pαj�αj1 q2

� e�pαx�α0qe
1�ε{2

2 pα,�β∆Λαq

� e�
1�ε{2

2 pv,p�β∆Λq�1vq � e
� 1�ε{2

2πβ ln }x}
�
1�O

�
1

ln }x}
	�

¤ e�
1�ε
2πβ ln }x} � 1

|x| 1�ε
2πβ

where in the last line we use pαx � α0q � pv, αq, α � p�β∆Λq�1v and we take
}x} large enough to ensure�

1�O
�

1
ln }x}

	�
¥ p1� ε{2q.

This concludes the proof.

3.3.3 An example of phase transition: the mean field case

In this section we consider the Opnq model defined in (3.3.9) with non zero
magnetic field h P Rn and with interaction parameter

Jjk � 1

|Λ| @i, j P Λ.

With this choice
0 ¤

¸
kPΛ

Jjk ¤ 1 @j P Λ.

Note that in this case we have long range interactions since Jjk is constant for
any pair jk P Λ. Then the Mermin-Wagner theorem does not apply and one
may have a phase transition also in d � 2.
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Duality

The partition function in the mean field Opnq model can be reformulated as an
integral over n real variables

Lemma 5 For any dimension d ¥ 1 and any n ¥ 1 we have

ZβΛ,nphq �
»
dµβ,hΛ,npSq �

1

NΛ,n,β

»
Rn
dnx e�|Λ|Fn,βpx,hq, with NΛ,n,β �

�
2πβ

|Λ|

|Λ|

,

Fn,β : Rn � Rn Ñ R
px, hq Ñ Fn,βpx, hq � }px�h}2

2β � ln Jnp}px}q
and

Jn : R� Ñ R�
t Ñ Jnptq � cosh t if n � 1

� π
2

³ π
2

0
psin θqn�2 coshrt cos θsdθ if n ¥ 2

Proof Since Jij � |Λ|�1 @i, j we can write

e
β
2

°
j,kΛ JjkpSj ,Skq � e

β
2|Λ| }

°
jPΛ Sj}2 � 1

NΛ,n,β

»
Rn
dnx e�

|Λ|
2β }x}2epx,

°
jPΛ Sjq

Exchanging the integrals we obtain

ZβΛ,nphq �
1

NΛ,n,β

»
Rn
dnx e�

|Λ|
2β }x}2

�»
dΩnpSq epx�h,Sq

�|Λ|
� 1

NΛ,n,β

»
Rn
dnx e�

|Λ|
2β }x�h}2

�»
dΩnpSq epx,Sq

�|Λ|
When n � 1 we have»

dΩ1pSq epx,Sq � 1

2

¸
σ��1

exσ � coshpxq � coshp|x|q.

When n � 2 we have»
dΩ2pSq epx,Sq � 1

2π

» 2π

0

e}x} cos θdθ � 1

π

» π
0

e}x} cos θdθ � 2

π

» π
2

0

coshp}x} cos θqdθ,

where in the first passage we perform a rotation in order to have x parallel to
the vertical axis, then go to polar coordinates. Similarly for n ¡ 2 we have»
dΩnpSq epx,Sq � 1

π

» π
0

psin θqn�2e}x} cos θdθ � 2

π

» π
2

0

psin θqn�2 coshp}x} cos θqdθ.

2
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Remarks. The duality reduces the problem to the study of a n variable in-
tegral (compared to n|Λ| variables in the initial representation). Moreover, for
large |Λ| the integral will be concentrated around the minimal with respect to
x of the function Fnpx, hq, therefore a saddle point analysis is possible.

Generating function

Using the dual representation above the average magnetization at finite volume
can be expressed as

Eβ,hΛ

�
1
|Λ|
¸
jPΛ

Sj

�
� 1

|Λ|Bh lnZβΛ,nphq � 1
β

³
Rn d

nx px� hqe�|Λ|Fn,βpx,hq³
Rn d

nx e�|Λ|Fn,βpx,hq
(3.3.13)

Phase transition

Theorem The Opnq model in the mean field case has a phase transition in
any d ¥ 1. Precisely

lim
hÑ0�

lim
ΛÑZd

Eβ,hΛ

�
1

|Λ|
¸
jPΛ

Sj

�
�
"

0 if β   1 phigh temperatureq
Md,β,n ¡ 0 if β ¡ 1 plow temperatureq

Proof In the following we set h ¡ 0. By (3.3.13) the problem can be reduced
to the rigorous saddle analysis of a n variable integral. For simplicity we will
restrict here to the case n � 1. Then

F1px, hq � px� hq2
2β

� ln coshx

and the equations for the first and second derivative are

BxF1px, hq � px�hq
β � tanhx, B2

xF1px, hq � 1
β � 1

pcosh xq2 .

Note that

B2
xF1px, hq ¤ 1

β
@x, h. (3.3.14)

Case 1: β   1 (high temperature). In this case F1 is a convex function in x

B2
xF1px, hq ¥ p1�βq

β @x, h (3.3.15)

therefore F1 has only one minimum at the point x0phq satisfying

px0�hq
β � tanhx0.

At h � 0 x0 � 0 is a solution of this equation, therefore limhÑ0 x0pβ, hq � 0.
By a Taylor expansion with integral remainder

F1px, hq � F1px0, hq � px� x0q2
» 1

0

p1� tqB2
xF1px0 � tpx� x0q, hq dt.
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Inserting (3.3.14) and (3.3.15) we obtain @x, h

F1px0, hq � 1
2β px� x0q2 ¥ F1px, hq ¥ F1px0, hq � p1�βq

2β px� x0q2. (3.3.16)

Now we can reexpress (3.3.13) as

Eβ,hΛ

�
1
|Λ|
¸
jPΛ

Sj

�
� 1

β

³
R dx px� hqe�|Λ|F1,βpx,hq³

R dx e
�|Λ|F1,βpx,hq � x0pβ,hq�h

β �Rpβ, h, |Λ|q,

where

Rpβ, h, |Λ|q �
³
R dx px� x0qe�|Λ|Fn,βpx,hq³

R dx e
�|Λ|Fn,βpx,hq .

Inserting absolute values, and the upper and lower estimates from (3.3.16) we
obtain

|Rpβ, h, |Λ|q| ¤
³
R dx |x� x0|e�

|Λ|p1�βq
2β px�x0q2

³
R dx e

�|Λ|
2β px�x0q2

� 2
³8
0
dx x e

�|Λ|p1�βq
2β x2

³
R dx e

�|Λ|
2β x

2

� 1?
|Λ|

2
?
β?

2πp1�βq Ñ|Λ|Ñ8 0

Finally

lim
hÑ0�

lim
ΛÑZd

Eβ,hΛ

�
1
|Λ|
¸
jPΛ

Sj

�
� lim
hÑ0�

x0pβ,hq�h
β � 0.

Case 2: β ¡ 1 (low temperature). In this case the function F1px, hq has two
minimum points x1phq, x2phq satisfying

x1phq   0, x2phq ¡ 0, lim
hÑ0

x2phq � � lim
hÑ0

x1phq � x0pβq ¡ 0.

At h � 0 F1 is symmetric in x so the two minimums are at the same height

F1p�x0pβq, 0q � F1px0pβq, 0q � Fm.

To see what is the approximate value of the two minimum points at h � 0, we
expand near h � 0 (remember that at the end we will take the limit hÑ 0)

xjphq � σjx0 � δjh�Oph2q, σ1 � �1, σ2 � 1.

Inserting this relation in the saddle point equation we obtain

0 � BxF1pxjphq, hq
� BxF1pxjp0q, 0q � B2

xF1pxjp0q, 0q δjh � BhBxF1pxjp0q, 0q h � Oph2q
� h

�B2
xF1pxjp0q δj � BhBxF1pxjp0q, 0q

��Oph2q
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since BxF1pxjp0q, 0q � 0. Note that

B2
xF1pxjp0q, 0q � 1

β � 1
pcosh x0pβqq2 � Hpβq ¡ 0, BhBxF1pxjp0q, 0q � � 1

β

are independent of j then

δ1 � δ2 � δ � 1
βHpβq ¡ 0.

Inserting these results in the expression for F1 and expanding around h � 0 we
obtain

F1pxjphq, hq � F1pxjp0q, 0q � BxF1pxjp0q, 0qδh� BhF1pxjp0q, 0qh�Oph2q

� F1pxjp0q, 0q � xjp0q
β

h�Oph2q � Fm � σj
x0pβq
β

h�Oph2q

Then

F1px1phq, hq � F1px2phq, hq � 2hx0pβq
β

¡ 0, since h ¡ 0,

and F1 has a global minimum at x2phq. As in the case β   1 we extract the
contribution of the minimum

Eβ,hΛ

�
1
|Λ|
¸
jPΛ

Sj

�
� x2phq�h

β �Rpβ, h, |Λ|q

where

|Rpβ, h, |Λ|q| ¤
³
R dx |x� x2|e�|Λ|rF1px,hq�Fms³

R dx e
�|Λ|rF1px,hq�Fms � N

D
.

To estimate the integral in the numerator we distinguish three regions

I1 � tx| |x�x2phq|   εu, I2 � tx| |x| ¡Mu, I3 � tx| |x| ¤M, |x�x2phq| ¥ εu
where ε and are chosen in order to have I2 X I1 � H,

B2
xF1px, hq ¡ c1 ¡ 0 @x P I1, and rF1px, hq � Fms ¥ c2

2
x2 @x P I3,

for some constant c1, c2. It is not difficult to see that such regions exist for the
function F1. Then»
I1

dx |x� x2|e�|Λ|rF1px,hq�Fms ¤
»
I1

dx |x� x2|e�
|Λ|c1

2 px�x2q2 ¤
»
R
dx |x� x2|e�

|Λ|c1
2 px�x2q2 � 2

|Λ|c1»
I2

dx |x� x2|e�|Λ|rF1px,hq�Fms ¤
»
I2

dx |x� x2|e�
|Λ|c2

2 x2

¤ e�
|Λ|c2M2

4

»
R
dx |x� x2|e�

|Λ|c2
4 x2 � e�

|Λ|c2M2

4 O

�
1?
|Λ|



»
I3

dx |x� x2|e�|Λ|rF1px,hq�Fms ¤ 2M sup
xPI3

�
|x� x2|e�|Λ|rF1px,hq�Fms

�
¤ e�|Λ|cph,ε,Mq.
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In the third line we used |x � x2phq| ¥ ε ¡ 0 @x P I3 and for some constant
ε ¡ 0, since F px, hq is at a finite distance from the minimum. Putting all these
bounds together we obtain an upper bound for the numerator

N � O
�

1
|Λ|
	
.

To estimate the denominator note that

B2
xF1px, hq ¤ 1

β
@x, h

then »
R
dx e�|Λ|rF1px,hq�Fms ¥

»
R
dx e�

|Λ|
2β px�x2q2 �

b
2πβ
|Λ|

hence

|Rpβ, h, |Λ|q| ¤
b

|Λ|
2πβO

�
1
|Λ|
	
Ñ|Λ|Ñ8 0

Finally

lim
hÑ0�

lim
ΛÑZd

Eβ,hΛ

�
1
|Λ|
¸
jPΛ

Sj

�
� lim
hÑ0�

x2pβ,hq�h
β � x0pβq

β ¡ 0.

This concludes the proof. 2
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