

PDE and Modelling

Sheet 4, due Mai 13

Problem 1 (10 points)

Suppose that conservation of mass, momentum and energy (with $r \equiv 0$) hold, i.e.

$$\partial_t \varrho + \operatorname{div}(\varrho v) = 0$$

$$\varrho(\partial_t v + (v \cdot \nabla)v) = \operatorname{div} \sigma + f$$

$$\varrho \frac{D\varepsilon}{Dt} = \sigma : Dv - \operatorname{div} q,$$

where we defined $A: B = trA^TB$. Furthermore assume the following relations: $\varepsilon = a(\theta, \varrho) + \theta \eta$, where $\theta(t, x)$ denotes the temperature at (t, x) and

$$\eta = -\frac{\partial a}{\partial \theta}.$$

Deduce that

$$\partial_t(\varrho\eta) + \operatorname{div}\left(\frac{q}{\theta} + \varrho\eta v\right) = \frac{1}{\theta}\left(\sigma + p\operatorname{Id}\right) : Dv + q \cdot \nabla \frac{1}{\theta},$$

where $p = \varrho^2 \frac{\partial a}{\partial \varrho}$.

Problem 2 (10 points)

Let Ω be a bounded domain in \mathbb{R}^d and x(t,X) be a motion. Let $\hat{f}: \Omega \times GL_+(d) \to \mathbb{R}$ be a given function. We assume the Piola-Kirchoff S stress is of the form $S(t,X) = \hat{S}(X,Dx(t,X))$, where $\hat{S}(X,F) := \frac{\partial \hat{f}}{\partial F}$. Assume that x satisfies the equation of motion (in material coordinates)

$$\varrho_0 \partial_t^2 x = (\text{DIV}_X \, \hat{S})(X, Dx(t, X)),$$

where $\varrho_0:\Omega\to(0,\infty)$ is the reference mass density. Show that the total energy

$$\int_{\Omega} \left(\frac{1}{2} \varrho_0(X) |\partial_t x(t, X)|^2 + \hat{f}(X, Dx(t, X)) \right) dX$$

is independent of t. Hint: Multiply the equation of motion by $\partial_t x$.

Problem 3 (2+2+4+2 points)

Suppose that $\hat{\sigma}: \mathrm{GL}_+(d) \to \mathbb{R}^{d \times d}_{\mathrm{sym}}$ satisfies

- (i) $\hat{\sigma}(QF) = Q\hat{\sigma}(F)Q^T$ for all $Q \in SO(d)$ (frame indifference),
- (ii) $\hat{\sigma}(FG) = \hat{\sigma}(F)$ for all $G \in SL(d)$ (isotropy group of a fluid).
- (a) Use (ii) to show that $\hat{\sigma}(F) = \hat{\sigma}(\sqrt[d]{\det F} \text{ Id})$.
- (b) Show that $Q\hat{\sigma}(F)Q^T = \hat{\sigma}(F)$.
- (c) Let M be a symmetric matrix such that $M=QMQ^T$ for all $Q\in SO(d)$. Show that $M=\alpha \operatorname{Id}$ for some $\alpha\in\mathbb{R}$.

 Hint : You may consider a diagonal matrix M and permutation matrices Q first. Then consider the general case. Alternatively you may prove that M cannot have two distinct eigenvalues.

(d) Prove that there exists a function $\hat{p}:(0,\infty)\to\mathbb{R}$ such that $\hat{\sigma}(F)=-\hat{p}(\frac{1}{\det F})$ Id.

Problem 4 (5+5 points)

Suppose $\hat{W}: \mathrm{GL}_{+}(n) \to \mathbb{R}$ is C^{1} , and let $g \subset \mathrm{SO}(n)$ be a group. Prove that i) \Rightarrow ii) \Leftrightarrow iii), where

- (i) $\hat{W}(F) = \hat{W}(FG)$ for all $G \in g$ and $F \in GL_{+}(n)$
- (ii) $\hat{S}(FG)G^t = \hat{S}(F)$ for all $G \in g$ and $F \in GL_+(n)$
- (iii) $\hat{\sigma}(FG) = \hat{\sigma}(F)$ for all $G \in g$ and all $F \in GL_+(n)$