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1. Basic notions of continuum mechanics

[Lecture 1: 13.04]

1.1 Introduction: modelling a physical system

goal: translate a physical problem in fluid or solid mechanics into a system of PDEs

Examples: a) flow of a fluid around an obstacle or inside a pipe, b) deformations in a solid (ex.
a sponge)

Physical description:

• microscopic level: atoms/molecules. There are ∼ 1026 equations to study, very hard!

• macroscopic level: see the material as a continuous object → continuous mass distribution

Notation: For partial derivatives we will use alternatively one of the following three notations:
∂
∂xj

= ∂xi = ∂i.

1.1.1 From physics to PDE

Physical description:

1. identify the mathematical object to study

2. use physical laws+assumptions on the material to extract a system of PDEs

3. boundary conditions (how the sample interacts with the external world)

4. intial conditions

Example: fluid flowing around an obstacle (a stone in water, an aiplane in air)
1. The obstacle is described by a compact region K ⊂ R3.
The fluid motion is described by ~u(x, t) = velocity of a small portion of fluid near the position
~x ∈ R3\K at time t > 0.
Goal: find u.
2. physical laws+incompressible fluid+other assumptions → Navier-Stokes equation{

ρ0

[
∂t~u+ ~u · ~∇~u

]
= −~∇p+ η∆~u

div[~u] = 0 x ∈ R3\K, t ≥ 0
(1.1.1)
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where ρ0 > 0 (mass density) and η > 0 (dynamical viscosity) are constants, ~u : R3\K → R3 is the
velocity field, p : R3\K → R is the pressure field,

(∆~u)i = ∆~ui :=

3∑
j=1

(
∂

∂xj

)2

ui (1.1.2)

[~u · ~∇~u]i :=

3∑
j=1

[
uj

∂

∂xj

]
ui (1.1.3)

div[~u] := ~∇ · ~u =

3∑
j=1

∂

∂xj
uj (1.1.4)

[~∇p]i :=
∂

∂xj
p (1.1.5)

3. There are two boundaries: ∂K and infinity. The two most standard boundary conditions are

• Dirichlet: fix the value of u on ∂K. Example: u|∂K = 0 (no slip)

• Neumann: fix the normal deivative∇Nu on ∂K (i.e. derivative in the direction perpendicular
to the boundary).

To fix the fluid behavior at infinity, we assume the fluid moves at constant speed ~u∞, when no
obstacle is present. The obstacle creates a perturbation only in the vicinity of K, then

lim
|x|→∞

~u(x, t) = ~u∞ ∀t ≥ 0. (1.1.6)

4. initial condition: ~u(x, 0) = ~u0(x) (initial velocity field).

1.1.2 From PDE to physics

Dimensional analysis.

To check if a PDE is ’physically meaningful’ we evaluate the dimension of each term and check if
they coincide.
The basic dimensions are: length L, mass M and time T. We denote the dimension of a quantity
by [quantity].
Some important dimensions (d = 3):

[area] = L2, [velocity] =
L

T
, [force] = [mass · acceleration] =

ML

T 2

[pressure] =
[force]

[area]
=

M

LT 2
, [mass density] =

[mass]

[volume]
=
M

L3
(1.1.7)

Application to NS, eq. (1.1.1)

[~∇p] =
[p]

L
=

M

L2T 2
, [∂t~u] =

[u]

[T ]
=

L

T 2
=

[u]2

L
= [~u · ~∇~u]

⇒ [ρ0∂t~u] =
M

L3

L

T 2
=

M

L2T 2
= [~∇p]

Finally [∆u] = [u]
L2 = 1

LT . Then [η] = M
LT .

Similarity principle

Typical problem: we check the validity of a PDE in some experimental lab on a small scale sample.
How do we find the PDE describing a real size (generally larger) sample?
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Geometry. Two triangles are similar if all the corresponding adimensional parameters (i.e. the
angles) coincide.

Physical process. Two physical processes are similar if the corresponding adimensional param-
eters coincide.

Compare the PDEs for two physical processes. We need to write the PDEs in adimensional
form and then compare the adimensional parameters appearing in the equations.

PDE in adimensional form

Let us see how to write (1.1.1) in adimensional form. The variables in the functions are ~x (space
dimension) and t (time dimension). We introduce the adimensional variables

~y :=
1

x0
~x, with x0 > 0, [x0] = L,

τ :=
1

t0
t, with t0>0, [t0] = T,

where x0, t0 are fixed reference parameters. A natural choice for x0 is the size of the obstacle:
x0 := diamK. Then |y| ' 1 when we are near K. At the moment t0 is still free.
The functions appearing in the PDE become

ũ(y, τ) := u(x(y), t(τ)), u(x, t) = ũ(y(x), τ(t))

p̃(y, τ) := p(x(y), t(τ)), p(x, t) = p̃(y(x), τ(t))

where ũ, p̃ satisfy
ρ0

[
1
t0
∂τ ũ+ 1

x0
ũ · ~∇yũ

]
= − 1

x0

~∇yp̃+ η 1
x2
0
∆yũ

divy[ũ] = 0 ~y ∈ R3\K/x0, τ ≥ 0
lim|y|→∞ ũ(y, t) = u∞

(1.1.8)

Now y, τ are adimensional, but p̃, ũ still have a dimension. We introduce the adimensional functions

~v(y, τ) :=
1

u0

~̃u(y, τ), with u0 > 0, [u0] =
L

T
,

q(y, τ) :=
1

p0
p̃(y, τ), with p0 > 0, [p0] =

M

LT 2
,

where u0, p0 are fixed reference parameters. A natural choice for u0 is the velocity at infinity:
u0 := |u∞| Then |v(y, τ)| → 1 when |y| → ∞. At the moment p0 is still free.
Replacing v, q in the PDE we get

∂τ~v +
u0t0
x0

~v · ~∇y~v = − p0t0
x0ρ0u0

~∇yq +
ηt0
ρ0x2

0

∆y~v

where all functions and prefactors are adimensional. Note that

• the parameters x0, u0 are already fixed

• the parameters ρ0, η are given (by the physical problem)

• the parameters t0, p0 are still free.
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We can choose t0 such that u0 = x0

t0
and p0 such that p0t0

x0ρ0u0
= p0

ρ0u2
0

= 1. Finally we obtain ∂τ~v + ~v · ~∇y~v = −~∇yq + 1
Re∆y~v

divy[~v] = 0 ~y ∈ R3\K/x0, τ ≥ 0
lim|y|→∞ ~v(y, t) = u∞

(1.1.9)

where Re := ρ0u0x0

η is the Reynolds number. Note that the only information on the physical
system is now only in the Reynolds number. Therefore any system with the same Re is described
by the same PDE system.

[Lecture 2: 15.04]

1.2 Point mechanics

True particles occupy a finite volume, but it is often convenient to describe them as point-particles
located at the center of mass. This holds also for large objects (ex a planet).
We consider a system of N particles with masses mi > 0, i = 1, . . . , N moving in Rd (d = 1, 2, 3).

1.2.1 Kinematics

The movement is described by the positions ~xi(t) ∈ Rd = position of the i−the particle at time

t ≥ 0, i = 1, . . . n. We also define ~Vi(t) = ~xi
′(t) ∈ Rd = velocity of the i−the particle at time t ≥ 0,

i = 1, . . . n.
If no force acts on the particles, they will move forever at constant speed

~Vi(t) = ~Vi(0) ∀t

~xi(t) = ~xi(0) + t ~Vi(0) ∀t.

The trajectoris are lines.

1.2.2 Dynamics

To modify the trajectories we apply forces. we consider two types of forces acting on the particle
i:

1. external force: ~fi(t)

2. (internal) force generated on i due to the particle j = ~fij(t).

Newton 2nd law. force = mass ·accelaration. The equation of motion for the i−th particle
is then given by

mi ~xi
′′(t) = ~p′i(t) = ~fi(t) +

∑
j,j 6=i

~fij(t) (1.2.10)

where we defined ~pi(t) = mi~x
′
i(t) as the momentum of the particle i.

Newton 3rd law. The force on i due to j equals - force on j due to i, i.e.

~fij(t) = −~fji(t) ∀t, ∀i 6= j. (1.2.11)

Then fij must be of the form

~fij =
~xi − ~xj
|~xi − ~xj |

gij(|~xi − ~xj |) (1.2.12)

with gij(r) = gji(r).
Two important examples are
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1. gravitational force: gij(r) := −Gmimj
r2 , G = gravitational constant

2. electrical force: gij(r) := +K
QiQj
r2 , Qi = charge of i-th particle

1.2.3 Conservation laws

In the following we consider relations on the whole system of N particles, rather than on each
single particle.

Conservation of (linear) momentum

Let

~p(t) :=

N∑
i=1

~pi(t), ~f(t) :=

N∑
i=1

~fi(t)

the total momentum and external force respectively. Then

(c1) ~p′(t) = ~f(t) (1.2.13)

Remark. Only the external forces play a role here!

Proof.

~p′(t) =

n∑
i=1

~p′i(t) =

n∑
i=1

~fi(t) +

n∑
i=1

∑
j,j 6=i

~fij(t) = ~f(t) +
1

2

∑
j 6=i

(~fij + ~fji) = ~f(t),

where in the first step we used Newton’s 2nd law and in the third Newton’s 3rd law. 2

Conservation of angular momentum (d = 3)

Motivation: the total force does not contain enough information. As an example consider a
horizontal rod of length 2l > 0 with the two extremities at positions ~x1 = (−l, 0, 0), ~x2 = (l, 0, 0) =
−~x1. We consider two force configurations.

• Configuration 1: we apply the forces ~F1 = (0, 0,−F ), ~F2 = ~F1
~F3 = (0, 0, 2F ) = −~F1 at

positions ~x1, ~x2 and ~x3 = 0 respectively.

• Configuration 2: we apply the forces ~F1 = (0, 0, F ), ~F2 = −~F1 = (0, 0,−F ) at positions ~x1,
and ~x2 respectively.

Though in both configurations the total force is zero, in the second the system rotates.

Definitions and conservation law Let ~x0 be a fixed reference point, ~Li(t) := (~xi−~x0)×~pi be

the angular momentum of the i−th particle and ~Mi(t) := (~xi − ~x0) × ~fi the angular momentum
of the external force (torque) acting on i. Let

~L(t) :=

N∑
i=1

~Li(t), ~M(t) :=

N∑
i=1

~Mi(t)

the total angular momentum and total torque respectively. Then

(c2) ~L′(t) = ~M(t) (1.2.14)
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Proof.

~L′(t) =

n∑
i=1

~L′i(t) =

n∑
i=1

[(~xi − ~x0)× ~pi]′

=

n∑
i=1

[~x′i × ~pi + (~xi − ~x0)× ~p′i]

=

n∑
i=1

mi~x
′
i × ~x′i +

n∑
i=1

(~xi − ~x0)× ~fi +
1

2

∑
j 6=i

(~xi − ~xj)× ~fij

= ~M(t) +
1

2

∑
j 6=i

gij(|~xi − ~xj |)
|~xi − ~xj |

(~xi − ~xj)× (~xi − ~xj)

2

Remark. If we change reference point from ~x0 to ~x′0, the the total torque (resp. the angular

momentum) changes to ~M(~x′0) = ~M(~x0) + (~x0 − ~x′0) × ~f, while ~L(~x′0) = ~L(~x0) + (~x0 − ~x′0) × ~p.
Hence (c2) holds for any choice of the reference point x0

Reminder: properties of the cross (vector) product The cross product is a bilinear oper-
ation defined by

× : R3 × R3 → R3

(~a,~b) → ~a×~b = |a||b| sin θ~n

where θ ∈ [0, π) is the angle between ~a and ~b, and ~n is a unit vector orthogonal to both vectors,
with direction given by the ’right hand rule’. Alternatively one may write

(~a×~b)i =
∑
jk

εijkajbk

where εijk is the Levi-Civita symbol. The cross product is antysymmetric ~a × ~b = −~b × ~a. In
particular ~a× ~a = 0.

An example. Let us consider the example given above in the two configurations.
Configuration 1. The total force ~f = ~F1 + ~F2 + ~F3 = 0, hence by (c1) p′ = 0 (the system does

not drift). To compute the angular momentun and the torque we set x0 = 0. Indeed, since ~f = 0

the torque is independent of the choice oif x0. Then ~M = ~x1 × ~F1 + ~x2 × ~F2 + ~x3 × ~F3 = 0. Hence
~L′ = 0 (no rotation).

Configuration 2. The total force ~f = ~F1 + ~F2 = 0, hence by (c1) p′ = 0 (no drift). As before we

can set x0 = 0. Then ~M = ~x1 × ~F1 + ~x2 × ~F2 = 2~x1 × ~F1 6= 0. Hence ~L′ 6= 0 (we have rotation).

Conservation of energy

Energy is ’stored’ in the movement of particles (kinetic energy) and the internal forces (potential
energy).

Potential energy. We assume the potential energy can be modified only through internal forces.
To quantify this assumption we introduce the notion of work.
We define the work per unit time done by the force ~Fi on the particle i by Wi := ~Fi · ~x′i. Its

dimension is [W ] = [force] · L/T. In our case ~Fi = ~fi +
∑
j,j 6=i

~fij . Hence

Wi = W ext
i +W int

i , W ext
i = ~fi · ~x′i, W int

i = ~x′i · [
∑
j,j 6=i

~fij ],
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Let Wext =
∑
iW

ext
i be the total work per unit time by external forces and Wint =

∑
iW

int
i be

the total work per unit time by internal forces. The the statement above reads

E′p(t) = −Wint(t). (1.2.15)

By Newton 3rd law, this identity implies that Ep must be of the form

Ep = −1

2

∑
i6=j

Gij(|~xi − ~xj |) (1.2.16)

where, if ~fij =
~xi−~xj
|~xi−~xj |gij(|~xi − ~xj |), with gij(r) = gji(r), then Gij(r) is a primitive of gij . This

follows from

E′p = −Wint = −
∑
i

∑
j,j 6=i

~x′i · ~fij = −1

2

∑
i 6=j

(~x′i · ~fij + ~x′j · ~fji)

= −1

2

∑
i 6=j

(~x′i − ~x′j) · ~fij) = −1

2

∑
i 6=j

(~x′i − ~x′j) ·
~xi − ~xj
|~xi − ~xj |

gij(|~xi − ~xj |)

= −1

2

∑
i 6=j

d

dt
|~xi − ~xj |gij(|~xi − ~xj |) =

−1

2

∑
i6=j

Gij(|~xi − ~xj |)

′ .
Kinetic energy.

Ek :=

N∑
i=1

mi|~x′i(t)|2

2
=

N∑
i=1

|~pi|2

2mi
.

As Ep, also Ek is related to the work. Precisely we have

E′k(t) = Wext +Wint. (1.2.17)

This follows immediately from

E′k =
d

dt

N∑
i=1

mi~x
′
i · ~x′i
2

=

N∑
i=1

mi~x
′′
i · ~x′i =

N∑
i=1

Fi · ~x′i = Wext +Wint.

Conservation law. Let E(t) = Ek(t) + Ep(t) the total energy of the particle system. Then
(1.2.15)+(1.2.17) imply

(c3) E′(t) = Wext. (1.2.18)

[Lecture 3: 20.04]

1.3 Continuum mechanics: kinematics

1.3.1 From particles to continuum

Let N � 1 and Ch(x) be a cube of side h > 0 centered at x ∈ Rd. We define the fraction of mass
(resp. momentum) inside Ch(x) by

ρh(t, ~x) :=
1

|Ch|
∑

i,~xi(t)∈Ch

mi, ~ph(t, ~x) :=
1

|Ch|
∑

i,~xi(t)∈Ch

~pi

where |Ch| = hd is the volume of the cube. As N → ∞ and h → 0 (in the appropriate way)
ρh(t, ~x)→ ρ(t, ~x), ~ph(t, ~x)→ ~p(t, ~x) mass and momentum density.
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Remark. The velocity fraction is defined through ~vh := 1
ρh
~ph 6= 1

|Ch|
∑
i,~xi(t)∈Ch ~vi.

Dictionary. initial position of the N particles ~Xi = ~xi(0), i = 1, . . . N → region occupied by
the material at time 0 Ω ⊆ Rd open and connected
trajectory of particle i located at ~Xi at time 0 is ~xi( ~Xi, t) → trajectory of a small portion of

material located at ~X ∈ Ω at time 0 ~x(t, ~X).

1.3.2 Deformations

For N particles the allowed configurations (at each time t) are the N -tuples (x1, . . . ., xN ) ∈ RNd
such that xi 6= xj for all i 6= j (particles do not overlap).
For a continuous body, the possible configurations are all possible deformations (translations,
rotations, stretching. . . ) of a reference configuration Ω.

Definition 1 (Deformation.) Let Ω ⊆ Rd be a domain (i.e. open and connected) and let k ≥ 1.
A Ck− deformation (or simply a deformation) is a map ϕ : Ω→ Rd such that

1. ϕ ∈ Ck(Ω;Rd),

2. ϕ has a continuous extension to Ω̄ and this extension is invertible

3. ϕ preserves orientations i.e. detDϕ(x) > 0 ∀x ∈ Ω.

where Dϕ(x) ∈ Rd×d is defined by (Dϕ)ij(x) := ∂ϕi
∂xj

. Ω is called the reference configuration.

Remark. ϕ(x) 6= ϕ(y) ∀x 6= y is the analog of non-overlapping particles
Moreover, since ϕ is invertible, we have detDϕ(x) 6= 0 for all x, then it is either always positive
or always negative. Taking detDϕ > 0 allows to include the case ϕ = Id and excludes flipping.

A special class of deformations is given by translations and rotations.

Definition 2 (Rigid deformation) A deformation ϕ : Ω → Rd is called a rigid deformation if
Dϕ(x) ∈ SO(d) for all x ∈ Ω.

Reminder. SO(d) = {A ∈ Rd×d|ATA = Id, and detA = 1}.
For any A ∈ SO(d), the linear map TA ∈ L(Rd) defined by TAx = Ax is an isometry.

Example. An affine map ϕ(x) = Ax+ b, with A ∈ SO(d) and b ∈ Rd is a motion iff detDϕ =
detA > 0. If in addition A ∈ SO(d) this is an affine rigid motion. The following theorem proves
that all rigid motions are affine.

Theorem 1 (Liouville) Let Ω be a domain and ϕ : Ω → Rd a deformation. The following
statements are equivalent.

(i) ϕ is a rigid deformation.

(ii) ϕ is a rigid affine deformation i.e. ∃b ∈ Rd and A ∈ SO(d) s.t. ϕ(x) = Ax+ b.

(iii) ∀y, z ∈ Ω it holds |ϕ(x)− ϕ(y)| = |x− y|.

(ii)’ (local version of (ii)) ϕ is a local rigid deformation i.e. ∀x ∈ Ω ∃r > 0, b ∈ Rd and
A ∈ SO(d) s.t. ϕ(y) = Ay + b ∀y ∈ B(x, r).

(iii)’ (local version of (iii)) ∀x ∈ Ω ∃r > 0, s.t. |y − z| = |ϕ(y)− ϕ(z)| ∀y, z ∈ B(x, r).
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Proof (exercise) We prove first that (iii)′ ⇒ (ii)′ ⇒ (ii) ⇒ (i) ⇒ (iii)′. To conclude we will
prove (ii)⇒ (iii)⇒ (iii)′.
(iii)′ ⇒ (ii)′− Applying ∂yi∂zj to |y − z|2 = |ϕ(y)− ϕ(z)|2 we get

I = (Dϕ(y))T (Dϕ(z)) ∀y, z ∈ B(x, r)

Taking y = z this gives Dϕ(y) ∈ SO(d) ∀y, and taking now all z ∈ B(x, r) we have Dϕ(z) =
((Dϕ(y))T )−1 = constant matrix. Finally from

ϕ(z)− ϕ(y) =

∫ 1

0

(Dϕ)(y + s(z − y))(z − y)ds (1.3.19)

we deduce (ii)′

(ii)′ ⇒ (ii)⇒ (i) obvious.
(i)⇒ (iii)′. Using (1.3.19) and Dϕ ∈ SO(d) (hence TDϕ is an isometry) we obtain the inequality
|ϕ(z) − ϕ(y)| ≤ |z − y|. To obtain the other inequality let ψ = ϕ−1 the inverse function. Since
Dψ = (Dϕ)−1 ◦ ψ, we have Dψ ∈ SO(d) too. Applying the inequality above to ψ we obtain the
result.
(ii)⇒ (iii) since ϕ(y)− ϕ(z) = |Ay −Az| = |y − z| since TA is an isometry.
Finally (iii)⇒ (iii)′ is obvious. 2

Theorem 2 Let Ω ⊂ Rd be a domain and let ϕ : Ω → Rd a deformation. Then for any
measurable set U ⊆ Ω and for any g ∈ L1(ϕ(U)) we have∫

ϕ(U)

g(x)dxn =

∫
U

g(ϕ(X))(detDϕ(X)) dXn (1.3.20)

Proof. change of coordinates. 2

1.3.3 Motions

Definition 3 (Motion) Let Ω ⊂ Rd be a domain. A C3 map x : R× Ω→ Rd is a motion if for
each t ∈ R the map xt := x(t, ·) is a deformation.

Eulerian and Lagrangian coordinates. We can describe the body motion
- as a function of (t,X), where X ∈ Ω is the (initial) position in the reference configuration. These
are called Lagrangian (or material) coordinates;
- as a function of (t, x), where x = x(t,X) is the position at time t of a small portion of the body
near X at t = 0. These are called Eulerian (or spatial) coordinates.
To make this precise we need some definitions.

Definition 4 Let x : R× Ω→ Rd be a motion. We define

1. Ωt := xt(Ω) the region occupied by the body at time t,

2. T := {(t, x) : t ∈ R, x ∈ Ωt} the trajectory of the body in space and time,

3. x−1
t : Ωt → Ω the reference map at time t (also called the back-to-labels map),

4. x−1 : T → R× Ω (t, x)→ (t, x−1
t (x)) the reference map.

Definition 5 (spatial and material fields) Let x : R× Ω→ Rd be a motion.

1. A map Φ : R × Ω → Rm, m ≥ 1 of Lagrangian coordinates (t,X) → Φ(t,X) is called a
material field.

2. A map ϕ : T → Rm, m ≥ 1 of Eulerian coordinates (t, x)→ ϕ(t, x) is called a spatial field.

12



Material fields are often denoted by capital letters while spatial fields by non capital letters. One
may also write ϕs, ϕm to indicate if we work in spatial or material coordinates.

Definition 6 We can relate spatial and material fields as follows.

1. Let ϕ : T → Rm, be a spatial field. The map ϕm : R × Ω → Rm defined by ϕm(t,X) :=
ϕ(t, x(t,X)) is called the material description of ϕ.

2. Let Φ : R × Ω → Rm, be a material field. The map Φs : T → Rm defined by Φs(t, x) :=
Φ(t,Φt(x)) is called the spatial description of Φ.

Examples. The motion x : R×Ω→ Rd is a material field. The reference map x−1 : T → R×Ω
is a spatial field. The function ∂Xx(t,X) ∈ Rd×d is a material field and is called the deformation
gradient. We will often use the velocity field in spatial coordinates defined by

v(t, x) := Vs(t, x) = [∂tx(t,X)]|X=x−1(t,x) .

Trajectories and streamlines

Lemma 1 Let v(t, x) be a given spatial field, and X ∈ Ω a fixed reference point. Then the motion
starting at point X (i.e the function xX : R → T , with xX(t) = x(t,X)) compatible with the
velocity field (in spatial coordinates) v is a solution y : R→ T of the (nonlinear) ODE

y′(t) = v(t, y(t)).

Proof. Indeed

y′(t) = x′X(t) = ∂tx(t,X) = V (t,X) = v(t, x(t,X)) = v(t, y(t)).

2

Definition 7 Let v(t, x) a given spatial field.

1. We call trajectory a solution of the ODE

y′(t) = v(t, y(t)). (1.3.21)

2. We call streamline a solution of the ODE

z′(s) = v(t, z(s)), (1.3.22)

where t is a fixed parameter.

Remark. If the velocity field is constant wrt t, the trajectory and stremline coincide. Indeed
the streamline obtained from v(t0, x) is the trajectory of a body with constant velocity field
v(t, x) = v(t0, x) ∀t.

[Lecture 4: 22.04]

Time derivative and Reynolds transport theorem

Definition 8 (time derivative) Let ϕ : T → Rm, be a spatial field. The time derivative of ϕ is
the usual partial derivative

∂ϕ

∂t
(t, x).

The material time derivative of ϕ is the partial derivative in time of the material description of
ϕ, evaluated then in spatial coordinates. Precisely:

Dϕ

Dt
(t, x) := [∂tϕm]s (t, x)

13



Lemma 2 Let ϕ : T → Rm, be a spatial field. The material time derivative can be written as

Dϕ

Dt
(t, x) = ∂tϕ(t, x) + ~v · ~∇ϕ(t, x) (1.3.23)

where ~v · ~∇ϕ(t, x) :=
∑d
l=1 vl(t, x)∂xlϕ(t, x).

Proof. Using Φ(t,X) = ϕ(t, x(t,X)) we have ∂tΦ = (∂tϕ)m +
∑
l Vl(∂xlϕ)m. Going back to

spatial coordinates, the result follows. 2

Definition 9 We define a test volume U as a (small) portion of the body in the reference config-
uration. Precisely U ⊂ Ω is open, connected, finite and with C1 (or piecewise C1 boundary).

Let U be a test volume and ϕ(t, x) some given spatial field. Our goal is to study integrals of the
form ∫

U(t)

ϕ(t,X)dx,

where dx =
∏d
l=1 dxl is the product Lebesgue measure.

Key remark. By performing a coordinate change we have∫
U(t)

ϕ(t,X)dx =

∫
U

ϕm(t,X)J (t,X)dX, (1.3.24)

where ϕm(t,X) = ϕ(t, x(t,X)) and

J (t,X) = det
[
∂Xjxi(t,X)

]d
i,j=1

= det(Dx) (1.3.25)

is the Jacobian.
The main consequence of (1.3.24) is the following theorem.

Theorem 3 (Reynolds’ transport theorem) Let x : R × Ω → Rd be a motion and
ϕ : T → Rm a C1spatial field. Then for all i = 1, . . . ,m

d

dt

[∫
U(t)

ϕi(t, x)dx

]
=

∫
U(t)

[∂tϕ(t, x) + div(ϕi~v)(t, x)] dx (1.3.26)

=

∫
U(t)

[Dtϕ(t, x) + ϕi(t, x)div(~v)(t, x)] dx (1.3.27)

where

div(~v)(t, x) :=

d∑
l=1

∂xlvl(t, x) (1.3.28)

div(ϕi~v)(t, x) :=

d∑
l=1

∂xl [ϕivl](t, x) (1.3.29)

Proof. Using (1.3.24)

d

dt

[∫
U(t)

ϕ(t, x)dx

]
=

d

dt

[∫
U

ϕm(t,X)J (t,X)dX

]
=

∫
U

[∂tϕm(t,X)]J (t,X)dX +

∫
U

ϕm(t,X)[∂tJ (t,X)]dX

14



Going back to spatial coordinates the first integral becomes∫
U

[∂tϕm(t,X)]J (t,X)dX =

∫
U(t)

[∂tϕm]s(t, x)dx =

∫
U(t)

Dtϕ(t, x)dx

To compute the second integral we use (1.3.30) (see Lemma below) and obtain∫
U

ϕm(t,X)J (t,X)[div(~v)]m(t,X)dX =

∫
U(t)

ϕ(t, x)[div(~v)](t, x)dx.

Hence the result. 2

Lemma 3 We have
∂tJ (t,X) = J (t,X)[div(~v)]m(t,X). (1.3.30)

Proof. For any C1 matrix-valued function A : R × Ω → Rd×d, with A(t,X) invertible for all
(t,X), we have

∂t(detA)(t,X) =
∑
ij

∂tAij ∂Aij (detA) =
∑
ij

∂tAij (A−1)ji(detA) = (detA)tr
[
A−1∂tA

]
where we used ∂Aij (detA) = (cofA)ij = (detA)(A−1)ji, since A is invertible. Replacing now
A = Dx we have ∂tJ (t,X) = J (t,X)tr(A−1∂tA), where

∂tAij = ∂t∂Xjxi = ∂Xj∂txi = ∂XjVi(t,X)

= ∂Xjvi(t, x(t,X)) =

d∑
l=1

∂xlvi(t, x(t,X)) ∂Xjxl(t,X) =

d∑
l=1

(∂xlvi)m Alj .

Hence

tr(A−1∂tA) =
∑
ij

(A−1)ji∂tAij =
∑
ijl

Alj(A
−1)ji(∂xlvi)m =

∑
il

δli(∂xlvi)m =
∑
l

(∂xlvl)m = (div(v))m.

2

Example. If m = 1 and ϕ is the constant function ϕ(t, x) = 1 for all t, x then
∫
U(t)

ϕ(t, x)dx =

Vol(U(t)) is the volume occupied by U at time t . Then by Reynolds transport theorem we have

d

dt
Vol(U(t)) =

∫
U(t)

div(~v)dx =

∫
∂U(t)

~v(t, x) · ~nx dHd−1(x)

where for each x ∈ ∂U(t), ~nx is the unit vector orthogonal to the boundary.

1.4 Continuum mechanics: conservation laws

1.4.1 Mass and momentum

We need to introduce now the notion of mass, momentum, angular momentum and force.

Mass Instead of having the mass concentrated on points, we assume the mass is now distributed
uniformly on the volume occupied by the body, i.e. we replace the Dirac measure

∑N
i=1 δxi(t) by

a measure dm(t, x) = ρ(t, x)dx absolutely continuous with respect to Lebesgue.

Definition 10 A reference mass density (i.e. in the reference configuration Ω) is a function

ρ0 ∈ L1(Ω) such that ρ0(X) ≥ 0 for all X ∈ Ω. For each U ⊂ Ω open,
∫
U
ρ0(X)dX is the total

mass inside U.
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Definition 11 Let x : R × Ω → Rd be a motion. A mass density is a spatial field ρ : T → R+

such that ρ(t, ·) ∈ L1(Ωt) for all t and∫
U(t)

ρ(t, x)dx =

∫
U

ρ0(X)dX (1.4.31)

for all U ⊂ Ω open.

The last identity means the mass of a piece of material (that can be seen as a ’particle’) does not
change in time.

Definition 12 Let x : R× Ω→ Rd be a motion and ρ : T → R+ a mass density.
The (linear) momentum of a test voume U ∈ Ω is a function l : R→ Rd defined as

l(U, t) =

∫
U(t)

ρ(t, x)v(t, x)dx. (1.4.32)

The angular momentum of a test voume U ∈ Ω is a function L : R→ Rd×d defined as

L(U, t) =

∫
U(t)

ρ(t, x)[x ∧ v(t, x)]dx. (1.4.33)

Reminder. The wedge (vector) product is a map

∧ : R× R→ Rd×d
(a, b)→ (a ∧ b)ij = aibj − ajbi.

By construction a ∧ b is a skew-symmetric matrix i.e. (a ∧ b)t = −(a ∧ b).
Special cases:
d = 1 : (a ∧ b) = 0 for all a, b ∈ R.

d = 2 : (a ∧ b) =

(
0 (a ∧ b)12

−(a ∧ b)12 0

)
d = 3 : (a ∧ b) =

 0 (a ∧ b)12 (a ∧ b)13

−(a ∧ b)12 0 (a ∧ b)23

−(a ∧ b)13 −(a ∧ b)23 0

 =

 0 (a× b)3 −(a× b)2

−(a× b)3 0 (a× b)1

(a× b)2 −(a× b)1 0


In d = 3 the wedge and cross products can be identified (through the independent matrix elements).

1.4.2 Mass conservation

Integral version. By (1.4.31) we have

d

dt

∫
U(t)

ρ(t, x)dx =
d

dt

∫
U

ρ0(X)dX = 0 (1.4.34)

for all test volumes U.

PDE version. If ρ ∈ C1, then by Reynolds transport theorem

d

dt

∫
U(t)

ρ(t, x)dx =

∫
U(t)

[Dtρ+ ρdiv(v)]dx = 0

Since U, hence U(t) is arbitrary we obtain

Dtρ(t, x) + ρdiv(v)(t, x) = 0 ∀(t, x) ∈ T . (1.4.35)

This is called the continuity equation.

From now on we will always assume that ρ is at least C1.

The following lemmas are consequences of mass conservation.
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Lemma 4 Let ψ : T → Rm be a C1spatial field. Then

d

dt

∫
U(t)

ρ(t, x)ψ(t, x)dx =

∫
U(t)

ρ(t, x)Dtψ(t, x)dx. (1.4.36)

Proof By Reynolds transport theorem

d

dt

∫
U(t)

ρ(t, x)ψ(t, x)dx =

∫
U(t)

[Dt(ρψ) + ρψdiv(v)]dx

=

∫
U(t)

[Dt(ρ)ψ + ρDt(ψ) + ρψdiv(v)]dx =

∫
U(t)

ρDt(ψ) + [Dt(ρ) + ρdiv(v)]ψdx

The result now follows from (1.4.35). 2

Lemma 5 Let V ⊂ Rn a fixed open connected set (with piecewise C1boundary) such that V ⊂ Ωt
for all t ∈ (t1, t2). Then

d

dt

∫
V

ρ(t, x)dx = −
∫
∂V

ρ(t, x) ~v(t, x) · ~nx dHd−1(x) ∀t1 < t < t2.

This result implies that the variation of the total mass contained in the (fixed) volume V is the
mass flux through the boundary.

Proof Reynolds transport theorem+ Gauss. 2

Lemma 6 The material is incompressible i.e. V ol(U(t)) = V ol(U) for all t, if and only if we
have div(v)(t, x) = 0 for all (t, x) ∈ T .

Proof By Reynolds transport theorem with m = 1 and φ(t, x) = 1 for all (t, x) we have

d

dt
V ol(U(t)) =

d

dt

∫
U(t)

φ(t, x)dx =

∫
U(t)

[∂tφ+ div(φv)](t, x)dx =

∫
U(t)

div(v)dx = 0

for all test volume U. This holds iff div(v)(t, x) = 0. 2

[Lecture 5: 27.04]

1.4.3 Forces

We consider two types of forces.

1. Volume forces: forces acting on every part of the body (external forces such as the gravity)

2. Surface forces: contact forces between two parts of the material (example: friction, pressure
difference. . . )

External forces acting on the boundary of the body are also a type of surface force, but
will be treated as part of the boundary conditions (since they apply only on the external
boundary ∂Ω).

We will use the following assumptions.

Volume forces. We assume there exists a volume force density f : T → Rd such that the
(volume) force acting on a test volume U at time t is given by

Fv(U, t) =

∫
U(t)

f(t, x)dx.

For example the gravitational force (in d = 3) is given by F (U, t) = −gρ(t, x)(0, 0, 1).
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Surface forces. We assume the Cauchy hypothesis holds, i.e. there exists a surface force density

S : T × Sd−1 → Rd, where Sd−1 is the unit sphere in Rd, such that the (surface) force that the
portion Ωt\U(t) of the material exerts on U(t) is given by

Fs(U, t) =

∫
∂U(t)

S(t, x, nx)dHd−1(x)

where nx ∈ Sd−1 is the direction orthogonal to ∂U(t) at x. S is called the stress vector. For
example, the hydrostatic pressure is given by S(t, x, n) = −p(t, x)n with p : T → R.

Definition 13 A system of forces is a pair (f, S) (volume and surface force density) with

• f ∈ C(T ;Rd), and

• S : T × Sd−1 → Rd is Borel measurable, locally bounded in all variables and for every
n ∈ Sd−1 S(·, ·, n) ∈ C(T ;Rd).

The total force acting on a test volume U is a function F : R→ Rd defined by

F (U, t) = Fv(U, t) + Fs(U, t) =

∫
U(t)

f(t, x)dx+

∫
∂U(t)

S(t, x, nx)dHd−1(x). (1.4.37)

The total torque on a test volume U is a function M : R→ Rd×d

M(U, t) =

∫
U(t)

x ∧ f(t, x)dx+

∫
∂U(t)

x ∧ S(t, x, nx)dHd−1(x). (1.4.38)

1.4.4 Conservation of momentum and angular momentum.

Integral version. For any test volume U, the variation of the (linear) momentum is given by

dl

dt
(U, t) = F (U, t). (1.4.39)

By (1.4.36) this can be written as∫
U(t)

ρ(t, x)
Dv

Dt
(t, x)dx =

∫
U(t)

f(t, x)dx+

∫
∂U(t)

S(t, x, nx)dHd−1(x). (1.4.40)

For any test volume U, the variation of the angular momentum is given by

dL

dt
(U, t) = M(U, t). (1.4.41)

This can be written as∫
U(t)

ρ(t, x)

(
x ∧ Dv

Dt
(t, x)

)
dx =

∫
U(t)

(x ∧ f(t, x)) dx+

∫
∂U(t)

(x ∧ S(t, x, nx)) dHd−1(x).

(1.4.42)
Indeed, applying again (1.4.36), the time derivative enters the integral and becomes Dt(x ∧ v) =
(Dtx) ∧ v + x ∧ (Dtv). To compute Dtx we consider the spatial field φ(t, x) = x :

Dtxj = Dtφj(t, x) = ∂tφj(t, x) + (~v · ~∇)φj(t, x) = vj(t, x).

Finally we use v ∧ v = 0.

PDE version. To obtain a PDE, we need first some additional information on the stress vector.
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1.4.5 Cauchy theorem

Theorem 4 let x be a motion, (f, S) a system of forces such that S is continuously differentiable
in x. Then conservation of linear and angular momentum (1.4.40) (1.4.42) hold iff there exists a
matrix-valued spatial field σ : T → Rd×d such that

(1.) S(t, x, n) = σ(t, x)n (Si =
∑d
j=1 σijnj) i.e. S is linear in the n argument,

(2.) σT = σ,

(3.) σ satisfies the equation of motion

ρ
Dv

Dt
= div(σ) + f (1.4.43)

where we define

[div(σ)]i :=

d∑
j=1

∂xjσij .

The spatial field σ is called the stress tensor.

Proof of ⇒. We prove that (1.4.40), (1.4.42) ⇒ (1.) + (2.) + (3.) .

First step. Let us assume we have already proved existence, i.e. (1.) holds. We prove that
(1)⇒ (3), i.e. existence of σ implies the equation of motion (1.4.43).

Indeed, replacing Si(t, x, n) = [σ(t, x)n]i =
∑d
j=1 σij(t, x)nj in the conservation law (1.4.40) we

get ∫
U(t)

ρ(t, x)
Dvi
Dt

(t, x)dx =

∫
U(t)

fi(t, x)dx+

∫
∂U(t)

[σ(t, x)nx]idHd−1(x). (1.4.44)

For each i, let ωi ∈ Rd be the vector defined by ωij := σij (i.e. ωi is the i−th row of σ). Then

[σn]i = ~ωi · ~n and∫
∂U(t)

[σ(t, x)nx]idHd−1(x) =

∫
∂U(t)

[~ωi(t, x)·~nx]dHd−1(x) =

∫
U(t)

div(ωi)dx =

∫
U(t)

[div(σ)]i(t, x) dx,

where we used Gauss theorem. Finally (1.4.40) becomes∫
U(t)

ρ(t, x)
Dvi
Dt

(t, x)dx =

∫
U(t)

(fi(t, x) + [div(σ)]i(t, x)) dx

Since U, hence U(t), is arbitrary we obtain (1.4.43).

Second step. Assume (1.) holds. We prove that (1)⇒ (2).
We have already proved (1)⇒ (3), hence ρDvDt −f = [divσ]. Replacing this relation and Si = [σn]i
in equation (1.4.42) (conservation of angular momentum) we get

0 =

∫
U(t)

(
x ∧

[
ρ(t, x)

Dv

dt
(t, x)− f(t, x)

])
dx−

∫
∂U(t)

(x ∧ S(t, x, nx)) dHd−1(x)

=

∫
U(t)

(x ∧ [divσ]) dx−
∫
∂U(t)

(x ∧ S(t, x, nx)) dHd−1(x)

Now, for fixed i, j we have

(x ∧ S)ij = xiSj − xjSi =
∑
l

(xiσjl − xjσil)nl = ~W ij · ~n
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where W ij ∈ Rd, is defined by W ij
l := (xiσjl − xjσil). Then∫

∂U(t)

[x ∧ S(t, x, nx)]ij dH
d−1(x) =

∫
∂U(t)

(
~W ij(t, x) · ~nx

)
dHd−1(x) =

∫
U(t)

div( ~W ij)(t, x) dx

where in the last step we used Gauss theorem and div( ~W ij) =
∑
l ∂xlW

ij
l . Now

div( ~W ij) =
∑
l

∂xl(xiσjl − xjσil) = σji − σij + xi[divσ]j − xj [divσ]i = σji − σij + (x ∧ [divσ])ij .

Inserting this in the integrals above we have

0 =

∫
U(t)

[
(x ∧ [divσ])ij − div( ~W ij)

]
dx = −

∫
U(t)

(σji − σij)(t, x) dx.

Since U, and hence U(t), is arbitratry this implies σij = σji. for all ij. Then σt = σ.

Third step. Finally we prove that (1.4.40)+ (1.4.42) ⇒ (1.). We will need the following result
(whose proof is given later).

Lemma 7 Let ~n ∈ Sd−1 a fixed arbitrary direction and let ~f1, . . . ~fd an orthonormal basis of Rd
s.t. nfj = (~n · ~fj) > 0 ∀j = 1, ..d (we can always rotate the axis to garantee this condition). Then
we can write S as linear combination of stresses in the elementary directions fj , i.e.

~S(t, x, n) = −
d∑
j=1

nfj
~S(t, x,−fj). (1.4.45)

With this lemma we will show that, if ~e1, . . . , ~ed is the standard basis and nj := (~n · ~ej) ∈ R, we
have

(a) ~S(t, x, n) =
∑d
j=1 nj

~S(t, x, ej), and

(b) ~S(t, x,−ej) = −~S(t, x, ej) ∀j = 1, . . . d, and, more generally,

~S(t, x, n) = −~S(t, x,−n) ∀n ∈ Sd−1 (’action-reaction’ principle).

Proof of (a) and (b). Let ~n0 ∈ Sd−1 a fixed orientation and let ~f1, . . . ~fd and orthornormal

basis (depending on n0) such that (n0)fj > 0 for all j. Then we can find a neighborhood U(n0) of

n0 in Sd−1 such that nfj > 0 for all j = 1, .., d and for all n ∈ U(n0). By Lemma 7 above we have

~S(t, x, n) = −
∑d
j=1 n

f
j
~S(t, x,−fj) for all n ∈ U(n0) hence S is locally continuous on Sd−1.

Then, by continuity, (1.4.45) remains valid also in the limit nfj = (~n · ~fk) ↓ 0. In particular we can

choose ~n = ~ej for some j. Then nl = δlj ≥ 0 and from (1.4.45) we get ~S(t, x, ej) = −~S(t, x,−ej).
For any n ∈ Sd−1 we can find an orthonormal basis such that n = fj for some j, hence ~S(t, x, n) =

−~S(t, x,−n). This gives (b).

To prove (a), fix some n, let ~e1, . . . , ~ed be the standard basis and let ~fj := sign(nj)~ej a new

family of vectors. Then ~f1, . . . , ~fd is an o.n. basis and nfj = sign(nj)nj = |nj | ≥ 0 ∀j. Then

~S(t, x, n) = −
∑d
j=1 n

f
j
~S(t, x,−fj), where

nfj
~S(t, x,−fj) = nj ~S(t, x,−ej) = −nj ~S(t, x, ej) if nj ≥ 0,

nfj
~S(t, x,−fj) = −nj ~S(t, x, ej) if nj < 0,

where in the first line we used (b). Then ~S(t, x, n) = −
∑d
j=1 n

f
j
~S(t, x,−fj) =

∑d
j=1 nj

~S(t, x, ej).
This gives (a).
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Finally, from (a) we get Si(t, x, n) =
∑
j σij(t, x)nj where we defined

σij(t, x) := Si(t, x, ej).

With this definition σ ∈ C(T ;Rd×d). This concludes the proof of the ⇒ part.

[Lecture 6: 29.04]

Proof of ⇐. We prove that (1.) + (2.) + (3)⇒ (1.4.40) and (1.4.42). Easy: replace the relations
in (1.), (2.), (3.) above in the integrals.

Proof of Lemma 7. (Cauchy’s tetrahedron argument) Let

∆ = {x ∈ Rd| (~x · ~fj) ≥ 0 ∀j and (~x · ~n) ≤ 1}

be the simplex created by intersecting the plane (~x · ~n) = 1 with the d planes orthogonal to the d

axis. The region ∆ has d+ 1 corners: the origin ~0 and the d points ~cj = 1
nj
~fj , j = 1, . . . , d. ∆ has

also d+ 1 faces.

• The first d faces are the intersections of ∆ with the planes orthogonal to each direction fj .
Precisely the j−th face is given by

aj := {x ∈ ∆| xj = 0}, j = 1, . . . d

• The last face is the intersection of ∆ with the plane (~x · ~n) = 1 :

a = {x ∈ ∆| (~x · ~n) = 1}.

Let |al|, |a| be the area of the face al, a respectively. We have

|al| = nl
Id−1

n∆
, |a| = Id−1

n∆

where Id :=
∫

[0,1]d
1{(~x·~n)≤1}dy

d and n∆ :=
∏d
j=1 nj . Hence

|al| = nl|a|, l = 1, . . . , d.

For a fixed t, we take now as test volume U(t) = Uδ(x0) = {x0} + ∆δ, where x0 ∈ Ωt and ∆δ is
the rescaled simplex ∆δ = {x ∈ Rd| x = δy, y ∈ ∆}, with δ > 0. Clearly supx∈Uδ(x0) |x− x0| → 0

as δ → 0, the volume satisfies V ol(Uδ(x0)) = O(δd) and the surface satisfies |∂Uδ(x0)| = O(δd−1).
By (1.4.40) we have, for all δ > 0,

1

δd−1

[∫
Uδ

[
ρ(t, x)

Dvi
dt

(t, x)− f(t, x)

]
dx−

∫
∂Uδ

S(t, x, nx)dHd−1(x)

]
= 0.

Since the first integral scales like δd we have

lim
δ→0

1

δd−1

∫
Uδ

[
ρ(t, x)

Dvi
dt

(t, x)− f(t, x)

]
dx = lim

δ→0
O(δ) = 0.

Hence we must have

lim
δ→0

1

δd−1

∫
∂Uδ

S(t, x, nx)dHd−1(x) = 0.

Since Uδ → {x0} the integral above is given (up to higher order corrections in δ)

S(t, x0, n)|a|+
d∑
j=1

S(t, x0,−fj)|aj | = 0.

Replacing |aj | = nj |a| we get the result. This concludes the proof of the lemma, hence the proof
of the Cauchy Theorem. 2
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1.4.6 Equations in spatial and material coordinates

Until now we obtained two main PDEs, both in spatial coordinates

Dρ

Dt
+ ρdiv(v) = 0 continuity eq.

ρ
Dv

Dt
= div(σ) + f eq. of motion

We now look for similar equations in spatial coordinates.

Continuity eq. in material coordinates.

Lemma 8 The material description of the mass density (ρ)m satisfies

ρm(t,X) =
ρ0(X)

detDx(t,X)
. (1.4.46)

Proof. By (1.4.31) and a coordinate change we have∫
U

ρ0(X)dX =

∫
U(t)

ρ(t, x)dx =

∫
U

ρm(t,X) detDx(t,X)dX.

Since the test volume U is arbitrary this implies the result. 2

Remark. Eq.(1.4.46) is the analog of the continuity equation in material coordinates:

ρm(t,X) =
ρ0(X)

detDx(t,X)
⇔

[
Dρ

Dt
+ ρdiv(v)

]
m

= 0

Indeed (Dtρ)m = ∂t(ρm) by definition of Dt, and from (1.4.46) ∂tρm = −ρm∂t detDx
detDx . Moreover,

by Lemma 1.3.30 (div(v))m = ∂t detDx
detDx . Hence the result.

Equation of motion in material coordinates

Our goal is to write ρDvDt = div(σ) + f in material coordinates.

Lemma 9 The equation of motion in material coordinates becomes

ρ0(X)∂2
t x(t,X) = (detDx)(t,X)fm(t,X) + DIV(S)(t,X) (1.4.47)

where S : R× Ω→ Rd×d is a matrix-valued material field defined by

Sij := [σmCof(Dx)]ij (1.4.48)

and DIV denotes the divergence in material coordinates

[DIV(S)]i :=
∑
j

∂XjSij .

S is called the Piola-Kirchhoff tensor.
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Proof. By definition of Dt we have (Dtv)m = ∂tV = ∂2
t x = acceleration. By the continuity

equation above we know that ρm = ρ0/(detDx). The equation becomes

ρ0(X)∂2
t x(t,X) = (detDx)(t,X)fm(t,X) + (detDx)(divσ)m(t,X)

It remains to write (detDx)(divσ)m as a divergence in material coordinates. Using the relation
σ(t, x) = σm(t,X(t, x)) we get

[div(σ)]i =
∑
l

∂xlσil =
∑
ll′

∂Xl′

∂xl
[∂Xl′ (σm)il]s

Hence

(detDx)[(divσ)m]i =
∑
ll′

(detDx)

(
∂Xl′

∂xl

)
m

∂Xl′ (σm)il

Note that for any material field Φ we have ∂Xl′Φ =
∑
j(∂xjΦs)m

∂xj
∂Xl′

=
∑
j(∂xjΦs)m(Dx)jl′ .

Applying this to Φ = Xl we get (
∂Xl′

∂xl

)
m

= [(Dx)−1]l′l.

The expression for (detDx)[(divσ)m]i above becomes

∑
ll′

(detDx)[(Dx)−1]l′l(∂Xl′σm)il =
∑
l′

∂Xl′

[
(detDx)

∑
l

(Dx)−1
l′l (σm)il

]
−
∑
l

(σm)il
∑
l′

∂Xl′
[
(detDx)(Dx)−1

l′l

]
We will prove later that

∑
l′ ∂Xl′

[
(detDx)(Dx)−1

l′l

]
= 0. Then

(detDx)[(divσ)m]i =
∑
l′

∂Xl′

[
(detDx)

∑
l

(Dx)−1
l′l (σm)il

]
=
∑
l′

∂Xl′ [σmCof(Dx)]il′ .

This concludes the proof. 2

Lemma 10 Let x be a motion. Then∑
l′

∂Xl′
[
(detDx)(Dx)−1

l′l

]
= 0 ∀l. (1.4.49)

Proof For any matrix-valued material field A : R×Ω→ Rd×d differentiable in X, with A(t,X)
invertible for all (t,X), we have

∑
l′

∂Xl′
[
(detA)A−1

l′l

]
= (detA)

∑
l′

∂Xl′ (A
−1
l′l ) +

∑
ijl′

(A−1
l′l )(A−1

ji )∂Xl′Aij

 ,
where we used ∂Aij detA = (CofA)ij = detA(A−1)ji. Using A = Dx we have ∂Xl′Aij =
∂Xl′∂Xjxi = ∂XjAil′ . Then

∑
ij

(A−1
ji )∂Xl′Aij =

∑
ij

(A−1
ji )∂XjAil′ =

∑
j

∂Xj

[∑
i

(A−1
ji )Ail′

]
−
∑
ij

Ail′∂Xj (A
−1
ji )

The first term gives ∂Xjδjl′ = 0. It remains∑
ijl′

(A−1
l′l )(A−1

ji )∂Xl′Aij = −
∑
ijl′

Ail′(A
−1
l′l )∂Xj (A

−1
ji ) = −

∑
j

∂Xj (A
−1
jl ).

Hence the result. 2
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1.4.7 Energy

Remember that for particles we had

Ek =
1

2

N∑
i=1

mi|x′i(t)|2

E = Ek + Ep

P =

N∑
i=1

fi · x′i

E′(t) = P

where Ek, Ep, E are the kinetic, potential and total energy respectively, and P is the total work
per time (power) of the external forces. Our goal is to define the analogous quantities in the
continous context. The main difference is that, in the continuous case, the energy is not just
modified through forces (power) but also through heat exchange. There are two types of heat
exchanges.

1. Volume effect: heat supply (we heat the whole system, example by radiation).

2. Surface effect: heat exchange between different parts of the material (one area may be
hotter). This is described by a heat flux through the surface of a test volume U.

Definition 14 Let x be a motion, ρ a C1 mass density, (f, S) a system of forces and ε a C1

spatial field (the internal energy density).
The kinetic energy of a test volume U is defined by

Ek(U, t) :=
1

2

∫
U(t)

ρ(t, x)|v(t, x)|2dx. (1.4.50)

The potential energy of a test volume U is defined by

Ek(U, t) :=

∫
U(t)

ρ(t, x)ε(t, x)dx. (1.4.51)

The total work per unit time (power) done solely by forces on a test volume U is

Pf (U, t) :=

∫
U(t)

~f(t, x) · ~v(t, x) dx+

∫
∂U(t)

~S(t, x, nn) · ~v(t, x) dHd−1(x) (1.4.52)

The total work per time (power) done by heat on a test volume U is defined by

Ph(U, t) :=

∫
U(t)

r(t, x) dx−
∫
∂U(t)

~q(t, x) · ~nx dHd−1(x) (1.4.53)

where r : T → R is the heat supply and q : T → Rd is the heat (outward) flux.
Finally the total energy and total power are defined by

E(t, U) := Ek(t, U) + Ep(t, U)

P (t, U) := Pf (t, U) + Ph(t, U).

[Lecture 7: 4.05]
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Lemma 11 The total energy and total power can be written as

E(t, U) =

∫
U(u)

ρ

[
|v|2

2
+ ε

]
dx (1.4.54)

P (t, U) =

∫
U(u)

[
f · v + div(σtv) + r − div(q)

]
dx (1.4.55)

where
div(σtv) =

∑
ij

∂xi(σjivi), div(q) =
∑
i

∂xiqi.

Proof. The first relation (1.4.54) follows directly from the definitions. For (1.4.55) we use
S = σn, (v, σn) = (σtv, n), where (a, b) = a · b is the standart scalar product in Rd. Finally we
use Gauss theorem.

Conservation of Energy

Integral version. For any test volume U and any time t we have

d

dt
E(t, U) = P (t, U). (1.4.56)

PDE version

Lemma 12 Energy conservation (1.4.56) holds for all U iff

ρ
Dε

Dt
= tr(σtDv) + r − div(q) ∀(t, x) ∈ T (1.4.57)

where (Dv)ij := ∂vi
∂xj

.

Proof. By Reynolds transport theorem and mass conservation we have

d

dt
E(t, U) =

∫
U(t)

ρ
D

Dt

[
|v|2

2
+ ε

]
dx.

Now, using the equation of motion we get

ρDt|v|2 = 2v · (ρDtv) = 2v · [f + div(σ)].

Hence ∫
U(t)

ρDtε dx =

∫
U(u)

[
div(σtv)− v · div(σ)

]
dx+

∫
U(u)

[r − div(q)] dx

Note that

div(σtv)− v · div(σ) =
∑
ij

∂xi(σjivj)−
∑
ij

vj∂xiσji =
∑
ij

σji∂xivj = tr(σtDv).

The result follows. 2

1.4.8 Summary

Functions we introduced.

• motion, velocity: x, V, v

• mass: ρ(t, x), ρ0(X), ρm(t,X)
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• forces: f, S = [σn], S := [σmCof(Dx)]

• energy, power: E(t, U), P (t, U) ε(t, x)

• heat: r(t, x), q(t, x)

Material fields.

• scalars: ρ0, ρm

• vectors: x, V

• matrices: Dx, σm,S

Spatial fields.

• scalars: ρ, ε, r

• vectors: v, f, S, q

• matrices: Dv, σ

Integral identities.

• mass:
∫
U(t)

ρ(t, x)dx =
∫
U
ρ0(X)dX

• momentum: d
dt

∫
U(t)

ρ(t, x)v(t, x)dx =
∫
U(t)

[f(t, x) + div(σ)(t, x)] dx

• angular momentum: d
dt

∫
U(t)

x ∧ (ρv)dx =
∫
U(t)

x ∧ fdx+
∫
∂U(t)

x ∧ S dHd−1(x)

• energy: d
dt

∫
U(u)

ρ
[
|v|2
2 + ε

]
dx =

∫
U(u)

[f · v + div(σtv) + r − div(q)] .

PDEs in spatial coordinates.

• continuity eq. Dρ
Dt + ρdiv(v) = 0

• eq. of motion ρDvDt = f + div(σ)

• energy cons. ρDεDt = tr(σtDv) + r − div(q)

PDEs in material coordinates.

• continuity eq. ρm = ρ0
detDx

• eq. of motion ρ∂2
t x = (detDx)fm + DIV(S)

1.5 Constitutive laws

The explicit form of σ, q, ε depends on ther material properties.

Example 1: heat flux Let θ : T → R the temperature function and assume the heat flux
depends only on local temperature differences (Dθ)i = ∂xiθ, i = 1, . . . d. Then there exists a
function

q̂ : Rd → Rd
w → q̂(w)

such that q(t, x) = q̂(Dθ(t, x)).
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Example 2: elastic material Assume the stress tensor depends only on local deformations
(Dx)ij = ∂Xjxi, i, j = 1, . . . d. Then there exists a function

σ̂ : GL+(Rd) → Rd×dsym

F → σ̂(F )

such that σ(t, x) = σ̂(Dxs).

Example 3: fluid with viscosity Assume the stress tensor depends only on local deformations
(Dx)ij = ∂Xjxi, i, j = 1, . . . d, and on local velocity changes (Dv)ij = ∂xjvi, i, j = 1, . . . d (neighbor
portions at different velocities creat a friction). Then there exists a function

σ̂ : GL+(d)× Rd×d → Rd×dsym

(F,G) → σ̂(F,G)

such that σ(t, x) = σ̂(Dxs(t, x), Dv(t, x)).

q̂, σ̂ are called constitutive laws.

Notation

GL(d) = {F ∈ Rd×d| detF 6= 0} SL(d) = {F ∈ Rd×d| detF = 1}
GL+(d) = {F ∈ Rd×d| detF > 0} SO(d) = {F ∈ Rd×d|F tF = I detF = 1}
Rd×dsym = {F ∈ Rd×d|F t = F} Rd×dskw = {F ∈ Rd×d|F t = −F}

[Lecture 8: 6.05]

1.5.1 Coordinates changes

We have introduced two coordinate systems (t,X) and (t, x), where X ∈ Ω describes the reference
configuration of the material, while x ∈ Ωt describes the material ’seen’ at time t, (point of view of
an oberver taking a photo at some given time). Both Ω,Ωt ⊂ Rd, and until now we used the same
orthonormal basis e1, . . . , ed to parametrize both coordinates. But we could also use a different
basis. This corresponds to perform a change of coordinates either in X or in x separately. As a
result we will obtain some contraints on the possible form of the constitutive laws.
We will consider here two types of coordinate changes.

1. Changing the observable. We will consider only time-independent rotations

(t, x)→ (t, x∗) = (t, Qx), Q ∈ SO(d).

2. Deformations of the material. We will consider only deformations that do not change the
physical structure i.e.

X ∈ Ω→ X∗ ∈ gΩ, X∗ = gX g ∈ G,

where G is a symmetry group for the material.
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Examples of material symmetry groups:

material G

cristalline solid discrete subgroup of SO(3)
istropic solid SO(3)
ideal fluid SL(3)

Indeed, in the case of a cristal, the description does not change if we perform rotations that are
compatible with the lattice directions. In a isotropic solid we can do any rotation, while in a liquid
we can also change the shape.

Transformation rules under observable change

Let Q ∈ SO(d) a rotation. We define the transformation

Q : T → QT = {(t, x∗)| t ∈ R, x∗ ∈ QΩt}
(t, x) → (t, x∗(x)) = (t, Qx)

The quantitities we introduced transform as follows

1. spatial coordinate : x→ x∗(x) = Qx

2. deformation gratient: (Dx)(t,X)→ (Dx∗)(t,X) = Q(Dx)(t,X)

3. velocity: v(t, x)→ v∗(t, x∗(x)) = Qv(t, x)

4. density: ρ(t, x)→ ρ∗(t, x∗(x)) = ρ(t, x)

5. spatial gradient: ∂
∂xj
→ ∂

∂x∗j
=
(
Q ∂
∂x

)
j

6. force density: f(t, x)→ f∗(t, x∗(x)) = Qf(t, x),

S(t, x, n)→ S∗(t, x∗(x), n∗(x)) = QS(t, x, n), where n∗ = Qn

7. stress tensor: σ(t, x)→ σ∗(t, x∗(x)) = Qσ(t, x)Qt

Piola-Kirchhoff tensor S(t,X)→ S∗(t,X) = QS(t,X)

8. energy and heat supply: ε(t, x)→ ε∗(t, x∗) = ε(t, x(x∗)), r(t, x)→ r∗(t, x∗) = r(t, x(x∗))

9. heat flux: q(t, x)→ q∗(t, x∗(x)) = Qq(t, x)

10. temperature gradient: Dθ(t, x)→ D∗θ∗(t, x∗) = [QDθ](t, x(x∗))

11. velocity gradient: Dv(t, x)→ D∗v∗(t, x∗) = [QDvQt](t, x(x∗))

Proof 1. is just a definition.

For 2. we write (Dx∗)ij =
∂x∗i
∂Xj

=
∑
lQil

∂xl
∂Xj

=
∑
lQil(Dx)lj .

For 3. remember that v(t, x) = V (t,X(t, x)) = [∂tx(t,X)]|X=X(t,x). Then
v∗(t, x∗) = [∂tx

∗(t,X)]|X=X(t,x∗) = [Q∂tx(t,X)]|X=X(t,x∗) = Qv(t, x(x∗)).
4. follows from the fact that ρ is a scalar field.
For 5. take any function f(x(x∗)). Then using Q−1 = Qt we have
∂f
∂x∗j

=
∑
l
∂xl
∂x∗j

(
∂f
∂xl

)
=
∑
lQ
−1
lj

(
∂f
∂xl

)
=
(∑

lQjl
∂
∂xl

)
f.

6. Under the rotation Q the test volume and its boundary rotate U(t) → QU(t). and ∂U(t) →
Q∂U(t) as well as the corresponding normals nx → n∗x∗ = Qnx(x∗). Hence the force density
transforms as f∗(t, x∗) = Qf(t, Q−1x) and S(t, x, n)→ S∗(t, x∗, n∗) = QS(t, Q−1x,Q−1n).
7. From S = σn and S∗ = σ∗n∗ = QSn we get QTσ∗Qn = σn for all n, hence the first result.
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For the second identity, since S = σmCof(Dx) we have S∗(t,X) = σ∗m(t,X)Cof(Dx∗)(t,X).
Inserting Dx∗ = QDx we get

Cof(Dx∗) = (Dx∗)−t detDx∗ = Q(Dx)−t detDx

where we used detQ = 1 andQt = Q−1. Finally σ∗mCof(Dx∗) = QσmQ
tQCof(Dx) = QσmCof(Dx).

8. Same argument as for the density
9. As for 6.
10. We have (D∗θ∗)i = ∂θ∗

∂x∗i
=
∑
lQil

∂θ
∂xl

= (QDθ)i(x(x∗)).

11. We have
(D∗v∗)ij(t, x

∗) =
∂v∗i
∂x∗j

(t, x∗) =
∑
lQil

∂vl
∂x∗j

(t, x(x∗)) =
∑
ll′ QilQjl′

[
∂vl
∂xl′

]
(t, x(x∗)) = (QDvQt)ij(t, x(x∗)).

Definition 15 A quantity g(t, x) is called a

• objective scalar if g∗(t, x∗(x)) = g(t, x),

• objective vector if g∗(t, x∗(x)) = Qg(t, x),

• objective tensor if g∗(t, x∗(x)) = Qg(t, x)Qt,

for any Q ∈ SO(d).

In our case we have

• objective scalars: ρ, ε, r

• objective vectors: x,Dx, v, ∂x, f, q,Dθ,S

• objective tensor: σ,Dv

Remark. Though Dx and S are matrix-valued functions they act as objective vectors under
rotations on x.

Transformation rules under material deformation

We will consider only linear transformations on Ω :

X → X∗ = gX,

where g ∈ G, G is some subgroup of GL(d) (it will depend on the material).
We will always assume det g = 1.

Lemma 13 Under the change of coordinates X → X∗ = gX the deformation gradient and the
Piola-Kirchhoff tensor transform as

Dx(t,X)→ Dx∗(t,X∗(X)) = Dx(t,X)g−1, S∗(t,X∗(X)) = SP (t,X)gt. (1.5.58)

All the other quantities we introduced above are invariant i.e.

Φ∗(t,X∗(X)) = Φ(t,X). (1.5.59)

In particular x∗(t,X∗) = x(t,X).

Proof (Dx∗)ij =
∂x∗i
∂X∗j

=
∑
l
∂Xl
∂X∗j

∂xi
∂Xl

=
∑
l
∂xi
∂Xl

g−1
lj = (Dxg−1)ij .

S∗(t,X∗(X)) = σ∗m[(Dx∗)−1]t detDX∗ = σm(t,X)[(Dxg−1)−1]t det[Dxg−1] = SP (t,X)gt, where
we used det g = 1. 2

Definition 16 (Frame indifference) We say that a material satisfies frame indifference if its
constitutive laws are independent of the observer, i.e. they are invariant under the transformation
x→ x∗ = Qx.

Definition 17 (Material symmetry) The group G ⊂ GL+(d) is a material symmetry for ma-
terial if the constitutive laws are invariant under the transformation X → X∗ = gX ∀g ∈ G.

29



1.5.2 Frame indifference in elastic and hyperelastic materials

Elastic material

The constitutive law for an elastic material is a function σ̂ : GL+(d)→ Rd×dsym such that σ(t, x) =
σ̂(Dx). Since σ is an objective tensor, σ∗(t, x∗(x)) = Qσ(t, x)Qt, and Qσ̂(Dx)Qt = QσQt = σ∗ =
σ̂∗(Dx∗) = σ̂∗(QDx). Hence σ̂∗ must satisfy σ̂∗(QF ) = Qσ̂(F )Qt.
Given σ̂, the constitutive law for the Piola-Kirchhoff tensor S = σmCof(Dx) is the function
Ŝ : GL+(d)→ Rd×d defined by

Ŝ(F ) = σ̂(F )Cof(F ). (1.5.60)

Since S is an objective vector Ŝ∗(QF ) = QŜ(F ).
Note that though σ̂ is a symmetric matrix, Ŝ(F ) is in general not symmetric, but it must satisfy

Ŝ(F )F t = σ(F ) det(F ) ∈ Rd×dsym. (1.5.61)

Definition 18 We say that an elastic material with constitutive functions σ̂ and Ŝ satisfies frame
indifference if σ̂∗(Dx∗s) = σ̂(Dx∗s), and Ŝ∗(Dx∗) = Ŝ(Dx∗).

By frame indifference we have

σ̂(QF ) = Qσ̂(F )Qt ∀F ∈ GL+(d),∀Q ∈ SO(d) (1.5.62)

Ŝ(QF ) = QŜ(F ) ∀F ∈ GL+(d),∀Q ∈ SO(d). (1.5.63)

Hyperelastic material

Definition 19 Consider an elastic material with constitutive law for the stress tensor σ(t, x) =
σ̂((Dx)s), and constitutive law for the Piola-Kirchhoff tensor S(t,X) = Ŝ(Dx), with Ŝ(F ) =
σ(F )Cof(F ). Ŝ : GL+(d)→ Rd×d.
The material is called hyperelastic if there is a function Ŵ ∈ C1(GL+(d);R) such that

Ŝij(F ) =
∂

∂Fij
Ŵ (F ).

The function Ŵ is called the stored energy.

Definition 20 We say that hyperelastic material with constitutive functions σ̂, Ŝ, Ŵ satisfies
frame indifference if σ̂∗ = σ̂, Ŝ∗ = Ŝ and Ŵ ∗ = Ŵ .

Lemma 14 For a hyperelastic material the following three assertions are equivalent.

(i) The constitutive law for the stress tensor σ̂ : GL+(d) → Rd×dsym satisfies frame indifference
i.e.

σ̂(QF ) = Qσ̂(F )Qt ∀F ∈ GL+(d),∀Q ∈ SO(d).

(ii) The constitutive law for the Piola-Kirchhoff tensor Ŝ : GL+(d) → Rd×d. satisfies frame
indifference i.e.

Ŝ(QF ) = QŜ(F ) ∀F ∈ GL+(d),∀Q ∈ SO(d).

and Ŝ(F )F t ∈ Rd×dsym.

(iii) The stored energy function Ŵ : GL+(d)→ R satisfies Ŵ ∗ = Ŵ and

Ŵ (QF ) = Ŵ (F ) ∀F ∈ GL+(d),∀Q ∈ SO(d).
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Proof (i)⇔ (ii) is just a consequence of the definitions of σ and S.
(iii)⇒ (ii). Remember that Ŝij(F ) = ∂

∂Fij
Ŵ (F ). Since Ŵ (QF ) = Ŵ (F ) ∀Q ∈ SO(d) we have

∂

∂Fij
(Ŵ (QF )) =

∂

∂Fij
(Ŵ (F ) = Ŝij(F ).

Performing the derivatives in the first term we get

∂

∂Fij
(Ŵ (QF )) =

∑
ll′

∂Fij (QF )ll′
[
∂Fll′ Ŵ

]
|QF

= (QtŜ(QF ))ij

Hence QtŜ(QF ) = Ŝ(F ). It remains to prove that Ŝ(F )F t ∈ Rd×dsym. Since Ŵ (QF ) = Ŵ (F )

∀Q ∈ SO(d), this is true also for all Q of the form Qα = eαX with α ∈ R and Xt = −X. Then we
have

0 = ∂αŴ (QαF )|α=0 =
∑
ll′

[∂α(QaF )ll′ ]|α=0∂Fll′ Ŵ (F ) = tr(Ŝ(F )(XF )t) = tr(Ŝ(F )F tXt.

For any matrix M, the identity trMX = 0 for all Xt = −X iff M t = M. Indeed for any skew-
matrix X we can write

Tr(MX) =
∑
i<j

(Mij −Mji)Xij = 0.

Since the matrix elements (Xij)i<j are independent it follows Mij = Mji. This concludes the proof
of symmetry.
(ii) ⇒ (iii). We want to prove that Ŵ (QF ) = Ŵ (F ) i.e ’morally’ ∂QŴ (QF ) = 0. Since SO(d)
is not a linear space, we cannot apply the derivative directly, but we have to pass through the
corresponding Lie group (tangent space.) The analog of ∂xj (derivative in direction j) for a linear

space is ∂αŴ (eαXQF )|α=0. For any Xt = −X (corresponds to a direction in the tangent space)
we have

∂αŴ (eαXQF )|α=0 =
∑
ll′

[∂α(eαXQF )ll′ ]|α=0[∂Fll′ Ŵ ](QF ) = tr(Ŝ(QF )(XQF )t) = tr(QŜ(F )F tQtXt = 0

where in the last step we used (Ŝ(QF ) = Q(Ŝ(F ) and QŜ(F )F tQt is symmetric. Then Ŵ (QF ) =
Ŵ (F ). 2

1.5.3 Material symmetries in elastic materials

Definition 21 The group G ⊂ GL+(d) is a material symmetry for an elastic material with con-
stitutive law σ̂ if σ̂ satisfies

σ̂(Fg) = σ̂(F ) ∀F ∈ GL+(d), ∀g ∈ G.

We have seen that G = SO(d) for a homogeneous solid and G = SL(d) for a fluid. The following
result garantees there is no symmetry between a fluid and a solid. An elastic material can be only
a solid or a fluid.

Theorem 5 (W. Noll) . Let d ≥ 2 and SO(d) ⊂ G ⊂ SL(d) group. Then we must have
G = SO(d) or G = SL(d)

Proof. See W. Noll1. 2
1 ’Proof of the maximality of the orthogonal group in the unimodular group’, Arch. Rat. Mech. Anal. 18

(1965), pp. 100-102
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Elastic fluid

Theorem 6 Let us consider a Cauchy-elastic material satisfying frame indifference, and with
material symmetry group G = SL(d), i.e.

• there exists σ̂ : GL+(d)→ Rd×dsym such that σ(t, x) = σ̂(Dx),

• by frame indifference σ̂(QF ) = Qσ̂(F )Qt ∀F ∈ GL+(d),∀Q ∈ SO(d),

• by material symmetry σ̂(Fg) = σ̂(F ) ∀g ∈ SL(d).

Then there exists a function p̂ : (0,∞)→ R such that

σ̂(F ) = −p̂
(

1

detF

)
Id (1.5.64)

where p̂ is called the pressure.

Proof. exercise

Hyperelastic materials

The material symmetry implies restrictions on σ̂ and Ŝ, but NOT becessarily on the stored energy
Ŵ . This is the content of the next lemma.

Lemma 15 Ŵ ∈ C1(GL+(d);R) be the stored energy for an hyperelastic material and let G ⊂
SL(d) a group. Let us consider the following three statements.

1. Ŵ (F ) = Ŵ (Fg) ∀g ∈ G, ∀F ∈ GL+(d).

2. Ŝ(Fg)gt = Ŝ(F ) ∀F ∈ GL+(d).

3. σ̂(Fg) = σ̂(F ) ∀F ∈ GL+(d).

Then 2. holds if and only 3. holds, 1. implies 2., but 2. does not imply 1..

Proof exercise sheet

In the special case of a hyperleastic solid with material symmetry in the stored energy, the function

Ŵ takes a simple form.

Lemma 16 The two following statements are equivalent.

1. for any F ∈ GL+(d) we have material symmetry Ŵ (Fg) = Ŵ (F ) ∀g ∈ SO(d) (material
group for a isotropic solid), and frame indifference Ŵ (QF ) = Ŵ (F ) ∀Q ∈ SO(d).

2. there exists a function g : (0,∞)d → R such that

Ŵ (F ) = g(λ1(F ), . . . , λd(F ))

where λi(F ), i = 1, . . . , d are the singular values of F.

Reminder. For any F ∈ Rd×d there exists three real matricesR, T ∈ SO(d) and λ̂ = diag(λ1, . . . , λd)
such that

F = Rλ̂T.

The diagonal elements λi(F ), i = 1, . . . , d are called the singular values of F.
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Proof. Let F = Rλ̂T be the singular value decomposition of F. Then

Ŵ (F ) = Ŵ (Rλ̂T ) = Ŵ (λ̂T ) = Ŵ (λ̂) = g(λ̂)

where in the second equality we used frame indifference and in the third material symmetry. 2

[Lecture 9: 11.05]

1.5.4 Frame indifference and heat flux

We need the following preliminary definition

Definition 22 A material is isotropic if the reference mass density is constant i.e.

ρ0(X) = ρ0 ∀X ∈ Ω.

Lemma 17 An isotropic material with constant reference density ρ0 has density

ρ(t, x) =
ρ0

det(Dx)s(t, x)
. (1.5.65)

Proof. The continuity equation in material coordinates gives

ρm(t,X) =
ρ0(X)

detDx(t,X)
=

ρ0

detDx(t,X)
.

Hence the result. 2
Let θ : T → R the temperature function and assume the heat flux has constitutive law

q̂ : Rd → Rd
w → q̂(w)

such that q(t, x) = q̂(Dθ(t, x)).

Change of observable. Since q is an objective vector then q∗(t, x∗(x)) = Qq(t, x), andQq̂(Dθ) =
Qq = q∗ = q̂∗(D∗θ∗) = q̂∗(QDθ). Then q̂∗ must satisfy

q̂∗(Qw) = Qq̂(w) ∀w ∈ Rd,∀Q ∈ SO(d). (1.5.66)

Definition 23 We say that the heat flux satisfies frame indifference if q̂∗(D∗θ∗) = q̂(D∗θ∗)

By frame indifference we obtain

q̂(Qw) = Qq̂(w) ∀w ∈ Rd,∀Q ∈ SO(d). (1.5.67)

Energy equation

We assume that the material is

• homogeneous: the reference density is constant ρ0(X) = ρ0 ∀X ∈ Ω,

• static: no motion i.e. x(t,X) = x(0, X) ∀t, hence v = 0.

Then the energy conservation reduces to

∂tε(t, x) = r(t, x)− div(q), (1.5.68)

where we used Dtε = ∂tε+ v · ∇ε = ∂tε, and div(σtDv) = 0, since v = 0.
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Fourier’s law. Let q ∈ C1 and assume the following properties.

1. The material is isotropic i.e. the description does not change with rotations q̂(w) = q̂∗(w)
∀w. Hence

q̂(Qw) = Qq̂(w) ∀w ∈ Rd,∀Q ∈ SO(d). (1.5.69)

2. The heat flux is parallel and opposite to the temperature gradient and q = 0 when Dθ = 0 (if
no temperature gradient is present, there is no flux) Then there exists a function h : R+ →
R+, such that q̂(w) = −h(|w|)w.

3. The flux depends linearly on Dθ, (Fourier’s law) i.e. ∃ a matrix H ∈ Rd×d such that

q̂(Dθ) = HDθ

Linearity+isotropy (1. and (3.) imply that Q−1HQw = Hw for all w ∈ Rd and all Q ∈ SO(d).
Then H = αId, where α ∈ R. By (2. we have α = −h < 0. As a result

divq = −h∆θ.

Heat equation. We assume the following constitutive law for the internal energy

ε(t, x) = c θ(t, x)

where c > 0 is a constant called the specific heat. Then (1.5.68) becomes

∂tθ =
h

ρ0c
∆θ +

r

ρ0c

where h
ρ0c

is a positive constant and r
ρ0c

may depend on (t, x) through r. This is the heat equation
in d dimensions with an external source.

[Lecture 10: 13.05]

1.5.5 Frame indifference in fluids

Ideal fluid and Euler equation

Definition 24 An ideal fluid is an isotropic elastic material with constitutive law for the stress
tensor σ satisfying frame indifference and with material symmetry group G = SL(d) i.e.

ρ0(X) = ρ0 > 0 ∀X ∈ Ω

σ̂(QF ) = Qσ̂(F )Qt

σ̂(Fg) = σ̂(F )

}
∀F ∈ GL+(d), Q ∈ SO(d), g ∈ SL(d).

From Theorem 6 above, there exists a function p̂ : (0,∞)→ R such that

σ̂(F ) = −p̂
(

1

detF

)
Id

where p̂ is called the pressure. From Lemma 17 above we know that ρ(t, x) = ρ0
det(Dx)s(t,x) , hence

σ(t, x) = σ̂((Dx)s) = −p̂
(

1

(detDx)s

)
Id = −p̂

(
ρ(t, x)

ρ0

)
Id (1.5.70)
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Lemma 18 An ideal fluid with no external forces, and ρ0 = 1, satisfies the system of equations{
Dρ
Dt + ρ divv = 0
ρDvDt +∇p̂(ρ) = 0

(1.5.71)

These are called compressible Euler equations and can be written also as follows{
∂tρ+ div(ρv) = 0
ρ∂t(ρv) + div(ρv ⊗ v) +∇p̂(ρ) = 0

(1.5.72)

where
⊗ : Rd × Rd → Rd×d

(a, b) → (a⊗ b)ij = aibj

and
[div(a⊗ b)]i =

∑
j

∂xj (a⊗ b)ij .

Proof (1.5.71) is just a consequence of the realations above. To prove the second equation in
(1.5.72) we replace in the equation of motion

ρDtvi = ρ∂tvi + ρ(v · ∇)vi = ∂t(ρvi)− (∂tρ)viρ(v · ∇)vi

= ∂t(ρvi) +
∑
l

[∂xl(ρvl)vi + ρvl∂xlvi] = ∂t(ρvi) +
∑
l

∂xl(ρvlvi)

where in the second line we used the continuity equation. 2

Viscous fluid and Navier-Stokes equation

We assume now that σ depends on local deformations Dx and also on local velocity changes Dv.
The constitutive law is then a function

σ̂ : GL+(d)× Rd×d → Rd×dsym

(F,G)→ σ̂(F,G)

such that σ(t, x) = σ̂((Dx)s, Dv). Remember that Dx is an objective vector, while σ and Dv are
objective tensors. Then Qσ̂(Dx,Dv)Qt = QσQt = σ∗ = σ̂∗(Dx∗, D∗v∗) = σ̂∗(QDx,QDvQt). By
frame-indifference σ̂ = σ̂∗, hence σ̂ must satisfy

σ̂(QF,QGQt) = Qσ̂(F,G)Qt ∀F ∈ GL+(d), G ∈ Rd×d,∀Q ∈ SO(d) ∀Q ∈ SO(d).
(1.5.73)

Under material deformation σ∗ = σ, Dx∗ = Dxg−1 and Dv∗ = Dv, hence material symmetry
σ̂ = σ̂∗, implies

σ̂(Fg−1, G) = σ̂(F,G) ∀g ∈ SL(d).

Additional assumption. We assume viscosity is a small perturbation of the idea fluid i.e.

σ̂(F,G) = σ̂1(F,G) + L(G)

with L(0) = 0. Frame indifference and material symmetry hold for any F ∈ GL+(d), G ∈ Rd×d
hence also for G = 0, then σ̂1 must satisfy σ̂1(QF ) = Qσ̂1(F )Qt and σ̂1(Fg−1) = σ̂1(F ), hence
σ̂1(F ) = −p̂

(
1

detF

)
Id. As a consequence L must satisfy

QtL(G)Q = L(QGQt).

If we assume isotropy, then

σ(t, x) = −p̂
(
ρ

ρ0

)
+ L(Dv). (1.5.74)
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Theorem 7 (fluid with linear viscosity) Let d = 3 and assume L : R3×3 → R3×3
sym is

linear. Assume that σ(t, x) = −p̂
(
ρ
ρ0

)
+ L(Dv) and L satisfies frame indifference L(QGQt) =

QLQt ∀G ∈ R3×3, ∀Q ∈ SO(3). Then there exists λ, µ ∈ R such that

L(G) = 2µ
G+Gt

2
+ λ(trG)Id. (1.5.75)

Remark Note that since trG =trG+Gt

2 the function L depends only on ReG = G+Gt

2 .

Proof exercise sheet.

Lemma 19 A fluid with linear viscosity, no external forces, and ρ0 = 1, satisfies the system of
equations {

Dρ
Dt + ρ divv = 0
ρDvDt = −∇p̂(ρ) + µ∆v + (µ+ λ)∇(divv)

(1.5.76)

These are called compressible Navier-Stokes equations

Proof We need to replace (1.5.74) and (1.5.75) inside div(σ). We have

div(−p̂ (ρ)i = −∂xi p̂ (ρ)

[div(Dv)]i = ∆vi

[div(Dvt)]i = ∂xi(div(v))

[div(trDv)Id]i = ∂xi(div(v))

⇒ [div(σ)]i = −∇ip̂ (ρ) + µ∆vi + (µ+ λ)∇i(divv).

Inserting this in the equation of motion we get the result. 2
Note that if we set µ = ν = 0 we recover Euler-equations.

Incompressible fluid

In an incompressible fluid the volume occupied by the test volume U is independent of time
U(t) = U ∀t. By Lemma 6 this holds iff div(v) = 0.

Lemma 20 Assume x(0, t) = X, the fluid is isotropic and incompressible. Then the mass density
is constant: ρ(t, x) = ρ0 ∀t, x.

Proof. Inserting div(v) = 0 in the continuity equations we get Dtρ = 0, which is equivalent to
∂tρm = 0. Then ρm(t,X) = ρm(0, X) ∀t. By isotropy ρm(t,X) = ρ0

detDx(t,X) , hence ρm(0, X) = ρ0

∀X since Dx(0, X) = Id. 2.
In the following we replace the continuity equation for an incompressible isotropic fluid just by
div(v) = 0. To enforce the incompressible constraint in the equation of motion we must replace
p̂(ρ) by an independent function p(t, x), the physical pressure. This can be seen as a Lagrange
multiplier for the constraint div(v) = 0.

Lemma 21 An incompressible isotropic fluid with linear viscosity and no external force satisfies
the system of equations {

divv = 0
Dv
Dt = ν∆v −∇

(
p
ρ0

)
(1.5.77)

where v, p are two unknown functions and ν = µ
ρ0
. These are called incompressible Navier-Stokes equations

If we set µ = 0 we obtain {
divv = 0
Dv
Dt = −∇

(
p
ρ0

)
(1.5.78)

These are called incompressible Euler equations

36



2. Hydrodynamics

2.1 Introduction

The starting point are incompressible Navier-Stokes and Euler equations from the last chapter. We
assume in the following frame indifference, isotropy, material symmetry group SL(d) and linear
viscosity. We consider {

divv = 0 (t, x) ∈ T
Dv
Dt = ν∆v −∇

(
p
ρ0

)
(2.1.1)

where v, p are two unknown functions and ν = µ
ρ0
. We now need to insert boundary and initial

conditions.

2.1.1 Boundary and initial conditions

The boundary may be external (the fluid is contained in the region Ω) or internal (the flow goes
around some obstacle). At infinity we always assume the fluid has constant velocity (see Lecture 1).
For finite boundary point we will consider two types of boundary conditions.

• Fluid with viscosity ν > 0. One generally fixes the velocity at the boundary v(t, x) = 0
∀x ∈ ∂Ω. These are called no slip (or sticky) boundary conditions (the fluid sticks to the
boundary).

• Fluid without viscosity ν = 0. One generally fixes the normal velocity at the boundary
v(t, x) · n(x) = 0 ∀x ∈ ∂Ω, where n(x) is the vector orthogonal to the boundary at x. This
means there is no flux through the boundary.

Remark Both boundary conditions imply that the boundary does not change: ∂Ωt = ∂Ω ∀t.
That implies Ωt = Ω, ∀t, i.e. T = R× Ω. Indeed we have x(t,X) ∈ ∂Ωt iff X ∈ ∂Ω.
Let v|∂Ωt = 0. Then ∂tx(t,X) = 0 ∀X ∈ ∂Ω. This means particles on the boundary do not move,
hence the result.
Let v(t, x) · n(x) = 0 ∀x ∈ ∂Ω. Then the velocity is zero in the orthogonal directions and particles
on the boundary must remain always on the boundary, though they may move along it.

[Lecture 11: 27.05]

Initial boundary value problem The classical initial boundary value problem consists in
solving {

∂tv + v · ∇v = ν∆v −∇
(
p
ρ0

)
div v = 0 t ≥ 0, x ∈ Ω

(2.1.2)

with boundary condition v|∂Ω = 0 if ν > 0, and (v · n)|∂Ω = 0 if ν = 0, and initial condition

v(0, x) = v0(x) ∀x ∈ Ω.

This means we need to find a pair of functions (v, p), v : [0,∞) × Ω → Rd, p : [0,∞) × Ω → R,
with some minimal regularity properties satisfying the equations above.
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Remark 1 No initial condition is given on p

Remark 2 The function p cannot be unique. If p(t, x) is a solution, then p+h is also a solution
for any function h : [0,∞)→ R depending only on t.

Remark 3 A solution v is called stationary if ∂tv = 0.

2.2 Vorticity formulation

Definition 25 Let x be a motion and v the corresponding velocity field. The vorticity in d = 3 is
defined by

ω : T → R3

(t, x)→ ω(t, x) = curl ω = ∇× v

In components (curl ω)i =
∑
jk ε

ijk∂xjvk. The vorticity in d = 2 is defined by

ω : T → R
(t, x)→ ω(t, x) = ∂x1v2 − ∂x2v1.

The vorticity gives information on how much the flow is ’winding’ locally. It is related to the
velocity gradient as follows.

Lemma 22 Let W = Dv−(Dv)t

2 , and S = Dv+(Dv)t

2 the skew-symmetric (respectively symmetric)
part of Dv. Then

(i) we have W t = −W, St = S, Dv = W + S,

(ii) when d = 3 it holds

ωi = −
∑
jk

εijkWjk, Wij = −1

2

∑
k

εijkωk, (2.2.3)

(iii) for any vector V ∈ R3 we have

(WV )i =
1

2
(ω × V )i.

Proof (i) : easy. (ii) : note that we have the relations

(a× b)i =
∑
jk

εijkajbk, (a ∧ b)ij =
∑
k

εijk(a× b)k ∀a, b ∈ R3.

Then

Wij =
1

2
(Dvij − (Dv)ji) =

1

2
(∂jvi − ∂ivj) = −1

2
(∇∧ v)ij = −1

2

∑
k

εijk(∇× v)k = −1

2

∑
k

εijkωk.

Moreover

ωi = (∇× v)i =
1

2

∑
jk

εijk(∇∧ v)jk = −
∑
jk

εijkWjk.

(iii) :

(WV )i =
∑
j

WijVj = −1

2

∑
jk

εijkVjωk =
1

2
(ω × V )i

since a× b = −b× a. 2

We will need the following result from linear algebra.
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Lemma 23 Let A ∈ R3×3 some matrix s.t. trA = 0. Let S = A+At

2 , W = A−At
2 and let w ∈ R3

the vector ωi = −
∑
jk ε

ijkWjk. Then the following identity holds∑
jk

εijk(A2)kj = −(Sω)i.

Proof exercise

2.2.1 Local structure of the flow

The matrices W (hence the vorticity) and S encode information of the local structure of the
flow. Precisely W corresponds to local rotations while S to local dilatation (or stretching). To
understand this let us consider two examples.

Example 1 [Jet flow] Assume W (t, x) = 0 and S(t, x) = S0 constant for all (t, x). Then
Dv = S and ∂xivj is constant, hence v is a linear function of x. Precisely there exists a function
v0(t) such that

v(t, x) = v0(t) + Sx

The trajectory x(t,X) is a solution of the PDE

∂tx(t,X) = v(t, x(t,X)) = Sx(t,X) + v0(t)

i.e.

x(t,X) = etSx(0, X) +

∫ t

0

e(t−τ)Sv0(τ)dτ.

We assume now that v0(t) = 0 and x(t,X) = X. Then v(t, x) = Sx and x(t,X) = etSX. Inserting
these relations into N-S (2.1.1) and assuming ρ0 = 1 we get{

trS = 0
S2x = −∇ (p)

(2.2.4)

where we used

Dtv = (∂tV )s, ∂tV (t,X) = ∂2
t x(t,X) = S2x(t,X),

∆vi =
∑
j

∂2
xjvi =

∑
j

∂xj (Dv)ij =
∑
j

∂xjSij = 0

since S is constant. The solution of ∂xip = −(S2x)i is

p(x) = −1

2
x · S2x,

This solution is not unique since we can add any t dependent function. Finally S must satisfy
trS = 0. Since S is real symmetric we can diagonalize it performing a rotation. In the new basis
S = diag(γ1, γ2, γ3). Inserting this expression in v = Sx, and (2.2.4) we obtain

vi = γixi ⇒ xi(t,X) = etγiXi

tr S = γ1 + γ2 + γ3 = 0

p(x) = −1

2

3∑
j=1

γjx
2
j

If we take γ1 = γ2 = γ < 0, we must have γ3 = −2γ > 0, hence xj(t) → 0, j = 1, 2 and
x3(t) → ±∞ as t → ∞. The flow concentrates along the z−axis and is ejected at infinity. Note
that v3(t)→∞ as t→∞.
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We must still insert the boundary conditions. Assume we are on the half-plane x3 ≥ 0. Then there
is a boundary at x3 = 0. The normal direction n is then n3 and v ·n = v3 = γ3x3 is automatically
zero at the boundary. So no-flux boundary conditions are automatically satisfied. On the contrary
we cannot ensure no slip b.c. unless γ = 0, i.e. S = 0 and v = 0 everywhere.
A problem arises at |x| → ∞ since the velocity diverges. This is physically impossible. Therefore
this example can only describe a finite piece of fluid.

Example 2 [Vortex flow] Assume S(t, x) = 0 and W (t, x) = W0 constant for all (t, x). Then
Dv = W and (as above) ∂xivj is constant, hence v is a linear function of x. Precisely there exists
a function v0(t) such that

v(t, x) = v0(t) +Wx.

Assuming v0 = 0 we get the trajectory

x(t,X) = etWX.

Since WT = −W we have

(etW )tetW = etW
t

etW = e−tW )etW = Id, det etW = etrtW = 1,

hence etW ∈ SO(3), i.e. W is the infinitesimal generator for a rotation in R3. We can always
rotate the basis in such a way that W generates rotations in the x− y plane only. In that case we
have

W =

 0 α 0
−α 0 0
0 0 0

 (2.2.5)

Note that W 2 = −α2Id, hence W 2n = (−α)nId, W 2n+1 = (−α)nW, and

etW =
∑
n≥0

tn

n!
Wn =

∑
n≥0

t2n

2n!
W 2n +

∑
n≥0

t2n+1

(2n+ 1)!
W 2n+1

=

(
12 0
0 0

)
cos(αt) +

W

α
sin(αt) =

 cos(tα) sin(tα) 0
− sin(tα) cos(tα) 0

0 0 1


Then x(t,X) = rotation around the z−axis with constant angular velocity α. Note that

v1 = αx2, v2 = −αx1, v3 = 0,

hence ‖v‖ = α dist(x, e3) → ∞ as dist(x, e3) → ∞, i.e. the velocity grows if we are far from
the z−axis, since the angular velocity is constant. To avoid the unphysical situation of having
a diverging velocity as dist(x, e3) → ∞, we can take an infinite cylinder of radius R, i.e. Ω =
{(x, y, y)|x2 + y2 ≤ R2}. Note that the direction normal to the boundary at x = (x1, x2, x3) is
nx = 1

R (x1, x2, 0) hence

(n · v) = (n ·Wx) = αn · (x2,−x1, 0) = 0.

So we have naturally no-flux boundary conditions.
Now, inserting these relations into N-S (2.1.1) and assuming ρ0 = 1 we have as before Dtv = W 2x,
and ∆v =

∑
j ∂xjWij = 0 since W is constant, hence

W 2x = −∇ (p) (2.2.6)

where div v = tr(Dv) = tr(W ) = 0 by construction since W t = −W. The solution is

p(x) = −1

2
x ·W 2x = −1

2
(x,W 2x) = −1

2
(W tx,Wx) =

1

2
‖Wx‖2

up to some arbitrary additive function h(t). For W as in (2.2.5) we get p(x) = α
2 [dist(x, e3)]2.
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Remark 1. Note that since W is skew-symmetric we have x ·Wx = 0 ∀x ∈ R3, but (W 2)t = W 2

hence x ·W 2x need to be zero.

Remark 2. The portion of fluid far from the z−axis is hard to move since the pressure diverges
as dist(x, e3)→∞.

2.2.2 Vorticity formulation of N-S in d = 3

Theorem 8 Let d = 3 and (p, v) be a solution of (2.1.1) with ρ0 = 1 Then the vorticity
w = curlv satisfies the equation

Dtw = Sw + ν∆w, (2.2.7)

where S = Dv+(Dv)t

2 .

Note that we need at least v ∈ C2(I × Ω;R3) for some finite time interval.

Proof. Applying curl to both sides of N-S equation we get

curl [∂tv + v · ∇v − ν∆v] = −curl [∇p] = 0

where in the last equality we used curl ∇p = ∇ × ∇p = 0, by symmstry. Now exchanging
derivatives we get

curl ∂tv = ∂tω, curl ∆v = ∆ω.

Moreover

[curl v ·∇v]i =
∑
jk

εijk∂j(v ·∇)vk = (v ·∇)ω+
∑
jkl

εijk∂jvl ∂lvk = (v ·∇)ω+
∑
jkl

εijk(Dv)lj(Dv)kl

= (v · ∇)ω +
∑
jk

εijk(Dv)2
kl (2.2.8)

Since divv = tr(Dv) = 0 by Lemma 23 we have

[curl v · ∇v]i = (v · ∇)ω − (Sω)i.

Inserting this result in the equation above we get the result. 2

[Lecture 12: 01.06]

2.2.3 Vorticity formulation of N-S in d = 2

Theorem 9 Let d = 2 and (p, v) be a solution of (2.1.1) with ρ0 = 1 Then the vorticity
w = ∂x1

v2 − ∂x2
v1 satisfies the equation

Dtw = ν∆w, (2.2.9)

Proof. exercise

Remark For ν = 0 the vorticity is ’frozen’.

2.3 Vortex lines

Definition 26 Let d = 3. A curve α ∈ C1((0, 1); Ω) is called a vortex line at time t if there exists
λ : (0, 1)→ R s.t.

dα(s)

ds
= λ(s)ω(t, α(s))

i.e. α is tangent to the vector field ω at time t.
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Example In the case of the vortex flow with S = 0 and W =

 0 θ 0
−θ 0 0
0 0 0

 we have already

found v3 = 0, v1 = θx2 and v2 = −θx1. The vorticity is given by ω = −e3‖ω‖, where ‖ω‖ = 2θ
is the angular velocity. Note that ω is orthogonal to the plane of rotation. Then the function
α(s) = se3 is a vortex line for any time t and in general α(s) = h(s)e3 is a vortex line for any time
t for any function h at least C1. Note that since ω is parallel to e3 all vortex lines must be also
parallel to e3.

2.3.1 Vortex lines in an ideal fluid.

When ν = 0, the vorticity in d = 3 satisfies the equation Dtω = Sω. In particular vortex lines
have a ’non mixing property’, i.e they remain separated, as stated below.

Lemma 24 Let (p, v) be a solution of (2.1.1) with ν = 0. Then the vortex lines move with the
fluid i.e. if α(s) is a vortex line at time t = 0, then αt(s) := x(t, α(s)) is a vortex line at time t.

Since the motion x(t,X) is an invertible function, if we have two different vortex lines α1(s) 6= α2(s)
for some s then (α1)t(s) 6= (α2)t(s) for all t.

Proof By definition dα
ds (s) = λ(s)ω(0, α(s)) for some function λ : (0, 1) → R. To prove αt(s) is

a vortex line a time t we must find a function λt : (0, 1)→ R such that

dαt
ds

(s) = λt(s)ω(t, α(s)).

Inserting αt(s) := x(t, α(s)) and the definition of α(s) we get

d(αt)i
ds

(s) =
∂xi(t, α(s))

∂s
=
∑
j

(Dx)ij(t, α(s))
dα

ds
(s) = λ(s) [(Dx)(t, α(s)) ω(0, α(s))]i.

We will prove below that
ωm(t,X) = Dx(t,X)ωm(0, X). (2.3.10)

As a consequence

(Dx)(t, α(s)) ω(0, α(s)) = ωm(t, α(s)) = ω(t, x(t, α(s))).

Inserting this result above we get

dαt
ds

(s) = λ(s) ω(t, x(t, α(s))) = λ(s) ω(t, αt(s)).

The result follows taking λt(s) = λ(s). 2
The proof of (2.3.10) is a corollary of the following theorem.

Theorem 10 Let v be a smooth velocity field, x(t,X) the corresponding motion and h : R3 ×
R+ → R3 some other smooth spatial field. Then we have

Dth(t, x) = (Dv)(t, x)h(t, x) ⇔ hm(t,X) = Dx(t,X)h(0, X),

where we assumed x(0, X) = X, hence h(0, x) = h(0, X) = (hm)(0, X).
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Proof (Exercise sheet)
(⇐). Let h0(X) := h(0, X) and suppose hm(t,X) = Dx(t,X)h(0, X) = (Dx)h0. Then ∂t(hm)i =∑
j ∂t(Dx)ij (h0)j . Now

∂t(Dx)ij(t,X) = (∂t∂Xjxi)(t,X) = ∂Xj (vi)m(t,X) = ∂Xj (vi)(t, x(t,X))

=
∑
k

(∂xkvi)m(t,X)(∂Xjxk)(t,X) = [(Dv)m(Dx)]ij(t,X) (2.3.11)

Inserting this formula we get

∂t(hm)i =
∑
j

∂t(Dx)ij (h0)j = [(Dv)m(Dx)h0]i = [(Dv)mhm]i ⇒ Dthi = [∂t(hi)m]s = (Dv)h.

(⇒). Suppose Dth = (Dv)h. We want to prove hm(t,X) = (Dx)(t,X)h(0, X). Note that

hm(t,X) = (Dx)(t,X)hm(0, X) ⇔ [(Dx)−1hm](t,X) = h(0, X) independent of t.

Fix X ∈ Ω and let ψ(t) := ((Dx)−1hm)(t,X). It is enough to prove that ψ′(t) = 0. Now

ψ′(t) = [∂t(Dx)−1]hm + (Dx)−1(∂thm) = (Dx)−1[−(∂tDx)(Dx)−1 + (Dv)m]hm

where we used Dth = (Dv)h and the formula ∂t(A
−1) = −(A−1)(∂tA)(A−1) which holds for any

matrix-valued differentiable function t→ A(t) such that A(t) is invertible ∀t. From (2.3.11) above
we have ∂t(Dx) = (Dv)mDx, hence

−(∂tDx)(Dx)−1 + (Dv)m = −(Dv)m(Dx)(Dx)−1 + (Dv)m = 0.

This concludes the proof. 2

Proof of (2.3.10) From (2.2.7) with ν = 0, w satisfies

Dtw = Sw = (Dv −W )ω = (Dv)ω − 1

2
ω × ω = (Dv)ω,

where we used Dv = S+W and Lemma 22(iii). By theorem 10 with the field h replaced by ω we
have ωm(t,X) = (Dx)(t,X)ω(0, X) hence the result. 2

2.4 Local existence of strong solutions for N-S

We consider the incompressible N-S equation in infinite volume and small time interval:{
∂tv − ν∆v = −v · ∇v −∇(p)
div (v) = 0 t ∈ (0, t∗), x ∈ Rd (2.4.12)

With initial condition v(0, x) = v0(x). Since we want to study small perturbations of a fluid at
rest we take the boundary condition

lim
|x|→∞

v(t, x) = 0 ∀t.

For the same reason we consider only initial velocity v0 with compact support (localized initial
perturbation) or at most in L2. Note that in this case the kinetic energy at t = 0 is finite

E(0,Rd) =
1

2

∫
ρ(t, x)|v(t, x)|2dx =

1

2

∫
|v0(x)|2dx ≤ ∞,

where we used ρ = ρ0 = 1.
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Regularity requirements. For the equations above to be well defined we need v to admit
at least one time and two space derivatives. If the time interval is small enough we expect the
solution to remain in L2(Rd;Rd). Note that differentiability plus L2 guarantees that the boundary
condition lim|x|→∞ v(t, x) = 0 is satisfied.

[Lecture 13: 03.06]

2.4.1 Reorganizing the problem

Helmholtz decomposition

Definition 27 Let L2
σ and L2

D the subspaces of L2(Rd;Rd) defined by

L2
σ = {h ∈ L2(Rd;Rd) | div h = 0 in D′} (2.4.13)

L2
D = {h ∈ L2(Rd;Rd) | ∃q ∈W 1,2

loc (Rd) with g = Dq} (2.4.14)

(2.4.15)

where (Dq)j = Djq and Dj is the weak derivative wrt xj . Finally div h = 0 in D′ means∫
~h · ~Dξ dx = 0 ∀ξ ∈ C∞c (Rd).

Theorem 11 The sets L2
σ and L2

D are closed subspaces of L2(Rd;Rd), L2
σ ⊥ L2

D and

L2(Rd;Rd) = L2
σ ⊕ L2

D.

In particular, every f ∈ L2(Rd;Rd) has a unique decomposition

f = h+Dq, h ∈ L2
σ, Dq ∈ L2

D.

This is called the Helmholtz decomposition.

The proof is divided in three steps.
Step 1: L2

D is closed (hence L2(Rd;Rd) = L2
D ⊕ (L2

D)⊥)
Step 2: L2

D ⊥ L2
σ (hence L2

σ ⊂ (L2
D)⊥)

Step 3: L2
D = (L2

σ)⊥ (hence L2
D is closed and L2(Rd;Rd) = L2

σ ⊕ L2
D)

Proof of Step 1. Let gn be a Cauchy sequence in L2
D. Then there exists g ∈ L2(Rd;Rd) such

that ‖gn − g‖L2 → 0. We want to prove that g ∈ L2
D, i.e. that there exists a function q ∈ W 1,2

loc

such that g = Dq. Since gn = D(qn + c) for any constant c ∈ R we can assume that each qn
satisfies ∫

B(0,1)

qndx = 0 ∀n.

Then there exists a constant cR > 0 such that the following Poincaré inequality applies (see
exercise sheet)

‖qn − qm‖L2(B(0,R)) ≤ cR‖gn − gm‖L2(B(0,R)).

As a consequence qn is a Cauchy-sequence in W 1,2(B(0, R)), hence ∃q ∈W 1,2(B(0, R)) such that
Dq = g and qn → q in L2(B(0, R)). Repeating for all R > 0 we construct a function q ∈W 1,2

loc (Rd)
such that Dq = g.

Proof of Step 2. For all h ∈ L2
σ and for all g = Dξ such that ξ ∈ C∞c (Rd), we have

(h, g)L2 =

∫
Rd

∑
j

(hjgj)(x)dx =

∫
Rd

∑
j

(hj(x)Djq(x))dx = 0

To complete the argument it is enough to prove that {Dξ| ξ ∈ C∞c (Rd)} is dense in L2
D (exercise).

Hint: take qR(x) = q(x)φR(x), where φR(x) = φ(|x|/R) and φ is a standard mollifier. Then
consider φR ∗ qR.
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Proof of Step 3. Since we know from 2. that L2
σ ⊂ (L2

D)⊥ it is enough to prove (L2
D)⊥ ⊂ L2

σ.
Let h ∈ (L2

D)⊥, then
∑
j(hj , gj)L2 = 0 for all g ∈ L2

D. In particular this holds for all g = Dξ, with

ξ ∈ C∞c (Rd), then div h = 0 in D′, hence h ∈ L2
σ.

Application to Navier-Stokes Let Pσ be the orthogonal projection on L2
σ. Applying this to

NS we obtain
Pσ (∂tv − ν∆v) = −Pσ ((v ·D)v)− Pσ (Dp)

Assuming p ∈ W 1,2
loc (Rd), we have Dp ∈ L2

D, hence Pσ (Dp) = 0. Moreover div (v) = 0 hence
v ∈ L2

σ and Pσv = v. We will see below that Pσ commutes with ∂t and D, hence

∂tv − ν∆v = −Pσ ((v ·D)v) ,

where the p dependence has disappeared.

Strategy

(1) Weak formulation: we replace the space derivatives ∂x with weak derivatives in the Sobolev
space Wm,2(Rd;Rd). Using Helmholtz decomposition we rewrite then (2.4.12) as

∂tu− ν∆u = F (u, u), (2.4.16)

u(0, x) = u0(x), u ∈ L2
σ

where, for any two functions u ∈W l,2(Rd;Rd), v ∈Wm,2(Rd;Rd), l ≥ 0,m ≥ 1 we define

F (u, v)i := −Pσ(
∑
j

ujDjvi). (2.4.17)

Note that the p dependence has now disappeared.

(2) We will see that (2.4.16) is equivalent to solve the fixed point equation

u = Gνu (2.4.18)

where the operator Gνu acts on functions u : R+ × Rd → Rd as

Gν(u)(t, x) := [Tν(t)u0] (x)

∫ t

0

[Tν(t− s) F (u(s), u(s))] (x)ds. (2.4.19)

Here Tν(t) = T (νt), where T (t) is the heat-kernel (defined below in eq.(2.4.23)) and

u(s) : Rd → Rd is defined by u(t)(x) = u(t, x).

(3) The solution obtained in this way turns out to be more regular than expected, in particular
weak derivatives can be replaced by ordinary derivatives.

Setting up the function spaces

We replace spatial derivatives by their weak version. Therefore we need to have

v(t, ·) ∈Wm,2(Rd;Rd) = Hm(Rd;Rd) m ≥ 2, t > 0

(at least two space derivatives, functions in L2). The next result ensures that the projection Pσ
leaves Hm(Rd;Rd) invariant.

Theorem 12 Let m ≥ 1, f ∈ Hm(Rd;Rd). Then Pσ(f) ∈ Hm(Rd;Rd), and for all multiindices
α ∈ Nd with |α| ≤ m we have

(i) DαPσf = PσDαf,
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(ii) ‖DαPσf‖L2 ≤ ‖Dαf‖L2 , in particular ‖Pσf‖Hm(Rd;Rd) ≤ ‖f‖Hm(Rd;Rd).

To prove this theorem we need the following result.

Lemma 25 Let p ∈ [1,∞). For h ∈ R, h 6= 0 and i = 1, . . . , d we define the difference quotient

D
(h)
i ∈ Lin(Lp(Rd);Lp(Rd)) by

D
(h)
i :=

f(x+ hei)− f(x)

h
.

The following are equivalent.

(i) f ∈W 1,p(Rd))

(ii) sup{‖D(h)
i f‖Lp | h 6= 0, i ∈ {1, . . . , d}} <∞

Moreover, if (i) or (ii) hold then

lim
h→0

D
(h)
i f = Dif in Lp.

Proof. homework

Proof of Thm 12. Assume first m = 1. By linearity PσD(h)
i f = 1

h [Pστi,hf − Pσf ] (x), where

τi,hf(x) := f(x+ hei). By translation invariance Pστi,h = τi,hPσ, hence PσD(h)
i = D

(h)
i Pσ for all

i, h. Then

‖D(h)
i Pσf‖L2 = ‖PσD(h)

i f‖L2 ≤ ‖D(h)
i f‖L2 .

where the last step holds since Pσ is an orthogonal projection. By Lemma 25 (ii) f ∈W 1,2 implies

sup{‖D(h)
i f‖L2 | h 6= 0, i ∈ {1, . . . , d}} <∞ ⇒ sup{‖D(h)

i Pσf‖L2 | h 6= 0, i ∈ {1, . . . , d}} <∞,

hence Pσf ∈W 1,2. Finally, by Lemma 25 and continuity of Pσ we have limh→0 PσD(h)
i f = PσDf

and limh→0D
(h)
i Pσf = DPσf in L2, hence DαPσf = PσDαf.

The case m > 1 is treated by induction. 2

[Lecture 14: 8.06]

In the following we will see the function u(t, x) in two different ways:

• as function of two variables taking values in Rd

u : R+ × Rd → Rd, i.e. (t, x)→ u(t, x);

• as a function of one variable taking values in a function space

u : R+ → Hm(Rd;Rd), i.e. t→ u(t, ·)

The relation between these two descriptions is the content of the next definition and lemma.

Definition 28 Let X be a Banach space with norm ‖ · ‖X and I ⊂ R an interval. We denote by
C0
b (I;X) the set of continuous bounded functions f : I → X. We introduce the norm

‖f‖C0
b (I;X) := sup

t∈I
‖f(t)‖X . (2.4.20)
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Remarks: If I is compact then C0
b (I;X) = C0(I;X). Moreover, we can define the X-valued

integral
∫ b
a
f(s)ds. In particular we have ‖

∫ b
a
f(s)ds‖X ≤

∫ b
a
‖f(s)‖Xds.

Lemma 26 We have

(i) If X is a Banach space then C0
b (I;X) is a Banach space wrt the norm ‖ · ‖C0

b (I;X).

(ii) C0
b (I;Rd) can be identified with a subspace of C0(I × Rd).

(iii) If m ∈ N, p ∈ [1,∞], then any map f ∈ C0(I;Wm,p(Rd)) can be identified with a measurable
map f : I × Rd → R.

(iv) If m ∈ N, p ∈ [1,∞), and I is compact then C∞c (I×Rd) is a dense subset of C0(I;Wm,p(Rd)).

Proof. exercise sheet 2

2.4.2 Nonlinear heat equation

We will consider first the the simpler situation when ν = 1, the unknown function is a scalar
function u : T → R, and the function F (u, u) = −Pσ(u · Du) is replaced by a function f(u)
f : R→ R. We study then

∂tu−∆u = f(u), (2.4.21)

u(0, x) = u0(x), u ∈ L2
σ.

Heat kernel

Definition 29 The heat kernel is the function Φ : Rd+1 → R defined by

Φ(t, x) =

{
(4πt)−

d
2 e−

|x|2
4t t > 0

0 t ≤ 0
(2.4.22)

For t ≥ 0 we define the map T (t) : L2(Rd)→ L2(Rd)

(T (t)u) (x) :=

{ ∫
Rd Φ(t, x− y)u(y)dy t > 0
u(x) t = 0

(2.4.23)

Remark. Φ satisfies ‖Φ(t, ·)‖L1 =
∫
Rd Φ(t, x)dx = 1 ∀t > 0.

Properties of T (see Introduction to PDEs):

(i) smoothing: (t, x)→ (T (t)u)(x) ∈ C∞((0,∞)× Rd) for all u ∈ L2(Rd);

(ii) continuity in t: lims→t ‖T (s)u− T (t)u‖L2(Rd) = 0 for all t, s ≥ 0.

(iii) boundedness: ‖T (t)u‖L2(Rd) ≤ ‖u‖L2(Rd) for all t ≥ 0.

Let t∗ > 0. We define C1,2((0, t∗)×Rd) = set of continuous functions with first oder derivative in
t and second order derivative in x continuous. The following result was proved in Introduction to
PDEs.

Theorem 13 (linear heat equation) Let g ∈ C1,2((0, t∗)× Rd) ∩ C0
c (R× Rd) and u0 ∈

L2(Rd). The system

∂tu−∆u = g(x), (2.4.24)

u(0, x) = u0(x),

has unique solution

u(t)(·) = T (t)u0(·) +

∫ t

0

T (t− s)g(s, ·)ds. (2.4.25)
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We can now state the main result of this subsection.

Theorem 14 (nonlinear heat equation) Let f ∈ C1(R) ∩ Lip(R) with f(0) = 0. Then ∃t∗ > 0
(dependent on f) s.t for any initial condition u0 ∈ C0

c (Rd) the system

∂tu−∆u = f(u), (2.4.26)

u(0, x) = u0(x),

has unique solution u ∈ C1,2((0, t∗)× Rd) ∩ C0(R× Rd).

Proof. Step 1. We rewrite the system (2.4.26) as a fixed point equation. Let I = [0, t∗], t∗ > 0.

Similarly to the solution (2.4.25) of the linear heat equation, for any measurable map u : I×Rd → R
we define the operator G0(u) : I × Rd → R by

G0(u) := T (t)u0 +

∫ t

0

T (t− s)f(u(s, ·))ds (2.4.27)

Let B := C0(I;L2(Rd)). Then B is a Banach space wrt the norm ‖f‖B = supt∈I ‖f(t)‖L2(Rd). We
will show that

• G0 : B → B

• G0(u) satisfies

{
(∂t −∆)G0(u) = f(u)
G0(u)(0, x) = u0(x),

• G0 is a contraction i.e. ∃0 < λ < 1 sucht that ‖G0u−G0v‖B ≤ λ‖u−v‖B ∀u, v ∈ B. From this
one can prove that there exists a unique u ∈ B such that u = G0u, hence a unique solution
for (2.4.24).

Step 2. We prove that G0 : B → B. The first term (t, x)→ (T (t)u0)(x) is C∞((0,∞)×Rd), and is
continuous in t on [0,∞). Therefore we need to study only the second term.
For this purpose note that since f ∈ Lip(R), we have
‖f(u(s, ·))− f(u(t, ·))‖L2 ≤ Lip(f)‖(u(s, ·)− u(t, ·)‖L2 → 0 as s→ t.
Morever since f(0) = 0 we have

|f(s)| = |f(s)− f(0)| ≤ Lip(f) |s| ∀s ∈ R ⇒ ‖f(u(s, ·))‖L2 ≤ Lip(f)‖(u(s, ·)‖L2

hence s→ f(u(s, ·)) ∈ B, for all u ∈ B, and∫ t

0

‖T (t− s)f(u(s))‖L2ds ≤ t sup
s∈[0,t]

‖f(u(s))‖L2 ≤ t Lip(f) ‖u‖B.

This implies
∫ t

0
T (t−s)f(u(s))ds ∈ L2(Rd) for all t ∈ I. Finally, s→ T (t−s)f(u(s)) is continuous

since

‖T (t− s)f(u(s))− T (t− s′)f(u(s′))‖L2 ≤ ‖[T (t− s)− T (t− s′)]f(u(s))‖L2 + ‖T (t− s′)[f(u(s))− f(u(s′))]‖L2

≤ ‖[T (t− s)− T (t− s′)]f(u(s))‖L2 + Lip(f)‖u(s))− u(s′)‖L2 →s′→s 0.

Similar arguments show that t→
∫ t

0
T (t− s)f(u(s))ds is continuous.

Step 3. G0 is a contraction i.e. ∃t∗ > 0, 0 < λ < 1 sucht that ‖G0u−G0v‖B ≤ λ‖u− v‖B ∀u, v ∈ B.
To prove this note that,

‖G0u− G0v‖B = sup
t∈I
‖G0u(t, ·)− G0v(t, ·)‖L2 = sup

t∈I
‖
∫ t

0

T (t− s)[f(u(s, ·))− f(v(s, ·))]ds‖L2

≤ sup
t∈I

∫ t

0

‖T (t− s)[f(u(s, ·))− f(v(s, ·))]‖L2ds

≤ sup
t∈I

Lip(f)

∫ t

0

‖(u(s, ·))− v(s, ·))]‖L2ds ≤ t∗Lip(f)‖u− v‖B.
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Setting λ = t∗Lip(f) we have a contraction for any t∗ <
1

Lip(f) .

Step 4. Conclusion: existence and uniqueness.
By the smoothing properties of T and the solution of linear heat equation we have G0u ∈

C1,2((0, t∗)× Rd) ∩ C0(R× Rd) and G0(u) satisfies

{
(∂t −∆)G0(u) = f(u),
G0(u)(0, x) = u0(x)

for any u ∈ B.

Moreover, if u is a solution of (2.4.26), then w := u−G0(u) is a solution of the linear heat equation
(2.4.24) with g = 0 and u0 = 0. The unique solution is then w = 0. Hence u is a solution of (2.4.26)
iff u is a fixed point i.e. u = G0(u).
Finally, to construct a fixed point, let (wn)n∈N be the sequence in B defined by w0(t)(x) = u0(x)
∀t, and wn = G0(wn−1), ∀n ≥ 1. To prove this is a Cauchy sequence note that

‖wn+1 − wn‖B = ‖G0wn − G0wn−1‖B ≤ λ‖wn − wn−1‖B ≤ λn‖w1 − w0‖B,

and hence for any n > m

‖wn − wm‖B ≤
n−1∑
k=m

‖wk+1 − wk‖B ≤ ‖w1 − w0‖B
λm − λn

1− λ
→m,n→∞ 0.

Finally, to prove unicity, let w = G0w, ū = G0w̄ two fixed points. Then

‖w − w̄‖B = ‖G0w − G0w̄‖B ≤ λ‖w − w̄‖B < ‖w − w̄‖B.

That is impossible hence w = w̄. 2

[Lecture 15: 11.06]

2.4.3 Navier-Stokes: preliminary results

In the case of NS equation, the nonlinear term f(u) becomes F (u, v) = −Pσ(u · Dv) defined in
(2.4.17). The following results collect some important properties of this expression.

Lemma 27 Assume d = 2, 3. We have

(i) If l ≤ m, m ≥ 2, f ∈ Hm(Rd), g ∈ H l(Rd), then fg ∈ H l(Rd) and

‖fg‖Hl ≤ c ‖f‖Hm ‖g‖Hl ,

for some constant c.

(ii) If m ≥ 2, u ∈ Hm(Rd;Rd), v ∈ Hm+1(Rd;Rd), then F (u, v) ∈ Hm(Rd;Rd) and

‖F (u, v)‖Hm ≤ C ‖u‖Hm‖v‖Hm+1

(iii) If u ∈ H2(Rd;Rd), and v ∈ H2(Rd;Rd), or u ∈ H1(Rd;Rd), and v ∈ H3(Rd;Rd), then
F (u, v) ∈ H1(Rd;Rd), and

‖F (u, v)‖H1 ≤
{
C ‖u‖H2‖v‖H2

C ‖u‖H1‖v‖H3

We will see the proof only in the case d = 3. We will use the following tools

• Sobolev embedding: ‖f‖W l,q(Rd) ≤ C ‖f‖Wm,p(Rd) if l ≤ m, l − d
q = m− d

p .

• Morrey inequality: assume d < p ≤ ∞ then ‖f‖C0,γ(Rd) ≤ Cp,d‖f‖W 1,p(Rd) with γ = 1− d
p .
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We will also use the following preliminary result.

Lemma 28 Let u : R3 → R3. We have

(1) ‖f‖L6 ≤ C1‖f‖H1

(2) ‖f‖L∞ ≤ C2‖f‖W 1,6

(3) ‖f‖L∞ ≤ C3‖f‖H2

(4) ‖f‖L4 ≤ ‖f‖
1
4

L2‖f‖
3
4

L6

(5) ‖f‖L4 ≤ C4‖f‖H1

Proof. (1) holds By Sobolev embedding. (2) holds by Morreys inequality. (3) is obtained by (1)
and (2) as follows

‖f‖L∞ ≤ C2‖f‖W 1,6 ≤ C ′2[‖f‖L6 + ‖Df‖L6 ] ≤ C ′2C1[‖f‖H1 + ‖Df‖H1 ] ≤ C3‖f‖H2 ,

where in the first inequality we used (2) and in the third (1).
To obtain (4) we use Cauchy-Schwarz ineq.

‖f‖4L4 = ‖f4‖L1 = ‖f f3‖L1 ≤ ‖f‖L2‖f3‖L2 = ‖f‖L2‖f‖3L6 .

To obtain (5) we use (1) and (4)

‖f‖L4 ≤ ‖f‖
1
4

L2‖f‖
3
4

L6 ≤ ‖f‖
1
4

L2‖f‖
3
4

H1 ≤ C‖f‖H1

where we used (4) in the first, (1) in the second inequality and finally ‖f‖L2 ≤ C‖f‖H1 . 2

Proof of Lemma 27 for d = 3.

Proof of (i). Let f ∈ Hm(Rd), g ∈ H l(Rd), with l ≤ m, m ≥ 2. We know that fg admits l
weak derivatives and Dα(fg) ∈ L1 ∀|α| ≤ l. To prove (i) it is enough to show that Dα(fg) ∈ L2

∀|α| ≤ l and ‖Dα(fg)‖L2 ≤ c ‖f‖Hm ‖g‖Hl , for some constant c depending only on m. For this
purpose we write Dα(fg) =

∑
β≤αD

βfDα−βg, where β ≤ α if 0 ≤ βi ≤ αi for all i = 1, . . . , d.
Then

‖Dα(fg)‖2L2 ≤ C
∑
β≤α

∫
R3

|Dβf |2|Dα−βg|2dx

for some constant C > 0. We distinguish now three cases.

Case 1: |β| ≤ m− 2. Then∫
R3

|Dβf |2|Dα−βg|2dx ≤ ‖Dβf‖2L∞‖Dα−βg‖2L2 ≤ C‖Dβf‖2H2‖Dα−βg‖2L2

≤ C‖f‖2H2+|β|‖g‖2H|α−β| ≤ C‖f‖
2
Hm‖g‖2Hl

where in the second inequality we used Lemma 28 (3) and in the last we used 2 + |β| ≤ m and
|α− β| ≤ l.

Case 2: |β| = m− 1. Then∫
R3

|Dβf |2|Dα−βg|2dx ≤
(∫

R3

|Dβf |4dx
) 1

2
(∫

R3

|Dα−βg|4dx
) 1

2

= ‖Dβf‖2L4‖Dα−βg‖2L4 ≤ C‖Dβf‖2H1‖Dα−βg‖2H1

≤ C‖f‖2H1+|β|‖g‖2H1+|α−β| = C‖f‖2Hm‖g‖2H1+|α−β|
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where in the first line we used Cauchy-Schwarz, in the second Lemma 28 (5). To estimate |α− β|
we consider all cases when |β| = m − 1 can be realized. Note that |β| ≤ |α| ≤ l ≤ m, and
m ≥ 2, hence m − 1 ≥ 1. Then |β| = m − 1 only if l = m − 1 or l = m. In the first case
l ≥ 1 and |α| = l = |β| = m − 1 ≥ 1. Hence 1 + |α − β| = 1 ≤ l. In the second case l ≥ 2
and one of the following two situation may happen: |α| = l = m then 1 + |α − β| = 2 ≤ l, or
|α| = l − 1 = |β| = m− 1 then 1 + |α− β| = 1 ≤ l. Finally ‖DβfDα−βg‖2L2 ≤ C‖f‖2Hm‖g‖2Hl .

Case 3: |β| = m. Then |β| = |α| = l = m ≥ 2, α− β = 0 and∫
R3

|Dmf |2|g|2dx ≤ ‖Dmf‖2L2‖g‖2L∞ ≤ C‖f‖2Hm‖g‖2H2 ≤ C‖f‖2Hm‖g‖2Hl

where in the second inequality we used Lemma 28 (3) and in the last m = l ≥ 2.

Proof of (ii). Let u ∈ Hm(Rd;Rd), v ∈ Hm+1(Rd;Rd), with m ≥ 2. Remember that

F (u, v)i = −Pσ(~u · ~Dv)i = −
d∑
j=1

Pσ(ujDjvi)

Let f = uj , g = Djvi. Then since f ∈ Hm, g ∈ Hm+1 we have fg ∈ Hm, hence by Thm. 12
Pσ(fg) ∈ Hm and

‖Pσ(fg)‖Hm ≤ ‖fg‖Hm ≤ C‖f‖Hm‖g‖Hm ≤ C‖uj‖Hm‖vi‖Hm+1

where in the second inequality we used (i). The result follows.

Proof of (iii). Let u ∈ H2(Rd;Rd), and v ∈ H2(Rd;Rd). Then f = uj ∈ H2 and g = Djv ∈ H1.
Applying (i) with m = 2, l = 1 we get fg ∈ H1, hence Pσ(fg) ∈ H1 and

‖Pσ(fg)‖H1 ≤ ‖(fg)‖H1 ≤ C‖f‖H1‖g‖H2 ≤ C‖uj‖H2‖vi‖H2 .

Similar arguments work in the case u ∈ H1(Rd;Rd), and v ∈ H3(Rd;Rd). 2

Finally, to set up a Banach fixed point argument we need to define
∫ t

0
F (s)ds with F (s) some

function taking values in Hm. Therefore we need to define the notion of Lp space in this context.

Definition 30 Let X be a Banach space, I ⊂ R a bounded interval, C0
b (I;X) the set of bounded

continuous functions f : I → X. let 1 ≤ q <∞. We define

‖f‖Lq(I;X) = ‖ ‖f(t)‖X ‖Lq(I) =

[∫
I

‖f(t)‖qXdt
] 1
q

Moreover, we define Lq(I;X) as the closure of C0
b (I;X) in XI w.r.t. this norm (modulo maps

that coincide a.e.).

Lemma 29 The following statements hold.

(i) Lq(I;X) is a Banach space.

(ii) Let m ∈ N, f ∈ Lq(I;Wm,p(Rd)) with 1 ≤ p ≤ ∞, 1 ≤ q < ∞. Then f(t)(x) defines a
measurable function on I × Rd

(iii) If I is compact then C∞c (I × Rd) is a dense subset in Lq(I;Wm,p(Rd)) for all 1 ≤ p ≤ ∞,
1 ≤ q <∞.

(iv)
∫ b
a
f(t)dt is well defined.

Proof Homework
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[Lecture 16: 15.06]

2.4.4 Navier-Stokes: local solutions

Funtion spaces. Let I ⊂ R a bounded interval. We will work with the following spaces:

• L2
σ = {h ∈ L2(Rd;Rd) | div h = 0 in D′}, see (2.4.13),

• Hm(Rd;Rd) = Wm,2(Rd;Rd)

• Hm
σ := Hm(Rd;Rd) = Wm,2(Rd;Rd) ∩ L2

σ,

• Xm = Xm(I) := C0(I;Hm
σ ) with the norm ‖u‖Xm := supt∈I ‖u(t)‖Hm ,

• Y m = Y m(I) := L1(I;Hm
σ ) with the norm ‖u‖Ym :=

∫
I
‖u(t)‖Hmdt,

Note that Xm, Y m are Banach spaces w.r.t. the corresponding norms.

Theorem 15 Let d = 2, 3, m ≥ 2. There exists a constant cm such that for any initial condition
u0 ∈ Hm

σ and ν > 0, setting the time interval I = [0, t∗] with

t∗ =
cmν

ν‖u0‖Hm + ‖u0‖2Hm
,

there exists a unique function u ∈ Xm(I) ∩ Y m+1(I) ∩ C1(I;Hm−2
σ ) satisfying{

∂tu− ν∆u = F (u, u)
u(0, ·) = u0(·). (2.4.28)

Proof. We consider first the case ν = 1. We generalize to any ν at the end. The proof is
separated into 6 steps.
Step 1: definition of the function space Zm where we work, reformulation of the problem as a
fixed point equation u = Gu for an operator G acting on Zm

Step 2: properties of G.
Step 3: G is a contraction in the unit ball for Zm.
Step 4: contruction of the fixed point.
Step 5: optimization of the time interval t∗.
Step 6: extension to general ν, conclusion.

Step 1 in the proof of Thm.15. Let Zm := Xm ∩ Y m+1 with the norm

‖u‖Zm := max

{
‖u‖Xm
K

,
‖u‖Ym+1

L

}
(2.4.29)

where the constants K,L will be chosen later (as functions of t∗ and ‖u0‖Hm) to ensure the correct
estimates hold.
As in the nonlinear heat equation we define for each u ∈ Zm the map G(u) : I × Rd → Rd with

(Gu)(t, x) = (T (t)u0)(x) +

∫ t

0

[T (t− s)F (u(s), u(s))] (x)ds (2.4.30)

where F (u, v) = −Pσ(Dv u). We will prove in Step 2 that G is well defined and G : Zm → Zm.
Proving the theorem (for ν = 1) is equivalent to prove existence and uniqueness of a fixed point
u ∈ Zm for G, i.e. Gu = u. This is a consequence of the next two lemmas.

Lemma 30 Let d = 2, 3, m ≥ 2, u0 ∈ Hm, f ∈ C0([0, t∗];H
m−1). Let T be the heat semigroup

and set

(G0f)t := T (t)u0 +

∫ t

0

T (t− s)f(s)ds (2.4.31)

where the x dependence is not explicitely written for clarity. Then the following hold.
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(i) (G0f ∈ C0([0, t∗];H
m) ∩ C1([0, t∗];H

m−2) and{
(∂t −∆)(G0f) = f 0 < t < t∗
(G0f)(0) = u0.

(2.4.32)

(ii) If a function w ∈ C0([0, t∗];H
m) ∩ C1([0, t∗];H

m−2) satisfies{
(∂t −∆)(w) = f 0 < t < t∗
w(0) = u0.

(2.4.33)

then we must have w = G0f.

Proof. homework

Remark. The operator G defined above satisfies Gu = G0F (u, u).

Corollary 1 Let d = 2, 3, m ≥ 2, I = [0, t∗]. The next two statements are equivalent.

(a) u ∈ Zm and u = Gu.

(b) u ∈ Zm ∩ C1(I;Hm−2) and

∂tu−∆u = F (u, u) ∀0 < t < t∗,

where the last equation holds in Hm−2

Proof. homework

Strong solutions. In the following we say that u is a strong solution of the N-S equation with
ν = 1 if (a) or (b) hold. For general ν we replace G with Gν defined by

Gνu := Tν(t)u0 +

∫ t

0

Tν(t− s)F (u(s), u(s))ds, (2.4.34)

where Tν(t) := T (νt). Finally the PDE in (b) is replaced by ∂tu− ν∆u = F (u, u).

Step 2 in the proof of Thm.15. We want to prove that G is well defined and G : Zm → Zm.
Precisely we will prove the two following claims.

• Claim 2.1: Let ~0 be the function ~0(t, x) = 0 ∀t, x. Then G(~0) ∈ Zm and

‖G(~0)‖Xm ≤ ‖u0‖Hm

‖G(~0)‖Ym+1 ≤ C1(t∗ +
√
t∗)‖u0‖Hm .

where C1 > 0 is some m-dependent constant.

• Claim 2.2: ∀u, v ∈ Zm we have Gu− Gv ∈ Zm and

‖Gu− Gv‖Xm ≤ C2∆uv

‖Gu− Gv‖Ym+1 ≤ C1C2(t∗ +
√
t∗)∆uv.

where C2 > 0 is some m-dependent constant, and

∆uv := ‖u− v‖Xm‖u‖Ym+1 + ‖v‖Xm‖u− v‖Ym+1 . (2.4.35)

To prove these claims we need the following preliminary lemma.

Lemma 31 We have

(a) t→ T (t)u0 ∈ C0(I;Hm
σ ) and ‖T (t)u0‖Hm ≤ ‖u0‖Hm ,

(b) ‖T (t)u0‖Hm+1 ≤ C1

2 (1 + t−
1
2 )‖u0‖Hm , ∀t > 0, u0 ∈ Hm.

where the constant C1 is the same as in the Claims 2.1 and 2.2 above.
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Proof of (a). By Lemma 30 t → T (t)u0 ∈ C0(I;Hm
σ ). Moreover for any t > 0 and |α| ≤ m

‖DαT (t)u0‖Hm = ‖T (t)Dαu0‖Hm ≤ ‖Dαu0‖Hm , hence ‖T (t)u0‖Hm ≤ ‖u0‖Hm . Finally div T (t)u0 =
T (t)div u0 = 0 in distribution since u0 ∈ L2

σ. It is easy to see that the case t = 0 holds too.

Proof of (b). Note that for t > 0

|∂xiΦ(t, x− y)| = |(xi − yi)|
2t

Φ(t, x− y) ≤ C√
t
Φ(2t, x− y),

for some constant C > 0. Hence

‖T (t)u0‖Hm+1 ≤ C ′
‖T (t)u0‖Hm +

d∑
i=1

∑
|α|=m

‖∂xiDαT (t)u0‖L2


≤ C ′′

‖T (t)u0‖Hm +
1√
t

∑
|α|=m

‖DαT (t)u0‖L2

 .
This gives the result. 2

Proof of Claim 2.1 By the definition we have G(~0)(t) = T (t)u0. From Lemma 31 (a) we have
G(~0) ∈ Xm and ‖G(~0)‖Xm = supt∈I ‖T (t)u0‖Hm ≤ ‖u0‖Hm . Moreover

‖G(~0)‖Ym+1 =

∫ t∗

0

‖G(~0)(t)‖Hmdt ≤
C1

2
‖u0‖Hm

∫ t∗

0

(1 + t−
1
2 )dt ≤ C1(t∗ +

√
t∗)‖u0‖Hm ,

where in the second inequality we applied Lemma 31 (b).

Proof of Claim 2.2 Since the function F (u, v) is linear in the two arguments we can write

Gu(t)− Gv(t) =

∫ t

0

T (t− s) [F (u(s), u(s))− F (v(s), v(s))] ds

=

∫ t

0

T (t− s)F (u(s)− v(s), u(s))ds+

∫ t

0

T (t− s)F (v(s), u(s)− v(s))ds

Inserting the norms and using Lemma 27 (ii) we get for all t ∈ I

‖Gu(t)− Gv(t)‖Hm ≤
∫ t

0

‖T (t− s)F (u(s)− v(s), u(s))‖Hmds+

∫ t

0

‖T (t− s)F (v(s), u(s)− v(s))‖Hmds

≤
∫ t

0

‖F (u(s)− v(s), u(s))‖Hmds+

∫ t

0

‖F (v(s), u(s)− v(s))‖Hmds

≤ C2

∫ t

0

[‖u(s)− v(s)‖Hm‖u(s)‖Hm+1 + ‖v(s)‖Hm‖u(s)− v(s)‖Hm+1 ] ds

≤ C2 [‖u− v‖Xm‖u‖Ym+1 + ‖v‖Xm‖u− v‖Ym+1 ] = C2∆uv.

Then ‖Gu− Gv‖Xm ≤ C2∆uv. Finally using the same estimates as above plus Lemma 31 (b).

‖Gu(t)− Gv(t)‖Hm+1 ≤
∫ t

0

‖T (t− s) [F (u(s)− v(s), u(s)) + F (v(s)− v(s), v(s))] ‖Hm+1ds

≤ C1

2

∫ t

0

(1 + (t− s)− 1
2 )‖F (u(s)− v(s), u(s)) + F (v(s), u(s)− v(s))‖Hmds

≤ C1C2

2

[
‖u− v‖Xm

∫ t

0

(1 + (t− s)− 1
2 )‖u(s)‖Hm+1ds+ ‖v‖Xm

∫ t

0

(1 + (t− s)− 1
2 )‖u(s)− v(s)‖Hm+1ds

]
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hence

‖Gu− Gv‖Ym+1 =

∫ t∗

0

‖Gu(t)− Gv(t)‖Hmdt ≤ C1C2(t∗ +
√
t∗)∆uv,

where we used∫ t∗

0

∫ t

0

(1+(t−s)− 1
2 )‖u(s)‖Hm+1dsdt =

∫ t∗

0

‖u(s)‖Hm+1

∫ t∗−s

0

(1+t−
1
2 )dtds ≤ (t∗+2

√
t∗)‖u‖Ym+1

and the same argment holds for u replaced by u− v. Finally, using similar arguments as for G(~0)
one can prove Gu− Gv ∈ C0(I;Hm

σ ). This completes the proof of Step 2.

[Lecture 17: 17.06]

Step 3 in the proof of Thm.15. G is a contraction in the unit ball. Remember the two
constants K,L in the definition (2.4.29) of ‖ · ‖Zm . We will prove the following Claim.

Claim 3.1: if we choose L = KC1(t∗ +
√
t∗), then

‖Gu− Gv‖Zm ≤
λ

2
‖u− v‖Zm (‖u‖Zm + ‖v‖Zm) , with

λ

2
:= C1C2K(t∗ +

√
t∗). (2.4.36)

Note that, once L is fixed, the only free parameters remaining are t∗ and K. The claim above
implies that, if we choose K and t∗ such that λ < 1 we have

‖Gu− Gv‖Zm ≤ λ‖u− v‖Zm ∀u, v ∈ Zm s.t. ‖u‖Zm ≤ 1 and ‖v‖Zm ≤ 1.

i.e. G is a contraction in the unit ball for Zm.

Proof of Claim 3.1 Using Claim 2.2 we have

‖Gu−Gv‖Zm ≤ max

{
‖Gu− Gv‖Xm

K
,
‖Gu− Gv‖Ym+1

L

}
≤ C2∆uv max

{
1

K
,
C1(t∗ +

√
t∗)

L

}
=
C2∆uv

K

where in the last equality we used L = KC1(t∗ +
√
t∗). Now using

‖u− v‖Xm ≤ K‖u− v‖Zm , ‖u− v‖Ym+1 ≤ L‖u− v‖Zm ,

we get ∆uv ≤ KL[‖u‖Zm + ‖v‖Zm ] ‖u− v‖Zm , hence

‖Gu− Gv‖Zm ≤ C2L‖u− v‖Zm [‖u‖Zm + ‖v‖Zm ].

Step 4 in the proof of Thm.15. Construction of the fixed point. Let (Un)n∈N the sequence
in Zm defined by

U0 := G~0, Un+1 = GUn ∀n ≥ 0.

Claim 4.1: For any 0 < ε < 1 there exists 0 < λ0(ε) < 1 such that if ‖U0‖Zm ≤ ε and λ ≤ λ0 we
have ‖Un‖Zm < 1 ∀n ≥ 0.

Proof of Claim 4.1 By induction. By hypothesis the claim holds for U0. Assume it holds for
all 0 ≤ k ≤ n. Using (2.4.36) and ‖Uk‖Zm < 1 for all 0 ≤ k ≤ n we have

‖Uk+1 − Uk‖Zm = ‖GUk − GUk−1‖Zm ≤ λ‖Uk − Uk−1‖Zm ≤ λk‖U1 − U0‖Zm , k = 1, . . . , n.
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Hence

‖Un+1‖Zm ≤ ‖U0‖Zm+

n∑
k=0

‖Uk+1−Uk‖Zm ≤ ‖U0‖Zm+

n∑
k=0

λk‖U1−U0‖Zm ≤ ‖U0‖Zm+
1

1− λ
‖U1−U0‖Zm .

Note that ‖U1 − U0‖Zm = ‖GU0 − G~0‖Zm ≤ λ
2 ‖U0‖2Zm , hence

‖Un+1‖Zm ≤ ‖U0‖Zm
(

1 +
λ‖U0‖Zm
2(1− λ)

)
≤ ε

(
1 +

λε

2(1− λ)

)
< 1

if we choose λ small enough, depending on ε. This completes the proof of Claim 4.1.

Consequence of Claim 4.1 If ‖U0‖Zm ≤ ε and λ ≤ λ0, then Un is a Cauchy sequence in the
unit ball of Zm, hence ∃U ∈ Zm with ‖U‖Zm ≤ 1 such that U = GU.
The fixed point U is unique in the unit ball, since if U,U ′ are two fixed points with ‖U‖Zm ≤ 1
and ‖U ′‖Zm ≤ 1, we obtain a contradiction:

‖U − U ′‖Zm = ‖GU − GU ′‖Zm ≤ λ‖U − U ′‖Zm < ‖U − U ′‖Zm .

It remains to prove that we can ensure ‖U0‖Zm < 1. Indeed

‖U0‖Zm = ‖G~0‖Zm = max

{
‖G~0‖Xm

K
,
‖G~0‖Ym+1

L

}
≤ ‖u0‖Hm

K

where we used Claim 2.1 and L = KC1(t∗+
√
t∗) If we choose K = 2‖u0‖Hm then we can replace

ε = 1
2 in Claim 4.1, hence λ ≤ λ0(1/2).

Step 5 in the proof of Thm.15. Optimization of t∗. Let us summarize the relations we
obtained. C1, C2 are fixed constants. The parameter K is fixed to K = 2‖u0‖Hm to ensure
‖U0‖Zm < 1. The parameter L is fixed to L = KC1(t∗ +

√
t∗) = 2C1‖u0‖Hm(t∗ +

√
t∗). Finally

λ = 2C1C2K(t∗ +
√
t∗) = 4C1C2‖u0‖Hm(t∗ +

√
t∗)

and to ensure we have a contraction we must have λ ≤ λ0 = λ0(1/2). Set λ = λ0, i.e. the largest
possible choice. Hence t∗ must satisfy

(t∗ +
√
t∗) =

1

a
with a :=

4C1C2‖u0‖Hm
λ0

,

then t∗ ≥ (2a)−1 or
√
t∗ ≥ (2a)−1 i.e.

t∗ ≥ min

{
1

2a
,

1

(2a)2

}
=

1

max{2a, (2a)2}
≥ 1

2a+ (2a)2
≥ cm
‖u0‖Hm + ‖u0‖2Hm

for some constant cm. Note that if u0 is very regular then ‖u0‖Hm is small and the time interval
gets very large.

Step 6 in the proof of Thm.15. General ν. Let U(t, x) be the unique solution of{
(∂t −∆)U = F (U,U)
U(0) = U0.

(2.4.37)

on the time interval [0, t
(1)
∗ ] with t

(1)
∗ = cm

‖u0‖Hm+‖u0‖2Hm
. Then the function u(t, x) := νU(νt, x) is

solution of {
(∂t − ν∆)u = F (u, u)
u(0) = νU0 = u0.

(2.4.38)
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on the time interval νt ≤ t(1)
∗ , i.e.

t
(ν)
∗ =

1

ν

cm
‖U0‖Hm + ‖U0‖2Hm

=
cmν

ν‖u0‖Hm + ‖u0‖2Hm
, (2.4.39)

where we replaced U0 = u0

ν . This concludes the proof of Thm.15 2

2.4.5 Local solutions for Euler-equation.

Our goal is to construct a local strong solution for Euler equation by letting ν → 0 in the local
strong solution we obtained for N-S in the previous section. The two main obstacles in this
program are:

(1) the time interval [0, t∗] where we proved existence and uniqueness of N-S solution shrinks to
zero as ν → 0 (see (2.4.39)). We will prove below that the time interval can be extended to
[0, T∗] where T∗ still depends on the initial condition u0, but is now independent of ν;

(2) we need to justify the limit ν → 0 of the solution of N-S in the appropriate function space.

Here we will consider only the solution of Problem (1) (extending the time interval). We will
restrict to d = 3. In d = 2 one can obtain even stronger estimates. The main result of this section
is summarized in the following theorem.

Theorem 16 Let d = 3, m ≥ 3 and M > 0 some constant. Then there exists a constant c̃m,
depending only on m, such that, for any ν > 0 and u0 ∈ Hm

σ satisfying ‖u0‖Hm ≤M there exists
a unique solution u ∈ Zm([0, T∗]) of N-S with u(0) = u0 on the time interval [0, T∗] with

T∗ :=
1

2c̃mM
. (2.4.40)

Preliminary results: energy estimates

Remember that the total kinetic energy of our fluid is given by Ek(t) =
∫
R3 ρ(t, x) |u(t,x)|2

2 =
1
2‖u(t)‖2L2 , where u(t, x) is the velocity field (in spatial coordinates) and we assumed incompress-
ibility and homogeneity: ρ(t, x) = ρ0(x) = 1. The first lemma states that the kinetic energy can
only decrease in time.

Lemma 32 Let u ∈ Zm with m ≥ 3 = d a solution of NS equation.

d

dt
‖u(t)‖2L2 = −ν‖Du(t)‖2L2 ≤ 0.

Proof. We multiply NS equation ∂tu− ν∆u+ Pσ(u ·Du) = 0 by u and integrate over space

0 =

∫
R3

3∑
j=1

[
uj∂tuj − uj∆uj +

3∑
k=1

ujPσuk∂kuj

]
dx

Since u ∈ C1(I;Hm−2), the first term can be reorganized as 1
2
d
dt

∫
R3 |u(t, x)|2dx. For the second

note that for any g ∈ C∞c (Rd) we have, integrating by parts,∫
R3

g∆gdx = −
∫
R3

|Dg|2dx.

By density this holds also for any g ∈ H2(Rd). Hence −
∫
R3

∑3
j=1 uj∆ujdx =

∫
R3 |Du|2dx. Finally,

for any g ∈ C∞c (Rd;Rd) with div g = 0 we have∫
R3

∑
k,j

gjPσgk∂kgjdx =

∫
R3

∑
k,j

gjgk∂kgjdx =
1

2

∫
R3

∑
k

gk∂k|g|2dx = 0
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where in the first step we used that g−Pσg is a gradient and hence perpendicular to all divergence
free fields, and in last step we used again that div g = 0. By density the identity holds for u ∈ H2

σ.
Putting the integrals together we obtain the result. 2

[Lecture 18: 22.06]

Lemma 33 Let m ≥ 3 = d and α ∈ Nd with |α| ≤ m. Then

(i) ∀u ∈ Hm+1
σ we have

|(Dαu,DαF (u, u))L2 | ≤ c‖u‖3Hm .

(ii) ∀u, v ∈ Hm+1
σ we have

|(Dαu,DαF (v, u))L2 | ≤ c‖u‖2Hm‖v‖Hm .

(iii) ∀u ∈ Hm+1
σ , v ∈ Hm+1

σ we have

|(Dαu,DαF (u, v))L2 | ≤ c‖u‖2Hm‖v‖Hm+1 .

Remark. Beware the changed order in (ii) and (iii) for the arguments of F !

Proof. Exercise sheet
A consequence of the estimates above are the following ’generalized’ energy estimates.

Lemma 34 Let u ∈ Zm([0, T∗]) a solution of NS for m ≥ 3 = d on some time interval [0, T∗].
Then there exists a constant c̃m > 0 depending only on m such that

1

2

d

dt
‖u(t)‖2Hm + ν‖Du(t)‖2Hm ≤ c̃m‖u(t)‖3Hm ∀0 < t < T∗. (2.4.41)

In particular
d

dt
‖u(t)‖Hm ≤ c̃m‖u(t)‖2Hm ∀0 < t < T∗. (2.4.42)

Remark. Note that since u ∈ C1([0, T∗];H
m−2
σ ) we know that ‖u(t)‖L2 is differentiable in t, but

it is not clear why ‖u(t)‖Hm should be differentiable in t. The solution comes from the following
corollary (which we give without proof).

Corollary 2 (higher regularity) Let d = 2, 3, m ≥ 2, I = [0, T∗]. If u ∈ C0(I;Hm
σ )∩L1(I;Hm+1

σ )∩
C1(I;Hm−2

σ ) is a solution of NS then ∀k, l ∈ N, ∀ε > 0 we have u ∈ Ck([ε, T∗];H
l
σ).

In particular u ∈ C∞((0, T∗)× Rd) and ∂tu− ν∆u = F (u, u) holds pointwise.

In the present case u ∈ Zm hence u ∈ C1([ε, T∗];H
m
σ ), hence the Hm norm is differentiable in t.

Proof of Lemma 34.

1

2

d

dt
‖u(t)‖2Hm =

1

2

d

dt

∑
|α|≤m

cα

∫
R3

Dαu ·Dαu dx =
∑
|α|≤m

cα

∫
R3

Dαu ·Dα∂tu dx

=
∑
|α|≤m

cα

∫
R3

Dαu ·Dα[∆u+ F (u, u)]dx

=
∑
|α|≤m

cα [(Dαu,∆Dαu)L2 + (Dαu,DαF (u, u))L2 ] ,
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where cα is some combinatorial coefficient. Integrating by parts
∑
|α|≤m cα(Dαu,∆Dαu)L2 =

−
∑
|α|≤m cα|DαDu|2L2 = −‖Du‖2Hm . Finally by Lemma 33 (i) |(Dαu,DαF (u, u))L2 | ≤ c‖u‖3Hm .

This proves the first claim. To prove the second claim note that

1

2

d

dt
‖u(t)‖2Hm = ‖u(t)‖Hm

d

dt
‖u(t)‖Hm ≤ c̃m‖u(t)‖3Hm .

2

Proof of Theorem 16. Step 1: preliminary result. Let f ∈ C0([0, T ]) ∩ C1((0, T )) such that

(a) f(t) ≥ 0 ∀t,

(b) f ′(t) ≤ Kf(t)2 ∀0 < t < T for some fixed constant K,

(c) T ≤ 1
2Kf(0) .

Then we have f(t) ≤ 2f(0) for all t ∈ [0, T ].

To prove this fact assume first f(t) > 0 for all t. Then

f ′(t) ≤ Kf(t)2 iff
f ′(t)

f(t)2
≤ K iff

(
1

f ′(t)

)
≥ −K.

Integrating over t we get 1
f(t) −

1
f(0) ≥ −Kt ≥ −KT ≥ −

1
2f(0) , where in the last step we used

assumption (c). Hence 1
f(t) ≥

1
2f(0) .

In the case f(t) ≥ 0 we set ε > 0 and fε(t) := f(t) + ε > 0 for all t. Note that f ′ε(t) = f ′(t) ≤
Kf(t)2 ≤ Kfε(t)

2. If we restrict to the interval [0, Tε], with Tε ≤ T such that Tε ≤ 1
2Kfε(0) , then

fε(t) ≤ 2fε(0). The result follows by continuity taking ε→ 0.

Step 2: estimate of the time interval. We prove the result by contradiction. Fix ν > 0 and let

T1 := sup{t̃ > 0| ∃u strong solution of NS with u(0) = u0}

be the maximal time interval where the solution for NS exists. Let ‖u0‖Hm ≤M. We want to show
that T1 ≥ T∗ = 1

2c̃mM
. By constradiction assume T1 < T∗. We will show that we can construct a

solution in the interval [T1, T1 + δ] and paste it to the one on [0, T1]. As a result we will obtain a
solution on [0, T1 + δ] which contradicts the definition of T1.
To construct the extended solution let T2 = T1− ε > 0 with 0 < ε� 1. Since T2 < T1 there exists
a unique strong solution for NS with u(0) = u0. This solution must satisfy the energy estimate
(2.4.42)

1

2

d

dt
‖u(t)‖Hm ≤ c̃m‖u(t)‖2Hm ∀0 < t < T2.

Now set f(t) = d
dt‖u(t)‖Hm . Then f ∈ C0([0, T2]) ∩ C1((0, T2)), f(t) ≥ 0 and f ′(t) ≤ c̃mf(t)2.

Moreover since T2 < T1 < T∗ = 1
2Mc̃m

we have c̃m ≤ 1
2T2f(0) . Then we can apply Step 1. with

K = c̃m, i.e. ‖u(t)‖Hm ≤ 2‖u0‖Hm ≤ 2M = M̃.
We consider now NS on the interval [T2, T2 + t∗] with new initial condition ũ0(x) = u(T2, x), and
t∗ = cmν

ν‖ũ0‖Hm+‖ũ0‖2Hm
. Since ‖ũ0‖Hm ≤ 2M we have

t∗ ≥
νcm

ν2M + 4M2
≥ 2ε

if ε is taken small enough. Then T2 + t∗ > T1 and we obtain a contradiction. This ends the proof.
2
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3. Calculus of variations and elasticity theory

[Lecture 19: 24.06]

3.1 Introduction: equilibrium configurations
in a hyperelastic solid

Let x(t,X) describe the deformation of an hyperelastic solid subject to some external time-
independent force. After a long time the solid will stabilize into some new equilibrium config-
uration, described by a time-intependent function x(X). We will see that this function x(X) is
the solution of a certain PDE, and can be related to the minimizer of a functional integral.

3.1.1 Reminders

Remember the equation of motion in material coordinates (1.4.47):

ρ0(X)∂2
t x(t,X) = (detDx)(t,X)fm(t,X) + DIV(S)(t,X)

where f(t, x) is the force density and has the dimension [force]/[volume]. In the following it will
be more convenient to replace f by

f(t, x) = ρ(t, x)b(t, x), ρ = mass density, b : R× Ω→ Rd = [force]/[mass]

In material coordinates, using (1.4.46), we have

fm(t,X) = ρm(t,X)bm(t,X) =
ρ0(X)

detDx(t,X)
bm(t,X),

hence the equation of motion becomes

ρ0(X)∂2
t x(t,X) = ρ0(X)bm(t,X) + DIV(S)(t,X). (3.1.1)

We will make the following assumptions.

• The material is elastic and satisfies frame indifference (see Sect.1.5.2), hence S(t,X) =
Ŝ(Dx), where Ŝ is the constitutive law of the Piola-Kirchoff tensor Ŝ : GL+(d)→ Rd×d.

• We have isotropy: ρ0(X) = ρ0 = 1 ∀X.

• The external force is time independent bm = bm(X).

An equilibrium solution is a solution of (3.1.1) that is independent of time x : Ω → Rd. Hence
∂tx = 0 and x(X) must satisfy

bm(X) + DIV(Ŝ)(Dx(X)) = 0 (3.1.2)
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3.1.2 Stored energy

We assume the material is hyperelastic then (see Def.19 in Chapter 1) there is a function Ŵ ∈
C1(GL+(d);R) such that

Ŝij(F ) =
∂

∂Fij
Ŵ (F ).

The function Ŵ is called the stored energy and corresponds to the internal energy of the material.

To see this, remember the expression for the total energy (1.4.54) E(t, U) =
∫
U(t)

ρ
[
|v|2
2 + ε

]
dx,

where ε is a C1 spatial field (the internal energy density). The energy conservation equation
(1.4.57) reads ρDεDt = tr(σtDv), where we assumed there is no heat exchange at equilibrium. In
material coordinates this equation becomes

detDx ρm∂tεm = detDx trσtmDvm

Using (1.4.46), the left-hand side becomes detDx ρm∂tεm = ρ0(X)∂tεm. For the right-hand side
remember that, from (1.4.48), we have σm = 1

detDx ŜDx
t, and

(Dv)ij = ∂xjvi =
∑
k

∂Xk

∂xj

∂(vm)i
∂Xk

=
∑
k

∂Xk

∂xj
∂t
∂xi
∂Xk

=
∑
k

[∂t(Dx)]ik(Dx)−1
kj

where we used vm = ∂tx and ∂Xk
∂xj

= (Dx)−1
kj . Hence (Dv)m = [∂t(Dx)](Dx)−1, and

detDx tr[σtmDvm] = tr[Ŝt∂t(Dx)] =
∑
ij

Ŝij∂t(Dx)ij =
∑
ij

∂t(Dx)ij
∂Ŵ

∂Fij
(Dx) = ∂tŴ (Dx).

Inserting all this in the equation above we get

∂t[ρ0εm] = ∂tŴ (Dx) ⇒ ρ0(X)εm(t,X) = Ŵ (Dx(t,X)) + E0(X)

where E0(X) is some initial energy (independent of time). Hence W = internal elastic energy.

3.1.3 Equilibrium solution and functional integrals

Claim. Solving (3.1.2) is related to find a minimizer of the function

I(x(X)) :=

∫
Ω

[Ŵ (Dx)− bm · x]dX (3.1.3)

We will prove this claim rigorously in the next sections. A non-rigorous justification of this fact
is obtained as follows. Let x : Ω → Rd, and y : Ω → Rd, two fixed functions, set xτ (X) :=
x(τ) + τy(X), τ ∈ R and consider τ → h(τ) := I(xτ ). This gives the variation of the function
I(x) along the direction y. A necessary (not sufficient) condition for h to be minimal at τ = 0 is
that the first derivative vanishes h′(0) = 0, for any choice of the direction y. Inserting this in the
expression for I, without worrying if the operations are justified, we get

d

dτ

∫
Ω

[
Ŵ (Dxτ )− bm · xτ

]
dX =

∫
Ω

∑
ij

(Dy)ij
∂Ŵ

∂Fij
(Dxτ )− bm · y

 dX
= −

∫
Ω

∑
i

yi

[
DIV(Ŝ)(Dxτ )i + (bm)i

]
dX

where in the last step we used Ŝij(F ) = ∂Ŵ
∂Fij

(F ) and integration by parts. Setting τ = 0 we get∫
Ω

∑
i

yi

[
DIV(Ŝ)(Dx)i + (bm)i

]
dX = 0 ∀y, ⇒ DIV(Ŝ)(Dx) + (bm) = 0.
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3.2 First and second variation

3.2.1 Setting up: minimizer

In the following we will look for minimizers of some functional of the form

I(u) :=

∫
Ω

f(x, u(x), Du(x))dx, (3.2.4)

where

• Ω ⊂ Rd is a bounded open set,

• u : Ω → Rn, n ≥ 1 is a vector-valued function in some Banach space B (typically we will
take W 1,q(Ω;Rn)),

• depending on the problem we may have boundary conditions i.e. u(x) = g(x) ∀x ∈ ∂Ω.

The function f is called the Lagrangian.

Remark. In the case of a hyperelastic material n = d and u(x) is replaced by x(X). Note that
in the general case Du(x) ∈ Rn×d.

Definition 31 (minimizer) Let Ω ⊂ Rd be a bounded open set, f a function

f : Ω× Rn × Rn×d → R
(x, z, ξ) → f(x, z, ξ)

satisfying x → f(x, u(x), Du(x)) ∈ L1(Ω) for all u ∈ W 1,q(Ω;Rn), for some q ≥ 1. Finally, let
I : W 1,q(Ω;Rn)→ R the functional defined in eq.(3.2.4).
We say that u ∈W 1,q(Ω;Rn) is a minimizer of I with respect to its own boundary conditions, if

I(u+ w) ≥ I(u) ∀w ∈W 1,q
0 (Ω;Rn).

Remark. w ∈W 1,p
0 (Ω;Rn) implies that (u+ w) = u on the boundary of Ω.

Example 1. Let n = 1, X = {u ∈ C2(Ω̄)| u|∂Ω = g}, for some g ∈ C0(∂Ω). We define

I : X → R
u→ I(u) =

∫
Ω

[
|Du(x)|2

2 − b(x)u(x)
]
dx

where b ∈ C0(Ω̄). Then u0 ∈ X is a minimizer for I, i.e. I(u) ≥ I(u0) for all u ∈ X iff u0 is a
solution of {

−∆u = b inside Ω
u|∂Ω = g

where ∂Ω must be sufficiently regular.

Example 2. (minimal surface) Let u : Ω→ R. The set {(x, u(x))| x ∈ Ω} defines a surface. The
corresponding area is given by I(u) :=

∫
Ω

√
1 + |Du|2dx. Then minimizing I(u) corresponds to

minimize the surface, w.r.t. some boundary conditions.
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Example 3. (isoperimetric problem) Set d = n = 1 and u(x) ≥ 0. Then {(x, u(x))| x ∈ Ω} is
the surface generated by u, and {(x, y)| x ∈ Ω, 0 ≤ y ≤ u(x)} is the volume generated by u. Let
I(u) = surface - λ volume, i.e.

I(u) :=

∫
Ω

√
1 + u′(x)2dx− λ

∫
Ω

u(x)dx,

with λ > 0 a parameter. To minimize I we need to minimize the surface and maximize the volume.

[Lecture 20: 29.06]

3.2.2 Directional derivatives

Definition 32 let u ∈ B and ω ∈ C∞c (Ω;Rn). We define the variation of I(u) along the direction
ω as the function

hu,ω : R→ R
τ → hu,ω(τ) := I(u+ τω)

The next lemma gives some conditions on the Lagrangian f under which directional derivatives
may be applied. To simplify notation we will collect all variables uj and (Du)ij in a single big
vector X ∈ RN . We replace then f(x, u,Du) with g(x,X).

Lemma 35 Let
g : Ω× RN → R

(x,X)→ g(x,X)

satisfying:

• Ω ⊂ Rd is a bounded open set, g is Borel measurable,

• x→ g(x, 0) ∈ L1(Ω),

• X → g(x,X) ∈ Cp(RN ), for some p ≥ 1 and for all x ∈ Ω,

• ∃q ≥ p and a constant K > 0 such that

|Dl
Xg(x,X)| ≤ K(1 + |X|q−l) for all x ∈ Ω, X ∈ RN and 0 ≤ l ≤ p.

Let
I : Lq(Ω;RN )→ R

U → I(U) :=
∫

Ω
g(x, U(x))dx.

Then, for any fixed U,W ∈ Lq(Ω;RN ), the function h : R→ R defined by τ → h(τ) := I(U+τW ),
is differentiable p times and ∀0 ≤ l ≤ p

dlh(τ)

dτ l
=

∫
Ω

∑
j1,...,jl

Wj1(x) . . .Wjl(x)

[
∂

∂Xj1

. . .
∂

∂Xjl

g

]
(x, U(x) + τW (x))dx.

Remark 1. x→ g(x, U(x)) ∈ L1(Ω), hence I(U) is well defined. To see this write

g(x, U(x)) = g(x, 0) + [g(x, U(x))− g(x, 0)] = g(x, 0) +

∫ 1

0

∂sg(x, sU(x))ds

= g(x, 0) +
∑
j

Uj(x)

∫ 1

0

∂Xjg(x, sU(x))ds,
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where in the second equality we used x→ g(x,X) is differentiable in X. Now x→ g(x, 0) ∈ L1(Ω),
and∣∣∣∣∣∣
∑
j

Uj(x)

∫ 1

0

∂Xjg(x, sU(x))ds

∣∣∣∣∣∣ ≤ K|U(x)|
∫ 1

0

(1 + |U(x)|q−1sq−1)ds ≤ K(|U(x)|+ |U(x)q|).

The result now follows from U ∈ Lq(Ω) and |Ω| <∞.

Remark 2. Note that in our case X = U ∈ Lq corresponds to u,Du ∈ Lq, i.e u ∈W 1,q(Ω;Rn).

Proof of Lemma 35 We do the proof only for p = 1, the general case being similar. It is
enough to study the derivative at τ = 0 since for τ 6= 0 we can study the derivative of h(τ̃) :=
I([U + τW ] + τ̃W ) at τ̃ = 0. The finite variation is given by

h(τ)− h(0)

τ
=

∫
Ω

Gτ (x)dx, with Gτ (x) :=
g(x, U(x) + τW (x))− g(x, U(x))

τ

We claim ∃G ∈ L1(Ω) such that |Gτ (x)| ≤ G(x) ∀x ∈ Ω and ∀|τ | < 1. Then, by dominated
convergence limτ→0

∫
Ω
Gτ (x)dx =

∫
Ω

limτ→0Gτ (x)dx. Finally, since X → g(x,X) ∈ C1 we have
limτ→0Gτ (x) =

∑
jWj∂Xjg. To prove the claim we use Taylor integral formula

Gτ (x) =
1

τ

∫ 1

0

∂sg(x, U(x) + sτW (x))ds =

∫ 1

0

∑
j

Wj(x)∂Xjg(x, U + sτW )ds

Hence

|Gτ (x)| ≤ |W (x)| sup
s∈[0,1]

|DXg(x, U(x) + sτW (x))|

≤ K|W (x)|(1 + |U(x) + sτW (x)|q−1) ≤ K ′(|W (x)|+ |W (x)|q + |U(x)|q),

for some K ′ > 0. The result now follows from U,W ∈ Lq(Ω) and |Ω| <∞. 2

3.2.3 First variation and Euler-Lagrange equation

The following result relates the minimizer to the first derivative.

Lemma 36 Let
f : Ω× Rn × Rn×d → R

(x, z, ξ)→ f(x, z, ξ)

be a Lagrangian satisfying the assumptions of Lemma (35) with p = 1, i.e.

• Ω ⊂ Rd is a bounded open set, f is Borel measurable,

• x→ f(x, 0, 0) ∈ L1(Ω),

• (z, ξ)→ g(x, z, ξ) ∈ C1(Rn × Rn×d), for all x ∈ Ω,

• ∃q ≥ 1 and a constant K > 0 such that

|Dzf |+ |Dξf | ≤ K(1 + |z|q−1 + |ξ|q−1) for all (x, z, ξ).

Let u ∈ W 1,q(Ω;Rn) be a minimizer of I w.r.t its own boundary conditions (see Def.31). Then
for all w ∈W 1,q

0 (Ω;Rn) we have

0 =

∫
Ω

[(Dzf) · w + (Dξf) ·Dw] dx (3.2.5)

where (Dzf) · w =
∑
j wj∂zjf, and (Dξf) · Dw =

∑
jk(Dw)jk∂ξjkf. In particular (3.2.5) can be

reformulated as
div (Dξf)−Dzf = 0 in distribution, (3.2.6)

where div (Dξf)i =
∑
kDxk(∂ξjkf). (3.2.6) is called the Euler-Lagrange equation for I.
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Proof. Since I(u+w) ≥ I(u) for all w ∈W 1,q
0 (Ω;Rn), the function h(τ) := I(u+τw) is minimal

at τ = 0, hence h′(0) = 0 for all w. The proof follows by Lemma 35 replacing U by (u,Du) and
W by (w,Dw). 2

Application: hyperelastic solid

Let us go back to the functional (3.1.3) I(u) =
∫

Ω
[Ŵ (Du) − b · u]dx, where n = d, and Ŵ ∈

C1(GL+(d);R) is the stored energy. We assume b ∈ C0(Ω;Rd), and Ŵ (0) = 0 (we can always
translate the energy by a constant to ensure that). Then f(x, z, ξ) = Ŵ (ξ) − b(x) · z satisfies
x→ f(x, 0, 0) = 0 ∈ L1(Ω), and (z, ξ)→ f(x, z, ξ) ∈ C1(Rn × Rn×d).

[Lecture 21: 1.07]

3.2.4 Null Lagrangians

These are the analog of constant functions.

Definition 33 A function f ∈ C1(Ω̄ × Rn × Rn×d) is called null Lagrangian if any function

u ∈ C2(Ω̄) satisfies the Euler-Lagrange equation.

Remark Since f ∈ C0(Ω̄ × Rn × Rn×d) and both u and Du ∈ C0(Ω̄), the integral I(u) is well
defined. Moreover, since f ∈ C1(Ω̄ × Rn × Rn×d), we can compute directional derivatives, hence
we can write the corresponding Euler-Lagrange equation.

Lemma 37 Let f ∈ C1(Ω̄ × Rn × Rn×d). Then f is a null Lagrangian iff I(u) = I(v) for all
u, v ∈ C2(Ω̄) with u = v on ∂Ω.

Proof. ⇒ Assume f is a null Lagrangian. Let u, v ∈ C2(Ω̄) with u = v on ∂Ω, and set w = u−v.
Then w ∈ C2(Ω̄) and w = 0 on ∂Ω. Hence u+ τw = u on ∂Ω for all τ ∈ R. Let h(τ) := I(u+ τw),
Since f is a null Lagrangian, this implies u + τw is a solution of Euler-Lagrange equation for all
τ, i.e. h′(τ) = 0 for all τ. Therefore I(u+ τw) = I(u) for all τ, i.e. I(u) = I(v).

⇐ Assume I(u) = I(v) for all u, v ∈ C2(Ω̄) with u = v on ∂Ω. Again let w = u − v and
h(τ) := I(u + τw), hence we have h(τ) = h(0) for all τ. As a consequence h′(τ) = 0 for all τ, i.e
u+ τw satisfies the Euler-Lagrange equation for all τ. This is true in particular for u and v. 2

Lemma 38 Let n = d and consider the Lagrangian f(x, z, ξ) := det ξ. Then f is a null La-
grangian.

Proof. Exercise sheet

3.2.5 Second variation

Lemma 39 Let
f : Ω× Rn × Rn×d → R

(x, z, ξ)→ f(x, z, ξ)

be a Lagrangian satisfying the assumptions of Lemma (35) with p = 2, i.e.

• Ω ⊂ Rd is a bounded open set, f is Borel measurable,

• x→ f(x, 0, 0) ∈ L1(Ω),

• (z, ξ)→ g(x, z, ξ) ∈ C2(Rn × Rn×d), for all x ∈ Ω,
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• ∃q ≥ 2 and a constant K > 0 such that

|Dzf |+ |Dξf | ≤ K(1 + |z|q−1 + |ξ|q−1) and

|D2
zf |+ |DξDzf |+ |D2

ξ | ≤ K(1 + |z|q−2 + |ξ|q−2) for all (x, z, ξ).

Let u ∈ W 1,q(Ω;Rn) be a minimizer of I w.r.t its own boundary conditions (see Def.31). Then
for all w ∈W 1,q

0 (Ω;Rn) we have∫
Ω

[
(w, (D2

zf)w) + 2(w, (DzDξf)Dw) + (Dw, (D2
ξf)Dw)

]
dx ≥ 0 (3.2.7)

where

(w, (D2
zf)w) :=

∑
jk

wjwk(∂zj∂zkf), (w, (DzDξf)Dw) :=
∑
jkk′

wj(Dw)kk′(∂zj∂ξkk′ f),

(Dw, (D2
ξf)Dw) :=

∑
jj′kk′

(Dw)jj′(Dw)kk′(∂ξjj′∂ξkk′ f).

Proof. If u is a minimizer, then I(u + τw) ≥ I(u) ∀τ, hence d2

dτ2 I(u + τw)|τ=0 ≥ 0. Finally
(3.2.7) follows from Lemma 35. 2

Equations in second variation: scalar case.

We consider first the scalar case n = 1. Then u : Ω→ R is a scalar, Du : Ω→ Rd is a vector and
f : Ω× R× Rd → R. The second variation becomes

∫
Ω

w2(∂2
zf) + 2

∑
j

w(∂jw)∂z∂ξjf +
∑
jk

(∂jw)(∂kw)(∂ξj∂ξkf)

 dx ≥ 0

for all w ∈W 1,q
0 (Ω;Rn).

Theorem 17 Let f be as in Lemma 39, with n = 1 and let u ∈ W 1,q(Ω;R) be a minimizer
w.r.t. its own b.c. Then

∂2
ξf(x, u(x), Du(x)) ≥ 0 as a quadratic form for a.e. x ∈ Ω, (3.2.8)

i.e. ∀b ∈ Rd we have
∑
jk bj(∂ξj∂ξkf)bk ≥ 0. This is called the second variation equation.

Proof. The strategy is to construct a sequence of functions wδ such that wδ → 0 and Dwδ 6→ 0
as δ → 0. This will be defined more precisely below. Let

wδ(x) := δn ψ(x) sin
(
b·x
δ

)
, 0 < δn < 1, b ∈ Rd, ψ ∈ C∞c (Ω;R),

then wδ ∈ C∞c (Ω;R). Moreover let

I1(w) :=

∫
Ω

w(x)2 ∂2
zf(x, u(x), Du(x)) dx

I2(w) := 2
∑
j

∫
Ω

w(x)∂jw(x) ∂z∂ξjf(x, u(x), Du(x)) dx

I3(w) :=
∑
jk

∫
Ω

∂jw(x)∂kw(x) ∂2
ξjξk

f(x, u(x), Du(x)) dx

we will prove the following claim.
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Claim. There exists a sequence (δn)n∈N with δn > 0 ∀n and limn→∞ δn = 0 such that

lim
n→∞

I1(wδn) = lim
n→∞

I2(wδn) = 0,

lim
n→∞

I3(wδn) =
1

2

∫
Ω

ψ(x)2
(
b, ∂2

ξf b
)
dx.

where (b, ∂2
ξfb) :=

∑
jk bjbk∂

2
ξjξk

f(x, u(x), Du(x)).

Consequence of the Claim. Since we know that
∑3
l=1 Il(wδ) ≥ 0 ∀δ and ψ is an arbitrary

function this implies ∂2
ξf(x, u(x), Du(x)) ≥ 0 for a.e. x ∈ Ω.

Proof of the Claim. We have

|I1(wδ)| ≤ ‖wδ‖2L∞‖∂2
zf‖L1 , |I2(wδ)| ≤ ‖wδ‖L∞‖Dwδ‖L∞‖∂2

zξf‖L1 .

Since u,Du ∈ Lq(Ω), |Ω| finite and |D2
zf | + |DξDzf | + |D2

ξ | ≤ K(1 + |z|q−2 + |ξ|q−2), we have

x→ ∂2
zf(x, u(x), Du(x)) ∈ L1(Ω). The same holds for the other second order derivatives.

Moreover ‖wδ‖L∞ ≤ δ‖ψ‖L∞ , and

∂jwδ(x) = ψ(x) cos
(
b·x
δ

)
+ δ∂jψ(x) sin

(
b·x
δ

)
⇒ ‖Dwδ‖L∞ ≤ C1, (3.2.9)

for some constant C1 > 0 independent of 0 < δ < 1.Hence limn→∞ I1(wδn) = limn→∞ I2(wδn) = 0.
Finally, to prove the last limit, let j, k be fixed indices, set

hδ(x) := ∂jwδ∂kwδ, ϕ(x) := ∂2
ξjξk

f(x, u(x), Du(x)).

Therefore we need to study
∫

Ω
hδ(x)ϕ(x)dx, where ϕ ∈ L1(Ω) and hδ ∈ L∞(Ω) ∀δ > 0.

Let (δn)n∈N be some sequence with δn > 0 ∀n and limn→∞ δn = 0. From (3.2.9) supn ‖hδn‖L∞ ≤
C2

1 , therefore there exists a subsequence δnk and a function h ∈ L∞(Ω) such that hδnk ⇀
∗ h in

L∞(Ω), i.e. ∀ϕ ∈ L1(Ω) ∫
Ω

hδnk (x)ϕ(x)dx→
∫

Ω

h(x)ϕ(x)dx.

It remains to check that the limit is indeed h(x) = ψ(x)
2 bjbk. This follows from

hδ = ψ(x)2bjbk

[
cos

(
b · x
δ

)]2

+O(δ) =
1

2
ψ(x)2bjbk +

1

2
ψ(x)2bjbk cos

(
2b · x
δ

)
+O(δ).

2

Remark. Let H ∈ Rd×d a matrix, a, b ∈ Rd two vectors. Using (a⊗ b)ij = aibj , we can write

(a,Hb) = tr(H[a⊗ b]t) = H · (a⊗ b).

Then positivity can be reexpressed as

(b,Hb) = tr(H[b⊗ b]t) = H · (b⊗ b) ≥ 0.

Equations in second variation: vector case.

We consider u : Ω→ Rn, n > 1, hence the arguments of f(x, z, ξ) satisfy z ∈ Rn, ξ ∈ Rn×d.
To simplify the notations in the second derivatives, we define, for any two finite sets I1, I2,

RI1×I2 := {M : (I1 × I2)→ R} (3.2.10)
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the set of matrices indexed by I1 and I2. In the following we will use the two following sets

I := I(n), I ′ = I(n)× I(d) where I(n) = {1, . . . , n}, I(d) = {1, . . . , d}.

With these notations we can write

∂2
zf ∈ RI×I , ∂z∂ξf ∈ RI×I

′
, ∂2

ξf ∈ RI
′×I′ ,

and the second variation (3.2.7) can be written as∫
Ω

[
(D2

zf) · [w ⊗ w] + 2(DzDξf) · [w ⊗Dw] + (D2
ξf) · [Dw ⊗Dw]

]
dx ≥ 0, (3.2.11)

where w ∈ Rn, Dw ∈ Rn×d, hence

w ⊗ w ∈ RI×I , w ⊗Dw ∈ RI×I
′
, Dw ⊗ w ∈ RI

′×I′ .

Theorem 18 Let f be as in Lemma 39, with n > 1 and let u ∈ W 1,q(Ω;Rn) be a minimizer
w.r.t. its own b.c. Then

∂2
ξf(x, u(x), Du(x)) · [(a⊗ b)⊗ (a⊗ b)] ≥ 0 ∀a ∈ Rn, b ∈ Rd, for a.e. x ∈ Ω. (3.2.12)

Proof Analog to the proof of Thm.17 we introduce the sequence

wδ(x) := aδ ψ(x) sin

(
b · x
δ

)
, 0 < δ < 1, a ∈ Rn, b ∈ Rd, ψ ∈ C∞c (Ω;R).

Now the derivative becomes

(Dwδ)ij(x) = aibjψ(x) cos

(
b · x
δ

)
+O(δ) = (a⊗ b)ijψ(x) cos

(
b · x
δ

)
+O(δ)

and

Dwδ ⊗Dwδ = (a⊗ b)⊗ (a⊗ b) ψ(x)2 cos2

(
b · x
δ

)
+O(δ).

The proof then works as in Thm.17. 2

[Lecture 22: 6.07]

3.2.6 Second variation and convexity

Definition 34 Let X = Rd, or X = Rn×d. A function f : X → R ∪∞ is convex if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

for all x, y ∈ X,λ ∈ [0, 1].

Remark 1. f is convex iff the function

hxy : R → R
t → hxy(t) := f(x+ ty)

(3.2.13)

is convex (in t) for all x, y ∈ X.

Remark 2. Let f ∈ C2(X). Then f is convex iff ∂2
xf(x) ≥ 0 as a quadratic form ∀x ∈ X, i.e.

∂2
xf(x) · (b⊗ b) ≥ 0 ∀b ∈ Rd, if X = Rd, (3.2.14)

∂2
xf(x) · (B ⊗B) ≥ 0 ∀B ∈ Rn×d, if X = Rn×d. (3.2.15)

68



Convexity and second variation

Lemma 40 Let n = 1 and assume f ∈ C2(Ω̄ × R × Rd). Let u ∈ W 1,q(Ω;R) such that ξ →
f(x, u(x), ξ) is convex in ξ, for almost all x. Then u is a solution of the second variation equation
(3.2.11).

Proof. Convexity implies ∂2
ξf(x, u(x), ξ) · (b ⊗ b) ≥ 0 ∀b ∈ Rd. This is true in particular for

ξ = Du. 2

Lemma 41 Let n > 1 and assume f ∈ C2(Ω̄ × R × Rd). Let u ∈ W 1,q(Ω;Rn) such that ξ →
f(x, u(x), ξ) is convex in ξ, for almost all x. Then u is a solution of the second variation equation
(3.2.12).

Proof. Convexity implies ∂2
ξf(x, u(x), ξ) · (B ⊗ B) ≥ 0 ∀B ∈ Rn×d. This is true in particular

for ξ = Du. and B = (a⊗ b), a ∈ Rn, b ∈ Rd. 2
Note that in the vector case covexity is too strong a condition. We only need rank-1 convexity.

Definition 35 A function f : Rn×d → R ∪∞ is rank-1 convex if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

for all λ ∈ [0, 1], and all x, y ∈ Rn×d such that rank[x− y] = 1.

Remark 3 (i) f is convex ⇒ f is rank-1 convex.

(ii) f rank-1 convex iff
f(y+λ(x−y)) ≤ f(y)+λ[f(x)−f(y)] for all λ ∈ [0, 1], and all x, y ∈ Rn×d such that rank[x−y] = 1,
iff
the function hxy defined in (3.2.13) is convex in t for all x ∈ Rn×d and y ∈ Rn×d of the form
y = a⊗ b, with a ∈ Rn, b ∈ Rd.

(iii) Let f ∈ C2(Rn×d). Then f is rank-1 convex iff

∂2
xf(x) · (B ⊗B) ≥ 0 ∀B = a⊗ b, a ∈ Rn, b ∈ Rd. (3.2.16)

Lemma 42 Let n > 1 and assume f ∈ C2(Ω̄ × R × Rd). Let u ∈ W 1,q(Ω;Rn) such that ξ →
f(x, u(x), ξ) is rank-1 convex in ξ, for almost all x. Then u is a solution of the second variation
equation (3.2.12).

Proof. Convexity implies ∂2
ξf(x, u(x), ξ) · ((a⊗ b)⊗ (a⊗ b)) ≥ 0 ∀a ∈ Rn, b ∈ Rd. This is true

in particular for ξ = Du. 2

Example. The determinant is rank-1 convex but not convex. To show this we study the function

f : R → R
t → h(t) := det(M + tN)

(3.2.17)

where M,N ∈ Rn×n. This function is a polynome of degree n in t, hence C∞. Without loss
of generality, we can consider only the second derivative at t = 0 h′′(0). We can also assume
detM 6= 0. Then f(t) = det(M + tN) = det(M) det(I + tM−1N). Note that, if N is rank-1, then
also M−1N is rank-1. Let us consider the function h(t) := det(I + tN). If t is small enough we
have

0 < det(I + tN) = eln det(I+tN) = etr ln(I+tN) = eg(t),

where ln(I+tN) :=
∑
n cn(tN)n, and cn are the coefficients in the Taylor expansion for the function

ln(1+x). The relation ln det(I+tN) = tr ln(I+tN) can be proved first for diagonalisable matrices,
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then extended by density to any matrix, such that the sum above is convergent. Since h(0) = 1,
the second derivative reduces to

h′′(0) =
[
g′′(0) + (g′(0))2

]
.

Using

g′(t) = tr ln(I + tN)′ = tr(I + tN)−1N, g′′(t) = −tr(I + tN)−1N(I + tN)−1N,

we finally obtain
h′′(0) =

[
(trN)2 − trN2

]
.

When N is rank-1 we have N = a⊗b = abt for two vectors a, b ∈ Rn, hence trN = tr(abt) = (b, a),
and trN2 = tr(abtabt) = (b, a)2, where (., .) is the euclidean scalar product. Therefore f ′′(0) =
h′′(0) = 0. This proves the determinant is rank-1 convex. To show the function is not convex take
for example

n = 2, M = I, N =

(
0 1
1 0

)
.

Then trN = 0, trN2 = 2, hence f ′′(0) < 0.

3.3 Existence of a minimizer: direct method of calculus of
variation

Problem. Let X be some space of functions u : Ω→ Rd (typically X = W 1,q(Ω;Rd)), I : X →
R ∪ {∞} and g : ∂Ω→ R some fixed boundary condition. The goal is to prove that there exists a
function u∗ ∈ X such that u∗ = g on ∂Ω and I(u) ≥ I(u∗) for all u ∈ X with u = u∗ on ∂Ω.

3.3.1 Strategy

Let Xg = {u ∈ X| u = g on ∂Ω}, and let

Ig := inf
u∈Xg

I(u) (3.3.18)

If the set Xg is empty we write Ig = +∞.

Step 1: existence of a minimizing sequence. Our goal is to prove:

Ig 6= ±∞. (3.3.19)

If this is true, then there exists a sequence {uk}k∈N of functions in Xg such that

lim
k→∞

I(uk) = Ig. (3.3.20)

Note that the sequence uk may not have a limit in X.

Step 2: compactness. Our goal is to prove that there exists a subsequence ukl such that

ukl
τ→ u∗ is a suitable topology τ. Note that Ig = liml I(ukl) may not coincide with I(u∗) unless

the function I is continuous.

Step 3: lower semicontinuity. Our goal is to prove that I is at least lower semicontinuous in
the topology τ i.e. given any sequence {vj}j∈N in Xg and a function v ∈ X it holds

vj
τ→ v ⇒ lim inf

j→∞
I(vj) ≥ I(v) (3.3.21)
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Conclusion. Putting together the three steps above we obtain

Ig = lim
l→∞

I(ukl) = lim inf
l→∞

I(ukl) ≥ I(u∗).

Hence I(u∗) = Ig by definition of Ig.
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3.3.2 Some examples.

Example 1. Let n = 1, X = W 1,2(Ω). Let g : ∂Ω → R. Assume Xg 6= ∅, i.e. there exists at
least a function g̃ ∈ X such that g̃ = g on ∂Ω, otherwise we cannot even start the argument. Note
that, if the function g is too ’bad’, the set Xg may indeed be empty. Therefore we can write

Xg = {u ∈ X| u− g̃ ∈W 1,2
0 (Ω)} = g̃ +W 1,2

0 (Ω).

Let

I(u) :=

∫
Ω

|Du|2dx = ‖Du‖2L2(Ω).

Step 1. Since I(u) ≥ 0 we have Ig > −∞. Moreover for u = g̃ we have I(g̃) ≤ ‖g̃‖W 1,2 <∞ hence
Ig 6= ±∞ and there exists a sequence {uk}k∈N of functions in Xg such that limk→∞ I(uk) = Ig.
Step 2. Let vj := uj − g̃. Since Ig is finite we have

sup
j
‖Dvj‖L2(Ω) ≤ ‖Dg̃‖L2(Ω) + sup

j
‖Duj‖L2(Ω) <∞.

Moreover, since vj ∈ W 1,2
0 (Ω), we can apply Poincaré inequality ‖vj‖L2(Ω) ≤ C‖Dvj‖L2(Ω) ∀j.

Therefore supj ‖vj‖W 1,2
0 (Ω) < ∞. Note that W 1,2

0 is reflexive, hence the unit closed ball is se-

quentially compact in weak topology. Therefore, since our sequence is bounded, there exists a
subsequence vjl and a function v∗ ∈W 1,2

0 such that vjl ⇀ v∗ and Dvjl ⇀ Dv∗ in L2(Ω), i.e.∫
Ω

vjl(x)h(x)dx→l→∞

∫
Ω

v∗(x)h(x)dx

for all h ∈ L2(Ω) and the same holds for Dvjl . Finally, letting u∗ = v∗ + g̃, we conclude that
ujl ⇀ u∗ in X.
Step 3. The norm ‖ · ‖L2 is not continuous in the weak topology. We will show later that this
function is nevertheless lower semicontinuous. Then we can conclude the argument.

Example 2. Let n = 1, X = L2(Ω). Let g : ∂Ω → R and assume Xg 6= ∅, i.e. there exists a
function g̃ ∈ X such that g̃ = g on ∂Ω. Let b ∈ L2(Ω) and

I(u) :=

∫
Ω

u(x)b(x)dx = (u, b)L2(Ω).

For any constant K > 0 we can find a u ∈ Xg such that I(u) < −K. Then Ig = −∞ and Step 1
fails.

Example 3. We define X and Xg as in Example 1. Let b ∈ L2(Ω) and

I(u) :=

∫
Ω

[|Du|2(x)− u(x)b(x)]dx = ‖Du‖2L2(Ω) − (u, b)L2(Ω)

Step 1. Taking u = g̃ we have

I(g̃) ≤ ‖Dg̃‖2L2(Ω) + ‖g̃‖L2(Ω)‖b‖L2(Ω) <∞,
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hence Ig <∞. To prove a lower bound note that

I(u) ≥ ‖Du‖2L2(Ω) − ‖u‖L2(Ω)‖b‖L2(Ω).

As in Example 1, using v = u− g̃, and Poincaré inequality we have

‖u‖L2(Ω) ≤ ‖g̃‖L2(Ω)+‖v‖L2(Ω) ≤ ‖g̃‖L2(Ω)+C‖Dv‖L2(Ω) ≤ ‖g̃‖L2(Ω)+C‖Dg̃‖L2(Ω)+C‖Du‖L2(Ω).

Then there exist two constants C1, C2 > 0 (depending on b and g̃) such that

I(u) ≥ ‖Du‖2L2(Ω) − C1‖Du‖L2(Ω) − C2 = ‖Du‖L2(Ω)

(
‖Du‖L2(Ω) − C1

)
− C2 > −K (3.3.22)

for some constant K > 0 independent of u. Hence Ig 6= ±∞. Then there exists a sequence uj in
Xg such that limj→∞ I(uj) = Ig.
Step 2. From supj I(uk) <∞ and (3.3.22) above, we have supj ‖Duj‖L2(Ω) <∞. Moreover, from
vj = uj−g̃ and Poincaré inequality we have supj ‖vj‖W 1,2

0 (Ω) <∞, hence there exists a subsequence

vjl and a function v∗ ∈W 1,2
0 such that vkl ⇀ v∗ weakly in W 1,2

0 . Hence ukl ⇀ u∗ = g̃+v∗, weakly
in W 1,2.
Step 3. The map u→ (u, b)L2 is continuous wrt the weak topology and ‖Du‖L2 is lower semicon-
tinuous. Hence I(u) is lower semicontinuous.

3.3.3 Convex Lagrangians

The following theorem gives a set of conditions sufficient (but not necessary) to ensure lower
semicontinuity.

Theorem 19 Let Ω ⊂ Rd open bounded and with Lipschitz boundary. Let the Lagrangian

f : Ω× Rn × Rn×d → R
(x, z, ξ)→ f(x, z, ξ)

satisfy

• f continuous on Ω× Rn × Rn×d,

• f ≥ 0,

• ∀(x, z) ξ → f(x, z, ξ) is convex and differentible,

• x→ f(x, u(x), v(x)) ∈ L1(Ω) for all u ∈ Lq(Ω;Rd), v ∈ Lq(Ω;Rn×d), for some q ≥ 1.

Then I(u) =
∫

Ω
f(x, u(x), Du(x))dx is lower semicontinuous in the weak W 1,q(Ω;Rd) topology

i.e. for any function u∗ ∈W 1,q(Ω;Rd), and any sequence uj ∈W 1,q(Ω;Rd) such that uj ⇀ u∗ in
W 1,q(Ω;Rd) we have

lim inf
j→∞

I(uj) ≥ I(u∗).

Proof. Is is enough to prove that for any weakly converging sequence uj ⇀ u∗ there is a
subsequence ujl such that lim inf l→∞ I(ujl) ≥ I(u∗).
Indeed, assume this is true and I0 := lim infj→∞ I(uj) < I(u∗). Since lim inf is an accumulation
point, there is a subsequence ũl := ujl such that liml I(ũl) = I0. Then there exists a subsequence
ũlk such that I0 = limk ũlk = lim infk ũlk ≥ I(u∗). But this is in contradiction with I0 > I(u∗).
The proof of the theorem is then a consequence of Theorem 20 below. Indeed, inserting the
subsequence ujh and the sets Ek from that theorem, we have

lim inf
h

∫
Ω

f(x, ujh(x), Dujh(x)) dx ≥ lim inf
h

∫
Ek

f(x, ujh(x), Dujh(x)) dx

≥
∫
Ek

f(x, u∗(x), Du∗(x)) dx ∀k.
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Then

lim inf
h

∫
Ω

f(x, ujh(x), Dujh(x)) dx ≥ sup
k

∫
Ek

f(x, u∗(x), Du∗(x)) dx =

∫
Ω

f(x, u∗(x), Du∗(x)) dx.

This concludes the proof of Theorem 19. 2

Theorem 20 Under the same assumptions as in Theorem 19, let uj be a sequence in W 1,q(Ω;Rd)
such that uj ⇀ u∗ in W 1,q(Ω;Rd). Then there exists a subsequence ujh and a family of sets Ek ⊂ Ω,
k ∈ N such that

(a) Ek ⊆ Ek+1 ∀k,

(b) ∪k∈N Ek = Ω, up to a set of measure zero,

(c) lim infh
∫
Ek
f(x, ujh(x), Dujh(x)) dx ≥

∫
Ek
f(x, u∗(x), Du∗(x)) dx for all k ∈ N.

Proof. We distinguish two cases: f independent of z and general f .

Case 1. Assume f depends on (x, ξ) only. Since f is convex and differentiable in ξ we have

f(x, ξ1) ≥ f(x, ξ0) + (ξ1 − ξ0) · ∂ξf(x, ξ0)

for all x ∈ Ω, ξ0, ξ1 ∈ Rn×d, where · above indicates the matrix scalar product M ·N = trMN t.
In the following we write vj(x) := Duj(x) and v∗ := Du∗. Then, using the inequality above, we
have ∫

Ω′
f(x, vj(x))dx ≥

∫
Ω′
f(x, v∗(x))dx+

∫
Ω′

(vj(x)− v∗(x)) · ∂ξf(x, v∗(x))dx

for any Ω′ ⊂ Ω such that x→ (vj(x)− v∗(x)) · ∂ξf(x, v∗(x)) ∈ L1(Ω′). To construct such a subset
note that vj−v∗ ∈ Lq(Ω;Rn×d). It is then enough to find Ω′ such that ∂ξf(·, v∗(·)) ∈ Lp(Ω′;Rn×d),
with 1

p + 1
q = 1. Now, let M > 0 and define

ΩM := {x ∈ Ω| |∂ξf(x, v∗(x))| ≤M}, (3.3.23)

where |·| denotes the matrix norm. Since ∂ξf(·, v∗(·)) is bounded on ΩM , it belongs to Lp(ΩM ;Rn×d).
Moreover, since vj ⇀ v∗ weakly in Lq(ΩM ;Rn×d), we have∫

Ω

(vj(x)− v∗(x)) · ϕ(x)dx→j→∞ 0 ∀ϕ ∈ Lp(Ω;Rn×d).

Applying this to ϕ(x) = 1ΩM (x)∂ξf(x, v∗(x)) we get

lim inf
j

∫
ΩM

(vj(x)− v∗(x)) · ∂ξf(x, v∗(x))dx = lim
j

∫
ΩM

(vj(x)− v∗(x)) · ∂ξf(x, v∗(x))dx = 0.

Therefore

lim inf
j

∫
ΩM

f(x, vj(x))dx ≥
∫

ΩM

f(x, v∗(x))dx+ lim inf
j

∫
ΩM

(vj(x)− v∗(x)) · ∂ξf(x, v∗(x))dx

=

∫
ΩM

f(x, v∗(x))dx,

where we used lim infj(aj + bj) ≥ lim infj aj + lim infj bj . Now, replacing M by a sequence Mk,
with Mk+1 > Mk ∀k and limk→∞Mk =∞, the proof of Case 1 follows.
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Case 2. We consider the general case, when f depends on x, z and ξ. We want to use Case 1.
As above let vj := Duj and v∗ := Du∗. For any Ω′ ⊆ Ω we have∫

Ω′
f(x, uj(x), vj(x))dx =

∫
Ω′
f(x, u∗(x), vj(x))dx

+

∫
Ω′

[f(x, uj(x), vj(x))− f(x, u∗(x), vj(x))] dx.

The first integral can be treated as Case 1 with f̃(x, ξ) := f(x, u∗(x), ξ), hence

lim inf
j

∫
Ω′
f(x, u∗(x), vj(x))dx ≥

∫
Ω′
f(x, u∗(x), v∗(x))dx ∀Ω′ ⊆ Ω.

Our goal is to find a subsequence ujh , vjh and a sequence of subsets Ek such that the second
integral converges to zero. The idea is to first get rid of the vj dependence. For this purpose,
analog to (3.3.23) let M > 0 and

Aj,M := {x ∈ Ω| |vj(x)| ≤M}. (3.3.24)

Moreover let
g(x, j,M) := sup

|ξ|≤M
|f(x, uj(x), ξ)− f(x, u∗(x), ξ)| . (3.3.25)

Then, for all M > 0 and j ∈ N we have∣∣∣∣∣
∫
Aj,M

[f(x, uj(x), vj(x))− f(x, u∗(x), vj(x))] dx

∣∣∣∣∣ ≤
∫
Aj,M

g(x, j,M)dx.

We will use the next two claims (proved later).

Claim 1: there exists a constant C > 0 idependent of M and j such that V ol(Aj,M ) ≤ C
M ∀j,M.

Claim 2: for all M > 0 fixed we have

lim
j→∞

g(x, j,M) = 0 for a.e. x ∈ Ω.

From the assumptions of the theorem g(·, j,M) ∈ L1(Ω), and from Claim 2 g(·, j,M) converges
pointwise to zero for a.e. x ∈ Ω. Hence g(·, j,M)→ 0 in mass i.e.

V ol{x ∈ Ω| |g(x, j,M)| > ε} →j→∞ 0 ∀ε > 0.

More precisely, ∀ε > 0 and ∀δ > 0 ∃jε,δ ∈ N such that

V ol{x ∈ Ω| |g(x, j,M)| > ε} ≤ δ ∀j ≥ jε,δ.

Here we set h ∈ N, and we define

M = 2h, ε =
1

h
, δ = 2−h, jε.δ := jh.

Then
V ol

{
x ∈ Ω| |g(x, j, 2h)| > 1

h

}
≤ 2−h ∀j ≥ jh. (3.3.26)

We are now ready to define the subsequence and the sets Ek.
Subsequence. We take the subsequence (ujh , vjh) where jh is defined above.
Sets. We first introduce the sets Ah and Bh defined by

Ah := {x ∈ Ω| |vjh(x)| ≤ 2h} = Ajh,2h , Bh := {x ∈ Ω| |g(x, jh, 2
h)| ≤ 1

h}. (3.3.27)
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Finally we define
Ek := ∩h≥k(Ah ∩Bh). (3.3.28)

This definition clearly satisfies (a) in Thm 20. To prove (b) note that

V ol(Eck) = V ol(∪h>k(Ah)c ∪Bch) ≤
∑
h≥k

[V ol(Ach) + V ol(Bck)] .

By Claim 1 and (3.3.26) we have

V ol(Ach) ≤ C 2−h, V ol(Bch) ≤ 2−h.

Hence V ol(Eck) ≤ C ′
∑
h≥k 2−h →k→∞ 0. Then ∪kEk = Ω up to a set of measure zero.

Finally, to prove (c) note that∫
Ek

g(x, jh, 2
h)dx ≤ V ol(Ek)

h
≤ V ol(Ω)

h
→h→∞ 0.

Therefore

lim inf
h

∫
Ek

f(x, ujh(x), vjh(x))dx ≥ lim inf
h

∫
Ek

f(x, u∗(x), vjh(x))dx

+ lim inf
h

∫
Ek

[f(x, ujh(x), vjh(x))− f(x, u∗(x), vjh(x))] dx

≥
∫
Ek

f(x, u∗(x), v∗(x))dx,

where we used

lim
h→∞

∣∣∣∣∫
Ek

[f(x, ujh(x), vjh(x))− f(x, u∗(x), vjh(x))] dx

∣∣∣∣ ≤ ∫
Ek

g(x, jh, 2
h)dx = 0.

To conclude the proof of the theorem it remains to prove the two claims.

Proof of Claim 1. vj ⇀ v∗ weakly in Lq(Ω;Rn×d) ⇒ supj ‖vj‖Lq < ∞, ⇒ (since q ≥ 1 and
V ol(Ω) <∞) S = supj ‖vj‖L1 <∞. Then ∀j we have

S ≥ ‖vj‖L1 =

∫
Ω

|vj(x)|dx ≥
∫
Acj,M

|vj(x)|dx ≥ M V ol(Acj,M ).

Hence the result.

Proof of Claim 2. Remember that if Ω ⊂ Rd is open, bounded and with Lipschitz boundary,
then the identity map Id : W 1,q(Ω) → Lq(Ω) is compact for q ≥ 1. This means that for any
bounded sequence in W 1,q(Ω) there exists a subsequence strongly convergent in Lq(Ω). Here
uj ⇀ u∗ in W 1,q(Ω;Rn) hence supj ‖uj‖ <∞ hence there exists a subsequence converging strongly
in Lq(Ω;Rn). Finally, this implies there exists another subsequence (of the subsequence) converging
pointwise a.e. in Ω. We restrict to this subsequence. Then for a.e. x ∈ Ω we have uj(x)→ u∗(x).
The result is now a direct consequence of Lemma 43 below. This concludes the proof of Claim 2,
hence of the theorem. 2

Lemma 43 Let M > 0, zj → z∗ ∈ Rn and f continuous on Ω× Rn × Rn×d. Then

lim
j→∞

sup
|ξ≤M |

|f(x, zj , ξ)− f(x, z∗, ξ)| = 0. (3.3.29)
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Proof. By contradiction. Suppose the limit is different from zero. Then there exists a sequence
ξj and δ > 0 such that

|f(x, zj , ξj)− f(x, z∗, ξj)| ≥ δ > 0 ∀j.

Since the closed ball B̄M = {ξ| |ξ| ≤ M} is compact and ξj ∈ B̄M , there exists a subsequence
ξjk converging to some point ξ∗ in B̄M . Then (x, zjk , ξjk)→ (x, z∗, ξ∗). Since f is continuous this
implies

lim
k→∞

|f(x, zjk , ξjk)− f(x, z∗, ξjk)| = f(x, z∗, ξ∗)− f(x, z∗, ξ∗) = 0.

Hence the contradiction. 2
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