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Coagulation processes in shear flows

z3

> spherical particles in R3

' > u(x)= (SX3,0,0) speed
5= g—i; laminar shear coeff.

» Collisions between pairs of particles
with different values of x3

= instantaneous coalescence.
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Smoluchowski Equation in a shear flow (1916)

» Suitable rescaling for shear, particle density and volume fraction

( one collision for unit of time )

» The distribution function f for the particle volume in the scaling limit satisfies

8tf(v7t):%/OVK(va,W)f(vfW,t)f(w7t)dwf/00cK(V,W)f(v,t)f(w,t)dw

Coagulation kernel

K(v,w) = %S(v% + W%)3

¢

[Smoluchowski 1916]
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Motivation

A coalescing particle in a random background
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» Random distribution of particles: {x;};., positions, {7};_ volumes.
» The tagged particle moves freely with speed U along e1 = (1,0,0).
» Merging dynamics: the new volume is V+ EJ. v

the new position is the center of mass.

» Average nr. of particles for unit of volume is 1.
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Linear Smoluchowski Equation in a shear flow

» Suitable rescaling for the speed of the tagged particle, position and sizes.

( one collision for unit of time )

» The distribution function f for the particle position and volume in the scaling limit
satisfies

z 27 Vv
(Y, V,t):U/zd@/ d@[/de(v— )Y — Y Rn(8,0),V — v, 1)
Jo Jo 0 V—v

- /m dv K(V, v,0)f(Y, V, t)] = Q[f](Y, V, t)

1
R=(3%)3, n(0,¢) = (cosh,sinb cosp,sin b sin p)

2
3
K(V,v,0) = (41) sin @ cos 6 G(v)(V% + v%)2 (coagulation kernel)
™
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The particle system (CTP model)

> Q:={w={x, i}xer, | C N : {x}xesloc. finite and v > 0, x, € R*}

> (Q, X, pey) measure space.
te st {xc} ~P1in R® and {v} ~ éG(é) G prob. distr. in [0, c0).

¢ > 0 volume fraction.
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The particle system (CTP model)

The particle system (CTP model)

> Q= {w={x, vk}ker, | CN : {xi}kesloc. finite and vk > 0, xx € R*}
> (Q, X, pey) measure space.

te st {xc} ~P1in R® and {v} ~ %G(é) G prob. distr. in [0, c0).

¢ > 0 volume fraction.
» (Yo, Vo) initial configuration. Y (t) = X(t) — Ute, (moving background).
> TH(Yo, Vo;&o) = (Y(t), V(t);&(t)) t > 0 (evolution flow)
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The particle system (CTP model)

The particle system (CTP model)

> Q:={w={x, Vk}ker, I TN : {xc}kerloc. finite and vx > 0, xx € ]R3}
> (Q, X, pey) measure space.
pg st. {xc} ~ P1in R and {w} ~ $G(%). G prob. distr. in [0,00).
¢ > 0 volume fraction.
» (Yo, Vo) initial configuration. Y (t) = X(t) — Ute, (moving background).
> TH(Yo, Vo;&o) = (Y(t), V(t);&(t)) t > 0 (evolution flow)
Scaling limit:
V=09V, i=0¢v mean free flight time O(1)
Y — ¢% Y, 0= ¢*% U ~ mean free path O(¢_%)

= TH(Yo, Vorwo) = (Y(t), V(t);w(t))  (CTP model)
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The particle system (CTP model)

F(Y,V,t7) € X free flow in [0,t7], €(Y,V,t") € X collisions at t* > 0

A(Y,V,w) =

VY + Xk V,
(M, V4D vew)\ J) merging operator
weel

Vit Dkes v keJ
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The particle system (CTP model)

F(Y,V,t7) € X free flow in [0,t7], €(Y,V,t") € X collisions at t* > 0

A(Y,V,w) = (

VY + Xk VI
M, V o+ E vi; w \ J) merging operator
wee

Vit D kes vk keJ

Definition of the flow

O If w(f) € F(Y(E), V(F), t*) for some t* > T
= (Y(t), V(t);w(t)) = (Y (), V(t);w(t)) Vte [t t7]

@ Set (YO, V%) = (Y(t7), V(t);w(tT)). (Y, VEwh) = A(Y?, V2% W),
1) if w! € F(Y1, Vi, t) = free flow (step 1)

2) ifwl € (Y, Vi, t) = (Y™, V" w") = A(Y""L vn-l, 1)
until ns.t. w” € F(Y", V", t) = free flow (step 1)

=
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The particle system (CTP model)

F(Y,V,t7) € X free flow in [0,t7], €(Y,V,t") € X collisions at t* > 0

wee

vy
A(Y, V;w) = (w, V + Z vi; w \ J) merging operator

Vit D kes vk keJ

Definition of the flow

O If w(f) € F(Y(E), V(F), t*) for some t* > T
= (Y(t), V(t);w(t)) = (Y (), V(t);w(t)) Vte [t t7]

@ Set (YO, V%) = (Y(t7), V(t);w(tT)). (Y, VEwh) = A(Y?, V2% W),
1) if w! € F(Y1, Vi, t) = free flow (step 1)

2) ifwl € (Y, Vi, t) = (Y™, V" w") = A(Y""L vn-l, 1)
until ns.t. w” € F(Y", V", t) = free flow (step 1)

=

2.2) for n large = the dynamics stops at t < oo with infinite seq. of coalescences ! J
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The particle system (CTP model)

Kinematic of binary collisions

o O

V="47R3 v =tn (V,v) = Vv, RR=(FP+RY)3

Coalescing dynamics ~»  position of the center of mass of the new particle?
x =X+ (cosfé& +sinfv)(R+r) (position of the centre of the obstacle)
v =(p) = (0,cosp,sinp), p € [0,27], 6€[0,F]

v
V+4+v

X =X+ (cos6é +sin@ 7)(R + r), V =V+v J
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The particle system (CTP model)

Comments....

Ass : / G(v)v'dv < oo v >2 (the number of big obstacles is not too Iarge!)J
0

> / G (v) vidv < oo = 3 ¢« > 0 (critical vol. frac.) s.t. for 0 < ¢ < ¢.
0

all the clusters of particles are finite with prob. one.
(Continuum Percolation Theory)

[Hall '85; Grimmett '99; Meester, Roy '96]
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The particle system (CTP model)

Comments....

Ass : / G(v)v'dv < oo v >2 (the number of big obstacles is not too Iarge!)J
0

> / G(v) vidv < oo = 3 ¢« > 0 (critical vol. frac.) s.t. for 0 < ¢ < ¢.
0

all the clusters of particles are finite with prob. one.
(Continuum Percolation Theory)

[Hall '85; Grimmett '99; Meester, Roy '96]

Main difficulties
» coalescing particles could trigger sequences of coagulation events
~» formation of an infinite cluster
> the free flights between coagulation events become shorter (increasing volume)

~» runaway growth of the tagged particle in finite time.

The displacement of the center of the tag. particle is not too large as the size increases y
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Blow-up?

Finite nr. of steps for all the coag.events = global well-posedness 7

No! Blow-up in finite time might happen if {7;} iss.t. > .o, 7j < o0

Example

> {}ist. [>0and} . [ <oo
> Xo=0, Vo=1,||U|=1 wvi=1Vk, x€ sit.

3473 1 (14 k3)k
Xkl = Xk +(f) 3((k + 1)é —%

1)+ k>0 =0.
i + )+ k+1 =0, Xo
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Well-posedness for the CTP model

Blow up example

> At the collision times 7j = >4 _, Ik

1
3

Vi=j+1 R=(2G+1)
g (200

¢

=

+R))

At T = Efillj < oo the volume of the tagged particle becomes infinite ! J
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Well-posedness for the CTP model

Global well-posedness

If...

@ the coalescence events have a finite number of steps with probability one

@ the total length of the free flights of the tagged particle is infinite with
probability one (3_; /; = o)

= the motion of the tagged particle is defined globally in time.
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Well-posedness for the CTP model

Global well-posedness

If...

@ the coalescence events have a finite number of steps with probability one

@ the total length of the free flights of the tagged particle is infinite with
probability one (3_; /; = o)

= the motion of the tagged particle is defined globally in time.

Theorem [N., Veldzquez '16]
G € M4 ([0,00)) s.t. supp (G(+)) € [0, vi].
There exists ¢, = ¢.(vs) > 0s.t. Vo < ¢, and V (Yo, Vo) € R? x [0, 0)
=30cQ, Qecxrst P(Q) =1
& the CTP model is well defined for any w € ) for arbitrary long times.
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Rigorous derivation of the kinetic equation

Rigorous derivation of the kinetic equation

Setting: P := P(R® x R") probability measures on R® x R*
M; = M, (R® x R") Radon measures on R® x R¥.

Solution of the microscopic coalescence process

fo € P. For any Borel set A of R® x R we define f;, € L*°([0, T); M, ) as

/f¢(Y, v, t)deV:/ po({w = MITE(Yo, Vorw)] € ANA( Yo, Vo)dYo dVe
A R3 xR+
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Rigorous derivation of the kinetic equation

Rigorous derivation of the kinetic equation

Setting: P := P(R® x R") probability measures on R® x R*
M; = M, (R® x R") Radon measures on R® x R¥.

Solution of the microscopic coalescence process

fo € P. For any Borel set A of R® x R we define f;, € L*°([0, T); M, ) as

/f¢(Y, v, t)deV:/ po({w = N[TE(Yo, Vorw)] € AN (Yo, Vo)dYo dVo
A R3 xR+

Solutions of the equation in the sense of measures

f € C([0, T]; M) is a weak solution if fy € P and VW € C2([0, T) xR*x [0, 00))

—/T FOY, V, ){0:V(Y, V, t)+CIW(Y, V, )} dYdVdt = [ f(Y, V)W(Y, V)dYdV
0

R3 xR+ R3 xR+
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Rigorous derivation of the kinetic equation

Rigorous derivation of the kinetic equation
Setting: P := P(R® x R") probability measures on R® x R*

M; = M, (R® x R") Radon measures on R® x R¥.
Solution of the microscopic coalescence process

fo € P. For any Borel set A of R® x R we define f;, € L*°([0, T); M, ) as

/f¢(Y, v, t)deV:/ po({w = N[TE(Yo, Vorw)] € AN (Yo, Vo)dYo dVo
A R3 xR+

v

Solutions of the equation in the sense of measures

f € C([0, T]; M) is a weak solution if fy € P and VW € C2([0, T) xR*x [0, 00))

—/T FOY, V, ){0:V(Y, V, t)+CIW(Y, V, )} dYdVdt = [ f(Y, V)W(Y, V)dYdV
0

R3 xR+ R3 xR+

Goal: f,(Y,V,t) = f(Y,V,t)asp — 07
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Rigorous derivation of the kinetic equation

Theorem [N., Veldzquez '16]

G € M4 (R") such that / vIG(v)dv < oo, v > 2.
0
fy € P(R® x RT), s € L°°([0, T); M (R®* x R")) and T >0

= VA e R*xR* / fy(t) — / f(t) uniformly in [0, T]
A »=0 Ja

where f is the unique weak solution of the lin. Smoluchowski eq.

Alessia Nota (University of Bonn) On the growth of a coalescing particle October 7, 2016 16 / 20




Rigorous derivation of the kinetic equation

Theorem [N., Veldzquez '16]

G € M4 (R") such that / vIG(v)dv < oo, v > 2.
0
fy € P(R® x RT), s € L°°([0, T); M (R®* x R")) and T >0

= VA e R*xR* / fy(t) — / f(t) uniformly in [0, T]
A »=0 Ja

where f is the unique weak solution of the lin. Smoluchowski eq.

Pb: the particle dynamics is not time reversible!
Trick: instead of the forward Kolmogorov eq. for the probability density f(Y, V,t)
consider the backward Kolmogorov eq. for a test function W(Y, V,t)
aV(Y, V, t) = (CIV])(Y, V,t)
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Rigorous derivation of the kinetic equation

Theorem [N., Veldzquez '16]

G € M4 (R") such that / vIG(v)dv < oo, v > 2.
0
fy € P(R® x RT), s € L°°([0, T); M (R®* x R")) and T >0

= VA e R*xR* / fy(t) — / f(t) uniformly in [0, T]
A »=0 Ja

where f is the unique weak solution of the lin. Smoluchowski eq.

Pb: the particle dynamics is not time reversible!
Trick: instead of the forward Kolmogorov eq. for the probability density f(Y, V,t)
consider the backward Kolmogorov eq. for a test function W(Y, V,t)
aV(Y, V, t) = (CIV])(Y, V,t)

/ £V, V, (Y, V,0)dYdV = / F(Y, V,0)6(Y, V, t)dYdV
R3 xR+

R3 xR+
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The adjoint problem

» The backward Kolmogorov equation
AW(Y,V, t) = U/dv/ do dcp (v)(R 4 r)*sinf cos

{ V+ v
= U(KWD) (Y, V,£) = UN(V)W(Y, V, 1)

n(0,0)(R+r),V+v,t)—V(Y,V, t)| =(CV])

» Duhamel’s representation formula for the unique solution

W(Y,V, t) =Wo(Y,V)e PV +ZU"/ dt,,/ dto_1. / dt,

n>0

[e—UM-)(r—rn)Ke—UA(-)(tn—ran Ke WOy, ()} (Y, V)
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Main Steps

© The probability of the set of good configurations tends to one when ¢ — 0

> Q= Q' U Q® ., Q! set of well separated configurations
good conf . bad conf .

For any § > 0 there exists . =¢.(J, T) >0 s.t. if go € (0,¢.) and ¢ < &

= P(QY) >1-6 VYV Voe[o,M]
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Main Steps

© The probability of the set of good configurations tends to one when ¢ — 0

> Q= Q' U Q® , Q' setof well separated configurations
good conf . bad conf .

For any § > 0 there exists . =¢.(J, T) >0 s.t. if go € (0,¢.) and ¢ < &

= P(QY) >1-6 VYV Voe[o,M]

@ Convergence for the adjoint problem

> W (Y, V1) =E,, [Wo(MN[T(Y,V;w)])]. Wo smooth.

lim Wo(Y, V1) = W(Y,V,¢) in C(0, T]; Co(R? x R™)) J

[Constructive approach]
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Asymptotic behaviour of the solution

Long time behaviour for the distribution of volumes
> Assume G(v) decreasing fast enough [/ G(v)v%wdv < o0, 0 > 0}
0

> F(V,t) ::/ dYf(Y,V,t) (average of f with respect to Y) satisfies
R3

9F(V, t) =A(/O:/v GV = v)} + V3RE(V — v, 1)

- /OZV G(v)(V3 + v3)PF(V, t))
0
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Asymptotic behaviour of the solution

Long time behaviour for the distribution of volumes
> Assume G(v) decreasing fast enough [/ G(v)v%wdv < o0, 0 > 0}
0
> F(V,t) ::/ dYf(Y,V,t) (average of f with respect to Y) satisfies
R3
v 1 1
OF(V, 1) :A(/dv GV — )} +VIRF(V - v, 1)
0
& 1 1.5
- / dv G(v)(V3 + v3)F(V, 1))
0
I

F(Wt, t)t* = 6(W —a) as t — oo in My(RT), a= %:(fow vG(v)dv)® J

> The volume of the tagged particle increases like at> as t — oo
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Asymptotic behaviour of the solution

Perspectives & future targets

»  Analysis of the long time asymptotics for the solution of
v =)
BF(V, t) = )\/dv G(V)((V = V)3 +v3)F(V —v,t)— )\/ dv G(v)(V3 +v3)2F(V, t)
0 0

according to the choice of G(v) (different regimes for different power laws)
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Asymptotic behaviour of the solution

Perspectives & future targets

»  Analysis of the long time asymptotics for the solution of
v =)
BF(V, t) = )\/dv G(V)((V = V)3 +v3)F(V —v,t)— )\/ dv G(v)(V3 +v3)2F(V, t)
0 0

according to the choice of G(v) (different regimes for different power laws)

»  Rigorous derivation of the Smoluchowski equation

( particles in a laminar shear flow )
Btf(v,t):%/K(v—W,W)f(v—W,t)f(W,t)dW—/K(v,W)f(v,t)f(w,t)dw
0 0

K(v,w) = %S(v% + W%)3
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Asymptotic behaviour of the solution

Thanks for your attention !
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Asymptotic behaviour of the solution

The evolution flow

Let be t* > 0. We define the sets
> ?(Ya V7 t*) € Y as
?(Y7 V, t*) = {W I~ Q kA mf)} |Y _ (Xk _ Ut*e]_)| = O'(V% T Vk%)}
Xk rk) p=w
> C(Y,V,t") e X as

C(Y,V,t*) = {weQ : Y = (x — Ut*er)| < oV + vp)).

inf
ki{(xk,rk) }=w

Wik

Here o = (2)°.
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Convergence for the adjoint problem (step 2)

Vo (Y, V, 1) = Epuy [Xaood (@) Vo(M[T(Y, Viw))]  +Ep, [Xbaa (@) Wo(M[TH(Y, Viw)])]

< lVolleo &

1

IS /J” ﬁ,w)‘N’WNG(WN)xgoodw)x({wen ), = no(N[TH(Y, Viw)))

N>0

Strategy: constructive approach [Gallavotti '79]

Key tools: suitable change of variables ~+ construct a trajectory in [t;, tis1], i € [0, n]

0<th<b< --<t, <t

X1, ooy Xn — t1,B1,..., tn, Bn

Bi = Bi(0i, pi) “collision parameters”, t; entrance time

Rk: restriction to 1 = no need to define the flow with multiple collisions
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Asymptotic behaviour of the solution

Sequence of coagulation events and free flights

For any w € Q and (Xo, Vo) initial condition define a sequence

11 1,1 12 12 . 1m 1lmy. L2121 22 22 2my 2mp. i
()_( 7\_/ P X » v oo X 17\_/ l,ll,ﬁl,Wl,)_( 7\_/ X )\_/ e X 23\_/ 2,/2,ﬁ2,W2,---)
j,l jl TR TN 1Y j,! il . . 2
x! —{X{ ,...,X‘,’,j’l},\_/‘] —{V{ ""7V#j,/}' Iy > 0; ,BkGS,WkZO
~~ ~~
ER eRt
il N . . . .
> (X', ¥') : set of particles coalescing at any single step.

\_,f,
[)_(j’/7\_/j’

Ii: length of a free flight. [k = cosfe; +sinfv.

': coagulation type step. [lk, B, wi] flight type step.

wi: vol. of the obst. colliding with the tagged particle after the free flight.

Coalescence events = a sequence of coalescence steps between free flights J

» Collisions at the end of a free flight are only binary collisions with probability one.

» The probability of multiple collisions during a coalescence step is strictly positive.
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