Chapter 2

One dimensional problems

When d = 1 our finite region A is a finite chain of points A = (=L, —L +
1,...0,1,...,L). The techniques applying to 1d systems can be generalized
to quasi-one dimensional systems, such as strips of finite width. The material
in this chapter is mostly based on the lecture notes by A. Kupiainen [Kup]
(for the Ising model part) and on the book by B. Helffer [Hel02] (for the
part on integral operators).

2.1 Ising model

We will define the model in general dimension and later specialize to d =
1. Let L = (Ly,...Lg) € N and A = [~Ly,...,Li] x ---[=Lg,...Lg| a
rectangle in Z¢ centered around the origin. To each site € A we associate
a spin (the analog of ¢(z) in the cristal example) taking only two values
—1,+1. The configuration space is then Qx = {1, —1}* and a configuration
of the finite system is
o: A —{1,-1}A
r —o(x),

where o(z) is called the “spin” at site x. Let Q = {1, —1}Zd be the set of
spin configurations on the whole lattice.

The energy for a configuration o € (4, is given by the finite volume
Ising Hamiltonian HY : Q) — R

Hi(o)=—-J Z Uny—ZhUm, J>0, heR
r~yeN €A

The first term in H' represents an interaction between nearest neighbor
sites and the parameter J is called the coupling constant. The last term is



a sum of independent contributions at each site. The parameter h is called
the external magnetic field.

Phenomenology The coupling term in H'! is minimum when all spins
o, have the same orientation o, = +1 Vx, or 0, = —1 Vx: in both cases
the coupling contribution is —J meye A 1. On the other hand, the second
sum in H'! is minimum when all spins have the same sign as h, hence for
h # 0 the only spin configuration minimizing the energy is o, = sign(h)
Vx € A. In this sense, h plays the role of an external magnetic field for a
ferromagnetic material: when h = 0 the spins try to align, but since they
do not know which direction to take (+1 or —1) they end up being half +1
and half —1 so the average orientation is zero. When an external field A is
present, the spins align with it.

Note that when J < 0 nearest neighbor spin pairs try to take opposite
spin orientations. This is called paramagnetic behavior.

History The Ising model was introduced to describe ferromagnetic mate-
rials, but it proved to be relevant in a wide variety of problems, from lattice
gases, to biology, economics and image analysis.

2.1.1 Boundary conditions

Let o € {1, —I}Zd a fized configuration on the infinite lattice.

Definition 1 The boundary of A is defined by

OA = {x € A|Fy € A°with ||z —y|| = 1}

Definition 2 The Ising Hamiltonian with & boundary conditions is HY :
S]A — R
H{(0) = H(o)—J Z Z 030y
€I\ yeAC y~x

where & € {2 is some fixed infinite volume spin configuration.
The Ising Hamiltonian with periodic boundary conditions is Hy" : Qp —

HY (o) = —J Z O'xO'y—hZO'x

x~y€eTy, TzEA

R

where T; = 7Z/Ly X --- X Z/Lg is a torus.



Finally The Ising Hamiltonian with free boundary conditions is

H{"*(0) = H (o).

2.1.2 Probability measure and thermodynamic limit

Let H(®)A be the finite volume Ising energy with some fixed boundary con-
ditions. We define a probability measure on Q5 by

o—BHY? (0)
) - (be)

Zpg
where the normalization factor

(be —BH" (o
ZA,B): Z e~ PHA (0)

AN

is called the partition function. Let {A,},en be a growing sequence of
regions s.t. A, C Apyq Vn and lim, o0 A, = Z%.

We denote by F,, the sigma algebra on Q,, and by F the (infinite vol-
ume) sigma algebra on 2. Then each measure ,ug\bgﬁ on F, can be extended

to a measure i, on F with the following definition

fn(A) =0 if ANQy, =10
= ug\bg 5(ANQy,)  otherwise.

In order to study the thermodynamic limit we will consider the following
class of functions.

Definition: local functions. A function f : Q — R is local if it depends
only on the spin value on a finite set of lattice points. Precisely, f is local if
Jaset X C Z? with |X;| < oo and a function F : Qx — R s.t.

flo)=F(ox) VoeQ,

where ox = {0, }zex is the restriction of the configuration o to the set X.

Example The functions fi(o) = o4, and fo(0) = 04,04, (where x1,zo
are fixed lattice points) are both local functions with X = {x1}, {z1,z2}
respectively. We will see below that all local functions can be obtained from
functions of this form.



Lemma For any function f : & — R depending only on spins inside the
finite set X, there exists a family of real parameters {a4}acx associated to
each subset of X satisfying

flo) =Y asoa

ACX

oa= Lo~

T€EA

Proof. Let 1, (0z) = 1{5,,—1}(0x) and 1_ (o) = 11, —_13(0z). This can be
written in the more condensed form

where

1,1 (0z) = 5%70& = 1Uz(0';), GI,U:/]C =+1.
Let x1 = (14 +1_-)/2 and x2 = (14 —1_-)/2. Then
1, = x1 4+ 0oxe, with o = +1.

and the function

1,(0) = [] 1oy(00) = [] Lo.(02) = [] [xa(on) + ouxa(on)]

zeX zeX reX
=> Tl e [Ix2@) TT xa(0h)
ACX zecA  z€A zex\A

equals 1 when o = ¢’ and equals 0 otherwise. Then

flo) =) 1.(0)f(0) =) 1,(0)f(0")
=> £ I xa(eh) + ouxaloh)]

zeX

= > ILoe > f@) [ xeeh) T xelon)

ACX z€A o’ TEA zex\A

=3 [ rax

ACX z€A

where ax is a constant independent of the configuration . m



Definition: thermodynamic limit We say that the sequence of mea-

sures (be) t Q if
Iy, 5 converges to a measure p on ) i

Ep,[f1= ) in(0)f(0) =nsee ) 1(0)f(0) = Eyulf]

for all local functions f : 2 — R.
By the lemma above, it is enough to prove the existence of the limit for
E,lox] for any subset X with |X| < oo.

2.2 Transfer matrix for the Ising model in one di-
mension

Let A =[—L,...,L]. The finite volume Ising Hamiltonian in d = 1 can be
written

L—1
H[I\(O'):—J Z UIUI+1—hZhUI, J>0, heR
r=—1 rEA

The boundary is reduced to two points OA = {—L, L}, therefore the Hamil-
tonian with & (resp. periodic, free) boundary conditions is

HX(U) :HI(O') —J [U_Lﬁ'_[,_l + O'L5'L+1]
HY (o) =H'(0) — Jopo_1,
H{"*(0) =H{(0).

where & € (2 is some fixed infinite volume spin configuration.

2.2.1 Partition function
)

Let Z/(\b% be the partition function at finite volume with some fixed boundary
conditions. Then we have

Lemma 1 The limit as L — oo of [A|7'1n Z/(\b%) is finite and independent

of the boundary conditions

Proof We will prove this result for &, periodic and free boundary con-
ditions. In the case of & and periodic boundary conditions, the partition



function can be written as

L—1
b _ g bo) i
Z/(\,%) = Z e BHA9) = Z F}lLeft(U—L) H Th(UmUx—H) thght(UL)
SN o€ r=—L
o left 2L ight
= (B TR )
where T}, is a 2 X 2 matrix
B+hp -8 ’
_ € e N Bhe Boo’ Bha
Ty = ( 0B B > , Th(o,0') =€ 2 €777 ¢ 2| (2.2.1)

while F, ;Lef t/right ve 2 component vectors encoding the boundary conditions

_ Bho i Bho G —
Flt (o) = Poo-1-1¢75" FriMt (g) = 72" 701 for & b.c.,
ho

F}lLeft(g) = ngght(g) — e for free b.c. (2.2.2)

Finally ( , ) denotes the real euclidean scalar product . In the case of
periodic boundary conditions

L—-1
Z/(\}?Zr) _ Z efﬁH/(\Per)(U) — Z [H Th(0z70w+1)

oEQA c€Qp Le=—L

Ty(or,0-1)

_ 2L+1
=Tr Th

To study the large volume properties of the partition function then, we have
to study a 2 x 2 matrix, reducing the problem from 22*! to 2 spins only.
The matrix T}, is real symmetric hence diagonalisable. The eigenvalues are

A1 = €’ cosh(Bh) + \/[eﬁ sinh(B8h))? + e~28,

Ao = ¢ cosh(Bh) — \/[e? sinh(BR)]2 + =25, 0 < Ay < A,

Let vy, v9 the corresponding normalized eigenvectors and P;, P, are 2 x 2
matrices corresponding to the orthogonal projections on vy, va:

Pi(0,0") = vi(o)vi(d'), Pi(v) = (v1,v)v1, Yv € R%,

The definition for P, is similar. Since they are orthogonal projections P, P,
satify
P} =P, P{ =P, PP,= PP =0.



Moreover, the eigenvector v; for the largest eigenvalue has the following
additional property, that will be crucial for our proof:

vi(o) > 0 Vo.

Indeed let v = (x1,y1). Then we obtain

y1 = 11Ch where C; = €” [\/[eﬁ sinh(Bh)]2 + e=28 — [’ sinh(ﬁh)]} .

(2.2.3)
Since C'7 > 0 for any choice of 3, h the two components x1 and y; must have
the same sign. Inserting the spectral decomposition T' = A\; P; + Ao P in the
expression for Z we have

Z](\b%) _ (F}lleft’TlgLF}:ight) _ )\%L 1

: Ao\ 2L ,
(F]lleftavl> (UlyF]:lght) + <)\j) (F]lfft7P2F}:mht>

. Ao\ 2L :
(F}lleft’PlF}rl‘zght> + <)\2> (F}lleft,PQF;;Zght>]

_\2L
=)\]

To complete the proof we need two ingredients

e the first term in the parenthesis is strictly positive. Indeed (F; ,ief ¢ V) =
Yoo Fflfft(a)vl(a) > 0 since vy (o) > 0 and F'/*(¢) > 0 for all . For
the same reason (vy, Fi'9") > 0.

e the second term in the parenthesis disappears in the limit L — oo.
This holds since [Aa| < A1.

Using these two ingredients we obtain

In 7" , 2L .
A
2L +7? :2[2/{;-1 1n )\1 + 2L1J,-1 ln |:(F]5/6ft7 /U].)(Ulu F}:tht) + <§?> (F}lleft’ PQF}:Zght):|

—Ioo In A =1In [6’8 cosh(Bh) + \/[eﬁ sinh(Bh)]2 + 6_25]

Since the boundary conditions appear only in F'¢f t/right the result is the
same for free, or for any choice of & boundary conditions.
In the case of periodic boundary conditions
Ay ) 2EH
1+
(/\1)

Z/(\p;f) — Ty T}?L—H = ATy Py ALY Py = \2LAL




Therefore

Iz

AB 1 A 2L+1
m—lﬂ)\l—‘—mln |:]_+<>\?> — L—o00 h’l)\l.

The limit exists for any choice of 3, h and coincides with the result obtained
with free or & boundary conditions. O
2.2.2 Average magnetization

The finite volume average magnetization at position x is defined by

(bc)
—BH
ZJEQA € PH (O—)O-x

Eploz] = )
ZO’EQA e_BHA (U)

We have the following result
Lemma 2 The average magnetization has a limit

1-C?

EA[Ux] —L—00 Mﬂ(h) = W
1

(2.2.4)

where Cy is giwen in (2.2.3). The limit Mg(h) is independent of x and the
boundary conditions, is a smooth increasing function of h satisfying

— 1< Mg(h) < +1VheR,
lim Mg(h) =41, lim Mpg(h)= -1
Jim Mg(h) = +1, lim Mg(h) :

and has the same sign as h. In particular Mg(0) = 0.

Remark 1 This result is consistent with the physical intuition saying that
the spins try to align with the magnetic field h. When h becomes very large
all spins align hence the magnetization becomes +1 (resp. —1) depending
if h>0o0rh<0.

Remark 2 The function M : R —] — 1, 1] is invertible, so we could use
the magnetization M as a parameter in our measure instead of h: g p(ar),



Proof For simplicity we consider x > 0. The same arguments then hold
for x <0.

As in the case of the partition function we can express Ej[o;] in terms
of the transfer matrix T},:

left L+ L—x right
(et e s rir)

EA [O-w] - (Fleft TQLFright>
h *“h *h

where T, F); lef LR ,:ight were defined in (2.2.1) and (2.2.2) above. The 2 x 2

matrix ¥ encodes the new term o,

1 0
Y= < 0 —1 ) ) EO’,UI = 054/0.
Inserting the spectral decomposition T'= A1 P} + Ao P> we get
L+ L— ;
(e o+ ()" = [ ()" ] o)
2L .
(F,ieft, |:P1 + (%) P2:| F;;Zght>

left ight .
(Fhe 7P1 b)) Plpitlg ) (Flieft, vl)(vl, Evl)(vl, F}:Zght)
—7L—yc0 =

(FJeft7 P, F’/‘ight) (Ffllefta vl) (vlF;;ight)

Eploz] =

Ul, E’Ul Zvl (7 =1 —|—1) —1}1(—1)2,

where we used as before (F}lleft,vl) > 0, (F”ght,vl) > 0 and |[Aa] < Ap.

Using ([2.2.3) we see that

1-C?
1+ C?

where C7 > 0 is a smooth function of A and satisfies

’U1(1)2 — U1(—1)2 =

C1 < ePle™P =1 when h > 0
C1>ePle P =1 when h < 0
Chi=1 when h = 0.

Therefore M (h) has the same sign as h and M (0) = 0. Moreover

ef sinh(Bh
C! = 2§ cosh(Bh) \/(eﬁsinh(ﬁ;)ﬁ)Qle_Qﬁ —1| <0  Vh,

9



then M'(h) = —% > 0 Vh. Finally
1

e 48

C1(h) = ¢ sinh(Bh) [ L+ Seem — 1] -0 (W) oo 0
C1(h) = e8| sinh(Bh)| [2 +0 (m)} oo 00
hence limy,_,4+ o, M(h) = £1. This completes the proof. a

2.2.3 Spin-spin correlation

The two spin correlation is defined by
C3y = Ealoz0y] — En[0a]Ealo).

This quantity is zero when o, and o, are independent. We have the following
result

Lemma 3 The infinite volume limit for Cfc\y exists, is independent of the
boundary conditions and satisfies

_lz—yl
Jim Oy =Gy = Ke™ ¢

where € > 0, K > 0 are constants independent of x and y. The parameter
& gives the distance where the spin correlation starts to become small and is
called the localization distance.

Proof As in the previous subsections we use the transfer matrix represen-
tation. Without loss of generality we can consider y > x. Then

left L+ - L—y pright
(B! T s Ty w1

left I ight
(Bt Tpb )

Eploz0y] =

10



where F,lff v/ Mght, Ty, and X are defined above. Inserting the spectral decom-

position T'= A\ P} + Ao P» we get

Ltz y—z L—y ;
(F}fft, [Pl—k(f\‘f) Pg] > [Pﬁ(ij) PQ} > [Pﬁ—(’\f) Pz] F,j’gh’f>

EA[Uny] = < . ft N 20 oht
Fhe 7[Pl + (Ti) P2:| F}:Zg )
(F}Left, P X [Pl + (%)y_x P2:| P F;L"ight)

(F' P s P s PLE]M) ( )\2>yf:v (F' P Py S P
(Fa}lbeft7 PIF;L'z’ght) A1 (FflLeft’ PlF}:ight)

—L—c0

The first term in this sum gives

(B PLS PUS PUFSOM) (R o) (o, Son) (o, Son) (o, F0™)

(BT P (B 1) (or, )
= (’Ul, ZU1)2 = M/B(h)Q = lim EA[Ow] EA[O'y].
L—oo

Therefore limy_,., C = Ke 1*=4/¢ with

Ty
(F' P s Py PLF]M) ) 1
K= left right = (v1, Xv2)7, £= 5
(Fh 7P1Fh ) In A2

The values of K and £ do not depend on F} so the result is the same for
all boundary conditions. Similar arguments hold in the case of periodic
boundary conditions.

Comparison with the case of no interaction If we set J = 0 instead
of J =1 in the Ising Hamiltonian we obtain a product measure on {2

L—-1
MJZO(O-) = H eﬁhox’
j=-L

11



and all correlation functions are easy to compute. In particular

L-1
Z{70 = H Z ePhoe = [2 cosh(Bh)] 2T

_ZUxE{l,—l} ehoeg, sinh(Bh)

Ep, =0 02] = o
A,J=0 [0z] 2016{1771} eBhos cosh(Bh)
Civy—o = ve,y, VA.

— M(h)

As in the J = 1 case the magnetization M (h) is invertible, and we can
define h as a function of M, i.e. the magnetization we want to obtain:
h(M) = %tanh_l(M ). All correlation functions are zero because the mea-
sure is factored over a product of local measures. The infinite volume mea-
sure exists and is given by

phal(o) = JJ o™ ho(M) = § tanh ™' (M).
€L

In the case J = 1, we have see that two point correlations decay ex-
ponentially and one can show the same result for all correlation functions.
This means that the infinite volume measure pg j—1 is “approximately” the
product measure (in a sense to be made precise)

hi1(M)o,
KB, =1 "~ Heﬁ 1Moz hi(M) = Mg'_ (M),
€L
where the magnetization h; is now fixed by the function (2.2.4]). Therefore
the measure “looks like” what we get in the J = 0 case, with a modified
parameter h. We say the magnetic field parameter has been “renormalized”.

2.2.4 Generalizations: transfer matrix in a strip

Let A={—-L,...,L} x{1,...,W}. When L — oo this becomes an infinite
strip. Its properties are similar to 1d chain, hence this is called a “quasi-one
dimensional” problem. A point & € A is identified by two coordinates & =
(x,y) withz € {—L,...,L}, y € {1,...,W}. The space of configurations is
Qp = {1, —1}* and the Ising Hamiltonian on the strip is

H (o) = —-J Z afay—hZaf

T~geEN ZEA
L-1 | w L

=—J E , E :Uﬂc,ygﬂrl,y - E J E :Uzyar,yﬂ"‘hi :Uy
z=—L |y=1 r=—1L y=1

12



where in the first term we have the (horizontal) interactions between spins
at the same height y, and in the second term we put together all terms
involving only spins on the same vertical line corresponding to x. To make
the transfer matrix easier to see, we define

Xo(y) =04y, ye{l,...,W}

the vector made with all spins on the vertical line x. The configuration o
can be written in terms of X

0= {Uz,y}(;r,y)eA = {Xx}iz—L

and we can write H! as

L—-1 L
H(o) = H(X) = Y I(Xe, Xor1)+ Y D(Xo)
r=—1L r=—1L

where the interaction I and the diagonal D terms are

w wW-1 w
I(X,X)==JY X(yX'(y), DX)=-JY XXy+)—h> X(y).
y=1 y=1 y=1
Then the partition function can be written as
. L-1 ‘
Zy= Y e PO = N Flil(x_y) [ I 7(Xe, Xoyr)| Friom
o€ X(-L),..X(L) x=—L

= (Fleft’ TQLFm'ght).
where Fleft(X) = FTight(X) — e—%D(X) and
T(X, X') = e 5 DX) = BIXX) =5 D(X"),

Instead of a 2 x 2 matrix this time we have a 2 x 2" matrix and computing
the eigenvalues and eigenvectors may become cumbersome. To avoid doing
the explicit we apply the following result

Theorem 1 (Perron-Frobenius) [without proof] Let T be a N x N real
matriz with T;; > 0 Vi, 5. Then

1. X=||T|| is an eigenvalue of T

2. for any eigenvalue N # X we have |N'| < A,

13



3. X\ is simple and the corresponding eigenvector can be chosen so that
v > 0 Vy.

4. let v be an eigenvector for X' # \. Then v must have some negative
or zero components.

In our case T is a real symmetric matrix, hence there exists a orthonormal
basis of eivenvectors. Morevoer T'(X, X’) > 0 VX, X’ so the theorem ensures
that the top eigenvalue (in absolute value) A; is positive, simple and the
corresponding eigenvector vy satisfies v1(j) > 0 Vj. Then

2w 2w 2L
2L 2L )‘j
T = E Aij, T =X\{" | P+ E )\—1 P;
Jj=1 Jj=2

where P; are orthogonal projections and |Aj|/A1 < 1Vj > 2. Then

2W
I igh 2\ igh
ﬁanA:WIHAI—Fﬁ (Feft7P1F”g t)+Z(>TJ1) (Feft,Pj,F”g t)
j=2
— L—o00 lr{/[i'\l

since (Fleft, pyFrighty = (Fleft 1) (vy, FT9") > 0. The magnetization and
correlation functions can be studied in a similar way.

Remark The argument works since W is kept fixed while L — oo. If
we try to send W to infinity at the same time several problems appear.
Among them: (a) the ratio |\;|/Ao depends on W and may converge to 1,
(b) the size of the matrix T' diverges and we have to ensure the sum over
orthogonal projections remains well defined. Far from being just a nuisance,
these problems signal that something fundamentally different may happen
in higher dimensions.

2.3 Transfer matrix for continuous spin

Let us now go back to the first example we gave in Ch. 1, namely the
deformations inside a perfect cristal.

Let A={—L,...,L} as before. The spin o, = £1 at the position x € A
is now replaced by the atom displacement ¢, € R. The finite volume set of
spin configurations {o € {1, —1}*} becomes now

Qp =RY={g|¢p: A > R}

14



We consider the energy functional

L—-1 o L
HA(9) = 3 65 =6’ + 5 3 63
=1L ==L

This corresponds to the hamiltonian (1.1.1) for a cristal in one dimension,
with an additional term m? " . ¢?, favoring configurations with ¢, near zero
for each z. Intuitively, this means that each atom wants to remain near to its
equilibrium position on the lattice, independently of what the other atoms
do. The parameter m > 0 is called the mass, and we rescaled by S in order
to simplify the formulas.

We will consider first the case of free boundary conditions: H/(\f ree) _
Hy. We define a probability measure

eiﬁHA

Z\

dpp (o) = de

where d¢ = HJL:_ 1, d¢; is the product Lebesgue measure and
Zp = / e PN ) = e BT LG —bil? mm? T, ¢?d¢)
R2L+1 R2L+1

is the normalization constant. The integrand inside Z is strictly positive, so
Z > 0. Moreover [¢; — ¢j+1]> > 0 for any choice of ¢ then

L 5 o 2L+1
0< Z) < H /Re—m ¢jd¢j: <’/m?> < 0.

Hence the measure is well defined.

As we did in the Ising model, we start by studying In Z/|A| as A — Z.
Our goal is to mimick the strategy we developed in the Ising model. We can
write Z as

L-1
o= /RQLH Fl (o r) ] k(@j. 6500) F'"(61) (2.3.5)

j=—L
where
k(p,¢)) = e—%2¢2€—ﬁ(¢—¢’)26—m72¢’2 Fleft(g) = Frisht(g) = e_m;(;)?.
(2.3.6)
This expression is identical to what we obtained in the Ising case, but sums

are now replaced by integrals and the arguments we applied to not generalize
automatically.

15



2.3.1 From matrices to integral kernels: transfer operator

In the Ising case we defined the transfer operator as

T: R? - R?
v [ ]() Z Toor U( )

where T is a 2 x 2 matrix acting on R? endowed with the norm |v[|? =
>, v(o)? The natural generalization in this context is the integral operator

K LQ(R) —)LQ(R)

P S KA = [ dd ko, d) 1) (2:3.7)

where
E: RxR —R

(x,y) — k(z,y)

is called the integral kernel. While the matrix operator T was trivially
well defined, here we need to check that: (a) the function k(¢,¢")f(¢') is
integrable and (b) the function kf is still in Ly(R).

A simple criterion is given by the Schur’s bound below.

Lemma 4 [Schur’s bound.] Let k : R x R — R satisfy the two bounds
My :sup/ |k(x,y)|dy < oo (2.3.8)
z JR
My :sup/ |k(x,y)|dx < oco.
y JR
Then K f(z) = [ k(z,y) f(y)dy defines a bounded linear operator from La(R)
to La(R), wzth

K| < /MiMs (2.3.9)

Proof Let f € Ly(R). By Cauchy-Schwartz inequality

(Ff)(a 2<[/|kxy||f |dy] = [ VGV )y

[l | [risera] < o [k lsor

Using Fubini’s theorem we have

/ dz / dylk(a ) f()? = / dy f(y)* / dz |k(z, )| < M| f]? < .

16



As a consequence [ |k(x,y)| f(y)*dy and hence also [ |k(x,y)| |f(y)|dy exist
for all x, (except eventually on sets of measure zero). Then [K f](x) is well
defined and

1K fI? < My Myl £

so Kf € La(R) and || K|| < v/ M; M. 0

Symmetric kernels When the kernel satisfies (2.3.8) and has the addi-
tional property k(z,y) = k(y, z) we can write for any f,g € La(R)

(/. Kg) = (Kf.g),  where (f.g) = / f(2)g(x)de

is the real scalar product on Ly(R).
In the case of the cristal the kernel given by (2.3.6]

2 2

k(z,y) = e~ 5 1? o—Ba—y)? .~y

is symmetric and satisfies

_m2 2 27
My = My =sup [ |k(z,y)|ldy < [ e 2 ¥ dy = =5 <o
x m

Then K defines a symmetric bounded linear operator on Lo(R) and we can
write the partition function as

Zp = (F'eJt g2 prigihy, (2.3.10)

2.3.2 Expanding in a sum of projections

In the Ising case we used the expansion T = A\ P, + Ao P>, where Pi, P
are orthogonal projections. For an integral operator this decomposition in
general does not exist. An integral operator “looks like” a finite matrix
when it is compact. Precisely

Definition: compact operator. An operator K : Lo(R) — La(R) is
compact if it is the limit in norm of a sequence of finite rank operators, i.e.
there exists a sequence { Ky} nyen such that Ky : La(R) — La(R), its image
has finite dimension for each N and

lim ||[K — Kyl =0.
N—oo

There is an easy criterion to check if an operator is compact.
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Criterion for compactness. If K is Hilbert-Schmidt then it is compact.

Definition: Hilbert-Schmidt operator. An operator K : Ly(R) —
Ls(R) is called Hilbert-Schmidt if the kernel satisfies

/ \l{:(a},y)|2dwdy < 00
RxR

In our example

/R R|k:(gv,y)|2dxdy:/R R6_m2126_2B(I_y)2€_m2y2d$dy
X X

2.2 2.9 T
§/emxda:/emydy:2<oo.
R R m

Then K is a compact operator.
The following theorem gives conditions to ensure we can write K a a
linear combination of orthogonal projections.

Theorem 2 [without proof] Let K : La(R) — Lo(R) be compact, symmet-
ric and injective. Then

1. there exists a decreasing (in modulus) sequence {\;};en of eigenvalues
|>‘j‘ 2 |>‘j+1| with limji)oo >‘j =0.

2. There exists a corresponding sequence of eigenvectors vj € La(R) such
that {vj}jen forms an orthonormal basis of La(R).

3. Let Ky = Z;V:O \jP;, where
(P1)) = v3(@) (03.) = [ vi(@)os(o) £(0)

is the orthogonal projections on Vect(vj). Then

o0
lim ||[K — KN||=0 = K=Y \P,.
NflooH || jz; L

In our case we already checked that K is compact and symmetric. It remains
to verify that K is injective. We will prove the following stronger result.

Lemma 5 Let K : Ly(R) — Lo(R) be defined by the kernel k(z,y) given by
(2.3.6). Then K > 0 as a quadratic form i.e. (f,Kf)> 0 for any function
f € La(R) except the zero function f(x) =0 V.

18



Proof

(f,Kf)= f@)k(z,y) f(y)dzdy

RxR
- / g(2)e @ g(y) dudy = / 9(2)[F * g) (2)de
RxR R

where we defined
7n2 2

g(x) = f(2)e” T, Flz)=e""

The exponential factor ensures that g € La(R) N L1 (R) so the Fourier trans-
form of g is well defined and

[ s glwar = [ 5@ Frglar =
R R

where we used

19(k) [ F (k)dk

T

o —

o) = = [ @™o, [Fagl) = PRI

Finally

ik \ 2

. »2 (e 2
F(k):\/%/IRG_BxQszxde\/%_e_w/Re B( 2ﬁ> dr=c¢e 4ﬁ\/}377r>0'

To perform the last integral we deform the contour in the complex plane
and use the fact that e %%" is analytic, hence the integral over any closed
path equals zero. Putting this results together we see that

(f, Kf) Z/ng(k)FF(k)dk: >0

Since £(k) > 0 Wk, then (f, Kf) = 0 iff g(k) = 0 Vk, iff g(x) = 0 Va, iff
f(xz) =0 V. 0

Consequences. Since K > 0 we have 0 = (f,0) = (f, K f) > 0 for any
f € ker K. Then ker K = {0}, hence K is injective and the theorem above
applies. Moreover, K > 0 implies that all eigenvalues of K must be stricly
positive.

As a conclusion, in the case of our example, there exists a decreasing
sequence of positive eigenvalues {\;}en and a correspoding sequence eigen-
vectors {v;};jen forming an orthonormal basis such that

N
Jim K —Ky|[=0  where  Ky= Z% A P;.
‘7:
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As a consequence limpy_,o |(u, Kw) — (u, Kyw)| = 0 for all u,w € La(R)

and (2.3.10) becomes
N
ZA — (Fleft’ KZLFm'ght) — lim Z )\?L(Fleft7f)jFright)
=0

2.3.3 Infinite volume limit

In the Ising case we needed two additional ingredients to control the limit
as L — oo: (a) the largest eigenvalue is simple and (b) the corresponding
eigenvector has strictly positive components. Since the elements of T are
striclty positive Perron-Frobenius theorem ensures that both (a) and (b) are
verified. Here we need a generalization of Perron-Frobenius result to integral
operators.

Definition. An operator K on Ly(R) with integral kernel k(z,y) is said
to have strictly positive kernel if for any function f € Ly(R) such that
f(z) > 0Vzand f > 0 on aset of positive Lebesgue measure, then [K f](z) >
0 Vz, almost surely (i.e. except eventually on a set of measure zero). This
means in particular that k(z,y) > 0 Vz,y a.s.

Theorem 3 (Krein-Rutman) Let K be a bounded compact symmetric
operator on Lo(R) with strictly positive kernel. Let A = | K||. Then

1. X is the largest eigenvalue (in absolute value) of K,
2. there exists an eigenvector v for X such that v(x) > 0 Vx € R,
3. A has multiplicity one.

4. for any eigenvalue |N'| < A, let w be an eigenvector. Then there are two
sets Iy and Iy in R of positive Lebesgue measure such that w(z) > 0
Ve €I and w(z) < 0V € Ip.

Proof Since K is compact and symmetric, then the largest eigenvalue (in
absolute value) Ao satisfies ||A|| = |[\g| > 0. We suppose now g > 0. We

will see at the end that this must always be the case. Let v be a normalized
eigenvector for A\g. Since K is symmetric we can take v real. Then

0 <(v, Kv) = |(v, Kv)| = '/v(x)k(m,y)v(y) dxdy (2.3.11)

§/|v(ﬂf)\ k(z,y) [o(y)| dedy = (|v], Kv]).
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where |v|(z) = |v(x)], in the first passage we used K > 0 (as a quadratic
form) and in the last one we used k(z,y) > 0 (pointwise). Since v is an
eigenvector for \yg we also have

Xolloll? = (v, Kv) < (lol, Kol) < |KI ] o] 7 = (1K Jo]]%. (2.3.12)

But \g = || K| then (v, Kv) = (Jv|, K|v|). Now let v(z) = vy(x) — v_(x)
where
U+(ﬂ§‘) = U(x)]-v(z)>07 v— (113) = _U(ﬂf)lv(:p)go

hence vy (z) > 0 for all z, |v| = vy +v_ and

(v, Kv_) = (v_, Kvy) = /v+(m)k(x,y)v_(a;)dx >0

since all integrands are non negative. Inserting these expressions inside
(v, Kv) = (Jv], Kv]) we get

0< (v,Kv)= (v, Kvy)+ (v—, Kv_) — (vy, Kv_) — (v—, Kvy) (2.3.13)
= (01, Kvy) + (o, Kv_) + (vg, Kv_) + (v, Kvy) = (fol, KJol)

= (v, Kv_)+ (v—, Kvy) = 0.

Therefore
0= (vy,Kv_) = (v_,Kvy) = /v_(x)[Kv+](x)daz.

We remember that vy(xz) > 0 and v_(xz) > 0. We have two possible cases:
(a) vy > 0 on a set of positive measure, then [Kvy|(x) > 0 Vz, then the
integral above equals zero only of v_(z) = 0 Vz, hence v(z) = vy (z) > 0 Vz.
The second possibility (b) is that vy (z) = 0 Va, then v(z) = —v_(z) <0
Vx. We conclude that v can be chosen to be non negative v(x) = |v|(x) > 0
Va. To prove strict positivity v(z) > 0 we observe that A9 > 0 then

o) = £[Kol(z) = & / k(e y)o(y)dy > 0

since v(y) > 0 and there is a set I of non zero measure such that v(y) > 0
Vy € I. To prove that the eigenvalue )\ is simple, suppose \g is not simple
and let v' be another eigenvector. Then we can always choose v’ such that
(v,v") = 0. Applying the arguments above to v' we conclude that v'(z) > 0
Vz. But then

0= (v,0) = /v(:c)v’(x)dx > 0,
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that is impossible. Then )\ is simple. Finally, let w an eigenvector for
|N| < Ag. Since K is symmetric we must have

0= (w,v) = /vo(x)w(aﬁ)dx.

Since vp(x) > 0 Va, w must take both positive and negative values to ensure
the integral is zero.

It remains to prove that A\g > 0. Suppose A\g < 0. Then repeating the
same arguments as in we find —(v, Kv) = |(v, Kv)| = (|v], K|v]).
Then becomes (v4, Kvy) + (v—, Kv_) = 0, hence using strict posi-
tivity of the kernel vy (z) = v_(x) = 0 Vx. This ends the proof. O

Using the results above we can prove the following lemma.

Lemma 6 Let K : Ly(R) — Lo(R) be defined by the kernel k(x,y) given
by . Let Mg be the largest eigenvalue A1 < Ag the next eigenvalue.
Let vy be the normalized eigenvector for Ao with vo(xz) > 0 Vo and Py the
corresponding orthogonal projector. Then

K =XMFP+ K,
where K1P0 == P()Kl and ||K1|| = )\1.

Proof By Th. [2 and [5] we have
Ky =) MNPj=Ky, :Hi—H
i>1

where Hq = vol is the subspace orthogonal to vg and 0 < A\; < A1 < Ag for
all j. The result follows. a

2.3.4 Partition function and moments

Partition function Using the results of the previous sections we can write

. . . 2L .
7\ = (Fleft’KQLFrzght) — (‘Fleft7 K2LFmght) — )\gL |:(Fleft7 POFmght) + (Fleft7 %FT’Lght)]
Since

K2L . . 2L ) 2L
(Bt S Frott| < e | prioh) (B = e priot ) [3] T =1 0

(Fleft’POF'right) — (Fleft,vo) (UO’Fright) > 0’
we can write

lim In Zx
Looe [A]

= ln)\o.
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Magnetization Contrary the the Ising model here by symmetry we have
Ealp;] =0 Vj, VA.

To get some non trivial result we must consider ¢?. In the Ising case
Ealo2] = 1 trivially since 02 = 1. On the contrary here
(Fleft’ KL+j22KL7jFright)

(Fleft’ KZLFright)

Exl¢f] =
where we suppose j > 0 and we defined [X2f](z) = 22f(x). Note that
[¥2f] € L%(R) in general. Let

S(R) = {f € C=(R)| sup |z|’| fP(z)| < 00 Vg, p = 0}
be the Schwartz space on R. Then %2 : S(R) — S(R) Moreover K f € S(R)

for any f € L*(R) (as long as m > 0). Then for each finite volume A the
expression above is finite and

left 2 right
. 9y (P, PyX Py F™9")
Lh—I}I;o EA[¢j] = (Fleft7p0Fright)

= (vo, Z%vp) = /5527}3(1‘)(113 (2.3.14)

Here comes a new problem: though in the discrete case the final expression
was obviously finite, here the information vy € Lo(R) is not enough to
garantee that the integral is finite. We will need to determine more precisely
the properties of vg(z). This will be done in the next subsection.

Two point correlation Let us suppose now (vg, £2vg) < oo and consider
the correlation
(Fleft7 KLJrjEKlijKLleright)

(Fleft’ KQLFright)

Cll = Eplp;d] =

where we set 0 < j < [ and [Sf](z) = zf(x). As in the case of %2 we have
¥:S(R) = S(R) and K f € S(R) for any f € L?(R), then

(F'eft, By i 2Py Friaht)
0

(F‘left7 POFright)

. ) o . K-
LIEI;OEA[¢]¢” = = (UOa % Aé—j E'UO)

Kl Kl
= (o, Xvo)(vo, Xvo) + (U072Tﬁj Ywo) = (vo, Eﬁzvo)
0 0
< llooz? (32)

where { = [In §¢

l—j _ =4
= (vo, Z%wp) e 3
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2.3.5 Eigenvalues and eigenvectors of K
Top eigenvalue

Since the kernel k(z,y) is written as product of gaussians, we can try to find
an eigenvector with a gaussian form.

OLQC2

Lemma 7 The function go(x) = €™, a > 0 is an eigenvector of K iff

a=+/pm?+m*/4. (2.3.15)

The corresponding eigenvalue is

Ha = 4 /m. (2316)

Proof If we apply K to g, we obtain

(K go](z) = e (F+m*/2) / ¢V Lo+ (B+m?/2)] 262y g,

2 2 . ap%a?
=/ armmeme " O Pt Gmire)
=\ a¥FmIn €

Then [K g,](z) = pga(z) iff © = pq and

/82

e 2 2/002 _ a2
ot (Bt iff o* = (8 +m~/2)" — B~

a=(8+m?/2) -

O
Note that go(z) > 0 Va then by Krein-Rutman theorem p, must the top
eigenvalue o = Ao = || K. Let

1

vox) = (22) 4 ga(2) (2.3.17)

be the corresponding normalized eigenvector. Then the expression (vg, 2vq)
in (2.3.14) is
1
(vg, X2ug) = 4/ 22 /ac2e_2°“2dx = — < 00,
g 2a
the lim, o0 Ea[¢?] is finite and lim, o EA[¢;¢5] < Ce P 7HI/E,
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Other eigenvalues

In order to estimate the localization lenght £ in Ex[¢;¢)] we need to know
also the second eigenvalue A;. In our example, we can actually find all
eigenvalues and the corresponding eigenvectors.

Lemma 8 The eigenvalues of K are the sequence
p
(B+m?/2+a)

Each eigenvalue is simple and the corresponding eigenvector vj can be writ-
ten as

>‘j = Ma/\gmj €N, Ao =

vi(z) = (a*)Yvo(w), where a* = i + 2ax,
x
and vy is given in (2.3.17) above.

Proof We remark that g, is the solution of ¢/ (z) + 2axg.(x) = 0. Let
a= % + 2ax and

SR) ={f € C=(R)| supaf’|f"(z)| < o0 Ya.p > 0}

be the Schwartz space on R. Then a: S(R) — S(R) and

(fag) =(a’f.g)  Vf,g€SRR).
Since vg € S(R), uj = a*vg € La(R) Vj > 0. Morevover for any f € S(R)

o K110 = [+ 200] [ ko) f
=2 [ [a (3 4+ w2+ a) = 48] blz,0)f )iy
e f)) = [ W) |~ 5+ 200 Sy
=2 [ [u6—y (8 +m2/2 - )] blz,)f )iy
5

B (B+m?/2+ «) [ K fl()

where we used o? = (8+m?/2)? — 32. Taking f = vy we obtain immediately
that v; is a sequence of eigenvectors for the eigenvalues \;. Since A\; # g
Vj # k and K* = K the eigenvectors are orthogonal

Aj(vj, o) = (Kvj,vg) = (v, Kvg) = Mg (vj, vg).
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More precisely, using [a, a*] = 4ald and
[a7 (a*)k] — [a,a*](a*)kil—i—a*[a, (a*)kfl] — 4a(a*)k71+a*[a7 (a*)kfl] — 4ak(a*)k71

we obtain

(4a)?
(vj; V&) = bjk T

Finally we remark that v;(z) = pj(gl:)e*o””2 where p;(x) is a polynomial of
order j and

/ e 20 (2)pr () = 051,

where c; is some positive constant. Precisely
96 ps(x) = e (@Yoo = 2" (=) 2" = (20)7/H(2v/20)
where we used , ,
(= +20) e =™ (=)

and
z2

. 22 .

Hi(w) =™ (—fp) e = ™% (~f +a) e
is the Hermite polynomial of order j. Since Hermite polynomials span Lo (R),
by Th. 2| above the family {v;};cn contains all eigenvectors. O

2.4 Conclusions, remarks

In this chapter we have considered the one dimensional version of two mod-
els: the Ising model and the harmonic cristal. In both cases we have applied
the transfer matrix approach to study the infinite volume limit. Below is a
summary of the results we obtained.

2.4.1 Hamiltonians

The starting hamiltonians for the Ising (resp. harmonic cristal) model are

L—1 L
h
H/{(O') = — Z 0j0j41 — E Z O3, (RS QA:{l,—l}A

j=—L j=—L
L-1 L
HY(6) = Y (¢ —djr)>+m> > 65, ¢eQy=R"
j=—1L j=—1L

26



Boundary conditions. In the Ising case we have considered three types
of boudary conditions:

a: H{(0)=H!(¢) = J(0_15_1 1+ 0L5L41)
periodic: HY (o) = H (0) — Joro_p
free: H{™(0) = H(0).

The corresponding boundary conditions in the case of the harmonic cristal
are

Dirichlet: — HP(¢) = HR" (¢) + ¢* ; + ¢2 = o1 =0¢--1=0
periodic: HY (¢) = HY™(¢) + (61, — ¢—1)?
Neuman: HY (¢) = H"" (¢) — [Vlaa = 0.

2.4.2 Partition function

In both models we wrote the partition function in terms of a transfer oper-
ator. As a result

In 7L
li A
Praret |Al

i P2AY e = 1 ™ _ 2 m*
Jm —pRe =1ndo = g In oy, o= \/mA6+ A,

where A1 (resp. Ag) is the largest eigenvalue of the transfer matrix T' (resp.
the transfer operator K). These limits are independent from the boundary
conditions.

=1In\; = Infe” cosh h + \/(eﬂ sinh h)2 + e—26]

2.4.3 Magnetization

For the magnetization we obtained

lim EA[Uj] = (Ul,Z'Ul) = M(h) -

L—oo
Jim Eafe;] =0

lim Ey[o7] =1
2 B3]

+1 h— +©
0 h—0

0 m — 00

lim EA[quQ] = (vo, E21’0) = ﬁ - { do00 m—0

L—oo
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In both cases the result is independent from the position j and from the
boundary conditions. Note that though the averages spin is always finite,
the average ¢? diverges as m — 0, reflecting the fact that ¢; is an unbounded
variable and the fluctuations become very large when m is small.

2.4.4 Correlations

We have considered only two point correlations functions:

1 . . . o el 1 0 h — +o0
im 00| — o ogi|)=Ce ¢ &= — 1
_li=dl 1 0 m — 00
: a1 . 1) < L € - -
Jim (Ba[6i6;] — Ea[pi]Eale5]) < g5e € mw# _>{ 400 m =0

Note that the correlation length ¢ is always finite in the Ising model (unless
B — o0). On the contrary, & diverges as m — 0 in the harmonic cristal.
Since the prefactor 1/« also diverges it is better to consider the expression

(Ealoid;] — Ea[oi]Ealo;]) - -l

lim
fmee EA[¢7]EA[¢7]

B

It is important to remark that the divergent quantities in the harmonic
cristal appear for any choice of the boundary conditions.

2.4.5 (Generalizations

The transfer matrix approach may be applied to much more general situa-
tions. One may for example replace the quadratic potential m?¢? by some
function V' (¢) such that

o V(p) = o0 as |p| = o0
e VV(0) =0 and V has a unique minimum at ¢ = 0.

These conditions garantee that V(¢) = m2¢? + O(¢*) near ¢ = 0. Then
when f is large the transfer matrix is well approximated (see [Hel02, Ch. 5]
for more details) by the harmonic transfer matrix we already studied. Some
examples of such potential are V(¢) = ¢* or V(¢) = In(1+¢?). Note that in
the second example we cannot study high order correlation functions since
EA[¢}] since the log-potential does not garantee that the integral remains
finite. More work is needed when the potential V' (¢) has several minima.
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When the transfer matrix is real but not symmetrix, or complex but not
self-adjoint, then most of the theorems we used do not apply! Situations
when one can still do something are

e the transfer operator K is real with (non strictly) positive kernel (not
necessarily symmetric) such that some power of K has strictly positive
kernel.

e the transfer operator is complex and normal.
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