Chapter 3

Low temperature region

(Notes under construction)

3.1 Ferromagnetic order: Ising model with long
range interaction

Let A = (Z/2L+1)? the cube {—L, ..., L}? with periodic boundary conditions.
The finite volume configuration set is

Qp ={1,-1}* ={o: A= {1,-1}}, o(x) =0y}

The energy functional is

Hp(o) = f% Z JuyOuOy — % Z heoy

z,yeEA TzeEA

where J,, = Jy; > 0 encodes the interaction between spins at position x and
y, B =1/T, and h, plays the role of a local magnetic field. The corresponding
finite volume partition function is

8
Za(Bha) = Y €2 Zewer Tumeu ey bt
g

In the following we consider the interaction
Joy = (-W2A + 1),

where W > 1 is a parameter, 1, is the identity matrix and A, is the discrete
Laplacian with periodic boundary conditions defined by

—(Af)(@) = Y [f(@) = flz+e)] VaeA.

le[=1
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When z + e is not inside A we take the corresponding projection (by periodicity)
inside A. Note that the corresponding quadratic form can be written as

=Y f@EA)fW) = D, (f@) - fy)® >0

Ty€A z,y€N, |z—y|=1
Once can show that J~! > 0 as a quadratic form and that Jzy > 0 pointwise

(for each z,y).

3.1.1 Duality transformation

Lemma 1

(ﬁth N /Hd € 3(0.J~ ¢)Hcosh \/>¢I+h

TEA

where ¢, € R for each x € A, do¢,, is the corresponding Lebesgue measure,
Z Gad ) By

and Ny is a normalization constant

Ny _/ [T dowe 200779 = L
zeA [det J—1
27

Performing the change of coordinates ¢, = ¢/, — h,./+/ we obtain
Za(B,hy) = e7 2 (T 20 /Hdgb e 5(0.T710) 5 (6T hA)Hcosh VBé:)
zEA

In the following (unless stated otherwise) we consider the case h, = h Va. Then
the formula above becomes

Zn(B,hy) = e 32‘A'/Hd¢ D ST L S AT
FASHIN

where

_ 95 hes \
J(62) = 5 = 75 —Incosh(v/84s).

and we used —Al1 = 0.

3.1.2 Heuristics

Since W > 1 we expect the integral to be dominated by configurations near
¢ = ¢ Vo (otherwise the corresponding weight is exponentially small). For
constant ¢, the integrand becomes

IO
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hence a sadddle point approximation seems justified. The saddle equation for
¢ is
h
F(8) = b0 — —= — /Branh(y/Be,)
VB

Studying this equation we find there are two minima ¢,,1, e with
h h
Smi(h) =B+ —=+0("),  dma(h) =B+ —=+0(").
1(h) = /B NG (e™”) 2(h) = —/B NG (e™")

For h = 0 we have ¢,,1(0) = —¢,2(0) = v/B + O(e™?) and the two minima are
at the same height f(#,2(0)) = f(¢m1(0)) = —B/2+ O(1/B). For h > 0, the
function f has only one global minimum at ¢,,;. Expanding around h = 0 we
find

VB

since f(¢pma(h)) = f'(dm1(h)) = 0. Moreover the hessian at the two minuma
are

f(@m2(h)=f(dmi(h)) = _p 2z +O0(h?) = 2h+0(h*)+0(e™?) > 0

" 1 6 1 —2B8Y _ 1. 5 e
PG () = 1= s =100 = 1 s = 1 (duall)
since cosh v/Bom1(h) = cosh(f + O(e™?). Finally for h = 0 there is one local

maximum at ¢3 = 0 with f(0) = 0. For 0 < h < 1 we have ¢3 = 7# to the

leading order, hence f(¢3) = f% to the leading order.
Since we expect the integral to be concentrated near constant configurations
@z = dm1(h) Yz we perform a global translation

¢m = Qb; + ¢m1
so that the global minimum occurs ar ¢’ = 0. The saddle approximation then
says that the potential can be approximated by the quadratic terms
2

f(¢:v + Qj)ml) = f(¢m1) + m?‘l)i

Then the partition function can be written as
—IAl( 55+ (6m1)) 2N NG 5 L nZ
Za(,h) = e W (EH10m) 2000 7 (5 ) — AR+ Zaa] (37 1)

where 2 N
1 c

Fo=—f(op1) — — +In2+ —In—+

0 f(ém1) 26+n +|A|n/\/}

is the main contribution to the partition function and the correction is

(3.1.2)

Zn(B,h) = /duc(¢)e‘ 2e Vi), (3.1.3)
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where duc(¢) is the real normalized gaussian measure

dpc(¢) = %e—%(w*%) — %e—%[WzZmy\=1<¢w—¢y>2+mz .02l (3.1.4)

with covariance C' = (=W?A +m?)™!, dpy =[], db, and

V(d)a) = f(d)m + ¢ml) - f(d)ml) - %2(253 (315)

is what remains in the interaction after we have extracted the value at the
mininum and the quadratic contribution. The normalization constant is

Ne = (\/det %;)

In the following we will study (3.1.1). If our heuristic arguments are true we
expect Zx (B, h) ~ 1. More precisely we expect ﬁ In Zx(B, h) to be small com-
pared to Fj for any volume A.

-1

3.2 Preliminary results.

3.2.1 Eigenvalues and eigenvectors for the discrete Lapla-
cian

Discrete Laplacian on Z¢ For any function f : Z¢? — R we define the

discrete Laplace operator by

d
(—AN@) =) D [fl@) = fx+oey)]  wel?,

j=1o=+1

where e; is the unit vector in direction j. This formula is well defined also when
f has no finite I, norm.

In the following we will consider the discrete Laplacian restricted to the set
Ar = [—L,...,L)? a finite cube in Z?. When dealing with a finite volume one
must specify the boundary conditions. We will consider here only two types of
b.c.

Discrete Laplacian on A; with periodic b.c. For any function f : A —
R we define discrete Laplacian —Ap restricted to A with periodic boundary
conditions by

(=Apf)(z) = (=Afp)(x)  zeA,
where fp is the periodic extention of f to Z¢, i.e.
fr(z+n2L+1)e;) = fp(x) Ve eZ' Vj=1,....d, Yne€Z (3.2.6)
We consider the family {v;} of functions on Z? defined by

v(z) = —=e® k € R%

\/me
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where (k- z) = Zj:l x;k;. The prefactor ensures these functions, when re-

stricted to A, have unit norm: Y _, |vk(z)|> = 1. Note that Yk € R? we
have

(—Awvg)(z) = Aok (z),

where \, = 2 Z 1 (1 cos k ;). The functions wuy, satisfy in addition the periodic

condition if kj = 57572n;, with n; € Z. Then

BP:{'Ukn}’m kn, —2L+12n HEAL—[—L,...,L]d

is a normalised basis of eigenvectors for —Ap. The corresponding eigenval-

ues are }
=2 Z 1 — cos( ) >0.
Jj=1

Note that for each n # 0, the corresponding eigenvalue has multiplicity 2. When
n = 0 then Ay = 0 and the eigenvalue has multiplicity one (with eigenvector

vo(z) = 1/vV/A,Vz).

Discrete Laplacian on A; with Neuman b.c. For any function f: A —
R we define discrete Laplacian —Ay restricted to A with Neuman boundary
conditions by

(=Anf)(x) = (ZAfn)(x)  z €A,

where fy is the an extension of f to Z?, satisfying
fn(z+oej) — fn(z) =0 whenever z € A and = + oe; € A. (3.2.7)

Note that this is equivalent to require Vy floa = 0, where Vv is the (discrete)
derivative in the direction orthogonal to the boundary. We consider the family
of functions {uf} on Z, with o = +1 and k € R defined by

uf (x) = cos(kx), u, (v) = sin(kx).
With these functions we construct a set of functions on Z,

d
Ug(2) = wg [ uii) (). k e R a € {~1,1}7,
j=1

where NV} ensures that >, |[Ug(z)|* = 1. Note that we have
(=AU (x) = MUy ()
where A\ = 2 2?21(1 — cos k;). The function U satisfy (3.2.7) if

cos(Lk;j) — cos((L + 1)k;) =0 when a; =+1 and
sin(Lk;) —sin((L + 1)k;) = 0 when a; = —1.
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This is satisfied if k; = 2L+1nJ with n; even when a; = 1 and n; odd when
aj = —1. Then

By = {Ulg(a)}7 with a € {1, +1}d7 kn () = H:[rﬁnw

even if «a; =+1

d (a)
where n(a) € [0,..., L]% and n;(«a) is { odd if a; =-1

is a basis of eigenvectors for —Ay. The corresponding eigenvalues are

d
Mew(a) =2 Y (1 = cos(kn(a));) > 0.

j=1

Note that all eigenvalues have multiplicity one and that they differ from the
corresponding eigenvalues of —Ap only by a factor of order 1/L?. The lowest
eigenvalue is

a=1=qa; =1Vj, n; =0V

The only eigenvector corresponding to Mgy = 0 is Uk = 1/y/|A| Vz, where
1 =oq; = 1Vj and kg = 0. Note that for any k(« ) 7& 0 the normalization
constant satisfies

N2 = ca/IA 2742 < ¢, < 1.

To prove it we compute |Ul‘j‘(a)(:ﬁ)|2 using (cosa)? = (1 + cos2a)/2 and
(sina)? = (1 — cos 2a)/2.

3.2.2 Properties of the covariance

Remember that we defined C = (-W?2A + m?)~1. For the initial model we
take A to be the discrete Laplacian with periodic boundary conditions. Later
we will need to consider also the case of Neuman boundary conditions.

Estimate on the covariance. We will need the following lemma

Lemma 2 There exists a constant K independent of W, m and |A| such that
|C:c:c_ xy| < W2’ and |CZE’!J| < m%w+% V(L’JJGA.

This bound holds both for periodic and for Neumann boundary conditions.

Proof in the case of periodic b.c. Since —A is diagonal in the basis Bp
we can write
Vg, (2) 0, (y) etk (x—y)
n; W2>\k +m2 B \A| Z m
1 etk (L y)

~ At |A|W22Ak + o7

Coy =
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where vy, ()T, (y) is the projection on the eigenvector vg, . Then

| ik-(z—y) _q 1
e
o= Cual < st e
n+£0 Ak, T 72 0 Ak, + iz
Now set M? = V’;—Z We have
1 1 1
T 3 <A § s t — (3.2.8)
[A] Z 2 =] | D) 2.
kn;éO Akn + M < /10 Akn + M Co

where ¢y > 0 is some constant such that Ay, > c¢o > 0 V|k,| > 1/10, and we
used

1 1Al
a1 |
1Al " ;/w Ao, + M2 = co+ M2 |A] ~ ¢

For small k we can approximate A, > |k|?/c; for some ¢; > 0 then

1 dk
1 — < Cl/ — < Ky d>3
" mg/m Ak, + M2 k<1 k2 + M?c;

where K, is some constant that depends only on the dimension. To prove
the last inequality one can pass to spherical coordinates in the integral. This
completes the proof.

Proof in the case of Neuman b.c. Since —Ay is diagonal in the basis By
we can write

UR (o) @ UR (o) 1

Coy=Y_ o (@) — S (@) (UL, () )
Ty = -
o W2/\kn(a) +m2 m2|A| W2 Bt >\kn(a) + & W2

Then

‘U 2 @UE ) = UL (o @)U

(@) (z)

[Caa = Cmy| A ﬁ Z A m?2
a,n#0 kn(e) T T2
2d+1 1 1
S WE A PPN
| I a,n#0 )\k () +
where we used
a 2 24
[Upe () (@)]° < A Ve, kn(a).

The proof then works exactly as in the case of periodic boundary conditions.
Finally the estimate on |Cy,| works in the same way (for periodic and Neu-

man b.c.) except that now the contribution from the zero eigenvalue 1/(m?|A|)

must be added. |
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Ratios of normalization constants for gaussian measures. We will need
the following lemma

Lemma 3 Let
CTl= (WA +m?), C;l =07 = (1—gym® = (-W2Ay +m?q),

where 1 > q > 0 and Ay is the discrete Laplacian on A with periodic or Neu-
mann boundary conditions. Then there exists some constants Ky, Ko > 0 (in-
dependent of W and q) such that

-1
det C_l
Cq

A—q)|A|
< Ko Fafat5 (3.2.9)

where

2
fa=1V¥d>3,  fo=-Infp,  fi=

Proof We have seen above that the discrete Laplacian wih periodic boundary
conditions has eigenvalues indexed by the vectors k = n withn € [-L, L]?

d
Z 1 —cosk;)

2L+1

The determinant is then

c-t W3A+m? 1 _m?(1—q) q) 1,
det ot T W2Ak+gqm? H 1+ W2>\ Fmrq| < g€
k k0

where we used (1 4 u) < e* Vu > 0. Note that

1 < const d>3
Yt 1 d=2
=cq _— —In =
0 k? + WVLVQZQ x W id d=1
i

where cg is a constant dependent on the dimension d and we used m 4+ < 1.
Using then the same arguments as in the previous lemma the proof follows. The
same arguments apply in the case of Neumann boundary conditions. |

3.3 Finite volume estimate

If the volume is not too large (depending on W and () we can prove the con-
jecture above by a generalization of rigorous saddle analysis we performed in
Chapter 1.
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Theorem 1 If A satisfies |A| = W33 and 3> In W we have
1Zx(B.h) — 1] < e7 4 7PN

for some constant ¢ > 0 independent of B, h, W.

Proof. The rest of this section is devoted to the proof of this result.
We partition the configuration space R* in four regions

UL L =RY, ;NI =0Vi#j.

Let x;(¢a) be the corresponding characteristic functions. Then

~A = szv Zj = /le’C(¢>6_ 2a V(¢T)XI](¢)

j=1
Region I; [all fields near the global minimum|. We say ¢ € I if
60 — by| < 187 Va,y € A, and ¢, < 182 vz e A
We will prove the main contribution comes from this region. Precisely
‘Zl - 1‘ < |Alem”. (3.3.10)
Setting |A| = W33 we can find By such that ¥b > 3,

)Zl - 1‘ < BW3e P < e~ 358,

Region I, [all fields near the second minimum]. We say ¢ € Io if
|65 — 0y < §6% Va,y €A, and s + 1 — dma| < 382V € A.
Using f(¢m2) — f(¢m1) > h we will prove that if h > 1 we have
| Zy| < e=c2hlAl (3.3.11)

for some constant ¢ > 0 independent of 5 and W.

Region I3 [all fields far from both minimums]. We say ¢ € I3 if
|Ga—¢y| < 387 Va,y € A, and 3zg € Awith |gy,| > §8% and| e, +Gmi—dma| > §52.

This means |¢,| > iﬂé and |¢y + dm1 — Pmal| > %5% Yy € A. We will prove
that R
|Zs| < ecsPIAL (3.3.12)

for some constant cg3 > 0 independent of 5 and W.
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Region I, [large gradients]. We say ¢ € Iy if
dzo,y0 € A such that ¢y, — Py, | > iﬁé-

We will prove that, when W? < |A| < SW* we have
|Z4] < emcsBW? (3.3.13)

for some constant ¢4 > 0 independent of 3, h and W.

Remark. With these definitions {; };*:1 defines indeed a partition of the con-
figuration space. It is easy to see that the sets are all disjoint. We need to check
that
3
Ui Iy = 1Ij.

To ensure this we should define I3 as
= {gal 6z — ¢yl <182 Vo,y €A, and ¢y ¢ L UL}

Proof of the bounds in the regions I, and I3. These correspond to the
regions where the field is almost constant but far from the global minimum.
Using the bounds on V' proved in Lemma [4 below we obtain

- m2
1 Z;] < e%b; /dﬂc(@ 1) 5 30, 0% o(v5.9)

where for j = 2
m?
by =1, az=— [ 7(¢m1 - ¢m2) |A]
(

q2 :]-7 ('UQ)I 2 ml — ¢m2) V(E,
and for j =3
b3 = 1a az = — [qﬂ] |A‘7 q3 = 4q, (’03)w =0 Va:,

for some 0 < ¢ < 1 independent of 3, h, W.
Replacing the values for j = 2 we get

Za] < e [ duc(e) ) = eoncten

4 2
= % (Sm1—dm2)?(1,CV1) _ a2 o B (dm1—dm2)?|Al — —2h[A]|

where we used C1 = 51 and (1,1) = |A] since 1 is the eigenvector for the
Laplacian with eigenvalue 0.
When 0 < ¢; < 1 we have

m?2 2 1 —1 1(1—g.)m2 Ney,,
dluc(gb) qu 2 Zr [ — %6 ;(¢>,C ¢)6§(1 qJ) (¢,¢) — Tc,]dlu’cq((rb)
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where
C'q_j1 =C ' —gm?=-W?A+m?q >0

since 0 < ¢; < 1. Then using Lemma

~ . N, ) L Neg, L. o0 s
1Zj] < eb; / dpic,, (9) el = eob; ot e3( Cuy)

(1—gj)|A] ) )
< % bj eKl W2 6§(v3704j v;)

q

™ pol—

AN

Replacing the values for j = 3 we get

1Zs| < e=a8IAl [ B2 i CRBA ol
< Ve <

for some constant ¢z > 0.

Proof of the bound in the region I,. This corresponds to the region where
some large gradient appears. Using the bounds on V' proved in Lemma 4| below
and Lemma [3] we obtain

~ m? N
1Z4] < e /duc( (1= F 00y, (9) < enlhl N /ducq4(¢)><4(¢)
where ¢4 = c¢n/B. The function y4(¢) is bounded by

cosh(u(deg —$ug))
S Z X[‘¢z0_¢yo‘>5] (¢) S Z cosh(?u;) w0

Zo,Yo Zo,Yo

where § = i 15} 2 and u is any positive constant. We will optimize the choice of u
later. Inserting this bound in the integral we obtain

A su Ng .
Zy < e ‘1+6_2u5 o Z Z /duc 7Pz =buo)
z0,yoEA o==%1

Z /d.“c e(Vz0.v0-9)

Z0,YoEA

N 1
< o6, 2 A2 s o Crate )
Z0,Y0

where we used the symmetry of the Gaussian measure under ¢ — —¢ and

as = n|A| — du, by = ﬁy Vz0,90 (z) = u(5$7330 - 55573}0)
Now by Lemma [2] we have

Ky
(vwo’ym C’Ufro’yo) = ’LL2 [Cxol’o + Oyoyo - Cﬂﬂoyo - Cyowo] < u 2%
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independently of the mass m? > 0 and the pair xq,1o. Then this holds also for
C,, (where the mass is replaced by m?q4). Inserting these estimates and using
Lemma [3]

1
5 K 3 (-ay)lAl 2 K
Zy < €a4b4NNLq4 |A\262v712 < e“4b4|A\2—Kf2 K T
< - < 3
a4
\AI VB |A\(2"§}2 1) u? ik —us
(& w2
f
A2 A EL _Lus a2 A Ky B2
< K|A|PV/BWeHw2e™2% = K|A|*\/fWe w2 e™ 5
< 6—045W2
where we set
5W2 Kl o 2K2
u = ) n= ) K = .
2K, 2w ck;

and we used |A| < SW4.

Proof of the bound in the region I;. We can now prove the estimate in
the region where all fields are near the global minimum. Inserting (3.3.14]) we
have

2= 11 [ duc@)]e® - 1] @) + [ duc(@)lt - (@)

< |Ale™? +/d,UC(¢)XIf(¢)

Now 1
1
If, {9l 3z € A, [6a] > 567}

/duc(¢)><1; /d“c Xw I>2 ﬁQ}(¢

Using the same arguments as in the bound on Z4 we have

/duc )X{16.1>83 (@ /duc ®) Z T udbe

or,=%1
+%]

hence

~—

zeEA

< 26—5u 1u?Cuy < 26—6u zu [,,L2|A‘
< e~Ouet’ i < et

where we used [A| > W? and in the last line we chose

W2
2K,

Finally
/ dic (@)xrs (8) < A=W
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Therefore
1Z1 — 1| < |Ale™® + |Ale 8% < |Ale=8,
Putting all the bounds together we get
1Zp—1] < [Ale™ P e 2hIA pemeaBIM L omeaBW? < gryde=cifyomehlAl < o= 30 gmehBW?
using 8 > In W. This completes the proof of the theorem. O

It remains now only to prove the estimates on V we used above. This is
done in the following lemma.

Lemma 4 The interaction V(@) satisfies the following relations
1. When |¢,] < %/3% we have

V(¢e) = o(e™?) (3.3.14)
2. When |¢pz + dm1 — dma| < %B% we have

V((bzv) Z 2h + 0( ) + m2 : [(¢m1 ¢m2)2 + 2¢w(¢m1 - ¢m2>} (3315)

3. When |¢z| > 187 and |¢y + dm1 — dma| > 17 we have
V(ga) > qB — (1 —q)m?5¢2 (3.3.16)

for some 0 < q < 1 independent of B, h, W.

4. For any value of ¢, € R we have the apriori bound

V(ge) > (1 —qpn)m®505 — 1 (3.3.17)

where 0 < n < B is any positive constant (to be fized later) and qg,, = % for
some 0 < ¢ < 1 independent of W, 3 and h).

Proof. To prove (3.3.14) it is enough to use third order Taylor formula with
integral remainder

3 ! an.
V() =% [ a0 (0m +16:) = (6:5%) / (1 1) R
0
Using |tanh(u)| < 1 Vu and |¢pm1 + .| > %,8% for all ¢ € [0,1] as long as

|| < %B% we have

V(¢s)| < B e =o(e™”).
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To prove (3.3.15)) we expand around the secon minimum ¢,,2

V(6e) = f(br + dm1) — f(dm1) — ™ 92 (3.3.18)
= [f(@m2) = F(dm1)] + [F(0r + dm1) — F(dm2) — L2522 (60 + b1 — Gma)?]
+ [3(0n + Gm1 — dm2)* (" (dm2) — mD)] + [ (62 + Gm1 — ma2)? — 62)]

> h+o(e”?) + 7((¢m1 — Om2)” + 20 (Pm1 — Pma2)) (3.3.19)

where we also used m? = f"(¢m1) = f"(¢m2) + o(e™?). To prove (3.3.16) we
show that the function

9(8) = F(& + dm1) — Fldm1) — a2 ¢°.

is positive definite in the region |¢,| > iﬂé and |y + dm1 — Gma| > iﬂé, for
all 0 < ¢ < ¢ with ¢ small enough (independent of 3). The result then follows
taking ¢ = ¢/2. Finally a similar argument proves . In this case we
choose ¢g,, = cn/B with 0 < ¢ < 1 such that

2
m
n—- qﬁ,n7(¢ml + ¢m2)2 =0.

Then using the convexity properties of the function f we can show that

2

F(6 4 Gm) = F(m1) = Gan 5 (6 + o) +1 2 0.

This bound holds also when h = 0. O

3.4 Infinite volume

All estimates in the previous section work as long as the volume is bounded by
|A] < W*B. Since the covariance C' decays exponentially fast Cy,, < Kw,de"””/w
we expect the integral to factorize over regions of finite size. Guided by the fi-
nite volume estimates let us partition the volume A = [~L,... L]? in cubes of
side | = W34, We will denote each cube by A and the corresponding center
by xa. Note that zA may not be on Z%. This construction can be extended to
the whole lattice Z¢. Without loss of generality we can assume L/l = n € N.
Let us call Z¢ the lattice (of step I) made of the centers of the small cubes and
A the restriction to the set of cubes inside A. We say that a cube A belongs to
A, A € A, if the corresponding center belongs to A. With these definitions

A= UA\zAG[\A = UAEAA;

and this is a disjoint union. To avoid confusion in the following we will denote
the Laplacian operator by A.
We introduce the factorized covariance

ZlA OﬂcylL\ ) Z(CA)xy-

AeA A€A
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By construction this is a block diagonal matrix. If we replace C' by Cy inside
Zx we obtain

Zp(Cy) = H ZA, Zp = /dUCA(QSA)ei Loea Vids),

We can then write the partition function as

. Z
7 A Za

MMaeaZa 324
If our intuition is correct we will see that the ratio

4y
HAEAZA -

We will prove this in the next section via cluster expansions.

Finite volume estimate on Za. For a single cube we want to apply the fi-
nite volume estimates we derived in the previous section. These estimates used
heavily the properties of the discrete Laplacian with periodic or Neuman con-
ditions on the boundary of A. Unfortunately, the covariance Ca has no longer
the structure (—W2A + m?)~1. A similar problem will arise when estimating
the integrals obtained from the cluster expansion. The solution is explained in
the next subsection.

3.4.1 Estimates on the factorized covariance

Let 73[]}] the set of partitions of A into (not necessarily connected) sets. Let
IT € P[A] be such a partition. Each cluster X € IT induces a set of cubes

X ={Alza € X} CA. (3.4.20)

With this definition {X} ¢ ; is a partition of A. We define the covariance
factorized over the partition II

(Cﬂ)zy = Z 1X($)C:ry1X(y)'
Xel
In the special case Il = Ilp = {{j},cz } each component X is reduced to a single
cube. When II =1II; = A we have a single component X = A. Then we recover
the covariance Cy and C

Cq = Cn,, C =Cn,

Note that Cp is a block diagonal matrix on A x A and it has no longer the
structure (=W?2A +m?)~L. Now let OII be the boundary of each component
X € II. More precisely

Ol = {(z,y) € Ax Al |z —y| =1, and 3X # X’ € II,with z € X,y € X'},
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where X is defined in (3.4.20). Then OII is the boundary of the sets in A
associated to each X € II. With these definitions we can introduce —A{™" the

discrete Laplacian on A with Neuman boundary conditions on the boundary of
I

(=A== )= | D (o= £)°

z,yeA\OIL Xell |zyeX
Xel
where fx is the function restricted to X (the set associated to X) and —AX
is the discrete Laplacian on X with Neuman conditions on the boundary of X.
Let
CF = (WAL +m?) =Y o (3.4.22)
Xen
where Cg = (—WQA‘?VX +m?1x)~t. Note that
ct<co=>"cX viePlA.
AcA
The Laplacian with periodic boundary conditions on A satisfies
“A> A = oot <> X
AN
for any partition II. With all these definitions we can prove the following result.

Lemma 5 The following quadratic form bound holds

0<Ch SC]%H

Proof Since both Cf; and C’f\),n are block diagonal matrices on the partition of
A induced by II it is enough to prove the bound for one set X such that X € II.
Let fx : X — R a function on X and let f: A — R its extension to A defined
by

fa)={ g e

Then

0<(f,.Cf)=(fx.Cufx)=(f,Cf) < (f,C3"f) = (fx,C" fx).
This completes the proof. O

3.4.2 Finite volume estimate for Z,.

Lemma 6 Ifd =3, |A| = BW? and h > WL for some fivzed 0 < € < 1, the
partition function restricted to a single cube satisfies

1
|ZA71‘§€7ﬁ2.
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Proof. In order to apply the same arguments as in the previous section we
need to check that

Ol —(1—gm?la>0 Yo<g<l1

and that Lemma [2] and [3| can be generalized from C' to Ca. Using the results
from the last subsection we have

Cry=Cr'—(1—q@m?1a > (CR) ' = (1 —g)m*1a = (CX )"
= —W2A%® + m?%qia > 0.
Therefore

(v,Caq,v) < (U,C]AV’q,’U), and
N2

N%A; =det (14 (1 — ¢)m*Ca,q) < det (1+ (1 —q)m*CX )
hence we can generalize the proofs of Lemma [2] and [ to Ca. m|

3.4.3 Cluster expansion around a gaussian meaure
Preliminary definitions

We need to generalize a bit the definitions introduced in Section 2.7.1. For any
partition P € P[A] We introduce the function
xp: AxA —{0,1}
(0,y) — 1 dXeP z,ye X
Y 0 otherwise

With this definition xp(z,2) = 1 for any partition P. Note that in Section
2.7.1. we considered only pairs  # y. Now for each II € P[A] let Py the
corresponding partition of A. Let

Py ={A}aea
the partition corresponding to IIyp = {{j};ea}. Then

1 dA, z,y € A
0 otherwise.

Xpy(2,y) = {
On the other extreme, when II = II; = {A} is reduced to only one set then
P = {A}. The corresponding function is
XA($7y):]- V%?JGA-

We will consider F[A] the set of ordered forests on A. Each edge in the forest
corresponds now to a pair of cubes A # A’ (instead of a pair of points in A).
To each forest with n lines F,, = (I1,...,1,) we associate the vector

an:(817"'78n)7 128125222877,217
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and the set of forests
Fj:(ll,...Jj), ]:17’&

obtained keeping only the first j edges in F),. For each forest F,, we denote by
I, the partition of A generated by the connected components of the forest. Let
Pr the corresponding partition of A. With these definitions we can introduce
the function

u(sp,): AxA —1[0,1]
(z,y)  — ulsr,)(2,y)
u(sr,) = s$n(XPs, — XPr, )+ Sn—1(XPr

n—1

= XPr, )t s1(Xpr, — XP) T XP

Note that by construction u(sg, )(x,y) = 1 Va,y € A, for any cube A. Moreover
we have
1 JA, x,y € A
u(sp)=¢ 0 A £ A, ze A, ye A, A, A’ not connected by F
infleng/ s AA#AN, ze A ye A, A A’ connected by F

This last definition can be generalized to unordered forests.

Theorem 2 (BKAR) In the case of a real gaussian measure with covari-
ance C the Brydges-Kennedy-Abdesselam-Rivasseau Forest formula becomes

/d,uc(¢) “TeaVe) = 3 Y Hc%yc]/ ] dse]

FeF[A] (Te,Ye)ecr eEF 0117 o
(3.4.23)

o Saen V()

where for each edge e = (A, A’) in the forest (ze,ye) is any pair of points in
A XA with z. € A, ye € A

Proof The proof works as in Theorem 5 (Chapter 2). For each n > 1 we
define the function

(51, . 5n41) = Sntr1(Xa — XPg, ) +u(sE,), a(s1) = s1(xa — Xp,) + XPy-
Note that

Clu(s1; s 8n41))(@,9) = snp1 Xa(@,9)Coy] + (1 = 1) [xp, (2, 4)Co ]

n
+ Z SJ+1 XPFj (x7 y)Cx,y]
j=1

n
= Sp+1 ny + (1 — 81 Od gcy + Z 33-}-1 CHF].]xy
j=1
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Since Crr > 0 for any partition II, (s; — s;41) >0, (1 —s1) >0 and
n
Sny1+ (1 —s1)+ Z —Sjy1) =1,
j=1
C(a(s1, .-, Snt1)) is a convex combination of positive matrices, hence is positive
C(a(s1y.--y8n+1)) >0 V(81y-- ey Snt1)-
Similarly for

C(u(s1, - 80)) (@, y) = sn [XF, (2,9)Coy] + (1 = 51) [XP,(7,9y)Cr ]

n—1
+ Z(SJ — 5j+41) [XPF_]- (,9)Cay]
j=1
n—1
= 5n Cripy, + (1= 1) [Calay + D (55 — 5541) [Crig, Ly (3.4.24)
j=1
Hence
C(u(s1,---,8n)) >0 V(815 8n).
Moreover
o, /duc VO g, [det;c%l /dqse—%w’c’”*)e“/(@
=5 [ Ao @ [(C719), (0.,.,C) (€719) ~ulC 0., C V1
= Y urs Cley [ (@) [y ™.

Ty
where we used
E)SC;yl =— [0—1(050)0—1]%,
9s(det C) ™! = 97" = —(det C) "tr [C71(0,0)]

(Cg)()e 360719 — _M)‘S(w)e—éw,cl@_
Finally
Osn Oy = > 1a@)Crylar(y).
(A#A")E PR,
The proof then works as for Theorem 5 (Chapter 2). O

Since the integral inside (3.4.23]) factors over the connected components of
the forest we can write

Zyn
HAZA Z [

IIeP[A

2

HeP[A]

IT 4

Xell

11 HAGX

Xell



20 CHAPTER 3. LOW TEMPERATURE REGION

AX)= > > ] C’x€7ye]/ [T dse] (3.4.25)

TeT(X] {(@e,ye) €EAcX AL eer €T 0.1 cer

0 4
[ ducu(se)) (@ )[ .
/ ‘ * EEHTM 3y,

and X is the connected component of P corresponding to X. With these
definitions

e_ Zzex V(¢T)

AX) =1 when |[X|=1 = 3A st X = A,

Using the same arguments as in Chapter 2 (Lemma 4) we can write

1 Zn 1 Zn
Al In M 7x = 5W3\1~\| In M 7a (3.4.26)

BW?’\AI Z m S LHlA

X1
\Xi|22

Xla"'aXn)

where we used |A|/|A| = |A] = SW3. Note that by construction X; is a set of
cubes. By Theorem 4 (Chapter 2) if we have

sup Z |e|X| <1 (3.4.27)
#ez’ 2<|X <00
zeX

then the series (3.4.26]) above converges in absolute value uniformly in the vol-
ume A (hence also in A). Note that requiring that the point & € X is equivalent
to require that the corresponding cube A, such that za = Z, satisfies A € X.

3.5 Convergence of the log expansion

By the arguments in the previous section we only need to prove that (3.4.27)
holds. We will prove this is true assuming h > MI%“* for some fixed 0 < € < 1.

3.5.1 Reorganization of the sum

Note that, using Lemma [ above we have

|A(X)| = _AROL |A(X)|elXle?? (3.5.28)
HAeX N
where we used
1 1
<

[N

1+(ZA—1) - 1_6—,8
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and (14 z) < e® Vo € R. The problem is then to get a reasonable bound on
|A(X)]|. Since we will try to apply the finite volume estimates inside each cube
we partition each cube configuration ¢ according to the regions I; introduced
in Theorem 1 (Section 3.3).

4

=8 | DRACNIED BN | FYREN]

A j=1 {ia} A

The amplitude A(X) is then written as

AX)= > > ] c%ye]/ ] dsel (3.5.29)

TeT[X] {(#e ve) EAX AL} e €T 0.1 e
Z /d/iC(u (s1)) ¢X [H XIja ¢A ‘| [H (Sd) (S(b —2eex V(¢a)
{ia} Fe T

We need to reorganize the expression for A(X). For a fixed tree on A a tree
line e corresponds to a pair of cubes A, A’. The corresponding covariance acts
on A so we have to choose in addition two points z, € A, and y., € AL. The
same point € A may be used as endpoint for several tree lines. To make this
precise we

1. fix da > 1 the number of tree lines attached to the cube A. This number
is determined by the tree;

2. inside each cube A we fix ma the number of points in the lattice inside A
attached to some tree line. By construction 1 < ma < da. When ma =1
all tree lines connected to A hook to the same point, when ma = da all
tree lines hook to different points;

3. given ma, we choose a subset VA C A made of ma points |[VA| = ma.
These are the lattice points where the tree lines actually hook;

4. for each x € VA we choose d, the number of tree lines hooking to the
point . By construction d, > 1 and erv + = da (since there are da
tree lines hooking inside A);

5. finally we have to choose which tree lines (among the da) hooks to each
point x € Va, respecting the constraint given by d,.

The sum over (x.,y.) can then be written as

*

2. —HZZZ 2.

{(@e,ye)EAXALYeer ma=1 VACA {d,,zeVa}| {(ze,ye)}eer

where Y" means the sum must be compatible with the constraints created by
da,Va and the coordination numbers d, VY € VaA. Then the expression for
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A(X) becomes

TESE D VD SRED SINED S| | () |

TeTX] J&y (VACA} {do,w€Val} {(ze ye)}eer €T [0,1

X
> /dHC(u(ST))(¢X) 11 [XIM (6a) LQA <£I>d

{ia} AeX

jlE [H dse]

67 ZmeA V(¢I)‘|

(3.5.30)

3.5.2 Estimate on the derivatives inside each cube

The derivatives in the second line of (3.5.30) can be written as

()

HISAIN

e Eg;eA V(‘br) — PA(¢A)€_V(¢A)

where Pa(¢a) = [l ev, P, (¢2),

d d
Py(¢y) = " (#+) <5> e~ V() — Z(_l)q Z V) (gy) - V()

09 q=1 ny,.ng>1
Z(j=1 nj=d
and
5 n

We have the following estimate .

Lemma 7 The contribution from all derivatives in the cube A is bounded by

(cpd} )2 emifma da € 1h
1Pa(¢a)l= T 1Pa(@a)l < q (codd)™ ¢oa €I
zEVA (QCIBd‘LA)dAefﬁmT(¢A7¢A) b € I3 UL

where we set

1 _
Cﬁ:4f, fﬁzme 6

Proof . We study separately the regions I, I and I3 U Iy.

Region [;. If ¢ € I; then using Lemma [§ below we have

VO (6,)] < (VB)™ 4™nl e~ ¥n > 1.



3.5. CONVERGENCE OF THE LOG EXPANSION 23

Then

d q q
Pae)l <> Y TL[WAY ammte ] =@V/B)' Y5 Y [[n!

q=1 ny,.ng>1 j=1 q=1 ny,..ng>1 j=1
E?=1 n;j=d Z§=1 nj=d

d d
< (VB Y e 1T < (4B Y e < (4/B)de
q=1 q=1

where we used n;! < n;” < d" and 8> 1. The contribution from the cube A
is then

[T 1Pu(oa) < T [@vB)™ae ] (3.5.31)
zeVa zeVa
< (4y/B)adytaemifms (3.5.32)

Region I,. If ¢ € I, then using Lemma [§ below we have

V) ()] < (v/B)™ 4™n! ¥n > 1.

d q d q
ICSED DD DI | { VA REETN ECVALD S DI | £
q=1 nj,.ng>1 j=1 q=1 ny,.ng>1 j=1
Yioing= -1 ny=d

d
< (4\/B)dddqu < (4\/B)dd2d+1 < (4\/B)dd2d+1

The contribution from the cube A is then

[T 1Pu(@ol < T (VB d2t] < (ay/By'addl>m < (a/Bd)™,

FISAYN z€VA

(3.5.33)
where we used ma < da.

Region I3 U Iy. If ¢a € I3 U I, then using Lemma [8) below we have

VO (@0)] < (VB)™ 47nl[1 + |dule ] < (VB)" 4"ni2\/d, etz ¥ee””

where we used

22

(14 calz]) <c(1+ alz]) < 2ce™
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for0<a<landc>1, weset c=+d;, a= e P/2 and z = ¢1e’ﬂ/\/dm.

q

da
Pa(62)] < Y @Vd)test S T (V)™ 4]

ni,..ng>1 j=1
q i
S, nj=d,

dy

S YECD DD S | £

q=1 nj,.ng>1 j=1
z:?=1nj:dac

#2 $2

»2 3, = 5 3
< 37 BYH) ™Y dl < (8y/B) i enF < (8y/B) i tlend,
q=1

where we used ¢ < d,.. The contribution from the cube A is then

$2
IT 1Pa(ea)l < T {(Sﬂ)d”did’“ewv (3.5.34)
zeVa zeVa
< eﬁ(d’A@A)(S\/B)dAdZdA-‘rmA. (3535)
This concludes the proof. O

Lemma 8 The first and second derivatives of V' satisfy the bounds

2/Be % ¢y €1
V'(¢2)| <4 3B bz € I
6ale ™ +2VB ¢y € (I U L)

2 2(VB)?? e’ ¢p € LU I
|V( )(¢$)| S{ 2(\/3)2 ¢z c (Il UIQ)C

All other derivatives satisfy

(p+2) (VB)P*2 4r~t(p+ 1) e ¢, e [ UL
|V (¢r)| S{ (\/B)p+24p—1(p+ 1)! (b:r: € (Il UIQ)C

where p > 1.
Proof Remember that

V() = F(0+ du) — F(6un) — "o
The expression for the first derivative is
V'(92) = [ (92 + dm1) =100 = (60 + bm1) = ' ($m1) — m* s
= 6o(1 = m?) + (V/B) [tanh(v/Bo ) — tanh(v/B(6 1 + )]

= ¢z(1 ) cosh(v/Bom1) cosh(v/B(dm1 + bz)’
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where we used f'(¢m1) = 0. Now |1 —m?| < e and |¢g| ~ |¢s + G| =~
|pm1| =~ /B when ¢, € I1. In all other regions the second term on the derivative
is bounded by 21/f since |tanhz| < 1.

The second derivative is

V(@) = (1 =m?) = (v/B)? (1 = [tanh(v/B(6m1 + ¢2)1%)

_ (1 _ mZ) _ (\/B)Q
[COSh(\/B(¢m1 + ¢a:))]2

The bound follows directly. Finally using tanha’ = 1 — (tanh x)? higher order
derivatives can be written as

VD (,) = (VB)" 2 Py (tanh(VB(m1 + 62))
where P, : [-1,1] — R is a polynome of order n + 2 defined by induction:
Po(z) = Qu(z)(1 —22%), Qun(z)=P,_,(x), ¥n >2,Vx € [-1,1],

and
Q1 (z) = .

By construction @, () is a polynome of order n. Let

@n(z) =ao+amz+-- Fana”,  [Qull = (n+1)sup|a|.
J

Then ||Q2]|| = 2 and

1Qn(@)] < |Qull V2| <1,vn > 1.
Using

Qn+1(2) = @, (2)(1 — 2°) — 22Qq(2)

one chan check that
|@nt1ll < 4(n+2)[|Qnll.

Then
1Qnll <4 t(n+1)!¥n > 1.

Inserting all this we have

V()] < (VB2 sw [Paa)] < (VB Qull

z€e[—1,1]

This completes the proof. O
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3.5.3 Estimate on the gaussian integral

Inserting the estimates we proved in Section 3, the ¢ integral in (3.5.30)) is
bounded by

/d’LLC(u(ST)) bx) [H X1, (&) Pa(da)le V(M)] (3.5.36)
AEX
<> 2 lH QCBd‘Z)dAeM] / Al aopy) (B )€ PX) % (@x.DEx)
aly syl oa=E AeX
]A—4 Ja=4

where for each A with ja = 4 we sum over two points x's , ¥, inside A and over
a sign oA = &£,

(v,6x) =Y (va,6a), D=> (1—qa)lda

AeX AeX
and aa,va,qa depend on the index ja. Precisely when jao = 1 we have
1 -8
apn = —iﬁ+c|A|e , va(z)=0, ga=1,

and ¢ > 0 is some constant. When ja = 2 we have

2
m
an = _h|A‘ - 7(975777,1 - ¢m2)2|A|; UA(:E) = _m2(¢m1 - ¢m2)7 an = 1.
When ja = 3 we have
A:_Qﬁ|A|7 UA(x):Ov qn = ¢q, 0<q<< 1.

Finally when ja = 4 we have

), a

an = +n|Al = du,  va(x) = oau(dp, s — Oypa)y qa = 3
where ¢ > 0 is some constant and we set
VB 2 1
6= — =0W =
PR T W,

with some fixed constant cy. Note that when jao = 3,4 there is a correction
of order e=# (from Pa) to 1 — ga that is negligeable (even in the region Iy).
Finally, the jao = 1, the factor —3 in aan comes from the field derivative. Since
the set X has at least two cubes there is always at least one tree line hooking
to each cube therefore the factor —3 appears in each cube with ja = 1.

The gaussian integral in the last term is finite. This is a consequence of the
next lemma.
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Lemma 9 Let C(u(st)) and D the matrices introduced above. Then
C(u(st))™t —m?D >0, when 0 < ga < 1 VA.
Moreover let C(u(st))p = (C(u(st))™t —m2D)~! and
O = (~W?AR" +m?4s) " = O,
A

where —A?VHO is the Laplacian with Neuman b.c. on each cube and o =
YA qala is a diagonal matriz. Then we have

0 < Clu(sr))p < CN VT and sr.

Proof. When the forest is reduced to a tree, formula (3.4.24]) becomes

n—1
C(u(s1,80)) = $n Crig, + (1= 51) [Cal + Y (55 = 5541) [Cniy, ]
j=1
where n = |T'| and we ordered the tree lines so that 1 > s > s9,... > s,. By
Lemma C’HT7 < CJ%HO for all T; then
n—1
0 < C(u(s1y.y8n)) < [sn + Z(sj —5j41) + (1 —s1)]C3M0 = 3o,
j=1

Then

Clu(s)) ™t —=m?D > (CF) L —m2D =3 "(CN )7t >0
A

since ga > 0 VA. Therefore C(u(st))™' —m?2D is invertible and
[C(u(sr))™" —m?D] " < Y.

This ends the proof. O

Using this result we can compute the gaussian integral in (3.5.36)). The result
is

/d:u’C(u(sT)) o™ (8x,Déx) o(v.6x) — Nesr)n /d;U'C(u(sT))D o (0:6x)
Ne(uisr))

_ Notwsm)o 30,00 — go 14+ m?DC(u(sy))p] * e} :Clutar)on)
Ne(u(sr)

Using Lemma [9] above

(v, C(u(st))pv) < (v,CHv) = Z (UA,Cﬁ,quA).
AeX
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Moreover since D > 0 we can define D? and
det [1 + m*DC(u(sr))p] = det {1 + mQD%C(u(sT))DD%}
< det [1+m?DECE D} = det [1 + m?DCY]

= [ det [1+m*(1 —qa)CX ],
A

where we used
A>B = MTAM > MTBM VM invertible,

and
A>B>0 = detA>detB.

The first equation is proved by quadratic forms
(¢, MTAM¢) = (M¢, AM ) > (M, BM ),

where we use M¢ # 0 when ¢ # 0. The second can be proved using gaussian
integrals

L :/@ o~ 1(6.49) </d‘f’ e-d@Be) 1
[det A]2 2m [det B]2

Inserting these bounds and using the same estimates we did in Section 77 we
obtain

2
Z Z [H 2Cﬂd2>dA€aA1/duc(u(ST))(¢X)e(va¢X) eT(¢X7D¢X)

aly oy TA=E AeX
]A =1 ja=4
< JJ @egdh)®ea < ] (degdh)®e”
AeX AeX
where
c13 Jja=1
CQh‘A‘ jA =2 1
= . here h > , B>InW, 3.5.38
ea esBlA] ja =3 where A B> In ( )

C4W26 jA = 47

and ¢; > 0 are some fixed constants. The amplitude A(X) is then estimated by

SED S S SNED SIS S S

TET ] mA {VﬁcA} {dwv‘LeVA}{(-Levye)}eeT {JA}

AT o] | 11 (405d4a)dA€_551 (3.5.39)

ecT [AGX
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The factor ddAA may destroy the convergence. Note that, when da tree lines
hook to the cube A, there must be da different cubes in A connected to A by
the tree. Since each cube has volume |A| at least half of these cubes have their
center at distance R o d3|A|5 = diW}3 from the center of A. Using the
properties of the discrete Laplacian one can show that

1 1 lz—yl
Copy < =—————€ W ind=3.
YW (LA |z —yl)

Then extracting a fraction of the exponential decay from each tree line, and
noting that each tree line contributes only to two different cubes we have

1 1 ey .
[H Cfbc,ye] < H WQm ‘IDW‘ [He dAd ‘| )

ecT ecT

Moreover if we let Za denote the point in A corresponding to the cube A we
have

e — ye| > WSS (|Z. — 7| — 1)

where I, is the point corresponding to the cube A, and |7 — 7’| is the distance
in the dual lattice Z3. Inserting this in the sum above we obtain

IESIEED DD DD SHED SIS DD S

TeT[X] N & (VaCA} {de,2€Va} {(ze,ye)teer {ja}

e 11
A J2.2:] [H(ﬁl%d‘i)d%ﬂ echdgml
A

eeT
< 3 M) [TT s it o i
TeT[X] e€T

where we used

doi=]J4

{ia} A
> 2 22 t= > i=Tlir=]1ar.
AEX {VaCA} {ds,z€Va} {(@e,ye) teer {(ze,ye)}eer eeT A

and we defined

1 a o qigh
Jaz, = e (Bmall-sh

Now

1 4 1 4 1
4(4 |A|cﬂd4A)dAe—ﬁ€e—chng3 _ 4e—dA(Cdg[33—4lndA—1n65—ln|A|)e—Be S e—dAﬁ4
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for any value of da since f is large. Then

A< >0 ([ A

TeT[X] e€T

1
where A = e % « 1 and 221623 Jzz < 1. Then we can repeat the same
argument we used in Section 2.8 to prove that

sip 3 JAX) < ST [ F < S [ AR < 1

2<|X <00 TeT[X] €T TeT[X] €T
ToeX

1
where ¢ = 14+ e7#? (see (3.5.28). This concludes the proof of ([3.4.27). O
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