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Chapter 1: Introduction

The aim of this course is to cover some mathematical issues, together with
the corresponding techniques, arising in the study of phase transitions.

1 Some definitions

In the context of statistical mechanics a physical system can be modeled (in the
most simple version) by a field

ϕ : Λ→ Ω
x→ ϕ(x)

where Λ ⊂ Zd is a finite set of lattice points (you may think of them as equilib-
rium positions of atoms in a cristal), and ϕ(x) describes the state or configuration
of our system at the position x (for example the displacement of the atom from
its equilibrium position, or the orientation of the local magnetic moment).

According to the physical problem we want to model, the set of possible
local states (or configurations) Ω may be

Ω = RN , CN , SN , N ≥ 1,

where SN = {x ∈ RN |‖x‖ = 1} is the N -dimensional sphere. When N = 1 this
reduces to S1 = {+1,−1} (the Ising model), when N = 2 ϕ(x) in on a circle (the
XY−model, or classical rotator), when N = 3 we ϕ(x) in on the 3-dimensional
sphere (the classical Heisenberg model).

The set of possible states (configurations) for the system is then

ΩΛ = (Ω)Λ = {ϕ : Λ→ Ω}.

The price paid by the system to take a configuration far from its equilibrium is
encoded in the energy functional

HΛ : (Ω)Λ → R
ϕ → H(ϕ)

(1.1)
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We will consider the probability distribution on ΩΛ defined by

dµΛ(ϕ) =
e−βH(ϕ)

ZΛ
dϕ

where β = 1/T 1, T is the temperature, ZΛ (the partition function) is the nor-
malization constant

ZΛ =

∫
e−βH(ϕ)dϕ.

Finally dϕ is a product measure

dϕ =
∏
j∈Λ

dϕj .

When Ω = Rn, dϕj is a product Lebesgue measure dϕj =
∏n
α=1 dϕj,α. When

Ω = Sn, dϕj is the invariant measure on the sphere (Haar measure) normalized
so that ∫

Sn
dϕj = 1.

The probability measure dµΛ is called Gibbs measure for the system with energy
functional H.

Remark For very low temperature T � 1 the parameter β is large and the
measure is concentrated around the configurations minimizing the energy. On
the contrary for very hight temperature T � 1 the parameter β is small and
the measure is uniformly distributed on the whole set of configurations. This
is consistent with the physical intuition that at low temperature the system is
ordered (the probability is concentrated near a fixed configuration) and for high
temperature it is disordered (any configuration is possible).

2 Ferromagnetic order: the O(N) model

As a precise example let us consider the O(N) model, N ≥ 1. In this case the
configuration set is

ΩΛ = SΛ
N = {S : Λ→ SN}, S(x) = Sx ∈ SN = {S ∈ RN | ‖S‖ = 1}.

One may think of Sx as a ”spin” (local magnetic moment) associated to the
atom at position x. The energy functional is

HΛ(S) = − 1
2

∑
x,y∈Λ

Jxy(Sx, Sy)− 1

β

∑
x∈Λ

(hx, Sx)

1The true relation is β = (TkB)−1, where kB is the Boltzman constant. Here we use the
(often applied) convention kB = 1 to simplify the notations.
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where Jxy = Jyx ≥ 0, (v, v′) =
∑n
α=1 vαv

′
α is the standard Euclidean scalar

product, β = 1/T , and hx ∈ RN plays the role of a local magnetic field. The
corresponding finite volume Gibbs measure is

dµβ,hΛ

Λ,N (S) = dS
ZΛ,N (β,hΛ)e

β
2

∑
x,y∈Λ Jxy(Sx,Sy)e

∑
x∈Λ(hx,Sx) (2.2)

where hΛ = {hx}x∈Λ and

ZΛ,N (β,hΛ) =

∫
dS e

β
2

∑
x,y∈Λ Jxy(Sx,Sy)e

∑
x∈Λ(hx,Sx).

In the following we use the notation

Eβ,hΛ

Λ,N [f ] =

∫
f(S)dµβ,hΛ

Λ,N (S)

for any function f : SΛ
N → R.

Properties of the finite volume Gibbs measure. Physically, the two most
interesting situations are:

(a) When hx = 0 ∀x ∈ Λ the measure is invariant under flip

dµβ,0Λ,N (S) = dµβ,0Λ,N (−S)

where −S(x) = −Sx ∀x. This is a discrete symmetry. Moreover, for N ≥ 2 the
measure has also a continuous symmetry

dµβ,0Λ,N (S) = dµβ,0Λ,N (US)

where US(x) = USx and U is any rotation in Rn.
Since Jxy ≥ 0 the density of the measure is maximal on constant spin con-

figurations where
Sx = S ∀x ∈ Λ.

For N = 1 this selects two possible configurations: Sx = +1 ∀x, or Sx = −1 ∀x.
For N ≥ 2 the maximal is on a compact manifold Sx = S ∀x, with ‖S‖ = 1.
In analogy with ferromagnetic materials we say that Jxy ≥ 0 is a ferromagnetic
interaction.

(b) When a constant magnetic field is present

hΛ = h, i.e. hx = h = hn ‖n‖ = 1 ∀x ∈ Λ

the corresponding term in the measure density breaks the symmetries and favors
one configuration among the set of all constant configurations, namely

Sx = n ∀x ∈ Λ,

where all spins are aligned with the constant magnetic field.

In the following, we will consider always (a) or (b). Nevertheless, we will often
use the more general formula (2.2) as a computational tool.
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3 Thermodynamic limit

The typical number of particles in a physics system is 1023, so we are interested
in the properties of the measure dµβ,hΛ,N (S) as the volume Λ → Zd. This is the
so called thermodynamic limit.

Definition 1 We say that the sequence of measures µβ,hΛ,N converges weakly to

some limit measure µβ,hN as Λ→ Zd if

Eβ,hΛ,N [f ] =

∫
f(S)dµβ,hΛ,N (S)→

∫
f(S)dµβ,hN (S) = Eβ,hN [f ]

for any local function f : SZdN → R.

Definition 2 A function f : SZdN → R is local if there exist some set X ⊂ Zd
with |X| <∞ such that f depends only on S|X = {Sx}x∈Λ (it depends only on
the value of Sx for points x in a finite set.)

Correlation functions It is is enough to study the limit as Λ → Zd for the
moments (correlation functions) of the measure

Eβ,hΛ,N

 m∏
j=1

Sαjxj


where Sαx is the α-th component (α = 1, . . . d) of the vector Sx. In the product
above the same position x or component α may appear several times. By a
straightforward computation one gets

Eβ,hΛ,N

 m∏
j=1

Sαjxj

 = 1
ZΛ,N (β,h)

m∏
j=1

∂
h
αj
xj

[ZΛ,N (β,hΛ)]|hΛ=h .

Actually, for any m ≥ 2 it is better to study the so called connected correlation
function (or cumulants) defined by

Eβ,hΛ,N

[ m∏
j=1

Sαjxj

]
C

=
∑

P∈P[Im]

(−1)|P |−1(|P | − 1)!
∏
J∈P

Eβ,hΛ,N

[∏
j∈J

Sαjxj

]
where Im = {1, 2, . . . ,m}, P[Im] is the set of all partitions of Im into subsets
(not necessarily connected). In particular for m = 2 we get

Eβ,hΛ,N

[
Sα1
x1
Sα2
x2

]
C

= Eβ,hΛ,N

[
Sα1
x1
Sα2
x2

]
− Eβ,hΛ,N

[
Sα1
x1

]
Eβ,hΛ,N

[
Sα2
x2

]
.

The function lnZΛ,N (β,hΛ) is called the generating functional for connected
correlation functions. Indeed

Eβ,hΛ,N

[ m∏
j=1

Sαjxj

]
C

=

m∏
j=1

∂
h
αj
xj

[lnZΛ,N (β,hΛ)]|hΛ=h .
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4 Definition of a phase transition.

A large class of physically interesting functions can be obtained as derivatives
with respect to β or hα (α = 1, . . . n) of lnZΛ,N (β,h). We define the finite
volume free energy as

ΦΛ,N (β,h) = − 1

|Λ|
lnZΛ,N (β,h)

This function is analytic in h and β for any finite volume Λ.

Definition 3. We say the model has a phase transition if some derivative in
β or h has a discontinuity (or some divergence point) in the thermodynamic
limit. The order of this derivative determines the order of the transition. The
most frequent cases arising are:

• first order transition (a first derivative has a jump)

• second order transition (a second derivative has a jump)

• Kosterlitz-Thouless transition (all derivatives are continuous, but the free
energy is not real analytic).

Universality. Second order phase transitions are particularly interesting be-
cause they have some universality properties. This means that the behaviour of
a system near a second order phase transition (after some appropriate rescaling)
does not depend on the precise details of the physical model behind. The study
of a simplified model (as the ones we consider here) can then give information
on realistic (but more complicated) physical models.

Some important thermodynamical quantities. We will consider the fol-
lowing derivatives:

• finite volume average magnetization (in direction α = 1, . . . n):

Mα
Λ,N (β,h) = 1

|Λ|E
β,h
Λ,N [

∑
x∈Λ

Sαx ] = −∂hαΦΛ,N (β,h),

• finite volume entropy:

SΛ,N (β,h) = β2

|Λ|E
β,h
Λ,N [Hβ,0

Λ,N (S)] = −β2∂βΦΛ,N (β,h),

where Hβ,0
Λ,N (S) = − 1

2

∑
xy Jxy(Sx, Sy) is the energy at h = 0,
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• finite volume magnetic susceptibility:

χα,α
′

Λ,N (β,h) = ∂hα′M
α
Λ,N (β,h)

= 1
|Λ|

∑
xy∈Λ

{
Eβ,hΛ,N [SαxS

α′

y ]− Eβ,hΛ,N [Sαx ] Eβ,hΛ,N [Sα
′

y ]
}

= 1
|Λ|

∑
xy∈Λ

Eβ,hΛ,N [SαxS
α′

y ]C = −∂2
hαhα′

ΦΛ,N (β,h).

5 Example: Ising model in the mean field case

Let ΛL = [−L, . . . , L]d a cube in Zd centered at the origin. The space of local
states is Ω = S1 = {−1,+1}. A state of the system is described by the function

σ : Λ → {1,−1}
x → σx,

assigning spin σx ± 1 to each lattice site x. The energy functional is given by
HΛ : ΩΛ → R

HΛ(σ) = −1

2

∑
jk∈Λ

Jjkσjσk −
h

β

∑
j∈Λ

σj ,

where Jjk = Jkj ≥ 0 is the interaction parameter between σj and σk. In the
mean field regime we set

Jjk =
1

|Λ|
∀j, k ∈ Λ.

Finally h ∈ R is the magnetic field breaking the discrete symmetry σ → −σ,
and β > 0 is the inverse temperature. The probability for a configuration σ is
given by the (discrete) Gibbs measure

P β,hΛ (σ) =
e−βHΛ(σ)

ZΛ(β, h)

where the partition function ZΛ(β, h) is

ZΛ(β, h) =
∑
σ

e−βHΛ(σ) =
∑
σ

e
β

2|Λ|
∑
jk∈Λ σjσkeh

∑
j∈Λ σj

=
∑
σ

e
β

2|Λ| [
∑
j∈Λ σj]

2

eh[
∑
j∈Λ σj ].

Theorem 1. The mean field Ising model has a phase transition in any d ≥ 1.
The behavior of the system depends on the temperature.

• At low temperature (T < 1 (≡ β > 1) there is a first order phase transition:
the magnetization is discontinuous at h = 0:

lim
h→0+

lim
Λ→Zd

MΛ(β, h) = M(β) = − lim
h→0−

lim
Λ→Zd

MΛ(β, h),
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where
M(β) > 0 ∀β > 1

is the size of the jump.

• At the critical temperature T = 1 (β = 1) there is a second order phase
transition: all first derivatives are continuous in β and h, but the second
derivative in h is divergent as h→ 0 and β → 1:

lim
β→1

M(β) = 0, lim
β→1,h→0

χ(β, h) = lim
Λ→Zd

χΛ(β, h) = +∞.

• At hight temperature (T > 1 (≡ β < 1) there is no phase transition:
limΛ→Zd ΦΛ(β, h) is analytic in β and h. In particular the magnetization
at h = 0 vanishes

lim
h→0

lim
Λ→Zd

MΛ(β, h) = 0 = lim
Λ→Zd

lim
h→0

MΛ(β, h).

Moreover, near the critical point (T = 1, h = 0) the behavior of M(β) and
χ(β, 0) is given by

M(β) ∼ (1− T )β̂ T ≤ 1, (1− T )� 1, β̂ = 1
2

χ(β, 0) ∼ 1

|1− T |γ
|1− T | � 1, γ = 1.

Remark 1. The exponents β̂ and γ are called critical exponents and are uni-
versal. This means that any physical model in the same universality class as
mean field Ising will have the same exponents, even though the critical temper-
ature will not be T = 1 in general and the prefactors will be different.

Remark 2. At finite volume MΛ(β, 0) = 0 by the symmetry σ → −σ for any
temperature T ≥ 0. At high temperature this remains true also after taking the
theormodynamic limit, thus suggesting that the limit measure is still invariant
under the symmetry σ → −σ when h = 0. At low temperature T < 1 this is no
longer true. We say there is a spontaneous symmetry breaking.

Proof of Theorem 1. The rest of this section is devoted to the proof of these
results. The main steps are the following.

1. Duality transformation: the free energy and its derivatives can be reex-
pressed as integrals (or ratios of integrals) of the form∫

R
g(x)e−Nf(x)dx,

where N = |Λ| � 1.

2. Asymptotic analysis (Laplace method, saddle analysis): as N = |Λ| → ∞
the integral above concentrates near the minimum of the function f . In
order to make this statement exact we have to perform some asymptotic
analysis.
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5.1 Duality

The partition function can be reformulated as an integral over one real variable

Lemma 1 For any dimension d ≥ 1 we have

ZΛ(β, h) = 1
NΛ,β

∫
R
dx e−|Λ|F (x,β,h), with NΛ,β =

√
2πβ
|Λ|

1
2|Λ|

F : R× R+ × R → R
(x, β, h) → F (x, β, h) = (x−h)2

2β − ln coshx

Proof Using the formula∫
e−

λ
2 x

2

eyxdx =

√
2π

λ
e+ 1

2λy
2

∀λ > 0, y ∈ R

we have

e
β

2|Λ| [
∑
j∈Λ σj]

2

=
√
|Λ|
2πβ

∫
e−
|Λ|
2β x

2

ex[
∑
j∈Λ σj]dx.

Then

ZΛ(β, h) =
√
|Λ|
2πβ

∑
σ

eh[
∑
j∈Λ σj ]

∫
e−
|Λ|
2β x

2

ex[
∑
j∈Λ σj]dx

=
√
|Λ|
2πβ

∫
e−
|Λ|
2β x

2 ∑
σ

e(h+x)[
∑
j∈Λ σj ]dx

=
√
|Λ|
2πβ

∫
e−
|Λ|
2β x

2

[2 cosh(x+ h)]|Λ|dx

2

Remarks. The duality reduces the problem to the study of a one variable
integral (compared to 2|Λ| variables in the initial representation). Moreover, for
large |Λ| the integral will be concentrated around the minimal with respect to
x of the function F (x, β, h), therefore a saddle point analysis is possible.

5.1.1 Free energy and derivatives in the dual representation.

Using the dual representation above the finite volume free energy can be written
as

ΦΛ(β, h) = − 1

|Λ|
lnZΛ(β, h) = − 1

|Λ|
ln

∫
e−|Λ|F (x,β,h)dx+

1

|Λ|
lnNΛ,β . (5.3)
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The corresponding first order derivatives (magnetization and entropy), and the
second derivative in h (magnetic susceptibility) are written as

MΛ(β, h) = 1
β 〈(x− h)〉Λ (5.4)

SΛ(β, h) = − 1
2 〈(x− h)2〉Λ + β

2|Λ|

χΛ(β, h) = − 1

β
+
|Λ|
β2
〈(x− 〈x〉Λ)

2〉Λ (5.5)

= − 1

β
+
|Λ|
β2

[
〈x2〉Λ − 〈x〉2Λ

]
,

where we defined

〈g(x)〉|Λ| =

∫
R g(x)e−|Λ|F (x,β,h)dx∫

R e
−|Λ|F (x,β,h)dx

.

5.2 Asymptotic analysis

We want to study the asymptotic behaviour as N →∞ of the integral

IN =

∫
R
g(x)e−Nf(x)dx,

where f, g : R→ R are two smooth functions. We define

〈g(x)〉N =

∫
R g(x)e−Nf(x)dx∫

R e
−Nf(x)dx

.

5.2.1 A general result

We will use the following lemma.

Lemma 2 Let f, g : R→ R be two smooth functions satisfying

• f has a unique global minimum at the point x0 and f ′′(x0) > 0;

• all other minima are at a finite distance from f(x0). Precisely there exists
ε0 > 0 such that ∀ε ≤ ε0 we have

inf
Bc(x0,ε)

f(x) = max{f(x0 + ε), f(x0 − ε)}

• there exists N0 > 0 such that ∀N ≥ N0∫
R
e−Nf(x)dx <∞,

∫
R
e−Nf(x)|g(x)|dx <∞.

Then we have∫
R
e−Nf(x)dx = e−Nf(x0)

√
2π

Nf ′′(x0)

[
1 + o

(
1

N1/2

)]
(5.6)

〈g(x)〉N = g(x0) +
1

2N

[
g′′(x0)

f ′′(x0)
− g′(x0)f ′′′(x0)

f ′′(x0)2

]
+ o(N−1). (5.7)
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Proof By the assumptions above there exists an ε0 � 1 (independent of N)
such that

f(x) ≥ inf{f(x0 + ε), f(x0 − ε)} ∀x ∈ B(x0, ε)
c, ∀ε ≤ ε0.

This means the local minima do not play a role here. Since ε� 1 we can expand
around x0

f(x0 ± ε)− f(x0) =
f ′′(x0)

2
ε2 +O(ε3) ≥ f ′′(x0)ε2

4

for ε small enough. Then we can break the integral as follows∫
R
e−N [f(x)−f(x0)]g(x)dx

=

∫
B(x0,ε)

e−N [f(x)−f(x0)]g(x)dx+

∫
B(x0,ε)c

e−N [f(x)−f(x0)]g(x)dx

where f(x)− f(x0) ≥ 0 hence for any N ≥ 2N0 we have∫
B(x0,ε)c

|g(x)|e−N [f(x)−f(x0)]dx

≤ [ sup
x∈B(x0,ε)c

e−N/2[f(x)−f(x0)]]

∫
B(x0,ε)c

|g(x)|e−N/2[f(x)−f(x0)]dx

≤ e−
Nf′′(x0)ε2

8

∫
B(x0,ε)c

|g(x)|e−N0[f(x)−f(x0)]dx

≤ e−
Nf′′(x0)ε2

8

∫
R
|g(x)|e−N0[f(x)−f(x0)]dx ≤ C e−

Nf′′(x0)ε2

8

where C > 0 is a constant independent of N and ε. The contribution from
B(x0, ε)

c is exponentially small even if we let ε go to zero as N →∞. Precisely
let

εN =
Nα

N1/2
.

Then for any 1/2 > α > 0

εN →N→∞ 0, Nε2N = N2α →N→∞ ∞.

The main contribution to the integral comes then from the ballB(x0, εN )→N→∞
{x0}. Since εN � 1 we can expand in powers around x0:

N [f(x)− f(x0)] =
f ′′(x0)

2
N(x− x0)2 +

f ′′′(x0)

3!
N(x− x0)3 + o(N−1/2)

where we chose α such that

Nε4N = o(N−1/2).
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Inserting these estimates in the integral we obtain∫
B(x0,εN )

e−N [f(x)−f(x0)]dx =

∫
B(x0,εN )

e−
f′′(x0)

2 N(x−x0)2

[
1− f ′′′(x0)

3!
(x− x0)3 + o(N−1/2)

]
dx

=
1√
N

∫
B(0,εN

√
N)

e−
f ′′(x0)

2 y2

[
1− f ′′′(x0)

3!

y3

√
N

+ o(N−1/2)

]
dy =

[
1 + o(N−1/2)

]√
2π

Nf ′′(x0)

where we chose α such that

Nε4N = o(N−1/2), (Nε3N )2 = o(N−1/2),

and ∫
B(x0,εN )

·dy =

∫
R
·dy + e−O(Nε2) →N→∞

∫
R
·dy

since Nε2N →N→∞ ∞. This concludes the proof of (5.6). To prove (5.7) take α
in the definition of εN very small α = 1/10 such that

ε4NN = o(N−1/2), (ε3NN)2 = o(N−1/2), ε3 = o(N−1/2).

The average of g can be written as

〈g(x)〉N = g(x0) + 〈g(x)− g(x0)〉N

where

〈g(x)− g(x0)〉N =

∫
B(x0,εN )

[g(x)− g(x0)] e−N [f(x)−f(x0)]dx∫
R e
−N [f(x)−f(x0)]dx

+

∫
B(x0,εN )c

[g(x)− g(x0)] e−N [f(x)−f(x0)]dx∫
R e
−N [f(x)−f(x0)]dx

By the same arguments as above, the second integral is exponentially small
(true as long as α > 0). Then we are reduced to study the integral restricted to
the region B(x0, εN ). For all x ∈ B(x0, εN )

√
N [g(x)− g(x0)] = g′(x0)

√
N(x− x0) +

g′′(x0)

2

√
N(x− x0)2 +O(

√
Nε3),

N [f(x)− f(x0)] =
f ′′(x0)

2
N(x− x0)2 +

f ′′′(x0)

3!
N(x− x0)3 +O(Nε4N ).

Inserting these expansions and rescaling y =
√
N(x− x0)∫

B(x0,εN )

[g(x)− g(x0)] e−N [f(x)−f(x0)]dx

=

∫
B(x0,εN

√
N)

dy√
N
e−

f′′(x0)
2 y2

1√
N

[
g′(x0)y + g′′(x0)

2
y2

√
N

+ o(N−1/2)
] [

1− f ′′′(x0)
3!

y3

√
N

+ o(N−1/2)
]

= 1√
N

[
A√
N

+ o(N−1/2)
]√

2π
Nf ′′(x0)

[
1 + e−O(

√
N)
]

11



where we defined

A =
g′′(x0)

2f ′′(x0)
− g′(x0)f ′′′(x0)

2f ′′(x0)2
,

we chose α such that

√
Nε3 = o(N−1/2), Nε4N = o(N−1/2), (Nε3N )2 = o(N−1/2).

and we used ∫
e−λ

x2

2 x2dx∫
e−λ

x2

2 dx
=

1

λ

∫
e−λ

x2

2 x4dx∫
e−λ

x2

2 dx
=

3

λ2
.

Finally inserting∫
R
e−N [f(x)−f(x0)]dx =

√
2π

Nf ′′(x0)

[
1 + o(N−1/2)

]
the result follows. 2

5.2.2 Application to the Ising model

In order to check if we can apply the lemma above we have to study the minima
of the function F .

Lemma 3 Let

F (x, β, h) =
(x− h)2

2β
− ln coshx, x ∈ R, β > 0, h ∈ R.

There are three regimes.

1. When h 6= 0 (for any β) or when h = 0 and β < 1 (high temperature) F
has one global minimum at x0(β, h) and one local minimum, for any β.
Moreover ∂2

xF (x0, β, h) > 0.

2. When β = 1 and h = 0 (critical point). F has one global minimum at
x0 = 0 and one local minimum. But ∂2

xF (0, 1, 0) = 0.

3. When h = 0 and β > 1 (low temperature) F has two minima at the same
height, at symmetric positions ±x1(β) and ∂2

xF (±x1, β, 0) > 0.

Proof The first three derivatives of F are

∂xF = (x−h)
β − tanhx, ∂2

xF = 1
β −

1
(cosh x)2 , ∂3

xF = 2 sinh x
(cosh x)3

Note that ∂3
xF does not depend on h of β, it is an odd function satisfying

∂3
xF (x) > 0 ∀x > 0. Then the behaviour of F depends on the sign of the

hessian ∂2
xF (0, β) at the origin.
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Non negative hessian: ∂2
xF (0, β) ≥ 0. This corresponds to

1
β − 1 ≥ 0 ⇔ β ≤ 1 ⇔ T ≥ 1.

In this case ∂3
xF (x) > 0 ∀x > 0 implies ∂2

xF (x, β) > 0 for all x 6= 0. Then F has
only one minimum at position x0(β, h). From ∂xF (0, β, h) = −h/β we deduce
that

x0(β, h)

 > 0 h > 0
< 0 h < 0
= 0 h = 0.

Moreover, since ∂2
xF (x, β) > 0 for all x 6= 0 we have ∂2

xF (x0(β, h), β) ≥ 0 ∀h
and equality holds only when h = 0.

Negative hessian: ∂2
xF (0, β) < 0. This corresponds to

1
β − 1 < 0 ⇔ β > 1 ⇔ T < 1.

Let us restrict to h ≤ 0. The case h > 0 follows in the same way. Then

∂xF (0, β, h) = −h/β ≥ 0.

Equality holds only when h = 0. Now, since ∂2
xF (x = 0) < 0 and ∂3

xF (x) > 0
∀x > 0 there must be two symmetric points ±y, for some y > 0 (remenber that
∂2
xF is an even function, independent of h) such that

∂2
xF (x) > 0 ∀|x| > y, ∂2

xF (x) < 0 ∀|x| < y.

Then in the region x ≤ 0 the function F has exactly one minimum at position
x0(β, h) < −y < 0 (true also when h = 0). By the relation above ∂2

xF (x0) > 0.
In the region x > 0 there are two possible behaviours.

Large |h|. For |h| large enough we have

∂xF (y, β, h) =
y

β
− tanh y − h

β
≥ 0,

where remember that y is a function of β only. In this case the function F is
non decreasing for all x > 0, hence there is only one global minimum at x0 < 0.

Small |h|. For |h| small enough we have

∂xF (y, β, h) < 0.

In this case the function has a minimum at position x′0(β, h) > y > 0 and a local
maximum at position 0 < x′′0(β, h) < y. The question arises which of the two
minima x0 < 0, x′0 > 0 is lower. We start with h = 0. In this case the function F
is even and has two equal minima at symmetric positions x′0(β, 0) = x1(β) > 0,

13



x0 = −x′0 = −x1(β). In order to study the variation of F (x0) and F (x′0) as a
function of h we compute

dhF (x0(β, h), β, h) = ∂xF (x0, β, h)∂h(x0) + ∂hF (x0(β, h), β, h)

= − (x0 − h)

β
= − tanhx0

where we used ∂xF (x0, β, h) = 0. Repeating for x′0 we get

dhF (x0(β, h), β, h) > 0, dhF (x′0(β, h), β, h) < 0.

When h becomes negative the minimum at x0 < 0 become deeper while the
minimum at x′0 > 0 becomes shallower, so the x0 is the unique global minimum.

This concludes the proof. 2

Lemma 4 When h 6= 0 or h = 0 and β < 1 the finite volume free energy has a
limit as Λ→ Zd

lim
|Λ|→∞

ΦΛ(β, h) = Φ(β, h) (5.8)

where
Φ(β, h) = F (x0(β, h), β, h)− ln 2.

and x0(β, h) is the global minimum (with respect to x) of the function F (x, β, h).
Moreover the first derivatives satisfy

M(β, h) = − lim
|Λ|→∞

∂hΦΛ(β, h) = x0−h
β = −∂hΦ(β, h)

S(β, h) = − lim
|Λ|→∞

β2∂βΦΛ(β, h) = (x0−h)2

2 = −β2∂βΦ(β, h)

Finally the magnetic susceptibility

χ(β, h) = − lim
|Λ|→∞

∂2
hΦΛ(β, h) = − 1

β
+

1

β2H
= −∂2

hΦ(β, h)

where we defined

H = ∂2
xF (x0(β, h), β, h) =

1

β
− 1

coshx0(β, h)
(5.9)

(the Hessian at the minimum).

Proof From Lemma 3 we deduce that Lemma 2 can be applied whenever
h 6= 0 or h = 0 and β < 1. The (5.8) follows directly from (5.3) and (5.6)
applying

− 1
|Λ| ln

∫
e−|Λ|F (x,β,h)dx = − 1

|Λ| ln
[
e−|Λ|F (x0,β,h)

√
2π
H|Λ| (1 + o(|Λ|−1/2))

]
→|Λ|→∞ F (x0, β, h)
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where H was defined in (5.9). Finally

1

|Λ|
lnNΛ,β →|Λ|→∞= − ln 2.

Moreover by a direct application of (5.7)

M(β, h) = lim
|Λ|→∞

1
β 〈(x− h)〉Λ = x0(β,h)−h

β = −∂hΦ(β, h)

S(β, h) = lim
|Λ|→∞

[ 1
2 〈(x− h)2〉Λ + β

2|Λ| ] = (x0−h)2

2 = −β2∂βΦ(β, h)

where we used

∂hΦ(β, h) = [∂hx0]∂xF (x0, β, h) + ∂hF (x0, β, h) = ∂hF (x0, β, h),

since ∂xF (x0, β, h) = 0. The same arguments apply for ∂β . It remains to study

χ(β, h) = lim
|Λ|→∞

χΛ(β, h) = lim
|Λ|→∞

[− 1
β + |Λ|

β2

[
〈x2〉Λ − 〈x〉2Λ

]
].

To simplify notations let F (3) = ∂3
xF (x0(β, h), β, h). Then using (5.7) with

N = |Λ| and g(x) = x2

〈x2〉Λ = x2
0 + 1

2|Λ|

[
2

H
− 2x0F

(3)

H2

]
+ o(|Λ|−1).

Using (5.7) with N = |Λ| and g(x) = x we get

〈x〉2Λ =

[
x0 + 1

2|Λ|

[
−F

(3)

H2

]
+ o(|Λ|−1)

]2

= x2
0 −

2x0

2|Λ|
F (3)

H2
+ o(|Λ|−1).

Putting these together we get

χ(β, h) = − 1

β
+

1

β2H
.

Notice that

−∂2
hΦ(β, h) = ∂hM(h, β) = − 1

β
+
∂hx0

β

and ∂hx0 = (βH)−1 from

0 = ∂h

[
x0 − h
β

− tanhx0

]
= − 1

β
+H∂hx0.

Therefore

−∂2
hΦ(β, h) = − 1

β
+

1

β2H
.

This concludes the proof of the lemma. 2
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5.2.3 Proof of the phase transition.

A direct study of the function Φ(β, h) and its derivatives shows that

lim
h→0±

M(β, h) = 0 ∀T ≥ 1

lim
h→0+

M(β, h) =
x1(β)

β
= − lim

h→0−
M(β, h) ∀T < 1,

where
x1(β) = lim

h→0+
x0(β, h) > 0 β > 1.

More precisely x1 is the unique positive solution of the equation x/β− tanhx =
0. Therefore the magnetization has a jump of size 2x1(β) > 0 for all β > 1. This
means there is a first order transition at h = 0 for all T < 1. When T > 1 the
magnetization is continuous at h = 0. Since S(β, h) is continuous everywhere,
there is no first order transition for T ≤ 1. Since H = ∂2

xF (x0, 1, 0) = 0 the
magnetic susceptibility is divergent as T → 1 and h → 0, but is continuous
everywhere else

lim
β→1,h→0

χ(β, h) = +∞.

Therefore there is a second order transition at T = 1, h = 0. This is called the
critical point. Using similar arguments one can show that also the other second
order derivatives are continuous when T > 1 so there is no first or second order
transition in this region of temperatures. Actually one can prove that there is
no phase transition at all in this region, but this will be done later.

Finally, to obtain the critical exponents we need the behaviour of x1(β) near
β = 1. When x1 ' 0 the corresponding equation is

0 =
x1

β
− tanh(x1) =

x1

β
− x1 +

x3
1

3
+ o(x4

1)

Then

x1

[
x2

1 − δ + o(x3
1)
]

= 0 ⇒ x2
1 = 3δ + o(x3

1) = 3δ[1 + o(δ2)]

⇒ x1(β) =
√

3δ[1 + o(δ2)] ∼ (1− T )

where we defined
0 < δ = 1− 1

β = 1− T � 1.

To study the divergence in χ(β, h) we remark that the Hessian at h = 0, β > 1
satisfies

H(β, 0) =
1

β
− 1

coshx1(β)
=

1

β
− 1 + x2

1 + o(x3
1) = 2δ + o(δ3/2) ∼ (1− T )

where we used

(coshx1)−2 = (1 +
x2

1

2 + o(x3))−2 = (1 + x2
1 + o(x3))−1 = 1− x2

1 + o(x3).
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On the other hand when h = 0, β < 1, x0(β, 0) = 1 hence

H(β, 0) =
1

β
− 1 = T − 1

Therefore
χ(β, 0) ∼ |1− T |−1 |T − 1| � 1.

Therefore the critical exponents are β̂ = 1/2 and γ = 1.
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