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What is metastability?

Metastability is a phenomenon where a system, under the influence of a
stochastic dynamics, moves between different regions of its state space on
different time scales.

Fast time scale: quasi-equilibrium within single subregion

Slow time scale: transitions between different subregions
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Metastability in Statistical Physics

Metastable behaviour is the dynamical manifestation of a first-order phase
transition, for instance: condensation.
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When vapour is cooled rapidly below
the critical temperature, we see that the
system will persist for long time in a
metastable vapour state (supersaturated
gas) before transiting (rapidly) to the new
stable liquid state under some random
fluctuations.

Why?
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Metastability in Statistical Physics

Metastable behaviour is the dynamical manifestation of a first-order phase
transition, for instance: condensation.
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The system has to form a criti-
cal droplet of liquid to trigger the
crossover, which then will grow and
invade the whole space.
But many unsuccessful attempts be-
cause forming small droplets results in
an increasing of free energy...
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Models in the continuum

Several results for metastable behaviour of stochastic models on the
lattice

Continuum systems modelling fluids are very difficult to study.
Rigorous proof of the presence of phase transitions has been achieved
only for few models:

Widom-Rowlinson model (Ruelle, ’71)
Kac models with 2-body attraction and 4-body repulsion (Lebowitz,
Mazel and Presutti, ’99)

Metastability for continuum systems:

Crystalisation of 2-dimensional particles interacting via a soft-disk
potential (Jansen and den Hollander, in preparation)
We will focus on the Widom-Rowlinson model, adapting what has been
done in the discrete. This is very challenging!
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The static Widom-Rowlinson model

Λ ⊂ R2 with periodic boundary conditions, Γ set of particle configurations with

Γ = {γ ⊂ Λ: N(γ) ∈ N0}, N(γ) : cardinality of γ

halo of a configuration

h(γ) =
⋃
x∈γ

B2(x)

V0 := |B2(0)|
| · | : Leb. measure
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The static Widom-Rowlinson model

Hamiltonian

H(γ) = |h(γ)| −N(γ)V0 ⇒ −(N(γ)− 1)V0 ≤ H(γ) ≤ 0 (attractive)

halo of a configuration

h(γ) =
⋃
x∈γ

B2(x)

V0 := |B2(0)|
| · | : Leb. measure

µ(dγ) =
zN(γ)

Ξ
e−βH(γ)Q(dγ), Grand-canonical Gibbs measure
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The static Widom-Rowlinson model

Hamiltonian

H(γ) = |h(γ)| −N(γ)V0 ⇒ −(N(γ)− 1)V0 ≤ H(γ) ≤ 0 (attractive)

Q: Poisson point process with
intensity 1

z ∈ (0,∞): activity

β ∈ (0,∞): inverse
temperature

Ξ: grand-canonical partition
function

notation: V (γ) = |h(γ)|

µ(dγ) =
zN(γ)

Ξ
e−βH(γ)Q(dγ), Grand-canonical Gibbs measure
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The 2-species Widom-Rowlinson model

Two type of particles (blue, red) with configurations γB , γR

Interaction:
Hard-core with radius 2 between par-
ticles with different color (imagine
particles as disks of radius 1)

Grand-canonical Gibbs measure:

µ̃(dγR,dγB) =
1

Ξ̃
1{red-blue hard-core} zR

N(γR)zB
N(γB)Q(dγR)Q(dγB)
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Equivalence of the 1-species and 2-species

Fix the red and integrate over the blue:

1

Ξ̃

∫
Q(dγB)1{red-blue hard-core} z

N(γR)
R z

N(γB)
B = const.

zN(γR)

Ξ
e−βH(γR)

(zB , zR)→ (β, z eβV0)
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Phase transition

β

z

βc

gas
liquid

zc(β)

Coexistence line: (zR = zB in the 2-species model)

zc(β) = βe−V0β

β < βc single phase

β > βc two phases: gas/liquid

Phase transition at the thermodynamic limit, i.e. Λ→ Rd.
(D. Ruelle, ’71; J.T. Chayes, L. Chayes and R. Kotecký, ’95)
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The dynamic WR model

Heat bath dynamics

Particle configuration is a continuous-time Markov process (γt)t≥0 with state
space Γ and with generator

(Lf)(γ) =

∫
Λ

dx b(x, γ) [f(γ ∪ x)− f(γ)] +
∑
x∈γ

d(x, γ) [f(γ\x)− f(γ)]

where particles are added at rate b and removed at rate d

b(x, γ) = z e−β[H(γ∪x)−H(γ)], x /∈ γ, d(x, γ) = 1, x ∈ γ.

The grand-canonical Gibbs measure is reversible, i.e.

b(x, γ) e−βH(γ) = d(x, γ ∪ x) e−βH(γ∪x), x /∈ γ, γ ∈ Γ.
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Metastability for the WR model

Start with empty box � = ∅ (preparation in vapour state)

Choose z = κ zc(β), zc(β) = β e−βV0 , κ ∈ (1,∞), (reservoir is
supersaturated vapour),

Wait for the first time the system reaches the full box
� = {γ ∈ Γ : h(γ) = Λ} (condensation to liquid state)

Question: In the regime
β →∞
Λ fixed

what is the law of
τ� = inf{t > 0: γt = �}?
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Results

R ∈ [2,∞), Uκ : [2,∞)→ R, Uκ(R) = πR2 − κπ(R− 2)2

R2 Rc(κ)

Uκ(R)

κ1

Rc(κ)

2

Rc(κ) =
2κ

κ− 1
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Results

R2 Rc(κ)

Uκ(R)

κ1

Rc(κ)

2

Theorem 1 [Arrhenius formula]
For every κ ∈ (1,∞),

E�(τ�) = exp
[
β U(κ)− β1/3S(κ) + o(β1/3)

]
, β →∞

with

U(κ) := Uκ(Rc(κ)) =
4πκ

κ− 1

S(κ) =
s

61/3

κ2/3

κ− 1

where s ∈ (0,∞) is the unique solution of a certain integral equation.
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Results

Plots of the key quantities U(κ) and S(κ) in the Arrhenius formula

κ

U(κ)

1

4π

κ

S(κ)

1

U(κ) is the volume free energy of the critical droplet

S(κ) is the surface free energy of the critical droplet (associated with the
surface fluctuations)
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Results

Theorem 2 [Exponential law]
For every κ ∈ (1,∞),

lim
β→∞

P�
(
τ�/E�(τ�) > t

)
= e−t ∀ t ≥ 0.

Theorem 3 [Critical droplet]
For every κ ∈ (1,∞) and δ > 0,

lim
β→∞

P�
(
τCδ(κ) < τ� | τ� > τ�

)
= 1

where

Cδ(κ) =
{
γ ∈ Γ: ∃x ∈ Λ, BRc(κ)−δ(x) ⊂ h(γ) ⊂ BRc(κ)+δ(x)

}
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Heuristics

A droplet of radius R filled with 2-disks: � β disks
in the interior, � β1/3 disks on the boundary
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Heuristics for volume free energy

The birth rate is

b(x, γ) = z e−β[H(γ∪x)−H(γ)] = z eV0β e−β[V (γ∪x)−V (γ)]

particles inside a cluster are created at a rate zeV0β ∼ κβ (remember z = κzc(β),
zc(β) = βe−V0β)

Inside a droplet Poisson process with intensity κβ � 1 !!
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Heuristics for surface free energy

The birth rate is
b(x, γ) = z eV0β e−β[V (γ∪x)−V (γ)]

particles sticking out are created at a rate exp small in “sticking out” area (yellow
area), which is function of the local curvature!
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Heuristics for surface free energy

O′

BR(0)

A

B

CO′ ss′
2

When adding a new particle to a locally disk-like halo, with s protruding distance

∆V (s) = C(R) s3/2 [1 +O(s)], dist(A,B) ∼ s1/2, s ↓ 0

For e−β∆V (s) not to be negligible we have ∆V (s) ∼ β−1 and s ∼ β−2/3,

⇒ dist(A,B) ∼ β−1/3 (width of a bump)

number of boundary circles ∼ β1/3
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Potential theoretic approach

Bovier, Eckhoff, Gayrard and Klein, 2001
Bovier and den Hollander, 2015

Translates the problem of understanding the metastable behaviour of Markov
processes to the study of capacities of electric networks. Link between mean
metastable crossover time and capacity

E�(τ�) = [1 + o(1)]
µ(�)

cap(�,�)
, β →∞

where the capacity of �,� ⊂ Γ is defined as

cap(�,�) =

∫
�
µ(dγ)Pγ(τ� < τ�)

and τC = inf{t > 0: Xt ∈ C, Xt− /∈ C} is the first return time to C ⊂ Γ.
So instead of computing τ�, estimate cap(�,�) ...
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Potential theoretic approach

Estimate capacity via the Dirichlet principle

cap(�,�) = inf
f : Γ→[0,1]

f|�=1, f|�=0

E(f, f), where

E(f, f) =

∫
Γ

f(γ)(−Lf)(γ)µ(dγ)

=
1

Ξ

∫
Γ

Q(dγ)

∫
Λ

dx zN(γ∪x) e−βH(γ∪x)
[
f(γ ∪ x)− f(γ)

]2
.

- Upper bound: Estimate cap(�,�) ≤ E(f, f), for a test function f that is
guessed via physical insight.

- Lower bound: Use the Thomson principle

cap(�,�) = sup
f : Γ→[0,1]

Lf≤0 on Γ\(�,�)

E(1�, f)2

E(f, f)
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Upper bound for the capacity

Choose test function

cap(�,�) ≤ 1

Ξ

∫
Γ

Q(dγ)

∫
Λ

dx (κβ)N(γ∪x) e−βV (γ∪x)
[
f(γ ∪ x)− f(γ)

]2
...and get an upper bound for the capacity.

cap(�,�) ≤ O(β)I1(κ, β; η) + smaller orders

I1(κ, β; η) =

∫
Γ

Q(dγ) (κβ)N(γ) e−βV (γ) 1{V (γ)∈πR2
c+[−η,η]}

The biggest contribution to the capacity comes from the configurations where the
volume of the halo is close to the volume of the critical disk.
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Upper bound for the capacity

The asymptotics of I1 gives the asymptotics of the capacity. We choose
η = Cβ−2/3 and we want to prove

I1(κ, β;Cβ−2/3) =

∫
Γ

Q(dγ) (κβ)N(γ) e−βV (γ) 1{V (γ)∈πR2
c+[−C,C]β−2/3}

= exp
[
− β U(κ) + β1/3 S(κ) + o(β1/3)

]
, β →∞.

U(κ) comes from LDP plus isoperimetric inequality

S(κ) comes from MDP after reparametrizing every halo through its O(β1/3)
boundary points
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LDP and volume free energy

Let S be a halo shape.
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LDP and volume free energy

Let S− = {x ∈ S : B2(x) ⊂ S} be the 2-interior of S

and SΛ be the set of “admissible” halo shapes.
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LDP and volume free energy

Let S− = {x ∈ S : B2(x) ⊂ S} the 2-interior of S and SΛ be the set of
“admissible” halo shapes.

Proposition [LDP for halo volume]
The family of probability measures (Pβ)β≥1 on [0,∞) defined by

Pβ(C) =
1

Ξ

∫
Γ

Q(dγ) (κβ)N(γ) e−βV (γ) 1{V (γ)∈C}, C ⊆ [0,∞) Borel,

satisfies the large deviation principle with rate β and rate function I given by

I = sup
[0,∞)

J − J,

J(x) = inf
{
|S| − κ|S−| : S ∈ SΛ, |S| = x

}
, x ∈ [0,∞).

LDP for volume comes as a corollary from an LPD for halo shapes and particle
positions.
[ideas from T. Schreiber, 2003]

Elena Pulvirenti (Leiden University) Metastability for WR October 6, 2016 24 / 28



Isoperimetric inequality

Let S− = {x ∈ S : B2(x) ⊂ S} the 2-interior of S and SΛ be the set of
“admissible” halo shapes.

Proposition [Isoperimetric inequality]
For every R ∈ (2, 1

2L),

min
{
|S| − κ|S−| : S ∈ SΛ, |S| = πR2

}
= πR2 − κπ(R− 2)2 = Uκ(R)

and the minimisers are the disks of radius R. Moreover, for every S ∈ SΛ and
ε > 0,

|S| − κ|S−| − Uκ(R) ≤ 2πκε
|S| = πR2

}
=⇒ dH(BR, S) ≤

√
(2R+ ε)2 − (2R)2,

where dH denotes the Hausdorff distance.

[standard isoperimetric inequality and Bonnesen’s strong isoperimetric inequality]
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Moderate deviation and surface term

We want to prove

I1(κ, β;Cβ−2/3) =

∫
Γ

Q(dγ) (κβ)N(γ) e−βV (γ) 1{V (γ)∈πR2
c+[−C,C]β−2/3}

= exp
[
− β U(κ) + β1/3 S(κ) + o(β1/3)

]
, β →∞.

Via LD for the volume of droplet and isoperimetric we prove (roughly)∫
Γ

Q(dγ) (κβ)N(γ) e−βV (γ) 1{V (γ)≈πR2} ≈ e−β Uκ(R), β →∞

(remember Uκ(Rc) = U(κ)).

For the next term, we need control at a more refined level → moderate deviations
for the surface free energy of the droplet!
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Moderate deviation and surface term

We want to prove

I1(κ, β;Cβ−2/3) =

∫
Γ

Q(dγ) (κβ)N(γ) e−βV (γ) 1{V (γ)∈πR2
c+[−C,C]β−2/3}

= exp
[
− β U(κ) + β1/3 S(κ) + o(β1/3)

]
, β →∞.

Via LD for the volume of droplet and isoperimetric we prove (roughly)∫
Γ

Q(dγ) (κβ)N(γ) e−βV (γ) 1{V (γ)≈πR2} ≈ e−β Uκ(R), β →∞

(remember Uκ(Rc) = U(κ)).
Very roughly, we want to compute

1

β1/3
log
{

eβ U(κ)

∫
Γ

Q(dγ) (κβ)N(γ) e−βV (γ) 1{V (γ)≈πR2
c}

}
≈ ? β →∞
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Moderate deviations and surface term

Parametrize the halo’s boundary points by polar
coordinates: {ρi, θi}, i = 1, ..., n, with
ρn+1 = ρ1,

∑n
i=1 θi = 2π.

Conjecture:

ρi = Wti , ti =

i−1∑
j=1

θj , i = 1, . . . , n,

Wt =
(
Rc(κ)− 2

)
+
√(

Rc(κ)− 2
)
/2β Vt,

where (Vt)t∈[0,2π] is standard Brownian motion conditioned on being periodic and

have
∫ 2π

0
Vt dt = 0
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Concluding remarks

W-R is a very “simple” model for fluids, but displays a rich behavior
(geometric interaction, continuum symmetries, Wulff shape...)

The details of the computation are rather delicate and need to be precise
enough in order to produce the surface free energy factor in the Arrhenius
formula.

There are many challenges in understanding metastability of continuum
particle systems!

Open problems...

Thank you for your attention!
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