
Chapter 3

Low temperature region

(Notes under construction)

3.1 Ferromagnetic order: Ising model with long
range interaction

Let Λ = (Z/2L+1)d the cube {−L, . . . , L}d with periodic boundary conditions.
The finite volume configuration set is

ΩΛ = {1,−1}Λ = {σ : Λ→ {1,−1}}, σ(x) = σx}.

The energy functional is

HΛ(σ) = − 1
2

∑
x,y∈Λ

Jxyσxσy −
1

β

∑
x∈Λ

hxσx

where Jxy = Jyx ≥ 0 encodes the interaction between spins at position x and
y, β = 1/T , and hx plays the role of a local magnetic field. The corresponding
finite volume partition function is

ZΛ(β,hΛ) =
∑
σ

e
β
2
∑
x,y∈Λ Jxyσxσye

∑
x∈Λ hxσx .

In the following we consider the interaction

Jxy = (−W 2∆ + 1Λ)−1
xy

where W � 1 is a parameter, 1Λ is the identity matrix and ∆Λ is the discrete
Laplacian with periodic boundary conditions defined by

−(∆f)(x) =
∑
|e|=1

[f(x)− f(x+ e)] ∀x ∈ Λ.
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When x+e is not inside Λ we take the corresponding projection (by periodicity)
inside Λ. Note that the corresponding quadratic form can be written as

(f,−∆f) =
∑
xy∈Λ

f(x)(−∆)xyf(y) =
∑

x,y∈Λ,|x−y|=1

(f(x)− f(y))2 ≥ 0.

Once can show that J−1 > 0 as a quadratic form and that Jxy > 0 pointwise
(for each x, y).

3.1.1 Duality transformation

Lemma 1

ZΛ(β,hΛ) =
2|Λ|

NJ

∫ ∏
x∈Λ

dφxe
− 1

2 (φ,J−1φ)
∏
x

cosh(
√
βφx + hx)

where φx ∈ R for each x ∈ Λ, dφx is the corresponding Lebesgue measure,

(φ, J−1φ) =
∑
xy

φxJ
−1
xy φy,

and NJ is a normalization constant

NJ =

∫ ∏
x∈Λ

dφxe
− 1

2 (φ,J−1φ) =
1√

det J−1

2π

.

Performing the change of coordinates φx = φ′x − hx/
√
β we obtain

ZΛ(β,hΛ) = e−
1

2β (hΛ,J
−1hΛ) 2|Λ|

NJ

∫ ∏
x∈Λ

dφxe
− 1

2 (φ,J−1φ)e
1√
β

(φ,J−1hΛ)
∏
x

cosh(
√
βφx)

In the following (unless stated otherwise) we consider the case hx = h ∀x. Then
the formula above becomes

ZΛ(β,hΛ) = e−|Λ|
h2

2β 2|Λ|

NJ

∫ ∏
x∈Λ

dφxe
−W2

2

∑
|x−y|=1(φx−φy)2

e−
∑
x f(φx)

where

f(φx) =
φ2
x

2
− hφx√

β
− ln cosh(

√
βφx).

and we used −∆1 = 0.

3.1.2 Heuristics

Since W � 1 we expect the integral to be dominated by configurations near
φx = φ ∀x (otherwise the corresponding weight is exponentially small). For
constant φx the integrand becomes

e−|Λ|f(φ)
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hence a sadddle point approximation seems justified. The saddle equation for
φ is

f ′(φ) = φx −
h√
β
−
√
β tanh(

√
βφx)

Studying this equation we find there are two minima φm1, φm2 with

φm1(h) =
√
β +

h√
β

+O(e−β), φm2(h) = −
√
β +

h√
β

+O(e−β).

For h = 0 we have φm1(0) = −φm2(0) =
√
β +O(e−β) and the two minima are

at the same height f(φm2(0)) = f(φm1(0)) = −β/2 + O(1/β). For h > 0, the
function f has only one global minimum at φm1. Expanding around h = 0 we
find

f(φm2(h))−f(φm1(h)) = −hφ2m(0)− φ1m(0)√
β

+O(h2) = 2h+O(h2)+O(e−β) > 0

since f ′(φm2(h)) = f ′(φm1(h)) = 0. Moreover the hessian at the two minuma
are

f ′′(φm1(h)) = 1− β

cosh
√
βφm1(h)

= 1−O(e−2β) = 1− β

cosh
√
βφm2(h)

= f ′′(φm2(h))

since cosh
√
βφm1(h) = cosh(β + O(e−β). Finally for h = 0 there is one local

maximum at φ3 = 0 with f(0) = 0. For 0 < h� 1 we have φ3 = − h
β3/2 to the

leading order, hence f(φ3) = − h2

2β2 to the leading order.
Since we expect the integral to be concentrated near constant configurations

φx = φm1(h) ∀x we perform a global translation

φx = φ′x + φm1

so that the global minimum occurs ar φ′ = 0. The saddle approximation then
says that the potential can be approximated by the quadratic terms

f(φx + φm1) ' f(φm1) +
m2

2
φ2
x.

Then the partition function can be written as

ZΛ(β, h) = e
−|Λ|

(
h2

2β+f(φm1)
)

2|Λ|NC
NJ Z̃Λ(β, h) = e|Λ|[F0+ 1

|Λ| ln Z̃Λ(β,h)] (3.1.1)

where

F0 = −f(φm1)− h2

2β
+ ln 2 +

1

|Λ|
ln
NC
NJ

(3.1.2)

is the main contribution to the partition function and the correction is

Z̃Λ(β, h) =

∫
dµC(φ)e−

∑
x V (φx), (3.1.3)
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where dµC(φ) is the real normalized gaussian measure

dµC(φ) = dφΛ

NC e
− 1

2 (φ,C−1φ) = dφΛ

NC e
− 1

2 [W 2∑
|x−y|=1(φx−φy)2+m2∑

x φ
2
x] (3.1.4)

with covariance C = (−W 2∆ +m2)−1, dφΛ =
∏
x∈Λ dφx and

V (φx) = f(φx + φm1)− f(φm1)− m2

2 φ
2
x (3.1.5)

is what remains in the interaction after we have extracted the value at the
mininum and the quadratic contribution. The normalization constant is

NC =

(√
det C

−1

2π

)−1

.

In the following we will study (3.1.1). If our heuristic arguments are true we
expect Z̃Λ(β, h) ∼ 1. More precisely we expect 1

|Λ| ln Z̃Λ(β, h) to be small com-

pared to F0 for any volume Λ.

3.2 Preliminary results.

3.2.1 Eigenvalues and eigenvectors for the discrete Lapla-
cian

Discrete Laplacian on Zd For any function f : Zd → R we define the
discrete Laplace operator by

(−∆f)(x) =

d∑
j=1

∑
σ=±1

[f(x)− f(x+ σej)] x ∈ Zd,

where ej is the unit vector in direction j. This formula is well defined also when
f has no finite l2 norm.

In the following we will consider the discrete Laplacian restricted to the set
ΛL = [−L, . . . , L]2 a finite cube in Zd. When dealing with a finite volume one
must specify the boundary conditions. We will consider here only two types of
b.c.

Discrete Laplacian on ΛL with periodic b.c. For any function f : Λ →
R we define discrete Laplacian −∆P restricted to Λ with periodic boundary
conditions by

(−∆P f)(x) = (−∆fP )(x) x ∈ Λ,

where fP is the periodic extention of f to Zd, i.e.

fP (x+ n(2L+ 1)ej) = fP (x) ∀x ∈ Zd, ∀j = 1, . . . , d, ∀n ∈ Z. (3.2.6)

We consider the family {vk} of functions on Zd defined by

vk(x) = 1√
|Λ|
eik·x k ∈ Rd.
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where (k · x) =
∑d
j=1 xjkj . The prefactor ensures these functions, when re-

stricted to Λ, have unit norm:
∑
x∈Λ |vk(x)|2 = 1. Note that ∀k ∈ Rd we

have
(−∆vk)(x) = λkvk(x),

where λk = 2
∑d
j=1(1−cos kj). The functions uk, satisfy in addition the periodic

condition (3.2.6) if kj = π
2L+12nj , with nj ∈ Z. Then

BP = {vkn}n, kn = π
2L+12n, n ∈ ΛL = [−L, . . . , L]d

is a normalised basis of eigenvectors for −∆P . The corresponding eigenval-
ues are

λkn = 2

d∑
j=1

(1− cos(kn)j) ≥ 0.

Note that for each n 6= 0, the corresponding eigenvalue has multiplicity 2. When
n = 0 then λ0 = 0 and the eigenvalue has multiplicity one (with eigenvector
v0(x) = 1/

√
Λ,∀x).

Discrete Laplacian on ΛL with Neuman b.c. For any function f : Λ →
R we define discrete Laplacian −∆N restricted to Λ with Neuman boundary
conditions by

(−∆Nf)(x) = (−∆fN )(x) x ∈ Λ,

where fN is the an extension of f to Zd, satisfying

fN (x+ σej)− fN (x) = 0 whenever x ∈ Λ and x+ σej 6∈ Λ. (3.2.7)

Note that this is equivalent to require ∇Nf|∂Λ = 0, where ∇N is the (discrete)
derivative in the direction orthogonal to the boundary. We consider the family
of functions {uσk} on Z, with σ = ±1 and k ∈ R defined by

u+
k (x) = cos(kx), u−k (x) = sin(kx).

With these functions we construct a set of functions on Zd,

Uαk (x) = 1
Nαk

d∏
j=1

u
αj
kj

(xj),k ∈ Rd, α ∈ {−1, 1}d,

where Nα
k ensures that

∑
x∈Λ |Uαk (x)|2 = 1. Note that we have

(−∆Uαk )(x) = λkU
α
k (x)

where λk = 2
∑d
j=1(1− cos kj). The function Uαk satisfy (3.2.7) if

cos(Lkj)− cos((L+ 1)kj) = 0 when αj = +1 and

sin(Lkj)− sin((L+ 1)kj) = 0 when αj = −1.
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This is satisfied if kj = π
2L+1nj with nj even when αj = 1 and nj odd when

αj = −1. Then

BN = {Uαk(α)}, with α ∈ {−1,+1}d, kn(α) = π
2L+1n,

where n(α) ∈ [0, . . . , L]d, and nj(α) is

{
even if αj = +1
odd if αj = −1

is a basis of eigenvectors for −∆N . The corresponding eigenvalues are

λkn(α) = 2

d∑
j=1

(1− cos(kn(α))j) ≥ 0.

Note that all eigenvalues have multiplicity one and that they differ from the
corresponding eigenvalues of −∆P only by a factor of order 1/L2. The lowest
eigenvalue is

α = 1 ≡ αj = 1 ∀j, nj = 0 ∀j.

The only eigenvector corresponding to λk(α) = 0 is U1
k0

(x) = 1/
√
|Λ| ∀x, where

1 ≡ αj = 1∀j and k0 = 0. Note that for any k(α) 6= 0 the normalization
constant satisfies

Nα
k = cα

√
|Λ|, 2−d/2 ≤ ca ≤ 1.

To prove it we compute
∑
x∈Λ |Uαk(α)(x)|2 using (cosα)2 = (1 + cos 2α)/2 and

(sinα)2 = (1− cos 2α)/2.

3.2.2 Properties of the covariance

Remember that we defined C = (−W 2∆ + m2)−1. For the initial model we
take ∆ to be the discrete Laplacian with periodic boundary conditions. Later
we will need to consider also the case of Neuman boundary conditions.

Estimate on the covariance. We will need the following lemma

Lemma 2 There exists a constant K independent of W, m and |Λ| such that

|Cxx − Cxy| ≤ K
W 2 , and |Cxy| ≤ 1

m2|Λ| + K
W 2 ∀x, y ∈ Λ.

This bound holds both for periodic and for Neumann boundary conditions.

Proof in the case of periodic b.c. Since −∆ is diagonal in the basis BP
we can write

Cxy =
∑
n∈ΛL

vkn(x)v̄kn(y)

W 2λkn +m2
=

1

|Λ|
∑
n∈ΛL

eikn·(x−y)

W 2λkn +m2

=
1

m2|Λ|
+

1

|Λ|W 2

∑
n6=0

eikn·(x−y)

λkn + m2

W 2
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where vkn(x)v̄kn(y) is the projection on the eigenvector vkn . Then

|Cxx − Cxy| ≤ 1
W 2

1
|Λ|

∑
n 6=0

∣∣eik·(x−y) − 1
∣∣

λkn + m2

W 2

≤ 1
W 2

1
|Λ|

∑
n 6=0

1

λkn + m2

W 2

Now set M2 = m2

W 2 . We have

1
|Λ|

∑
kn 6=0

1

λkn +M2
≤ 1
|Λ|

∑
|kn|≤1/10

1

λkn +M2
+

1

c0
(3.2.8)

where c0 > 0 is some constant such that λkn ≥ c0 > 0 ∀|kn| > 1/10, and we
used

1
|Λ|

∑
|kn|≥1/10

1

λkn +M2
≤ 1

c0 +M2

|Λ|
|Λ|
≤ 1

c0
.

For small k we can approximate λk ≥ |k|2/c1 for some c1 > 0 then

1
|Λ|

∑
|kn|≤1/10

1

λkn +M2
≤ c1

∫
|k|≤1

ddk

k2 +M2c1
≤ Kd d ≥ 3

where Kd is some constant that depends only on the dimension. To prove
the last inequality one can pass to spherical coordinates in the integral. This
completes the proof.

Proof in the case of Neuman b.c. Since −∆N is diagonal in the basis BN
we can write

Cxy =
∑
α,n

Uαkn(α)(x)Ūαkn(α)(y)

W 2λkn(α) +m2
=

1

m2|Λ|
+

1

W 2

∑
α,n6=0

Uαkn(α)(x)Ūαkn(α)(y)

λkn(α) + m2

W 2

Then

|Cxx − Cxy| ≤ 1
W 2

∑
α,n 6=0

∣∣∣Uαkn(α)(x)Ūαkn(α)(y)− Uαkn(α)(x)Ūαkn(α)(x)
∣∣∣

λkn(α) + m2

W 2

≤ 2d+1

W 2
1
|Λ|

∑
α,n6=0

1

λkn(α) + m2

W 2

,

where we used

|Uαkn(α)(x)|2 ≤ 2d

|Λ|
∀x, kn(α).

The proof then works exactly as in the case of periodic boundary conditions.
Finally the estimate on |Cxy| works in the same way (for periodic and Neu-

man b.c.) except that now the contribution from the zero eigenvalue 1/(m2|Λ|)
must be added. 2
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Ratios of normalization constants for gaussian measures. We will need
the following lemma

Lemma 3 Let

C−1 = (−W 2∆Λ +m2), C−1
q = C−1 − (1− q)m2 = (−W 2∆Λ +m2q),

where 1 > q > 0 and ∆Λ is the discrete Laplacian on Λ with periodic or Neu-
mann boundary conditions. Then there exists some constants K1,K2 > 0 (in-
dependent of W and q) such that

det
C−1

C−1
q

≤ K2

q e
K1fd

(1−q)|Λ|
W2 (3.2.9)

where
fd = 1 ∀d ≥ 3, f2 = − ln qm2

W 2 , f1 = W
m
√
q .

Proof We have seen above that the discrete Laplacian wih periodic boundary
conditions has eigenvalues indexed by the vectors k = 2π

2L+1n with n ∈ [−L,L]d

λk = 2

d∑
i=1

(1− cos ki).

The determinant is then

det C
−1

C−1
q

=
∏
k

W 2λk+m2

W 2λk+qm2 = 1
q

∏
k 6=0

[
1 + m2(1−q)

W 2λk+m2q

]
≤ 1

q e
m2(1−q)
W2

∑
k6=0(λk+m2q

W2 )−1

where we used (1 + u) ≤ eu ∀u ≥ 0. Note that∫
|~k|≤ 1

10

d~k 1

λ~k+m2q

W2

'
∫
|~k|≤ 1

10

d~k 1

|~k|2+m2q

W2

= cd

∫ 1
10

0

dk
kd−1

k2 + m2q
W 2


≤ const d ≥ 3

∝ − ln m2q
W 2 d = 2

∝ W
m
√
q d = 1

where cd is a constant dependent on the dimension d and we used m2q
W 2 � 1.

Using then the same arguments as in the previous lemma the proof follows. The
same arguments apply in the case of Neumann boundary conditions. 2

3.3 Finite volume estimate

If the volume is not too large (depending on W and β) we can prove the con-
jecture above by a generalization of rigorous saddle analysis we performed in
Chapter 1.
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Theorem 1 If Λ satisfies |Λ| = W 3β and β � lnW we have

|Z̃Λ(β, h)− 1| ≤ e−cβ + e−h|Λ|

for some constant c > 0 independent of β, h,W .

Proof. The rest of this section is devoted to the proof of this result.
We partition the configuration space RΛ in four regions

∪4
j=1Ij = RΛ, Ii ∩ Ij = ∅∀i 6= j.

Let χj(φΛ) be the corresponding characteristic functions. Then

Z̃Λ =
4∑
j=1

Z̃j , Z̃j =

∫
dµC(φ)e−

∑
x V (φx)χIj (φ).

Region I1 [all fields near the global minimum]. We say φΛ ∈ I1 if

|φx − φy| ≤ 1
4β

1
2 ∀x, y ∈ Λ, and |φx| ≤ 1

2β
1
2 ∀x ∈ Λ.

We will prove the main contribution comes from this region. Precisely∣∣∣Z̃1 − 1
∣∣∣ ≤ |Λ|e−c1β . (3.3.10)

Setting |Λ| = W 3β we can find β0 such that ∀b ≥ β0∣∣∣Z̃1 − 1
∣∣∣ ≤ βW 3e−c1β ≤ e−

c1
2 β .

Region I2 [all fields near the second minimum]. We say φΛ ∈ I2 if

|φx − φy| ≤ 1
4β

1
2 ∀x, y ∈ Λ, and |φx + φm1 − φm2| ≤ 1

2β
1
2 ∀x ∈ Λ.

Using f(φm2)− f(φm1) > h we will prove that if h� 1
W 2 we have

|Z̃2| ≤ e−c2h|Λ|. (3.3.11)

for some constant c2 > 0 independent of β and W .

Region I3 [all fields far from both minimums]. We say φΛ ∈ I3 if

|φx−φy| ≤ 1
4β

1
2 ∀x, y ∈ Λ, and ∃x0 ∈ Λ with |φx0 | > 1

2β
1
2 and|φx0+φm1−φm2| > 1

2β
1
2 .

This means |φy| > 1
4β

1
2 and |φy + φm1 − φm2| > 1

4β
1
2 ∀y ∈ Λ. We will prove

that
|Z̃3| ≤ e−c3β|Λ|. (3.3.12)

for some constant c3 > 0 independent of β and W .
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Region I4 [large gradients]. We say φΛ ∈ I4 if

∃x0, y0 ∈ Λ such that |φx0 − φy0 | > 1
4β

1
2 .

We will prove that, when W 2 � |Λ| � βW 4 we have

|Z̃4| ≤ e−c4βW
2

(3.3.13)

for some constant c4 > 0 independent of β, h and W .

Remark. With these definitions {Ij}4j=1 defines indeed a partition of the con-
figuration space. It is easy to see that the sets are all disjoint. We need to check
that

∪3
j=1Ij = Ic4 .

To ensure this we should define I3 as

I3 = {φΛ| |φx − φy| ≤ 1
4β

1
2 ∀x, y ∈ Λ, and φΛ 6∈ I1 ∪ I2}

Proof of the bounds in the regions I2 and I3. These correspond to the
regions where the field is almost constant but far from the global minimum.
Using the bounds on V proved in Lemma 4 below we obtain

|Z̃j | ≤ eaj bj

∫
dµC(φ) e(1−qj)m

2

2

∑
x φ

2
x e(vj ,φ)

where for j = 2

b2 =1, a2 = −
[
2h+

m2

2
(φm1 − φm2)2

]
|Λ|

q2 =1, (v2)x = −m2(φm1 − φm2) ∀x,

and for j = 3

b3 = 1, a3 = − [qβ] |Λ|, q3 = q, (v3)x = 0 ∀x,

for some 0 < q � 1 independent of β, h,W .
Replacing the values for j = 2 we get

|Z̃2| ≤ ea2

∫
dµC(φ) e(v2,φ) = ea2e

1
2 (v2,Cv2)

= ea2e
m4

2 (φm1−φm2)2(1,Cv1) = ea2e
m2

2 (φm1−φm2)2|Λ| = e−2h|Λ|

where we used C1 = 1
m2 1 and (1, 1) = |Λ| since 1 is the eigenvector for the

Laplacian with eigenvalue 0.
When 0 < qj < 1 we have

dµC(φ) eqj
m2

2

∑
x φ

2
x = dφ

NC e
− 1

2 (φ,C−1φ)e
1
2 (1−qj)m2(φ,φ) =

NCqj
NC dµCqj (φ)
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where
C−1
qj = C−1 − qjm2 = −W 2∆ +m2qj > 0

since 0 < qj ≤ 1. Then using Lemma 3

|Z̃j | ≤ eaj bj
NCqj
NC

∫
dµCqj (φ) e(vj ,φ) = eaj bj

NCqj
NC e

1
2 (vj ,Cqj vj)

≤ eaj bj K
1
2
2

q
1
2
j

eK1
(1−qj)|Λ|

2W2 e
1
2 (vj ,Cqj vj)

Replacing the values for j = 3 we get

|Z̃3| ≤ e−qβ|Λ|
√
K2

q
eK1

(1−q)|Λ|
2W2 ≤ e−c3β|Λ|

for some constant c3 > 0.

Proof of the bound in the region I4. This corresponds to the region where
some large gradient appears. Using the bounds on V proved in Lemma 4 below
and Lemma 3 we obtain

|Z̃4| ≤ eη|Λ|
∫
dµC(φ) e(1−q4)m

2

2 (φ,φ)χ4(φ) ≤ eη|Λ|
NCq4
NC

∫
dµCq4 (φ)χ4(φ)

where q4 = cη/β. The function χ4(φ) is bounded by

χ4(φ) ≤
∑
x0,y0

χ[|φx0−φy0 |>δ](φ) ≤
∑
x0,y0

cosh(u(φx0
−φy0 ))

cosh(uδ)

where δ = 1
4β

1
2 and u is any positive constant. We will optimize the choice of u

later. Inserting this bound in the integral we obtain

Z̃4 ≤ eη|Λ| e−δu

1+e−2uδ

NCq4
NC

∑
x0,y0∈Λ

∑
σ=±1

∫
dµCq4 e

σu(φx0
−φy0 )

= ea4b4
NCq4
NC

∑
x0,y0∈Λ

∫
dµCqh e

(vx0,y0
,φ)

≤ ea4b4
NCq4
NC |Λ|

2 sup
x0,y0

e
1
2 (vx0,y0

,Cq4vx0,y0
)

where we used the symmetry of the Gaussian measure under φ→ −φ and

a4 = η|Λ| − δu, b4 = 2
1+e−2uδ , vx0,y0

(x) = u(δx,x0
− δx,y0

)

Now by Lemma 2 we have

(vx0,y0 , Cvx0,y0) = u2[Cx0x0 + Cy0y0 − Cx0y0 − Cy0x0 ] ≤ u22
K1

W 2
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independently of the mass m2 > 0 and the pair x0, y0. Then this holds also for
Cq4 (where the mass is replaced by m2q4). Inserting these estimates and using
Lemma 3

Z̃4 ≤ ea4b4
NCq4
NC |Λ|

2e2
K1
W2 ≤ ea4b4|Λ|2K

1
2
2

q
1
2
4

eK1
(1−q4)|Λ|

2W2 eu
2 K1
W2

≤ |Λ|
2√βK2√
cη e|Λ|(

K1
2W2 +η) eu

2 K1
W2−uδ

≤ K̃|Λ|2
√
βWe|Λ|

K1
W2 e−

1
2uδ = K̃|Λ|2

√
βWe|Λ|

K1
W2 e−

βW2

4K1

≤ e−c4βW
2

where we set

u =
δW 2

2K1
, η =

K1

2W
, K̃ =

√
2K2

cK1
.

and we used |Λ| � βW 4.

Proof of the bound in the region I1. We can now prove the estimate in
the region where all fields are near the global minimum. Inserting (3.3.14) we
have

|Z̃1 − 1| ≤
∫
dµC(φ)

∣∣∣eV (φ) − 1
∣∣∣χI1(φ) +

∫
dµC(φ)[1− χI1(φ)]

≤ |Λ|e−β +

∫
dµC(φ)χIc1 (φ)

Now

IcI1 ⊂ {φ| ∃x ∈ Λ, |φx| >
1

8
β

1
2 }

hence ∫
dµC(φ)χIc1 (φ) ≤

∑
x∈Λ

∫
dµC(φ)χ

{|φx|> 1
8β

1
2 }

(φ)

Using the same arguments as in the bound on Z̃4 we have∫
dµC(φ)χ{|φx|>δ}(φ) ≤ e−δu

∫
dµC(φ)

∑
σx=±1

eσxuφx

≤ 2e−δue
1
2u

2Cxx ≤ 2e−δue
1
2u

2[ 1
m2|Λ|

+
K1
W2 ]

≤ e−δueu
2 K1
W2 ≤ e−c̃1βW

2

,

where we used |Λ| �W 2 and in the last line we chose

u =
δW 2

2K1
.

Finally ∫
dµC(φ)χIc1 (φ) ≤ |Λ|e−c̃1βW

2

.
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Therefore

|Z̃1 − 1| ≤ |Λ|e−β + |Λ|e−c̃1βW
2

≤ |Λ|e−c1β .

Putting all the bounds together we get

|Z̃Λ−1| ≤ |Λ|e−c1β+e−c2h|Λ|+e−c3β|Λ|+e−c4βW
2

≤ βW 3e−c1β+e−c2h|Λ| ≤ e−
c1
2 β+e−c2hβW

3

using β � lnW . This completes the proof of the theorem. 2
It remains now only to prove the estimates on V we used above. This is

done in the following lemma.

Lemma 4 The interaction V (φ) satisfies the following relations

1. When |φx| ≤ 3
4β

1
2 we have

V (φx) = o(e−β) (3.3.14)

2. When |φx + φm1 − φm2| ≤ 1
4β

1
2 we have

V (φx) ≥ 2h+ o(e−β) +m2 1
2

[
(φm1 − φm2)2 + 2φx(φm1 − φm2)

]
(3.3.15)

3. When |φx| > 1
4β

1
2 and |φx + φm1 − φm2| > 1

4β
1
2 we have

V (φx) ≥ qβ − (1− q)m2 1
2φ

2
x (3.3.16)

for some 0 < q � 1 independent of β, h,W .

4. For any value of φx ∈ R we have the apriori bound

V (φx) ≥ −(1− qβ,η)m2 1
2φ

2
x − η (3.3.17)

where 0 < η < β is any positive constant (to be fixed later) and qβ,η = cη
β for

some 0 < c� 1 independent of W,β and h).

Proof. To prove (3.3.14) it is enough to use third order Taylor formula with
integral remainder

V (φx) =
φ3
x

2

∫ 1

0

dt(1−t)2f ′′′(φm1+tφx) = (φxβ
1
2 )3

∫ 1

0

dt(1−t)2 tanh(φm1+tφx)
[cosh(φm1+tφx)]2 .

Using | tanh(u)| ≤ 1 ∀u and |φm1 + tφx| ≥ 1
4β

1
2 for all t ∈ [0, 1] as long as

|φx| ≤ 3
4β

1
2 we have

|V (φx)| ≤ β3e−2βc = o(e−β).
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To prove (3.3.15) we expand around the secon minimum φm2

V (φx) = f(φx + φm1)− f(φm1)− m2

2 φ
2
x (3.3.18)

= [f(φm2)− f(φm1)] + [f(φx + φm1)− f(φm2)− f ′′(φm2)
2 (φx + φm1 − φm2)2]

+ [ 1
2 (φx + φm1 − φm2)2(f ′′(φm2)−m2)] + [m

2

2

(
(φx + φm1 − φm2)2 − φ2

x

)
]

≥ h+ o(e−β) + m2

2 ((φm1 − φm2)2 + 2φx(φm1 − φm2)) (3.3.19)

where we also used m2 = f ′′(φm1) = f ′′(φm2) + o(e−β). To prove (3.3.16) we
show that the function

g(φ) = f(φ+ φm1)− f(φm1)− qm
2

2 φ
2.

is positive definite in the region |φx| > 1
4β

1
2 and |φx + φm1 − φm2| > 1

4β
1
2 , for

all 0 < q ≤ c with c small enough (independent of β). The result then follows
taking q = c/2. Finally a similar argument proves (3.3.17). In this case we
choose qβ,η = cη/β with 0 < c < 1 such that

η − qβ,η
m2

2
(φm1 + φm2)2 = 0.

Then using the convexity properties of the function f we can show that

f(φ+ φm1)− f(φm1)− qβ,η
m2

2
(φ+ φm1)2 + η ≥ 0.

This bound holds also when h = 0. 2

3.4 Infinite volume

All estimates in the previous section work as long as the volume is bounded by
|Λ| ≤W 4β. Since the covariance C decays exponentially fast Cxy ≤ KW,de

−|x|/W

we expect the integral to factorize over regions of finite size. Guided by the fi-
nite volume estimates let us partition the volume Λ = [−L, . . . L]d in cubes of
side l = Wβ1/d. We will denote each cube by ∆ and the corresponding center
by x∆. Note that x∆ may not be on Zd. This construction can be extended to
the whole lattice Zd. Without loss of generality we can assume L/l = n ∈ N.
Let us call Z̃d the lattice (of step l) made of the centers of the small cubes and
Λ̃ the restriction to the set of cubes inside Λ. We say that a cube ∆ belongs to
Λ, ∆ ∈ Λ, if the corresponding center belongs to Λ̃. With these definitions

Λ = ∪∆|x∆∈Λ̃∆ = ∪∆∈Λ∆,

and this is a disjoint union. To avoid confusion in the following we will denote
the Laplacian operator by ∆̂.

We introduce the factorized covariance

Cd =
∑
∆∈Λ

1∆(x)Cxy1∆(y) =
∑
∆∈Λ

(C∆)xy.
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By construction this is a block diagonal matrix. If we replace C by Cd inside
Z̃Λ we obtain

Z̃Λ(Cd) =
∏

∆∈Λ

Z∆, Z∆ =

∫
dµC∆

(φ∆)e−
∑
x∈∆ V (φx).

We can then write the partition function as

Z̃Λ =
Z̃Λ∏

∆∈Λ Z∆

∏
∆∈Λ

Z∆

If our intuition is correct we will see that the ratio

Z̃Λ∏
∆∈Λ Z∆

' 1.

We will prove this in the next section via cluster expansions.

Finite volume estimate on Z∆. For a single cube we want to apply the fi-
nite volume estimates we derived in the previous section. These estimates used
heavily the properties of the discrete Laplacian with periodic or Neuman con-
ditions on the boundary of Λ. Unfortunately, the covariance C∆ has no longer
the structure (−W 2∆̂ + m2)−1. A similar problem will arise when estimating
the integrals obtained from the cluster expansion. The solution is explained in
the next subsection.

3.4.1 Estimates on the factorized covariance

Let P[Λ̃] the set of partitions of Λ̃ into (not necessarily connected) sets. Let
Π ∈ P[Λ̃] be such a partition. Each cluster X̃ ∈ Π induces a set of cubes

X = {∆|x∆ ∈ X̃} ⊂ Λ. (3.4.20)

With this definition {X}X̃∈Π is a partition of Λ. We define the covariance
factorized over the partition Π

(CΠ)xy =
∑
X̃∈Π

1X(x)Cxy1X(y).

In the special case Π = Π0 = {{j}j∈Λ̃} each component X is reduced to a single

cube. When Π = Π1 = Λ̃ we have a single component X = Λ. Then we recover
the covariance Cd and C

Cd = CΠ0
, C = CΠ1

Note that CΠ is a block diagonal matrix on Λ × Λ and it has no longer the
structure (−W 2∆̂ + m2)−1. Now let ∂Π be the boundary of each component
X̃ ∈ Π. More precisely

∂Π = {(x, y) ∈ Λ× Λ| |x− y| = 1, and ∃X̃ 6= X̃ ′ ∈ Π,with x ∈ X, y ∈ X ′},
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where X is defined in (3.4.20). Then ∂Π is the boundary of the sets in Λ
associated to each X̃ ∈ Π. With these definitions we can introduce −∆̂∂Π

N the
discrete Laplacian on Λ with Neuman boundary conditions on the boundary of
Π

(f,−∆̂∂Π
N f) =

∑
x,y∈Λ\∂Π

(fx − fy)2 =
∑
X̃∈Π

 ∑
xy∈X

(fx − fy)2


=
∑
X̃∈Π

(fX ,−∆̂∂X
N fX), (3.4.21)

where fX is the function restricted to X (the set associated to X̃) and −∆̂∂X
N

is the discrete Laplacian on X with Neuman conditions on the boundary of X.
Let

C∂Π
N = (−W 2∆̂∂Π

N +m2)−1 =
∑
X̃∈Π

CNX (3.4.22)

where CNX = (−W 2∆̂∂X
N +m21X)−1. Note that

C∂Π
N ≤ C∂Π0

N =
∑
∆∈Λ

CN∆ ∀Π ∈ P[Λ̃].

The Laplacian with periodic boundary conditions on Λ satisfies

−∆̂ ≥ −∆̂∂Π
N ⇒ C ≤ C∂Π

N ≤
∑
∆∈Λ

CN∆

for any partition Π. With all these definitions we can prove the following result.

Lemma 5 The following quadratic form bound holds

0 < CΠ ≤ C∂Π
N .

Proof Since both CΠ and C∂Π
N are block diagonal matrices on the partition of

Λ induced by Π it is enough to prove the bound for one set X such that X̃ ∈ Π.
Let fX : X → R a function on X and let f : Λ → R its extension to Λ defined
by

f(x) =

{
fX(x) x ∈ X
0 x 6∈ X

Then

0 < (f, Cf) = (fX , CΠfX) = (f, Cf) ≤ (f, C∂Π
N f) = (fX , C

∂Π
N fX).

This completes the proof. 2

3.4.2 Finite volume estimate for Z∆.

Lemma 6 If d = 3, |∆| = βW 3 and h ≥ W ε−1 for some fixed 0 < ε < 1, the
partition function restricted to a single cube satisfies

|Z∆ − 1| ≤ e−β
1
2 .
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Proof. In order to apply the same arguments as in the previous section we
need to check that

C−1
∆ − (1− q)m21∆ > 0 ∀0 < q < 1

and that Lemma 2 and 3 can be generalized from C to C∆. Using the results
from the last subsection we have

C−1
∆,q = C−1

∆ − (1− q)m21∆ ≥ (CN∆ )−1 − (1− q)m21∆ = (CN∆,q)
−1

= −W 2∆̂∂∆
N +m2q1∆ > 0.

Therefore

(v, C∆,q, v) ≤ (v, CN∆,q, v), and

N 2
C∆,q

N 2
C∆

= det
(
1 + (1− q)m2C∆,q

)
≤ det

(
1 + (1− q)m2CN∆,q

)
hence we can generalize the proofs of Lemma 2 and 3 to C∆. 2

3.4.3 Cluster expansion around a gaussian meaure

Preliminary definitions

We need to generalize a bit the definitions introduced in Section 2.7.1. For any
partition P ∈ P[Λ] We introduce the function

χP : Λ× Λ → {0, 1}

(x, y) →
{

1 ∃X ∈ P, x, y ∈ X
0 otherwise

With this definition χP (x, x) = 1 for any partition P . Note that in Section
2.7.1. we considered only pairs x 6= y. Now for each Π ∈ P[Λ̃] let PΠ the
corresponding partition of Λ. Let

Pd = {∆}∆∈Λ

the partition corresponding to Π0 = {{j}j∈Λ}. Then

χPd(x, y) =

{
1 ∃∆, x, y ∈ ∆
0 otherwise.

On the other extreme, when Π = Π1 = {Λ̃} is reduced to only one set then
P = {Λ}. The corresponding function is

χΛ(x, y) = 1 ∀x, y ∈ Λ.

We will consider F [Λ̃] the set of ordered forests on Λ̃. Each edge in the forest
corresponds now to a pair of cubes ∆ 6= ∆′ (instead of a pair of points in Λ).
To each forest with n lines Fn = (l1, . . . , ln) we associate the vector

sFn = (s1, . . . , sn), 1 ≥ s1 ≥ s2 ≥ · · · ≥ sn ≥ 1,
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and the set of forests

Fj = (l1, . . . , lj), j = 1, . . . n

obtained keeping only the first j edges in Fn. For each forest Fn we denote by
ΠFn the partition of Λ̃ generated by the connected components of the forest. Let
PFn the corresponding partition of Λ. With these definitions we can introduce
the function

u(sFn) : Λ× Λ → [0, 1]
(x, y) → u(sFn)(x, y)

u(sFn) = sn(χPFn − χPFn−1
) + sn−1(χPFn−1

− χPFn−2
) + · · ·+ s1(χPF1

− χPd) + χPd

Note that by construction u(sFn)(x, y) = 1 ∀x, y ∈ ∆, for any cube ∆. Moreover
we have

u(sF ) =


1 ∃∆, x, y ∈ ∆
0 ∃∆ 6= ∆′, x ∈ ∆, y ∈ ∆′, ∆,∆′ not connected by F
inf l∈γF

∆∆′
sl ∃∆ 6= ∆′, x ∈ ∆, y ∈ ∆′, ∆,∆′ connected by F

This last definition can be generalized to unordered forests.

Theorem 2 (BKAR) In the case of a real gaussian measure with covari-
ance C the Brydges-Kennedy-Abdesselam-Rivasseau Forest formula becomes∫

dµC(φ)e−
∑
x∈Λ V (φx) =

∑
F∈F [Λ̃]

∑
(xe,ye)e∈F

[
∏
e∈F

Cxe,ye ]

∫
[0,1]|F |

[
∏
e∈F

dse]

(3.4.23)

·
∫
dµC(u(sF )(φ)

[∏
e∈F

δ

δφxe

δ

δφye

]
e−
∑
x∈Λ V (φx)

where for each edge e = (∆,∆′) in the forest (xe, ye) is any pair of points in
Λ× Λ with xe ∈ ∆, ye ∈ ∆′.

Proof The proof works as in Theorem 5 (Chapter 2). For each n ≥ 1 we
define the function

ũ(s1, .., sn+1) = sn+1(χΛ − χPFn ) + u(sFn), ũ(s1) = s1(χΛ − χPd) + χPd .

Note that

C(ũ(s1, .., sn+1))(x, y) = sn+1 [χΛ(x, y)Cx,y] + (1− s1) [χPd(x, y)Cx,y]

+

n∑
j=1

(sj − sj+1) [χPFj (x, y)Cx,y]

= sn+1 Cxy + (1− s1) [Cd]xy +

n∑
j=1

(sj − sj+1) [CΠFj
]xy
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Since CΠ > 0 for any partition Π, (sj − sj+1) ≥ 0, (1− s1) ≥ 0 and

sn+1 + (1− s1) +

n∑
j=1

(sj − sj+1) = 1,

C(ũ(s1, .., sn+1)) is a convex combination of positive matrices, hence is positive

C(ũ(s1, . . . , sn+1)) > 0 ∀(s1, . . . , sn+1).

Similarly for

C(u(s1, .., sn))(x, y) = sn [χFn(x, y)Cx,y] + (1− s1) [χPd(x, y)Cx,y]

+

n−1∑
j=1

(sj − sj+1) [χPFj (x, y)Cx,y]

= sn CΠFn
+ (1− s1) [Cd]xy +

n−1∑
j=1

(sj − sj+1) [CΠFj
]xy. (3.4.24)

Hence
C(u(s1, . . . , sn)) > 0 ∀(s1, . . . , sn).

Moreover

∂sn+1

∫
dµC(ũ)(φ)e−V (φ) = ∂sn+1

[
det

1
2 C
−1

2π

∫
dφe−

1
2 (φ,C−1φ)e−V (φ)

]
=

1

2

∫
dµC(ũ)(φ)

[
((C−1φ), (∂sn+1

C) (C−1φ))− tr[C−1∂sn+1
C]
]
e−V (φ)

=
∑
xy

[∂sn+1C]xy

∫
dµC(ũ)(φ)

[
1
2

δ
δφ(x)

δ
δφ(y)

]
e−V (φ).

where we used

∂sC
−1
xy = −

[
C−1(∂sC)C−1

]
xy
,

∂s(detC)−1 = ∂se
−tr lnC = −(detC)−1tr

[
C−1(∂sC)

]
,

(C−1φ)(x)e−
1
2 (φ,C−1φ) = − δ

δφ(x)
e−

1
2 (φ,C−1φ).

Finally

(∂sn+1C)xy =
∑

(∆6=∆′)6∈PFn

1∆(x)Cxy1∆′(y).

The proof then works as for Theorem 5 (Chapter 2). 2
Since the integral inside (3.4.23) factors over the connected components of

the forest we can write

Z̃Λ∏
∆ Z∆

=
∑

Π∈P[Λ̃]

∏
X̃∈Π

A(X̃)∏
∆∈X Z∆

 =
∑

Π∈P[Λ̃]

∏
X̃∈Π

A(X̃)


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where

A(X̃) =
∑

T∈T [X̃]

∑
{(xe,ye)∈∆e×∆′e}e∈T

[
∏
e∈T

Cxe,ye ]

∫
[0,1]|T |

[
∏
e∈T

dse] (3.4.25)

·
∫
dµC(u(sT ))(φX)

[∏
e∈T

δ

δφxe

δ

δφye

]
e−
∑
x∈X V (φx)

and X is the connected component of PΠ corresponding to X̃. With these
definitions

A(X̃) = 1 when |X̃| = 1 ≡ ∃∆ s.t X = ∆.

Using the same arguments as in Chapter 2 (Lemma 4) we can write

1

|Λ|
ln Z̃Λ∏

∆ Z∆
=

1

βW 3|Λ̃|
ln Z̃Λ∏

∆ Z∆
(3.4.26)

=
1

βW 3|Λ̃|

∑
n≥1

1

n!

∑
X̃1,...X̃n⊂Λ̃

|X̃i|≥2

[
n∏
i=1

A(X̃i)

]
Vc(X̃1, . . . , X̃n)

where we used |Λ|/|Λ̃| = |∆| = βW 3. Note that by construction Xi is a set of
cubes. By Theorem 4 (Chapter 2) if we have

sup
x̃∈Z̃3

∑
2≤|X̃|<∞
x̃∈X̃

|A(X̃)|e|X̃| < 1 (3.4.27)

then the series (3.4.26) above converges in absolute value uniformly in the vol-
ume Λ̃ (hence also in Λ). Note that requiring that the point x̃ ∈ X̃ is equivalent
to require that the corresponding cube ∆, such that x∆ = x̃, satisfies ∆ ∈ X.

3.5 Convergence of the log expansion

By the arguments in the previous section we only need to prove that (3.4.27)
holds. We will prove this is true assuming h ≥ 1

|∆|1−ε for some fixed 0 < ε < 1.

3.5.1 Reorganization of the sum

Note that, using Lemma 6 above we have

|A(X̃)| = |A(X̃)|∏
∆∈X Z∆

≤ |A(X̃)|e|X̃|e
−β

1
2

(3.5.28)

where we used
1

1 + (Z∆ − 1)
≤ 1

1− e−β
1
2

,
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and (1 + x) ≤ ex ∀x ∈ R. The problem is then to get a reasonable bound on
|A(X̃)|. Since we will try to apply the finite volume estimates inside each cube
we partition each cube configuration φ∆ according to the regions Ij introduced
in Theorem 1 (Section 3.3).

1 =
∏
∆

[

4∑
j=1

χIj (φ∆)] =
∑
{j∆}

∏
∆

χIj∆ (φ∆).

The amplitude A(X̃) is then written as

A(X̃) =
∑

T∈T [X̃]

∑
{(xe,ye)∈∆e×∆′e}e∈T

[
∏
e∈T

Cxe,ye ]

∫
[0,1]|T |

[
∏
e∈T

dse] (3.5.29)

·
∑
{j∆}

∫
dµC(u(sT ))(φX)

[∏
∆

χIj∆ (φ∆)

] [∏
e∈T

δ

δφxe

δ

δφye

]
e−
∑
x∈X V (φx)

We need to reorganize the expression for A(X̃). For a fixed tree on Λ̃ a tree
line e corresponds to a pair of cubes ∆e,∆

′
e. The corresponding covariance acts

on Λ so we have to choose in addition two points xe ∈ ∆e and ye ∈ ∆′e. The
same point x ∈ ∆ may be used as endpoint for several tree lines. To make this
precise we

1. fix d∆ ≥ 1 the number of tree lines attached to the cube ∆. This number
is determined by the tree;

2. inside each cube ∆ we fix m∆ the number of points in the lattice inside ∆
attached to some tree line. By construction 1 ≤ m∆ ≤ d∆. When m∆ = 1
all tree lines connected to ∆ hook to the same point, when m∆ = d∆ all
tree lines hook to different points;

3. given m∆, we choose a subset V∆ ⊂ ∆ made of m∆ points |V∆| = m∆.
These are the lattice points where the tree lines actually hook;

4. for each x ∈ V∆ we choose dx the number of tree lines hooking to the
point x. By construction dx ≥ 1 and

∑
x∈V∆

dx = d∆ (since there are d∆

tree lines hooking inside ∆);

5. finally we have to choose which tree lines (among the d∆) hooks to each
point x ∈ V∆, respecting the constraint given by dx.

The sum over (xe, ye) can then be written as

∑
{(xe,ye)∈∆e×∆′e}e∈T

=
∏
∆

 d∆∑
m∆=1

∑
V∆⊂∆

∑
{dx,x∈V∆}

 ∗∑
{(xe,ye)}e∈T

where
∑∗

means the sum must be compatible with the constraints created by
d∆, V∆ and the coordination numbers dx ∀x ∈ V∆. Then the expression for
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A(X̃) becomes

A(X̃) =
∑

T∈T [X̃]

∑
m∆

∆∈X

∑
{V∆⊂∆}

∑
{dx,x∈V∆}

∗∑
{(xe,ye)}e∈T

[
∏
e∈T

Cxe,ye ]

∫
[0,1]|T |

[
∏
e∈T

dse]

·
∑
{j∆}

∫
dµC(u(sT ))(φX)

∏
∆∈X

[
χIj∆ (φ∆)

[ ∏
x∈V∆

(
δ

δφx

)dx]
e−
∑
x∈∆ V (φx)

]
(3.5.30)

3.5.2 Estimate on the derivatives inside each cube

The derivatives in the second line of (3.5.30) can be written as[ ∏
x∈V∆

(
δ

δφx

)dx]
e−
∑
x∈∆ V (φx) = P∆(φ∆)e−V (φ∆)

where P∆(φ∆) =
∏
x∈V∆

Pdx(φx),

Pd(φx) = eV (φx)

(
δ

δφx

)d
e−V (φx) =

d∑
q=1

(−1)q
∑

n1,..nq≥1∑q
j=1 nj=d

V (n1)(φx) · · ·V (nq)(φx)

and

V (n)(φx) =

(
δ

δφx

)n
V (φx).

We have the following estimate .

Lemma 7 The contribution from all derivatives in the cube ∆ is bounded by

|P∆(φ∆)| =
∏
x∈V∆

|Pdx(φx)| ≤


(cβd

2
∆)d∆e−

1
4βm∆ φ∆ ∈ I1

(cβd
3
∆)d∆ φ∆ ∈ I2

(2cβd
4
∆)d∆efβ

m2

2 (φ∆,φ∆) φ∆ ∈ I3 ∪ I4

where we set

cβ = 4
√
β, fβ =

1

m2
e−β .

Proof . We study separately the regions I1, I2 and I3 ∪ I4.

Region I1. If φ∆ ∈ I1 then using Lemma 8 below we have

|V (n)(φx)| ≤ (
√
β)n 4nn! e−

β
2 ∀n ≥ 1.
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Then

|Pd(φx)| ≤
d∑
q=1

∑
n1,..nq≥1∑q
j=1 nj=d

q∏
j=1

[
(
√
β)nj 4njnj ! e

− β2
]

= (4
√
β)d

d∑
q=1

e−q
β
2

∑
n1,..nq≥1∑q
j=1 nj=d

q∏
j=1

nj !

≤ (4
√
β)ddd

d∑
q=1

e−q
β
2 dq ≤ (4

√
β)dd2d

d∑
q=1

e−q
β
2 ≤ (4

√
β)dd2de−

1
4β

where we used nj ! ≤ n
nj
j ≤ dnj and β � 1. The contribution from the cube ∆

is then ∏
x∈V∆

|Pdx(φx)| ≤
∏
x∈V∆

[
(4
√
β)dxd2dx

x e−
β
4

]
(3.5.31)

≤ (4
√
β)d∆d2d∆

∆ e−
1
4βm∆ (3.5.32)

Region I2. If φ∆ ∈ I2 then using Lemma 8 below we have

|V (n)(φx)| ≤ (
√
β)n 4nn! ∀n ≥ 1.

|Pd(φx)| ≤
d∑
q=1

∑
n1,..nq≥1∑q
j=1 nj=d

q∏
j=1

[
(
√
β)nj 4njnj !

]
= (4

√
β)d

d∑
q=1

∑
n1,..nq≥1∑q
j=1 nj=d

q∏
j=1

nj !

≤ (4
√
β)ddd

d∑
q=1

dq ≤ (4
√
β)dd2d+1 ≤ (4

√
β)dd2d+1

The contribution from the cube ∆ is then∏
x∈V∆

|Pdx(φx)| ≤
∏
x∈V∆

[
(4
√
β)dxd2dx+1

x

]
≤ (4

√
β)d∆d2d∆+m∆

∆ ≤ (4
√
βd3

∆)d∆ ,

(3.5.33)
where we used m∆ ≤ d∆.

Region I3 ∪ I4. If φ∆ ∈ I3 ∪ I4 then using Lemma 8 below we have

|V (n)(φx)| ≤ (
√
β)n 4nn![1 + |φx|e−β ] ≤ (

√
β)n 4nn!2

√
dx e

1
2dx

φ2
xe
−β

where we used

(1 + cα|x|) ≤ c(1 + α|x|) ≤ 2ce
x2

2
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for 0 < α� 1 and c ≥ 1, we set c =
√
dx, α = e−β/2 and x = φxe

−β/
√
dx.

|Pdx(φx)| ≤
dx∑
q=1

(2
√
dx)qe

q
2dx

φ2
xe
−β ∑

n1,..nq≥1∑q
j=1 nj=dx

q∏
j=1

[
(
√
β)nj 4njnj !

]

≤ (2
√
d)dxe

1
2φ

2
xe
−β

(4
√
β)dx

dx∑
q=1

∑
n1,..nq≥1∑q
j=1 nj=dx

q∏
j=1

nj !

≤ e
φ2
x

2eβ (8
√
β)dxd

3
2dx
x

dx∑
q=1

dqx ≤ (8
√
β)dxd

5
2dx+1
x e

φ2
x

2eβ ≤ (8
√
β)dxd3dx+1

x e
φ2
x

2eβ ,

where we used q ≤ dx. The contribution from the cube ∆ is then∏
x∈V∆

|Pdx(φx)| ≤
∏
x∈V∆

[
(8
√
β)dxd3dx+1

x e
φ2
x

2eβ ,

]
(3.5.34)

≤ e
1

2eβ
(φ∆,φ∆)(8

√
β)d∆d3d∆+m∆

∆ . (3.5.35)

This concludes the proof. 2

Lemma 8 The first and second derivatives of V satisfy the bounds

|V ′(φx)| ≤

 2
√
βe−

β
2 φx ∈ I1

3
√
β φx ∈ I2

|φx|e−β + 2
√
β φx ∈ (I1 ∪ I2)c

|V (2)(φx)| ≤
{

2(
√
β)2 e−β φx ∈ I1 ∪ I2

2(
√
β)2 φx ∈ (I1 ∪ I2)c

All other derivatives satisfy

|V (p+2)(φx)| ≤
{

(
√
β)p+2 4p−1(p+ 1)! e−2β φx ∈ I1 ∪ I2

(
√
β)p+24p−1(p+ 1)! φx ∈ (I1 ∪ I2)c

where p ≥ 1.

Proof Remember that

V (φ) = f(φ+ φm1)− f(φm1)− m2

2
φ2.

The expression for the first derivative is

V ′(φx) = f ′(φx + φm1)−m2φx = f ′(φx + φm1)− f ′(φm1)−m2φx

= φx(1−m2) + (
√
β)
[
tanh(

√
βφm1)− tanh(

√
β(φm1 + φx)

]
= φx(1−m2)− (

√
β)

sinh(
√
βφx)

cosh(
√
βφm1) cosh(

√
β(φm1 + φx)

,
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where we used f ′(φm1) = 0. Now |1 − m2| ≤ e−β and |φx| ' |φx + φm1| '
|φm1| '

√
β when φx ∈ I1. In all other regions the second term on the derivative

is bounded by 2
√
β since | tanhx| ≤ 1.

The second derivative is

V ′′(φx) = (1−m2)− (
√
β)2

(
(1− [tanh(

√
β(φm1 + φx)]2

)
= (1−m2)− (

√
β)2

[cosh(
√
β(φm1 + φx))]2

The bound follows directly. Finally using tanhx′ = 1 − (tanhx)2 higher order
derivatives can be written as

V (n+2)(φx) = (
√
β)n+2Pn(tanh(

√
β(φm1 + φx))

where Pn : [−1, 1]→ R is a polynome of order n+ 2 defined by induction:

Pn(x) = Qn(x)(1− x2), Qn(x) = P ′n−1(x), ∀n ≥ 2,∀x ∈ [−1, 1],

and

Q1(x) = x.

By construction Qn(x) is a polynome of order n. Let

Qn(x) = a0 + a1x+ · · ·+ anx
n, ‖Qn‖ = (n+ 1) sup

j
|aj |.

Then ‖Q2‖ = 2 and

|Qn(x)| ≤ ‖Qn‖ ∀|x| ≤ 1,∀n ≥ 1.

Using

Qn+1(x) = Q′n(x)(1− x2)− 2xQn(x)

one chan check that

‖Qn+1‖ ≤ 4(n+ 2)‖Qn‖.

Then

‖Qn‖ ≤ 4n−1(n+ 1)! ∀n ≥ 1.

Inserting all this we have

|V (n+2)(φx)| ≤ (
√
β)n+2 sup

x∈[−1,1]

|Pn(x)| ≤ (
√
β)n+2‖Qn‖.

This completes the proof. 2
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3.5.3 Estimate on the gaussian integral

Inserting the estimates we proved in Section 3, the φ integral in (3.5.30) is
bounded by∫

dµC(u(sT ))(φX)

[ ∏
∆∈X

χIj∆ (φ∆)|P∆(φ∆)|e−V (φ∆)

]
(3.5.36)

≤
∑
x′
∆
,y′

∆
j∆=4

∑
σ∆=±
j∆=4

[ ∏
∆∈X

(2cβd
4
∆)d∆ea∆

]∫
dµC(u(sT ))(φX)e(v,φX) e

m2

2 (φX ,DφX)

where for each ∆ with j∆ = 4 we sum over two points x′∆, y
′
∆ inside ∆ and over

a sign σ∆ = ±,

(v, φX) =
∑

∆∈X
(v∆, φ∆), D =

∑
∆∈X

(1− q∆)Id∆

and a∆, v∆, q∆ depend on the index j∆. Precisely when j∆ = 1 we have

a∆ = −1

4
β + c|∆|e−β , v∆(x) = 0, q∆ = 1,

and c > 0 is some constant. When j∆ = 2 we have

a∆ = −h|∆| − m2

2
(φm1 − φm2)2|∆|, v∆(x) = −m2(φm1 − φm2), q∆ = 1.

When j∆ = 3 we have

a∆ = −qβ|∆|, v∆(x) = 0, q∆ = q, 0 < q � 1.

Finally when j∆ = 4 we have

a∆ = +η|∆| − δu, v∆(x) = σ∆u(δx′∆x − δy′∆x), q∆ =
cη

β
,

where c > 0 is some constant and we set

δ =

√
β

4
, u = δW 2c1, η =

1

4Wc4

with some fixed constant c4. Note that when j∆ = 3, 4 there is a correction
of order e−β (from P∆) to 1 − q∆ that is negligeable (even in the region I4).
Finally, the j∆ = 1, the factor −β in a∆ comes from the field derivative. Since
the set X has at least two cubes there is always at least one tree line hooking
to each cube therefore the factor −β appears in each cube with j∆ = 1.

The gaussian integral in the last term is finite. This is a consequence of the
next lemma.
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Lemma 9 Let C(u(sT )) and D the matrices introduced above. Then

C(u(sT ))−1 −m2D > 0, when 0 < q∆ < 1 ∀∆.

Moreover let C(u(sT ))D = (C(u(sT ))−1 −m2D)−1 and

CND = (−W 2∆̂∂Π0

N +m2q̂∆)−1 =
∑
∆

CN∆,q∆

where −∆̂∂Π0

N is the Laplacian with Neuman b.c. on each cube and q̂∆ =∑
∆ q∆I∆ is a diagonal matrix. Then we have

0 < C(u(sT ))D ≤ CND ∀T and sT .

Proof. When the forest is reduced to a tree, formula (3.4.24) becomes

C(u(s1, .., sn)) = sn CΠTn
+ (1− s1) [Cd] +

n−1∑
j=1

(sj − sj+1) [CΠTj
]

where n = |T | and we ordered the tree lines so that 1 ≥ s1 ≥ s2, . . . ≥ sn. By
Lemma 5 CΠTj

≤ C∂Π0

N for all Tj then

0 < C(u(s1, .., sn)) ≤ [sn +

n−1∑
j=1

(sj − sj+1) + (1− s1)]C∂Π0

N = C∂Π0

N .

Then

C(u(sT ))−1 −m2D ≥ (C∂Π0

N )−1 −m2D =
∑
∆

(CN∆,q∆)−1 > 0

since q∆ > 0 ∀∆. Therefore C(u(sT ))−1 −m2D is invertible and[
C(u(sT ))−1 −m2D

]−1 ≤ CND .

This ends the proof. 2

Using this result we can compute the gaussian integral in (3.5.36). The result
is∫

dµC(u(sT )) e
m2

2 (φX ,DφX)e(v,φX) =
NC(u(sT ))D

NC(u(sT ))

∫
dµC(u(sT ))D e(v,φX)

(3.5.37)

=
NC(u(sT ))D

NC(u(sT ))
e

1
2 (v,C(u(sT ))Dv) = det

[
1 +m2DC(u(sT ))D

] 1
2 e

1
2 (v,C(u(sT ))Dv)

Using Lemma 9 above

(v, C(u(sT ))Dv) ≤ (v, CND v) =
∑

∆∈X
(v∆, C

N
∆,q∆v∆).
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Moreover since D > 0 we can define D
1
2 and

det
[
1 +m2DC(u(sT ))D

]
= det

[
1 +m2D

1
2C(u(sT ))DD

1
2

]
≤ det

[
1 +m2D

1
2CNDD

1
2

]
= det

[
1 +m2DCND

]
=
∏
∆

det
[
1 +m2(1− q∆)CN∆,q∆

]
,

where we used

A ≥ B ⇒ MTAM ≥MTBM ∀M invertible,

and
A ≥ B > 0 ⇒ detA ≥ detB.

The first equation is proved by quadratic forms

(φ,MTAMφ) = (Mφ,AMφ) ≥ (Mφ,BMφ),

where we use Mφ 6= 0 when φ 6= 0. The second can be proved using gaussian
integrals

1

[detA]
1
2

=

∫
dφ

2π
e−

1
2 (φ,Aφ) ≤

∫
dφ

2π
e−

1
2 (φ,Bφ) =

1

[detB]
1
2

.

Inserting these bounds and using the same estimates we did in Section ?? we
obtain∑

x′
∆
,y′

∆
j∆=4

∑
σ∆=±
j∆=4

[ ∏
∆∈X

(2cβd
4
∆)d∆ea∆

]∫
dµC(u(sT ))(φX)e(v,φX) e

m2

2 (φX ,DφX)

≤
∏

∆∈X
(4cβd

4
∆)d∆e−c∆ ≤

∏
∆∈X

(4cβd
4
∆)d∆e−β

ε

where

c∆ =


c1β j∆ = 1
c2h|∆| j∆ = 2
c3β|∆| j∆ = 3
c4W

2β j∆ = 4,

where h ≥ 1

|∆|1−3ε
, β � lnW, (3.5.38)

and cj > 0 are some fixed constants. The amplitude A(X̃) is then estimated by

|A(X̃)| ≤
∑

T∈T [X̃]

∑
m∆

∆∈X

∑
{V∆⊂∆}

∑
{dx,x∈V∆}

∗∑
{(xe,ye)}e∈T

∑
{j∆}

· [
∏
e∈T

Cxe,ye ]

[ ∏
∆∈X

(4cβd
4
∆)d∆e−β

ε

]
(3.5.39)
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The factor dd∆

∆ may destroy the convergence. Note that, when d∆ tree lines
hook to the cube ∆, there must be d∆ different cubes in Λ connected to ∆ by
the tree. Since each cube has volume |∆| at least half of these cubes have their

center at distance R ∝ d
1
3 |∆| 13 = d

1
3Wβ

1
3 from the center of ∆. Using the

properties of the discrete Laplacian one can show that

Cxy ≤
1

W 2

1

(1 + |x− y|)
e−
|x−y|
W in d = 3.

Then extracting a fraction of the exponential decay from each tree line, and
noting that each tree line contributes only to two different cubes we have

[
∏
e∈T

Cxe,ye ] ≤

[∏
e∈T

1

W 2

1

(1 + |x− y|)
e−
|x−y|
10W

][∏
∆

e−cd∆d
1
3
∆β

1
3

]
.

Moreover if we let x̃∆ denote the point in Λ̃ corresponding to the cube ∆ we
have

|xe − ye| ≥Wβ
1
3 (|x̃e − x̃′e| − 1)

where x̃e is the point corresponding to the cube ∆e and |x̃− x̃′| is the distance
in the dual lattice Z̃3. Inserting this in the sum above we obtain

|A(X̃)| ≤
∑

T∈T [X̃]

∑
m∆

∆∈X

∑
{V∆⊂∆}

∑
{dx,x∈V∆}

∗∑
{(xe,ye)}e∈T

∑
{j∆}

· [
∏
e∈T

Jx̃ex̃′e ]

[∏
∆

(4cβd
4
∆)d∆e−β

ε

e−cd∆d
1
3
∆β

1
3

]

≤
∑

T∈T [X̃]

[
∏
e∈T

Jx̃ex̃′e ]

[∏
∆

4(4 |∆|cβd4
∆)d∆e−β

ε

e−cd∆d
1
3
∆β

1
3

]

where we used∑
{j∆}

1 =
∏
∆

4

∑
m∆

∆∈X

∑
{V∆⊂∆}

∑
{dx,x∈V∆}

∗∑
{(xe,ye)}e∈T

1 =
∑

{(xe,ye)}e∈T

1 =
∏
e∈T
|∆|2 =

∏
∆

|∆|d∆ ,

and we defined

Jx̃ex̃′e =
1

W 2
e−(|x̃e−x̃′e|−1)β

1
3 .

Now

4(4 |∆|cβd4
∆)d∆e−β

ε

e−cd∆d
1
3
∆β

1
3 = 4e−d∆(cd

1
3
∆β

1
3−4 ln d∆−ln cβ−ln |∆|)e−β

ε

≤ e−d∆β
1
4



30 CHAPTER 3. LOW TEMPERATURE REGION

for any value of d∆ since β is large. Then

|A(X̃)| ≤
∑

T∈T [X̃]

[
∏
e∈T

λJe]

where λ = e−β
1
4 � 1 and

∑
x̃′∈Z̃3 Jx̃x̃′ < 1. Then we can repeat the same

argument we used in Section 2.8 to prove that

sup
x̃0

∑
2≤|X̃|<∞
x̃0∈X̃

|A(X̃)|e|X̃| ≤
∑

T∈T [X̃]

[
∏
e∈T

λJe]e
c|X̃| ≤

∑
T∈T [X̃]

[
∏
e∈T

λ
1
2 Je]e

|X̃| < 1,

where c = 1 + e−β
1
2 (see (3.5.28)). This concludes the proof of (3.4.27). 2
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