
Chapter 2

One dimensional problems

When d = 1 our finite region Λ is a finite chain of points Λ = (−L,−L +
1, . . . 0, 1, . . . , L). The techniques applying to 1d systems can be generalized
to quasi-one dimensional systems, such as strips of finite width. The material
in this chapter is mostly based on the lecture notes by A. Kupiainen [Kup]
(for the Ising model part) and on the book by B. Helffer [Hel02] (for the
part on integral operators).

2.1 Ising model

We will define the model in general dimension and later specialize to d =
1. Let L̄ = (L1, . . . Ld) ∈ Nd and Λ = [−L1, . . . , L1] × · · · [−Ld, . . . Ld] a
rectangle in Zd centered around the origin. To each site x ∈ Λ we associate
a spin (the analog of ϕ(x) in the cristal example) taking only two values
−1,+1. The configuration space is then ΩΛ = {1,−1}Λ and a configuration
of the finite system is

σ : Λ → {1,−1}Λ
x → σ(x),

where σ(x) is called the “spin” at site x. Let Ω = {1,−1}Zd be the set of
spin configurations on the whole lattice.

The energy for a configuration σ ∈ ΩΛ, is given by the finite volume
Ising Hamiltonian H σ̄

Λ : ΩΛ → R

HI
Λ(σ) = −J

∑
x∼y∈Λ

σxσy −
∑
x∈Λ

hσx, J > 0, h ∈ R

The first term in HI represents an interaction between nearest neighbor
sites and the parameter J is called the coupling constant. The last term is
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a sum of independent contributions at each site. The parameter h is called
the external magnetic field.

Phenomenology The coupling term in HI is minimum when all spins
σx have the same orientation σx = +1 ∀x, or σx = −1 ∀x: in both cases
the coupling contribution is −J

∑
x∼y∈Λ 1. On the other hand, the second

sum in HI is minimum when all spins have the same sign as h, hence for
h 6= 0 the only spin configuration minimizing the energy is σx = sign(h)
∀x ∈ Λ. In this sense, h plays the role of an external magnetic field for a
ferromagnetic material: when h = 0 the spins try to align, but since they
do not know which direction to take (+1 or −1) they end up being half +1
and half −1 so the average orientation is zero. When an external field h is
present, the spins align with it.

Note that when J < 0 nearest neighbor spin pairs try to take opposite
spin orientations. This is called paramagnetic behavior.

History The Ising model was introduced to describe ferromagnetic mate-
rials, but it proved to be relevant in a wide variety of problems, from lattice
gases, to biology, economics and image analysis.

2.1.1 Boundary conditions

Let σ̄ ∈ {1,−1}Zd a fixed configuration on the infinite lattice.

Definition 1 The boundary of Λ is defined by

∂Λ = {x ∈ Λ| ∃y ∈ Λcwith ‖x− y‖ = 1}

Definition 2 The Ising Hamiltonian with σ̄ boundary conditions is H σ̄
Λ :

ΩΛ → R
H σ̄

Λ(σ) = HI(σ)− J
∑
x∈∂Λ

∑
y∈Λc,y∼x

σxσ̄y

where σ̄ ∈ Ω is some fixed infinite volume spin configuration.
The Ising Hamiltonian with periodic boundary conditions isHper

Λ : ΩΛ →
R

Hper
Λ (σ) = −J

∑
x∼y∈TL̄

σxσy − h
∑
x∈Λ

σx

where TL̄ = Z/L1 × · · · × Z/Ld is a torus.
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Finally The Ising Hamiltonian with free boundary conditions is

Hfree
Λ (σ) = HI

Λ(σ).

2.1.2 Probability measure and thermodynamic limit

Let H(bc)Λ be the finite volume Ising energy with some fixed boundary con-
ditions. We define a probability measure on ΩΛ by

µ
(bc)
Λ,β (σ) =

e−βH
(bc)
Λ (σ)

Z
(bc)
Λ,β

where the normalization factor

Z
(bc)
Λ,β =

∑
σ∈ΩΛ

e−βH
(bc)
Λ (σ)

is called the partition function. Let {Λn}n∈N be a growing sequence of
regions s.t. Λn ⊂ Λn+1 ∀n and limn→∞ Λn = Zd.

We denote by Fn the sigma algebra on ΩΛn and by F the (infinite vol-

ume) sigma algebra on Ω. Then each measure µ
(bc)
Λn,β

on Fn can be extended
to a measure µ̃n on F with the following definition

µ̃n(A) = 0 if A ∩ ΩΛn = ∅
= µ

(bc)
Λn,β

(A ∩ ΩΛn) otherwise.

In order to study the thermodynamic limit we will consider the following
class of functions.

Definition: local functions. A function f : Ω→ R is local if it depends
only on the spin value on a finite set of lattice points. Precisely, f is local if
∃ a set X ⊂ Zd with |Xf | <∞ and a function F : ΩX → R s.t.

f(σ) = F (σX) ∀σ ∈ Ω,

where σX = {σx}x∈X is the restriction of the configuration σ to the set X.

Example The functions f1(σ) = σx1 and f2(σ) = σx1σx2 (where x1, x2

are fixed lattice points) are both local functions with X = {x1}, {x1, x2}
respectively. We will see below that all local functions can be obtained from
functions of this form.
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Lemma For any function f : Ω → R depending only on spins inside the
finite set X, there exists a family of real parameters {aA}A⊆X associated to
each subset of X satisfying

f(σ) =
∑
A⊆X

aAσA

where
σA =

∏
x∈A

σx.

Proof. Let 1+(σx) = 1{σx=1}(σx) and 1−(σx) = 1{σx=−1}(σx). This can be
written in the more condensed form

1σ′x(σx) = δσx,σ′x = 1σx(σ′x), σx, σ
′
x = ±1.

Let χ1 = (1+ + 1−)/2 and χ2 = (1+ − 1−)/2. Then

1σ = χ1 + σχ2, with σ = ±1.

and the function

1σ′(σ) =
∏
x∈X

1σ′x(σx) =
∏
x∈X

1σx(σ′x) =
∏
x∈X

[
χ1(σ′x) + σxχ2(σ′x)

]
=
∑
A⊆X

∏
x∈A

σx
∏
x∈A

χ2(σ′x)
∏

x∈x\A

χ2(σ′x)

equals 1 when σ = σ′ and equals 0 otherwise. Then

f(σ) =
∑
σ′

1σ′(σ)f(σ) =
∑
σ′

1σ′(σ)f(σ′)

=
∑
σ′

f(σ′)
∏
x∈X

[
χ1(σ′x) + σxχ2(σ′x)

]
=
∑
A⊆X

∏
x∈A

σx

∑
σ′

f(σ′)
∏
x∈A

χ2(σ′x)
∏

x∈x\A

χ2(σ′x)


=
∑
A⊆X

∏
x∈A

σxaX

where aX is a constant independent of the configuration σ.
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Definition: thermodynamic limit We say that the sequence of mea-

sures µ
(bc)
Λn,β

converges to a measure µ on Ω if

Eµ̃n [f ] =
∑
σ

µ̃n(σ)f(σ)→n→∞
∑
σ

µ(σ)f(σ) = Eµ[f ]

for all local functions f : Ω→ R.
By the lemma above, it is enough to prove the existence of the limit for

Eµ[σX ] for any subset X with |X| <∞.

2.2 Transfer matrix for the Ising model in one di-
mension

Let Λ = [−L, . . . , L]. The finite volume Ising Hamiltonian in d = 1 can be
written

HI
Λ(σ) = −J

L−1∑
x=−L

σxσx+1 − h
∑
x∈Λ

hσx, J > 0, h ∈ R

The boundary is reduced to two points ∂Λ = {−L,L}, therefore the Hamil-
tonian with σ̄ (resp. periodic, free) boundary conditions is

H σ̄
Λ(σ) =HI(σ)− J [σ−Lσ̄−L−1 + σLσ̄L+1]

Hper
Λ (σ) =HI(σ)− JσLσ−L

Hfree
Λ (σ) =HI

Λ(σ).

where σ̄ ∈ Ω is some fixed infinite volume spin configuration.

2.2.1 Partition function

Let Z
(bc)
Λ,β be the partition function at finite volume with some fixed boundary

conditions. Then we have

Lemma 1 The limit as L → ∞ of |Λ|−1 lnZ
(bc)
Λ,β is finite and independent

of the boundary conditions

Proof We will prove this result for σ̄, periodic and free boundary con-
ditions. In the case of σ̄ and periodic boundary conditions, the partition
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function can be written as

Z
(bc)
Λ,β =

∑
σ∈ΩΛ

e−βH
(bc)
Λ (σ) =

∑
σ∈ΩΛ

F lefth (σ−L)

[
L−1∏
x=−L

Th(σx, σx+1)

]
F righth (σL)

=
(
F lefth , T 2L

h F righth

)
where Th is a 2× 2 matrix

Th =

(
eβ+hβ e−β

e−β eβ−hβ

)
, Th(σ, σ′) = e

βhσ
2 eβσσ

′
e
βhσ′

2 , (2.2.1)

while F
left/right
h are 2 component vectors encoding the boundary conditions

F lefth (σ) = eβσσ̄−L−1e
βhσ

2 , F righth (σ) = e
βhσ

2 eβσσ̄L+1 for σ̄ b.c.,

F lefth (σ) = F righth (σ) = e
βhσ

2 for free b.c. (2.2.2)

Finally ( , ) denotes the real euclidean scalar product . In the case of
periodic boundary conditions

Z
(per)
Λ,β =

∑
σ∈ΩΛ

e−βH
(per)
Λ (σ) =

∑
σ∈ΩΛ

[
L−1∏
x=−L

Th(σx, σx+1)

]
Th(σL, σ−L)

= Tr T 2L+1
h

To study the large volume properties of the partition function then, we have
to study a 2 × 2 matrix, reducing the problem from 22L+1 to 2 spins only.
The matrix Th is real symmetric hence diagonalisable. The eigenvalues are

λ1 = eβ cosh(βh) +
√

[eβ sinh(βh)]2 + e−2β,

λ2 = eβ cosh(βh)−
√

[eβ sinh(βh)]2 + e−2β, 0 < λ2 < λ1.

Let v1, v2 the corresponding normalized eigenvectors and P1, P2 are 2 × 2
matrices corresponding to the orthogonal projections on v1, v2:

P1(σ, σ′) = v1(σ)v1(σ′), P1(v) = (v1, v)v1, ∀v ∈ R2.

The definition for P2 is similar. Since they are orthogonal projections P1, P2

satify
P 2

1 = P1, P
2
2 = P2, P1P2 = P2P1 = 0.
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Moreover, the eigenvector v1 for the largest eigenvalue has the following
additional property, that will be crucial for our proof:

v1(σ) > 0 ∀σ.

Indeed let v1 = (x1, y1). Then we obtain

y1 = x1C1 where C1 = eβ
[√

[eβ sinh(βh)]2 + e−2β − [eβ sinh(βh)]

]
.

(2.2.3)
Since C1 > 0 for any choice of β, h the two components x1 and y1 must have
the same sign. Inserting the spectral decomposition T = λ1P1 +λ2P2 in the
expression for Z we have

Z
(bc)
Λ,β =

(
F lefth , T 2L

h F righth

)
= λ2L

1

[(
F lefth , P1F

right
h

)
+

(
λ2

λ1

)2L (
F lefth , P2F

right
h

)]

=λ2L
1

[(
F lefth , v1

)(
v1, F

right
h

)
+

(
λ2

λ1

)2L (
F lefth , P2F

right
h

)]

To complete the proof we need two ingredients

• the first term in the parenthesis is strictly positive. Indeed (F lefth , v1) =∑
σ F

left
h (σ)v1(σ) > 0 since v1(σ) > 0 and F left(σ) > 0 for all σ. For

the same reason (v1, F
right
h ) > 0.

• the second term in the parenthesis disappears in the limit L → ∞.
This holds since |λ2| < λ1.

Using these two ingredients we obtain

lnZ
(bc)
Λ,β

2L+ 1
= 2L

2L+1 lnλ1 + 1
2L+1 ln

[
(F lefth , v1)(v1, F

right
h ) +

(
λ2
λ1

)2L
(F lefth , P2F

right
h )

]
→L→∞ lnλ1 = ln

[
eβ cosh(βh) +

√
[eβ sinh(βh)]2 + e−2β

]
Since the boundary conditions appear only in F left/right, the result is the
same for free, or for any choice of σ̄ boundary conditions.

In the case of periodic boundary conditions

Z
(per)
Λ,β = Tr T 2L+1

h = λ2L+1
1 Tr P1 + λ2L+1

2 Tr P2 = λ2L+1
1

[
1 +

(
λ2

λ1

)2L+1
]

7



Therefore

lnZ
(per)
Λ,β

2L+ 1
= lnλ1 + 1

2L+1 ln

[
1 +

(
λ2
λ1

)2L+1
]
→L→∞ lnλ1.

The limit exists for any choice of β, h and coincides with the result obtained
with free or σ̄ boundary conditions. 2

2.2.2 Average magnetization

The finite volume average magnetization at position x is defined by

EΛ[σx] =

∑
σ∈ΩΛ

e−βH
(bc)
Λ (σ)σx∑

σ∈ΩΛ
e−βH

(bc)
Λ (σ)

We have the following result

Lemma 2 The average magnetization has a limit

EΛ[σx]→L→∞ Mβ(h) =
1− C2

1

1 + C2
1

(2.2.4)

where C1 is given in (2.2.3). The limit Mβ(h) is independent of x and the
boundary conditions, is a smooth increasing function of h satisfying

− 1 < Mβ(h) < +1 ∀h ∈ R,
lim
h→∞

Mβ(h) = +1, lim
h→−∞

Mβ(h) = −1,

and has the same sign as h. In particular Mβ(0) = 0.

Remark 1 This result is consistent with the physical intuition saying that
the spins try to align with the magnetic field h. When h becomes very large
all spins align hence the magnetization becomes +1 (resp. −1) depending
if h > 0 or h < 0.

Remark 2 The function M : R →] − 1, 1[ is invertible, so we could use
the magnetization M as a parameter in our measure instead of h: µβ,h(M),
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Proof For simplicity we consider x > 0. The same arguments then hold
for x ≤ 0.

As in the case of the partition function we can express EΛ[σx] in terms
of the transfer matrix Th:

EΛ[σx] =

(
F lefth , TL+x

h Σ TL−xh F righth

)
(
F lefth , T 2L

h F righth

)
where Th, F

left
h , F righth were defined in (2.2.1) and (2.2.2) above. The 2 × 2

matrix Σ encodes the new term σx

Σ =

(
1 0
0 −1

)
, Σσ,σ′ = δσσ′σ.

Inserting the spectral decomposition T = λ1P1 + λ2P2 we get

EΛ[σx] =

(
F lefth ,

[
P1 +

(
λ2
λ1

)L+x
P2

]
Σ

[
P1 +

(
λ2
λ1

)L−x
P2

]
F righth

)
(
F lefth ,

[
P1 +

(
λ2
λ1

)2L
P2

]
F righth

)

→L→∞

(
F lefth , P1 Σ P1F

right
h

)
(
F lefth , P1F

right
h

) =
(F lefth , v1)(v1, Σv1)(v1, F

right
h )

(F lefth , v1)(v1F
right
h )

= (v1, Σv1) =
∑
σ

v1(σ)2σ = v1(+1)2 − v1(−1)2,

where we used as before (F lefth , v1) > 0, (F righth , v1) > 0 and |λ2| < λ1.
Using (2.2.3) we see that

v1(1)2 − v1(−1)2 =
1− C2

1

1 + C2
1

where C1 > 0 is a smooth function of h and satisfies

C1 < eβ[e−β] = 1 when h > 0

C1 > eβ[e−β] = 1 when h < 0

C1 = 1 when h = 0.

Therefore M(h) has the same sign as h and M(0) = 0. Moreover

C ′1 = e2ββ cosh(βh)

[
eβ sinh(βh)√

(eβ sinh(βh))2+e−2β
− 1

]
< 0 ∀h,
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then M ′(h) = − 4C1C′1
(1+C2

1 )2 > 0 ∀h. Finally

C1(h) = e2β sinh(βh)

[√
1 + e−4β

sinh2(βh)
− 1

]
= O

(
1

sinh(βh)

)
→h→∞ 0

C1(h) = e2β| sinh(βh)|
[
2 +O

(
1

sinh2(βh)

)]
→h→−∞ +∞

hence limh→±∞M(h) = ±1. This completes the proof. 2

2.2.3 Spin-spin correlation

The two spin correlation is defined by

CΛ
xy = EΛ[σxσy]− EΛ[σx]EΛ[σy].

This quantity is zero when σx and σy are independent. We have the following
result

Lemma 3 The infinite volume limit for CΛ
xy exists, is independent of the

boundary conditions and satisfies

lim
L→∞

CΛ
xy = Cxy = Ke

− |x−y|
ξ

where ξ > 0, K ≥ 0 are constants independent of x and y. The parameter
ξ gives the distance where the spin correlation starts to become small and is
called the localization distance.

Proof As in the previous subsections we use the transfer matrix represen-
tation. Without loss of generality we can consider y > x. Then

EΛ[σxσy] =

(
F lefth , TL+x

h Σ T y−xh Σ TL−yh F righth

)
(
F lefth , T 2L

h F righth

)
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where F
left/right
h , Th and Σ are defined above. Inserting the spectral decom-

position T = λ1P1 + λ2P2 we get

EΛ[σxσy] =

(
F lefth ,

[
P1 +

(
λ2
λ1

)L+x
P2

]
Σ

[
P1 +

(
λ2
λ1

)y−x
P2

]
Σ

[
P1 +

(
λ2
λ1

)L−y
P2

]
F righth

)
(
F lefth ,

[
P1 +

(
λ2
λ1

)2L
P2

]
F righth

)

→L→∞

(
F lefth , P1 Σ

[
P1 +

(
λ2
λ1

)y−x
P2

]
Σ P1F

right
h

)
(
F lefth , P1F

right
h

)
=

(F lefth , P1 Σ P1 Σ P1F
right
h )

(F lefth , P1F
right
h )

+
(
λ2
λ1

)y−x (F lefth , P1 Σ P2 Σ P1F
right
h )

(F lefth , P1F
right
h )

The first term in this sum gives

(F lefth , P1 Σ P1 Σ P1F
right
h )

(F lefth , P1F
right
h )

=
(F lefth , v1)(v1,Σv1)(v1,Σv1)(v1, F

right
h )

(F lefth , v1)(v1, F
right
h )

= (v1,Σv1)2 = Mβ(h)2 = lim
L→∞

EΛ[σx] EΛ[σy].

Therefore limL→∞C
Λ
xy = Ke−|x−y|/ξ with

K =
(F lefth , P1 Σ P2 Σ P1F

right
h )

(F lefth , P1F
right
h )

= (v1,Σv2)2, ξ =
1

ln λ1
λ2

.

The values of K and ξ do not depend on Fh so the result is the same for
all boundary conditions. Similar arguments hold in the case of periodic
boundary conditions.

Comparison with the case of no interaction If we set J = 0 instead
of J = 1 in the Ising Hamiltonian we obtain a product measure on ΩΛ

µJ=0(σ) =
L−1∏
j=−L

eβhσx ,
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and all correlation functions are easy to compute. In particular

ZJ=0
Λ =

L−1∏
j=−L

∑
σx∈{1,−1}

eβhσx = [2 cosh(βh)]2L+1

EΛ,J=0 [σx] =

∑
σx∈{1,−1} e

βhσxσx∑
σx∈{1,−1} e

βhσx
=

sinh(βh)

cosh(βh)
= M(h)

CxyΛ,J=0 =0 ∀x, y, ∀Λ.

As in the J = 1 case the magnetization M(h) is invertible, and we can
define h as a function of M , i.e. the magnetization we want to obtain:
h(M) = 1

β tanh−1(M). All correlation functions are zero because the mea-
sure is factored over a product of local measures. The infinite volume mea-
sure exists and is given by

µJ=0
β,M (σ) =

∏
x∈Z

eβh0(M)σx , h0(M) = 1
β tanh−1(M).

In the case J = 1, we have see that two point correlations decay ex-
ponentially and one can show the same result for all correlation functions.
This means that the infinite volume measure µβ,J=1 is “approximately” the
product measure (in a sense to be made precise)

µβ,J=1 ∼
∏
x∈Z

eβh1(M)σx , h1(M) = M−1
β,J=1(M),

where the magnetization h1 is now fixed by the function (2.2.4). Therefore
the measure “looks like” what we get in the J = 0 case, with a modified
parameter h. We say the magnetic field parameter has been “renormalized”.

2.2.4 Generalizations: transfer matrix in a strip

Let Λ = {−L, . . . , L} × {1, . . . ,W}. When L→∞ this becomes an infinite
strip. Its properties are similar to 1d chain, hence this is called a “quasi-one
dimensional” problem. A point ~x ∈ Λ is identified by two coordinates ~x =
(x, y) with x ∈ {−L, . . . , L}, y ∈ {1, . . . ,W}. The space of configurations is
ΩΛ = {1,−1}Λ and the Ising Hamiltonian on the strip is

HI(σ) = −J
∑

~x∼~y∈Λ

σ~xσ~y − h
∑
~x∈Λ

σ~x

= −J
L−1∑
x=−L

 W∑
y=1

σx,yσx+1,y

− L∑
x=−L

J W−1∑
y=1

σx,yσx,y+1 + h

W∑
y=1

σy


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where in the first term we have the (horizontal) interactions between spins
at the same height y, and in the second term we put together all terms
involving only spins on the same vertical line corresponding to x. To make
the transfer matrix easier to see, we define

Xx(y) = σx,y, y ∈ {1, . . . ,W}

the vector made with all spins on the vertical line x. The configuration σ
can be written in terms of X

σ = {σx,y}(x,y)∈Λ = {Xx}Lx=−L

and we can write HI as

HI(σ) = HI(X) =
L−1∑
x=−L

I(Xx, Xx+1) +
L∑

x=−L
D(Xx)

where the interaction I and the diagonal D terms are

I(X,X ′) = −J
W∑
y=1

X(y)X ′(y), D(X) = −J
W−1∑
y=1

X(y)X(y+1)−h
W∑
y=1

X(y).

Then the partition function can be written as

ZΛ =
∑
σ∈ΩΛ

e−βH
I(σ) =

∑
X(−L),...X(L)

F left(X−L)

[
L−1∏
x=−L

T (Xx, Xx+1)

]
F right

= (F left, T 2LF right).

where F left(X) = F right(X) = e−
β
2
D(X) and

T (X,X ′) = e−
β
2
D(X)e−βI(X,X

′)e−
β
2
D(X′).

Instead of a 2×2 matrix this time we have a 2W ×2W matrix and computing
the eigenvalues and eigenvectors may become cumbersome. To avoid doing
the explicit we apply the following result

Theorem 1 (Perron-Frobenius) [without proof] Let T be a N×N real
matrix with Tij > 0 ∀i, j. Then

1. λ = ‖T‖ is an eigenvalue of T

2. for any eigenvalue λ′ 6= λ we have |λ′| < λ,
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3. λ is simple and the corresponding eigenvector can be chosen so that
vj > 0 ∀j.

4. let v be an eigenvector for λ′ 6= λ. Then v must have some negative
or zero components.

In our case T is a real symmetric matrix, hence there exists a orthonormal
basis of eivenvectors. Morevoer T (X,X ′) > 0 ∀X,X ′ so the theorem ensures
that the top eigenvalue (in absolute value) λ1 is positive, simple and the
corresponding eigenvector v1 satisfies v1(j) > 0 ∀j. Then

T =

2W∑
j=1

λjPj , T 2L = λ2L
1

P1 +

2W∑
j=2

(
λj
λ1

)2L

Pj


where Pj are orthogonal projections and |λj |/λ1 < 1 ∀j ≥ 2. Then

1
|Λ| lnZΛ = 2L

W (2L+1) lnλ1 + 1
|Λ|

(F left, P1F
right) +

2W∑
j=2

(
λj
λ1

)2L
(F left, Pj , F

right)


→L→∞

lnλ1
W

since (F left, P1F
right) = (F left, v1)(v1, F

right) > 0. The magnetization and
correlation functions can be studied in a similar way.

Remark The argument works since W is kept fixed while L → ∞. If
we try to send W to infinity at the same time several problems appear.
Among them: (a) the ratio |λj |/λ0 depends on W and may converge to 1,
(b) the size of the matrix T diverges and we have to ensure the sum over
orthogonal projections remains well defined. Far from being just a nuisance,
these problems signal that something fundamentally different may happen
in higher dimensions.

2.3 Transfer matrix for continuous spin

Let us now go back to the first example we gave in Ch. 1, namely the
deformations inside a perfect cristal.

Let Λ = {−L, . . . , L} as before. The spin σx = ±1 at the position x ∈ Λ
is now replaced by the atom displacement φx ∈ R. The finite volume set of
spin configurations {σ ∈ {1,−1}Λ} becomes now

ΩΛ = RΛ = {φ|φ : Λ→ R}

14



We consider the energy functional

HΛ(φ) =

L−1∑
j=−L

[φj − φj+1]2 +
m2

β

L∑
j=−L

φ2
j

This corresponds to the hamiltonian (1.1.1) for a cristal in one dimension,
with an additional term m2

∑
x φ

2, favoring configurations with φx near zero
for each x. Intuitively, this means that each atom wants to remain near to its
equilibrium position on the lattice, independently of what the other atoms
do. The parameter m > 0 is called the mass, and we rescaled by β in order
to simplify the formulas.

We will consider first the case of free boundary conditions: H
(free)
Λ =

HΛ. We define a probability measure

dµΛ(φ) =
e−βHΛ

ZΛ
dφ

where dφ =
∏L
j=−L dφj is the product Lebesgue measure and

ZΛ =

∫
R2L+1

e−βHΛdφ =

∫
R2L+1

e−β
∑L−1
j=−L[φj−φj+1]2e−m

2
∑L
j=−L φ

2
jdφ

is the normalization constant. The integrand inside Z is strictly positive, so
Z > 0. Moreover [φj − φj+1]2 ≥ 0 for any choice of φ then

0 < ZΛ ≤
L∏

j=−L

∫
R
e−m

2φ2
jdφj =

(√
π

m2

)2L+1

<∞.

Hence the measure is well defined.
As we did in the Ising model, we start by studying lnZ/|Λ| as Λ → Z.

Our goal is to mimick the strategy we developed in the Ising model. We can
write ZΛ as

ZΛ =

∫
R2L+1

F left(φ−L)

L−1∏
j=−L

k(φj , φj+1) F right(φL) (2.3.5)

where

k(φ, φ′) = e−
m2

2
φ2
e−β(φ−φ′)2

e−
m2

2
φ′2 F left(φ) = F right(φ) = e−

m2

2
φ2
.

(2.3.6)
This expression is identical to what we obtained in the Ising case, but sums
are now replaced by integrals and the arguments we applied to not generalize
automatically.
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2.3.1 From matrices to integral kernels: transfer operator

In the Ising case we defined the transfer operator as

T : R2 → R2

v → [Tv](σ) =
∑

σ′ Tσσ′ v(σ′)

where T is a 2 × 2 matrix acting on R2 endowed with the norm ‖v‖2 =∑
σ v(σ)2. The natural generalization in this context is the integral operator

K : L2(R) → L2(R)
f → [Kf ](φ) =

∫
dφ′ k(φ, φ′) f(φ′)

(2.3.7)

where
k : R× R → R

(x, y) → k(x, y)

is called the integral kernel. While the matrix operator T was trivially
well defined, here we need to check that: (a) the function k(φ, φ′)f(φ′) is
integrable and (b) the function kf is still in L2(R).

A simple criterion is given by the Schur’s bound below.

Lemma 4 [Schur’s bound.] Let k : R× R→ R satisfy the two bounds

M1 = sup
x

∫
R
|k(x, y)|dy <∞ (2.3.8)

M2 = sup
y

∫
R
|k(x, y)|dx <∞.

Then Kf(x) =
∫
k(x, y)f(y)dy defines a bounded linear operator from L2(R)

to L2(R), with

‖K‖ ≤
√
M1M2 (2.3.9)

Proof Let f ∈ L2(R). By Cauchy-Schwartz inequality

[Ff ](x)2≤
[∫
|k(x, y)||f(y)|dy

]2

=

∫ √
|k(x, y)|

√
|k(x, y)||f(y)|dy

≤
[∫
|k(x, y)|dy

] [∫
|k(x, y)|f(y)2dy

]
≤ M1

∫
|k(x, y)|f(y)2dy

Using Fubini’s theorem we have∫
dx

∫
dy|k(x, y)|f(y)2 =

∫
dy f(y)2

∫
dx |k(x, y)| ≤M2‖f‖2 <∞.
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As a consequence
∫
|k(x, y)| f(y)2dy and hence also

∫
|k(x, y)| |f(y)|dy exist

for all x, (except eventually on sets of measure zero). Then [Kf ](x) is well
defined and

‖Kf‖2 ≤M1M2‖f‖2

so Kf ∈ L2(R) and ‖K‖ ≤
√
M1M2. 2

Symmetric kernels When the kernel satisfies (2.3.8) and has the addi-
tional property k(x, y) = k(y, x) we can write for any f, g ∈ L2(R)

(f,Kg) = (Kf, g), where (f, g) =

∫
f(x)g(x)dx

is the real scalar product on L2(R).
In the case of the cristal the kernel given by (2.3.6)

k(x, y) = e−
m2

2
x2
e−β(x−y)2

e−
m2

2
y2

is symmetric and satisfies

M1 = M2 = sup
x

∫
|k(x, y)|dy ≤

∫
e−

m2

2
y2
dy =

√
2π

m2
<∞

Then K defines a symmetric bounded linear operator on L2(R) and we can
write the partition function as

ZΛ = (F left,K2LF rigth). (2.3.10)

2.3.2 Expanding in a sum of projections

In the Ising case we used the expansion T = λ1P1 + λ2P2, where P1, P2

are orthogonal projections. For an integral operator this decomposition in
general does not exist. An integral operator “looks like” a finite matrix
when it is compact. Precisely

Definition: compact operator. An operator K : L2(R) → L2(R) is
compact if it is the limit in norm of a sequence of finite rank operators, i.e.
there exists a sequence {KN}N∈N such that KN : L2(R)→ L2(R), its image
has finite dimension for each N and

lim
N→∞

‖K −KN‖ = 0.

There is an easy criterion to check if an operator is compact.
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Criterion for compactness. If K is Hilbert-Schmidt then it is compact.

Definition: Hilbert-Schmidt operator. An operator K : L2(R) →
L2(R) is called Hilbert-Schmidt if the kernel satisfies∫

R×R
|k(x, y)|2dxdy <∞

In our example∫
R×R
|k(x, y)|2dxdy =

∫
R×R

e−m
2x2
e−2β(x−y)2

e−m
2y2
dxdy

≤
∫
R
e−m

2x2
dx

∫
R
e−m

2y2
dy =

π

m2
<∞.

Then K is a compact operator.
The following theorem gives conditions to ensure we can write K a a

linear combination of orthogonal projections.

Theorem 2 [without proof] Let K : L2(R)→ L2(R) be compact, symmet-
ric and injective. Then

1. there exists a decreasing (in modulus) sequence {λj}j∈N of eigenvalues
|λj | ≥ |λj+1| with limj→∞ λj = 0.

2. There exists a corresponding sequence of eigenvectors vj ∈ L2(R) such
that {vj}j∈N forms an orthonormal basis of L2(R).

3. Let KN =
∑N

j=0 λjPj, where

[Pjf ](x) = vj(x) (vj , f) =

∫
vj(x)vj(y) f(y)

is the orthogonal projections on V ect(vj). Then

lim
N→∞

‖K −KN‖ = 0 ≡ K =

∞∑
j=0

λjPj .

In our case we already checked that K is compact and symmetric. It remains
to verify that K is injective. We will prove the following stronger result.

Lemma 5 Let K : L2(R)→ L2(R) be defined by the kernel k(x, y) given by
(2.3.6). Then K > 0 as a quadratic form i.e. (f,Kf) > 0 for any function
f ∈ L2(R) except the zero function f(x) = 0 ∀x.
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Proof

(f,Kf) =

∫
R×R

f(x)k(x, y)f(y)dxdy

=

∫
R×R

g(x)e−β(x−y)2
g(y)dxdy =

∫
R
g(x)[F ∗ g](x)dx

where we defined

g(x) = f(x)e−
m2

2
x2
, F (x) = e−βx

2
.

The exponential factor ensures that g ∈ L2(R)∩L1(R) so the Fourier trans-
form of g is well defined and∫

R
g(x)[F ∗ g](x)dx =

∫
R
ĝ(k) [̂F ∗ g](k)dk =

∫
R
|ĝ(k)|2F̂ (k)dk

where we used

ĝ(k) = 1√
2π

∫
R
g(x)e−ikxdx, [̂F ∗ g](k) = F̂ (k)ĝ(k).

Finally

F̂ (k) = 1√
2π

∫
R
e−βx

2
eikxdx = 1√

2π
e
−x

2

4β

∫
R
e
−β
(
x− ik

2β

)2

dx = e
−x

2

4β 1√
βπ

> 0.

To perform the last integral we deform the contour in the complex plane
and use the fact that e−βz

2
is analytic, hence the integral over any closed

path equals zero. Putting this results together we see that

(f,Kf) =

∫
R
|ĝ(k)|2F̂ (k)dk ≥ 0

Since F̂ (k) > 0 ∀k, then (f,Kf) = 0 iff ĝ(k) = 0 ∀k, iff g(x) = 0 ∀x, iff
f(x) = 0 ∀x. 2

Consequences. Since K > 0 we have 0 = (f, 0) = (f,Kf) > 0 for any
f ∈ kerK. Then kerK = {0}, hence K is injective and the theorem above
applies. Moreover, K > 0 implies that all eigenvalues of K must be stricly
positive.

As a conclusion, in the case of our example, there exists a decreasing
sequence of positive eigenvalues {λj}j∈N and a correspoding sequence eigen-
vectors {vj}j∈N forming an orthonormal basis such that

lim
N→∞

‖K −KN‖ = 0 where KN =
N∑
j=0

λjPj .

19



As a consequence limN→∞ |(u,Kw) − (u,KNw)| = 0 for all u,w ∈ L2(R)
and (2.3.10) becomes

ZΛ = (F left,K2LF right) = lim
N→∞

N∑
j=0

λ2L
j (F left, PjF

right)

2.3.3 Infinite volume limit

In the Ising case we needed two additional ingredients to control the limit
as L → ∞: (a) the largest eigenvalue is simple and (b) the corresponding
eigenvector has strictly positive components. Since the elements of T are
striclty positive Perron-Frobenius theorem ensures that both (a) and (b) are
verified. Here we need a generalization of Perron-Frobenius result to integral
operators.

Definition. An operator K on L2(R) with integral kernel k(x, y) is said
to have strictly positive kernel if for any function f ∈ L2(R) such that
f(x) ≥ 0 ∀x and f > 0 on a set of positive Lebesgue measure, then [Kf ](x) >
0 ∀x, almost surely (i.e. except eventually on a set of measure zero). This
means in particular that k(x, y) > 0 ∀x, y a.s.

Theorem 3 (Krein-Rutman) Let K be a bounded compact symmetric
operator on L2(R) with strictly positive kernel. Let λ = ‖K‖. Then

1. λ is the largest eigenvalue (in absolute value) of K,

2. there exists an eigenvector v for λ such that v(x) > 0 ∀x ∈ R,

3. λ has multiplicity one.

4. for any eigenvalue |λ′| < λ, let w be an eigenvector. Then there are two
sets I1 and I2 in R of positive Lebesgue measure such that w(x) > 0
∀x ∈ I1 and w(x) < 0 ∀x ∈ I2.

Proof Since K is compact and symmetric, then the largest eigenvalue (in
absolute value) λ0 satisfies ‖A‖ = |λ0| > 0. We suppose now λ0 > 0. We
will see at the end that this must always be the case. Let v be a normalized
eigenvector for λ0. Since K is symmetric we can take v real. Then

0 <(v,Kv) = |(v,Kv)| =
∣∣∣∣∫ v(x)k(x, y)v(y) dxdy

∣∣∣∣ (2.3.11)

≤
∫
|v(x)| k(x, y) |v(y)| dxdy = (|v|,K|v|).
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where |v|(x) = |v(x)|, in the first passage we used K > 0 (as a quadratic
form) and in the last one we used k(x, y) > 0 (pointwise). Since v is an
eigenvector for λ0 we also have

λ0‖v‖2 = (v,Kv) ≤ (|v|,K|v|) ≤ ‖K‖ ‖ |v| ‖2 = ‖K‖ ‖v‖2. (2.3.12)

But λ0 = ‖K‖ then (v,Kv) = (|v|,K|v|). Now let v(x) = v+(x) − v−(x)
where

v+(x) = v(x)1v(x)>0, v−(x) = −v(x)1v(x)≤0

hence v±(x) ≥ 0 for all x, |v| = v+ + v− and

(v+,Kv−) = (v−,Kv+) =

∫
v+(x)k(x, y)v−(x)dx ≥ 0

since all integrands are non negative. Inserting these expressions inside
(v,Kv) = (|v|,K|v|) we get

0 < (v,Kv) = (v+,Kv+) + (v−,Kv−)− (v+,Kv−)− (v−,Kv+) (2.3.13)

= (v+,Kv+) + (v−,Kv−) + (v+,Kv−) + (v−,Kv+) = (|v|,K|v|)
⇒ (v+,Kv−) + (v−,Kv+) = 0.

Therefore

0 = (v+,Kv−) = (v−,Kv+) =

∫
v−(x)[Kv+](x)dx.

We remember that v+(x) ≥ 0 and v−(x) ≥ 0. We have two possible cases:
(a) v+ > 0 on a set of positive measure, then [Kv+](x) > 0 ∀x, then the
integral above equals zero only of v−(x) = 0 ∀x, hence v(x) = v+(x) ≥ 0 ∀x.
The second possibility (b) is that v+(x) = 0 ∀x, then v(x) = −v−(x) ≤ 0
∀x. We conclude that v can be chosen to be non negative v(x) = |v|(x) ≥ 0
∀x. To prove strict positivity v(x) > 0 we observe that λ0 > 0 then

v(x) = 1
λ0

[Kv](x) = 1
λ0

∫
k(x, y)v(y)dy > 0

since v(y) ≥ 0 and there is a set I of non zero measure such that v(y) > 0
∀y ∈ I. To prove that the eigenvalue λ0 is simple, suppose λ0 is not simple
and let v′ be another eigenvector. Then we can always choose v′ such that
(v, v′) = 0. Applying the arguments above to v′ we conclude that v′(x) > 0
∀x. But then

0 = (v, v′) =

∫
v(x)v′(x)dx > 0,
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that is impossible. Then λ0 is simple. Finally, let w an eigenvector for
|λ′| < λ0. Since K is symmetric we must have

0 = (w, v0) =

∫
v0(x)w(x)dx.

Since v0(x) > 0 ∀x, w must take both positive and negative values to ensure
the integral is zero.

It remains to prove that λ0 > 0. Suppose λ0 < 0. Then repeating the
same arguments as in (2.3.12) we find −(v,Kv) = |(v,Kv)| = (|v|,K|v|).
Then (2.3.13) becomes (v+,Kv+) + (v−,Kv−) = 0, hence using strict posi-
tivity of the kernel v+(x) = v−(x) = 0 ∀x. This ends the proof. 2

Using the results above we can prove the following lemma.

Lemma 6 Let K : L2(R) → L2(R) be defined by the kernel k(x, y) given
by (2.3.6). Let λ0 be the largest eigenvalue λ1 < λ0 the next eigenvalue.
Let v0 be the normalized eigenvector for λ0 with v0(x) > 0 ∀x and P0 the
corresponding orthogonal projector. Then

K = λ0P0 +K1

where K1P0 = P0K1 and ‖K1‖ = λ1.

Proof By Th. 2 and 3 we have

K1 =
∑
j≥1

λjPj = KH1 : H1 → H1

where H1 = v⊥0 is the subspace orthogonal to v0 and 0 < λj ≤ λ1 < λ0 for
all j. The result follows. 2

2.3.4 Partition function and moments

Partition function Using the results of the previous sections we can write

ZΛ = (F left,K2LF right) = (F left,K2LF right) = λ2L
0

[
(F left, P0F

right) + (F left,
K2L

1

λ2L
0
F right)

]
Since

|(F left, K
2L
1

λ2L
0
F right)| ≤ ‖F left‖‖F right‖

[
‖K1‖
λ0

]2L
= ‖F left‖‖F right‖

[
λ1
λ0

]2L
→L→∞ 0

(F left, P0F
right) = (F left, v0) (v0, F

right) > 0,

we can write

lim
L→∞

lnZΛ

|Λ|
= lnλ0.
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Magnetization Contrary the the Ising model here by symmetry we have

EΛ[φj ] = 0 ∀j, ∀Λ.

To get some non trivial result we must consider φ2. In the Ising case
EΛ[σ2

x] = 1 trivially since σ2 = 1. On the contrary here

EΛ[φ2
j ] =

(F left,KL+jΣ2KL−jF right)

(F left,K2LF right)

where we suppose j > 0 and we defined [Σ2f ](x) = x2f(x). Note that
[Σ2f ] 6∈ L2(R) in general. Let

S(R) = {f ∈ C∞(R)| sup
x
|x|q|f (p)(x)| <∞ ∀q, p ≥ 0}

be the Schwartz space on R. Then Σ2 : S(R)→ S(R) Moreover Kf ∈ S(R)
for any f ∈ L2(R) (as long as m > 0). Then for each finite volume Λ the
expression above is finite and

lim
L→∞

EΛ[φ2
j ] =

(F left, P0Σ2P0F
right)

(F left, P0F right)
= (v0,Σ

2v0) =

∫
x2v2

0(x)dx (2.3.14)

Here comes a new problem: though in the discrete case the final expression
was obviously finite, here the information v0 ∈ L2(R) is not enough to
garantee that the integral is finite. We will need to determine more precisely
the properties of v0(x). This will be done in the next subsection.

Two point correlation Let us suppose now (v0,Σ
2v0) <∞ and consider

the correlation

CjlΛ = EΛ[φjφl] =
(F left,KL+jΣK l−jΣKL−lF right)

(F left,K2LF right)

where we set 0 < j < l and [Σf ](x) = xf(x). As in the case of Σ2 we have
Σ : S(R)→ S(R) and Kf ∈ S(R) for any f ∈ L2(R), then

lim
L→∞

EΛ[φjφl] =
(F left, P0ΣKl−j

λl−j0

ΣP0F
right)

(F left, P0F right)
= (v0,Σ

Kl−j

λl−j0

Σv0)

= (v0,Σv0)(v0,Σv0) + (v0,Σ
Kl−j

1

λl−j0

Σv0) = (v0,Σ
Kl−j

1

λl−j0

Σv0)

≤ ‖v0Σ‖2
(
λ1
λ0

)l−j
= (v0,Σ

2v0) e
− |l−j|

ξ

where ξ = [ln λ0
λ1

]−1.
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2.3.5 Eigenvalues and eigenvectors of K

Top eigenvalue

Since the kernel k(x, y) is written as product of gaussians, we can try to find
an eigenvector with a gaussian form.

Lemma 7 The function gα(x) = e−αx
2
, α > 0 is an eigenvector of K iff α

α =
√
βm2 +m4/4. (2.3.15)

The corresponding eigenvalue is

µα =
√

π
α+(β+m2/2)

. (2.3.16)

Proof If we apply K to ga we obtain

[Kgα](x) = e−x
2(β+m2/2)

∫
e−y

2[α+(β+m2/2)]e+2βxydy

=
√

π
α+(β+m2/2)

e−x
2(β+m2/2)e

4β2x2

4[α+(β+m2/2)]

=
√

π
α+(β+m2/2)

e
−x2

[
(β+m2/2)− β2

α+(β+m2/2)

]

Then [Kgα](x) = µgα(x) iff µ = µα and

α = (β +m2/2)− β2

α+ (β +m2/2)
iff α2 = (β +m2/2)2 − β2.

2
Note that gα(x) > 0 ∀x then by Krein-Rutman theorem µα must the top

eigenvalue µα = λ0 = ‖K‖. Let

v0(x) =
(

2α
π

) 1
4 gα(x) (2.3.17)

be the corresponding normalized eigenvector. Then the expression (v0,Σ
2v0)

in (2.3.14) is

(v0,Σ
2v0) =

√
2α
π

∫
x2e−2αx2

dx =
1

2α
<∞,

the limL→∞ EΛ[φ2
j ] is finite and limL→∞ EΛ[φjφk] ≤ Ce−|j−k|/ξ.
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Other eigenvalues

In order to estimate the localization lenght ξ in EΛ[φjφk] we need to know
also the second eigenvalue λ1. In our example, we can actually find all
eigenvalues and the corresponding eigenvectors.

Lemma 8 The eigenvalues of K are the sequence

λj = µαλ
j
α, j ∈ N, λα =

β

(β +m2/2 + α)
.

Each eigenvalue is simple and the corresponding eigenvector vj can be writ-
ten as

vj(x) = (a∗)jv0(x), where a∗ = − d

dx
+ 2αx,

and v0 is given in (2.3.17) above.

Proof We remark that gα is the solution of g′α(x) + 2αxgα(x) = 0. Let
a = d

dx + 2αx and

S(R) = {f ∈ C∞(R)| sup
x
|x|q|f (n)(x)| <∞ ∀q, p ≥ 0}

be the Schwartz space on R. Then a : S(R)→ S(R) and

(f, ag) = (a∗f, g) ∀f, g ∈ S(R).

Since v0 ∈ S(R), uj = a∗v0 ∈ L2(R) ∀j > 0. Morevover for any f ∈ S(R)

[a∗Kf ](x) =

[
− d

dx
+ 2αx

] ∫
k(x, y)f(y)dy

= 2

∫ [
x
(
β +m2/2 + α

)
− yβ

]
k(x, y)f(y)dy

[Ka∗f ](x) =

∫
k(x, y)

[
− d

dy
+ 2αy

]
f(y)dy

= 2

∫ [
xβ − y

(
β +m2/2− α

)]
k(x, y)f(y)dy

=
β

(β +m2/2 + α)
[a∗Kf ](x)

where we used α2 = (β+m2/2)2−β2. Taking f = v0 we obtain immediately
that vj is a sequence of eigenvectors for the eigenvalues λj . Since λj 6= λk
∀j 6= k and K∗ = K the eigenvectors are orthogonal

λj(vj , vk) = (Kvj , vk) = (vj ,Kvk) = λk(vj , vk).
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More precisely, using [a, a∗] = 4αId and

[a, (a∗)k] = [a, a∗](a∗)k−1+a∗[a, (a∗)k−1] = 4α(a∗)k−1+a∗[a, (a∗)k−1] = 4αk(a∗)k−1

we obtain

(vj , vk) = δjk
(4α)j

j!
.

Finally we remark that vj(x) = pj(x)e−αx
2

where pj(x) is a polynomial of
order j and ∫

e−2αx2
pj(x)pk(x) = cjδjk,

where cj is some positive constant. Precisely

‖gα‖ pj(x) = eαx
2
(a∗)je−αx

2
= e2αx2 (− d

dx

)j
e−2αx2

= (2α)j/2Hj(x
√

2α)

where we used (
− d
dx + 2αx

)
eαx

2
= eαx

2 (− d
dx

)
and

Hj(x) = e+x2 (− d
dx

)j
e−x

2
= e+x2

2
(
− d
dx + x

)j
e−

x2

2

is the Hermite polynomial of order j. Since Hermite polynomials span L2(R),
by Th. 2 above the family {vj}j∈N contains all eigenvectors. 2

2.4 Conclusions, remarks

In this chapter we have considered the one dimensional version of two mod-
els: the Ising model and the harmonic cristal. In both cases we have applied
the transfer matrix approach to study the infinite volume limit. Below is a
summary of the results we obtained.

2.4.1 Hamiltonians

The starting hamiltonians for the Ising (resp. harmonic cristal) model are

HI
Λ(σ) = −

L−1∑
j=−L

σjσj+1 −
h

β

L∑
j=−L

σj , σ ∈ ΩΛ = {1,−1}Λ

Hhar
Λ (φ) =

L−1∑
j=−L

(φj − φj+1)2 +m2
L∑

j=−L
φ2
j , φ ∈ ΩΛ = RΛ
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Boundary conditions. In the Ising case we have considered three types
of boudary conditions:

σ̄: H σ̄
Λ(σ) = HI(σ)− J (σ−Lσ̄−L−1 + σLσ̄L+1)

periodic: Hper
Λ (σ) = HI(σ)− JσLσ−L

free: Hfree
Λ (σ) = HI(σ).

The corresponding boundary conditions in the case of the harmonic cristal
are

Dirichlet: HD
Λ (φ) = Hhar

Λ (φ) + φ2
−L + φ2

L → φL+1 = φ−L−1 = 0

periodic: Hper
Λ (φ) = Hhar

Λ (φ) + (φL − φ−L)2

Neuman: HN
Λ (φ) = Hhar(φ) → [∇φ]∂Λ = 0.

2.4.2 Partition function

In both models we wrote the partition function in terms of a transfer oper-
ator. As a result

lim
L→∞

lnZIΛ
|Λ|

= lnλ1 = ln[eβ coshh+
√

(eβ sinhh)2 + e−2β]

lim
L→∞

lnZharΛ
|Λ| = lnλ0 = 1

2 ln π
α+(β+m2/2)

, α =

√
m2β + m4

4 ,

where λ1 (resp. λ0) is the largest eigenvalue of the transfer matrix T (resp.
the transfer operator K). These limits are independent from the boundary
conditions.

2.4.3 Magnetization

For the magnetization we obtained

lim
L→∞

EΛ[σj ] = (v1,Σv1) = M(h)→
{
±1 h→ ±∞
0 h→ 0

lim
L→∞

EΛ[φj ] = 0

lim
L→∞

EΛ[σ2
j ] = 1

lim
L→∞

EΛ[φ2
j ] = (v0,Σ

2v0) = 1
4α →

{
0 m→∞
+∞ m→ 0
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In both cases the result is independent from the position j and from the
boundary conditions. Note that though the averages spin is always finite,
the average φ2 diverges as m→ 0, reflecting the fact that φj is an unbounded
variable and the fluctuations become very large when m is small.

2.4.4 Correlations

We have considered only two point correlations functions:

lim
L→∞

(EΛ[σiσj ]− EΛ[σi]EΛ[σj ]) = Ce
− |i−j|

ξ , ξ =
1

ln λ1
λ2

→

{
0 h→ ±∞

1

ln cosh β
sinh β

h→ 0

lim
L→∞

(EΛ[φiφj ]− EΛ[φi]EΛ[φj ]) ≤ 1
4αe
− |i−j|

ξ , ξ =
1

ln β+m2/2+α
β

→
{

0 m→∞
+∞ m→ 0

Note that the correlation length ξ is always finite in the Ising model (unless
β → ∞). On the contrary, ξ diverges as m → 0 in the harmonic cristal.
Since the prefactor 1/α also diverges it is better to consider the expression

lim
L→∞

(EΛ[φiφj ]− EΛ[φi]EΛ[φj ])√
EΛ[φ2

i ]EΛ[φ2
j ]

≤ e−
|i−j|
ξ .

It is important to remark that the divergent quantities in the harmonic
cristal appear for any choice of the boundary conditions.

2.4.5 Generalizations

The transfer matrix approach may be applied to much more general situa-
tions. One may for example replace the quadratic potential m2φ2 by some
function V (φ) such that

• V (φ)→∞ as |φ| → ∞

• V (0) = 0 and V has a unique minimum at φ = 0.

These conditions garantee that V (φ) = m2φ2 + O(φ3) near φ = 0. Then
when β is large the transfer matrix is well approximated (see [Hel02, Ch. 5]
for more details) by the harmonic transfer matrix we already studied. Some
examples of such potential are V (φ) = φ4 or V (φ) = ln(1+φ2). Note that in
the second example we cannot study high order correlation functions since
EΛ[φni ] since the log-potential does not garantee that the integral remains
finite. More work is needed when the potential V (φ) has several minima.
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When the transfer matrix is real but not symmetrix, or complex but not
self-adjoint, then most of the theorems we used do not apply! Situations
when one can still do something are

• the transfer operator K is real with (non strictly) positive kernel (not
necessarily symmetric) such that some power of K has strictly positive
kernel.

• the transfer operator is complex and normal.
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