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1. Basic notions of continuum mechanics

[Lecture 1: 13.04]

1.1 Introduction: modelling a physical system

goal: translate a physical problem in fluid or solid mechanics into a system of PDEs

Examples: a) flow of a fluid around an obstacle or inside a pipe, b) deformations in a solid (ex.
a sponge)
Physical description:

e microscopic level: atoms/molecules. There are ~ 1026 equations to study, very hard!

e macroscopic level: see the material as a continuous object — continuous mass distribution

Notation: For partial derivatives we will use alternatively one of the following three notations:
0 _9 =9
Tr; — (

6wj -

1.1.1 From physics to PDE
Physical description:
1. identify the mathematical object to study
2. use physical laws+assumptions on the material to extract a system of PDEs
3. boundary conditions (how the sample interacts with the external world)
4. intial conditions
Example: fluid flowing around an obstacle (a stone in water, an aiplane in air)
1. The obstacle is described by a compact region K C R3.
The fluid motion is described by @(z,t) = velocity of a small portion of fluid near the position
7 € R3\K at time t > 0.

Goal: find u.
2. physical laws+incompressible fluid+other assumptions — Navier-Stokes equation

div]@] = 0 z€RNK, t>0



where po > 0 (mass density) and 7 > 0 (dynamical viscosity) are constants, @ : R3\ K — R3 is the
velocity field, p : R3\ K — R is the pressure field,

(Ail); = Al == <8ij>2ui (1.1.2)

j=1
- 3 B)
=1 bt
. 5.8
div][a] ::v-ﬁzzﬁuj (1.1.4)
j=1 """
- B
[Vl =5 —» (1.1.5)
J

3. There are two boundaries: 0K and infinity. The two most standard boundary conditions are
e Dirichlet: fix the value of 4 on JK. Example: ujgx = 0 (no slip)

e Neumann: fix the normal deivative V yu on 9K (i.e. derivative in the direction perpendicular
to the boundary).

To fix the fluid behavior at infinity, we assume the fluid moves at constant speed s, when no
obstacle is present. The obstacle creates a perturbation only in the vicinity of K, then

‘1|im @z, t) = s VE>0. (1.1.6)
T|—0o0

4. initial condition: @(z,0) = @y(z) (initial velocity field).

1.1.2 From PDE to physics

Dimensional analysis.

To check if a PDE is ’physically meaningful’ we evaluate the dimension of each term and check if
they coincide.

The basic dimensions are: length L, mass M and time 7. We denote the dimension of a quantity
by [quantity].

Some important dimensions (d = 3):

L ML
[area] = L?,  [velocity] = T [force] = [mass - acceleration] = T
[force] M ) [mass] M
[pressure] = fared] =T [mass density] = Toolume] =13 (1.1.7)
Application to NS, eq. (I.1.1))
5 .l M N ) I N (R
. ML M -
= odill = Taope = gage = [V

Finally [Au] = 4 = 2. Then [n] = 4.

Similarity principle

Typical problem: we check the validity of a PDE in some experimental lab on a small scale sample.
How do we find the PDE describing a real size (generally larger) sample?



Geometry. Two triangles are similar if all the corresponding adimensional parameters (i.e. the
angles) coincide.

Physical process. Two physical processes are similar if the corresponding adimensional param-
eters coincide.

Compare the PDEs for two physical processes. We need to write the PDEs in adimensional
form and then compare the adimensional parameters appearing in the equations.

PDE in adimensional form

Let us see how to write ((1.1.1) in adimensional form. The variables in the functions are & (space
dimension) and ¢ (time dimension). We introduce the adimensional variables

1
7= —1x, with g > 0, [z9] = L,
Zo

1
Ti= ot with toso, [to] = T,
0

where xg,ty are fixed reference parameters. A natural choice for xq is the size of the obstacle:
zo := diamK. Then |y| ~ 1 when we are near K. At the moment ¢y is still free.
The functions appearing in the PDE become

where @, p satisfy

o [%aq—ﬂ + La- ﬁya} = Vb + 0yl
divy[a] =0 7eRNK /29,7 >0 (1.1.8)
lim|y o0 ©(Y, 1) = Uoo

Now y, 7 are adimensional, but p, u still have a dimension. We introduce the adimensional functions

1= L
v = ith 0 S
’U(y,T) uOu(y,r), with ug > 0, [UO] 7

1 ' u
qy,7) = p—op(y,f), with po > 0, [po] = 7.

where ug, po are fixed reference parameters. A natural choice for ug is the velocity at infinity:
Up := |too| Then |v(y,7)] — 1 when |y| — co. At the moment pg is still free.
Replacing v, ¢ in the PDE we get

L uotp , o __Ppoto

S S = i S
0:U + UV = Vyq+ LOQAyv
Zo TopoUo PoTy

where all functions and prefactors are adimensional. Note that
e the parameters g, uy are already fixed
e the parameters pg, 7 are given (by the physical problem)

e the parameters tg, pg are still free.



We can choose ¢ such that ug = 7> and po such that —Poto_ — _Po — ] Finally we obtain
0 TopPoUO poug

BT+ T VT = —Vyq+ AT
div,[7] =0

7€ R3\K/x9,7 >0 (1.1.9)

where Re := £0%0%0 jg the Reynolds number. Note that the only information on the physical

system is now only in the Reynolds number. Therefore any system with the same Re is described
by the same PDE system.

[Lecture 2: 15.04]

1.2 Point mechanics

True particles occupy a finite volume, but it is often convenient to describe them as point-particles
located at the center of mass. This holds also for large objects (ex a planet).
We consider a system of N particles with masses m; > 0, i =1,..., N moving in R? (d = 1,2, 3).

1.2.1 Kinematics

The movement is described by the positions #;(t) € R? = position of the i—the particle at time
t>0,i=1,...n. We also define V;(t) = &/ (t) € R% = velocity of the i—the particle at time ¢ > 0,
1=1,...n.

If no force acts on the particles, they will move forever at constant speed

zi(t) = i (0) +tVi(0) Vt.

The trajectoris are lines.

1.2.2 Dynamics
To modify the trajectories we apply forces. we consider two types of forces acting on the particle
i

1. external force: f;(t)

2. (internal) force generated on i due to the particle j = ﬁj (t).

Newton 2nd law. force = mass-accelaration. The equation of motion for the ¢—th particle
is then given by
miay (t) = py(t) = fi(t) + > fis (1) (1.2.10)
JgFi

where we defined p;(t) = m;Z;(t) as the momentum of the particle i.

Newton 3rd law. The force on i due to j equals - force on j due to i, i.e.

Fiyt) = =fiu(t) Yt Vi, (1.2.11)
Then f;; must be of the form
> T;— & L
fig = ﬁgn(lxi - ;) (1.2.12)

with gi;(r) = g;i(r).
Two important examples are



m;m;

1. gravitational force: g;;(r) := —G—=*, G = gravitational constant

QiQ;

r2

2. electrical force: g;;(r) := +K , Q; = charge of i-th particle

1.2.3 Conservation laws

In the following we consider relations on the whole system of N particles, rather than on each
single particle.

Conservation of (linear) momentum

Let

the total momentum and external force respectively. Then

—

(c1)  p'(t)=f(t) (1.2.13)

Remark. Only the external forces play a role here!

Proof.
n n . n . . 1 . . .
PO =50 =D Lt +> ) fit)=Fft)+ 3 > (fij+ F) = f(o),
i=1 i=1 i=1 j,j#i j#i
where in the first step we used Newton’s 2nd law and in the third Newton’s 3rd law. O

Conservation of angular momentum (d = 3)

Motivation: the total force does not contain enough information. As an example consider a
horizontal rod of length 2! > 0 with the two extremities at positions &1 = (-1, 0,0), &2 = (1,0,0) =
—1. We consider two force configurations.

e Configuration 1: we apply the forces Fj = (0,0, —F), F, = F, F; = (0,0,2F) = —F, at
positions &1, o and X3 = 0 respectively.

e Configuration 2: we apply the forces ﬁl = (0,0, F), ﬁg = —ﬁl = (0,0,—F) at positions 71,
and @y respectively.

Though in both configurations the total force is zero, in the second the system rotates.
Definitions and conservation law Let o be a fixed reference point, Ei(t) = (&; — %o) x p; be

the angular momentum of the i—th particle and M;(t) := (&; — Zo) X f; the angular momentum
of the external force (torque) acting on 4. Let

- N — — N —
L(t) == Z Li(t),  M(t) := ZMi(t)

the total angular momentum and total torque respectively. Then

(c2)  L'(t)= M(t) (1.2.14)



Proof.

O

Remark. If we change reference point from #j to &, the the total torque (resp. the angular
momentum) changes to M(Z}) = M (o) + (Zo — &) x f, while L(Z})) = L(Zo) + (Zo — &) X p.
Hence (c2) holds for any choice of the reference point xg

Reminder: properties of the cross (vector) product The cross product is a bilinear oper-
ation defined by
x: R3xR3 —R3
(@,b) — @ x b= |a||b| sin 07
where 6 € [0,7) is the angle between @ and 57 and 7 is a unit vector orthogonal to both vectors,
with direction given by the ’right hand rule’. Alternatively one may write

(Fi X g)z = Z eijkajbk
ik

—
—

where €% is the Levi-Civita symbol. The cross product is antysymmetric @ x b= -bxa In
particular @ x @ = 0.

An example. Let us consider the example given above in the two configurations.
Configuration 1. The total force f = Fy + F» + F3 = 0, hence by (c1) p’ = 0 (the system does
not drift). To compute the angular momentun and the torque we set 2o = 0. Indeed, since f =0
t_he torque is independent of the choice oif xg. Then M = T X ﬁl + Ty X ﬁg + 23 % ﬁ3 = 0. Hence
L’ = 0 (no rotation).

Configuration 2. The total force f = Fy + Fy = 0, hence by (c1) p/ = 0 (no drift). As before we
can set g = 0. Then M =7 x F| + 39 x Fy = 27, x Fy # 0. Hence L # 0 (we have rotation).

Conservation of energy

Energy is ’stored’ in the movement of particles (kinetic energy) and the internal forces (potential
energy).

Potential energy. We assume the potential energy can be modified only through internal forces.
To quantify this assumption we introduce the notion of work.
We define the work per unit time done by the force F; on the particle i by W; := F; - &,. Its

dimension is [W] = [force] - L/T. In our case F; = f; + D fij. Hence

W= WE Wi, W= e, Wit =2 (Y fl

JJF



Let Wear = >, WE® be the total work per unit time by external forces and Wi,y = Y, Wi be
the total work per unit time by internal forces. The the statement above reads

Bl () = ~Win(2). (1.2.15)
By Newton 3rd law, this identity implies that E, must be of the form
1 S
(AN (12.16)
i#]

where, if f_;j = gglj(ﬁ} — &;|), with g¢;;(r) = g;i(r), then G;;(r) is a primitive of g;;. This
follows f :
ollows from

E;; int = Z Z fz] _%Z(f;ﬁ]+f; .]?Jl)

i j,jF# i#£]
1 o T — T; T,
:_’Z ) i) = =5 2@ = 7)) == (1 — T)
X ‘xz_xj‘
i) i
!
1 d .
= =5 > o |T = i (17 — 7)) = _*ZGU
i 73
Kinetic energy.
. N .
m; | (t) |2 |pi |2
Ey = . =

As E,p, also Ej is related to the work. Precisely we have

By, (t) = Wear + Wine. (1.2.17)
This follows immediately from
a i N
/ EZ 22 _Zml_’”'_’g_ZFi'f;:Wea:t'i_Wint-
i=1 i=1

Conservation law. Let E(t) = Ey(t) + E,(t) the total energy of the particle system. Then

(1.2.15)+(1.2.17)) imply
(3)  E'(t) = Wen. (1.2.18)

[Lecture 3: 20.04]

1.3 Continuum mechanics: kinematics

1.3.1 From particles to continuum

Let N > 1 and Cj,(z) be a cube of side h > 0 centered at x € R%. We define the fraction of mass
(resp. momentum) inside Cy,(x) by

B 1 o 1 B
Ph(t’x):m Z mi, ph(t,x)::‘c— > b

i (t)eCH

where |C},| = h? is the volume of the cube. As N — oo and h — 0 (in the appropriate way)
pr(t, ) — p(t, @), pr(t, ©) — p(t, ) mass and momentum density.

10



Remark. The velocity fraction is defined through o}, := p%ﬁh #+ ﬁ Ez‘ji(t)ech U;.

Dictionary. initial position of the N particles X; = #;(0), i = 1,... N — region occupied by
the material at time 0 2 C R? open and connected

trajectory of particle i located at X, at time 0 is :E’i()?l—,t) — trajectory of a small portion of
material located at X € € at time 0 Z(, X).

1.3.2 Deformations

For N particles the allowed configurations (at each time t) are the N-tuples (z1,....,zy) € RN?
such that z; # x; for all ¢ # j (particles do not overlap).

For a continuous body, the possible configurations are all possible deformations (translations,
rotations, stretching...) of a reference configuration €.

Definition 1 (Deformation.) Let Q C R? be a domain (i.e. open and connected) and let k > 1.
A CF— deformation (or simply a deformation) is a map ¢ : Q — R? such that

1. p € CH(;RY),
2. ¢ has a continuous extension to Q and this extension is invertible

3. @ preserves orientations i.e. det Dp(x) > 0 Va € Q.

where Do(x) € R? s defined by (Dy);j(x) := gf;. Q is called the reference configuration.

Remark. ¢(z) # ¢(y) Vz # y is the analog of non-overlapping particles
Moreover, since ¢ is invertible, we have det Dp(z) # 0 for all x, then it is either always positive
or always negative. Taking det Dy > 0 allows to include the case ¢ = Id and excludes flipping.

A special class of deformations is given by translations and rotations.

Definition 2 (Rigid deformation) A deformation ¢ : Q — RY is called a rigid deformation if
Dy(z) € SO(d) for all z € Q.

Reminder. SO(d) = {A € R*¥ATA = Id, and det A = 1}.
For any A € SO(d), the linear map T4 € L(R?) defined by Taz = Az is an isometry.

Example. An affine map ¢(z) = Az + b, with A € SO(d) and b € R? is a motion iff det Dy =
det A > 0. If in addition A € SO(d) this is an affine rigid motion. The following theorem proves
that all rigid motions are affine.

Theorem 1 (Liouville) Let Q be a domain and ¢ : Q — R? a deformation. The following
statements are equivalent.

(i) ¢ is a rigid deformation.
(ii) ¢ is a rigid affine deformation i.e. Ib € R and A € SO(d) s.t. p(x) = Az +b.
(i4i) Yy, z € Q it holds |o(x) — o(y)| = |z — y|.

(ii)’ (local version of (ii)) ¢ is a local rigid deformation i.e. Yo € Q Ir > 0, b € R? and
A€ SO(d) s.t. p(y) = Ay +b Yy € B(z,r).

(i)’ (local version of (#ii)) Vo € Q Ir > 0, s.t. |y — z| = |p(y) — v(2)| Yy, z € B(x,r).

11



Proof (exercise) We prove first that (i) = (i) = (i) = (¢) = (). To conclude we will
prove (if) = (iii) = (iii)'.
(iid)" = (i)'~ Applying 0,0z, to |y — 2 = [@(y) — ¢(2)]

I = (Do(y))" (Dy(z)) Vy,z € B(x,r)

Taking y = z this gives Dy(y) € SO(d) Vy, and taking now all z € B(z,r) we have Dp(z) =
((De(y))T)~! = constant matrix. Finally from

2 we get

o(2) — oy) = / (De)(y + s(z — 1) (= — y)ds (1.3.19)

we deduce (1)’

(#4)" = (i1) = (i) obvious.

(i) = (4i1)'. Using (1.3.19) and Dy € SO(d) (hence Tp,, is an isometry) we obtain the inequality
lo(2) — ¢(y)| < |2 — y|. To obtain the other inequality let 1) = ¢! the inverse function. Since
D = (D)=t o1p, we have Dy € SO(d) too. Applying the inequality above to 1) we obtain the
result.

(i1) = (#1) since p(y) — p(z) = |Ay — Az| = |y — 2| since T4 is an isometry.

Finally (i4i) = (éi7)’ is obvious. O

Theorem 2 Let Q ¢ R? be a domain and let ¢ : Q@ — R? a deformation. Then for any
measurable set U C Q and for any g € L' (p(U)) we have

/ g(z)dz" = / g(0(X))(det Dip(X)) dX™ (1.3.20)
e (U) U

Proof. change of coordinates. O

1.3.3 Motions

Definition 3 (Motion) Let Q C R be a domain. A C® map z: R x Q — R? is a motion if for
each t € R the map z; := x(t,-) is a deformation.

Eulerian and Lagrangian coordinates. We can describe the body motion

- as a function of (¢, X), where X € Q is the (initial) position in the reference configuration. These
are called Lagrangian (or material) coordinates;

- as a function of (¢,z), where x = z(¢, X) is the position at time ¢ of a small portion of the body
near X at ¢ = 0. These are called Eulerian (or spatial) coordinates.

To make this precise we need some definitions.

Definition 4 Let 2 : R x Q — R? be a motion. We define
1. Q := x4(Q) the region occupied by the body at time t,
2. T:={(t,z) : t e R, x € U} the trajectory of the body in space and time,
3. xt_l : Q0 — Q the reference map at time t (also called the back-to-labels map),
4o 27 T =5 RxQ (t,x) = (t,z; (x)) the reference map.
Definition 5 (spatial and material fields) Let z : R x Q — R? be a motion.

1. Amap & : Rx Q — R™ m > 1 of Lagrangian coordinates (t,X) — ®(t,X) is called a
material field.

2. Amap ¢ : T — R™ m >1 of Eulerian coordinates (t,x) — @(t,x) is called a spatial field.

12



Material fields are often denoted by capital letters while spatial fields by non capital letters. One
may also write pg, m to indicate if we work in spatial or material coordinates.

Definition 6 We can relate spatial and material fields as follows.
1. Let ¢ : T — R™, be a spatial field. The map @ : R x Q@ — R™ defined by @, (t, X) =
o(t,z(t, X)) is called the material description of .

2. Let @ : R x Q — R™, be a material field. The map 5 : T — R™ defined by P4(t,z) :=
D(t, Dy(x)) is called the spatial description of P.

Examples. The motion z : R x  — R? is a material field. The reference map z=!: 7 — R x Q
is a spatial field. The function dxx(t, X) € R¥? is a material field and is called the deformation
gradient. We will often use the velocity field in spatial coordinates defined by

v(t,z) = Vi(t,x) = [atx(t»X)hx:rl(t,z) :

Trajectories and streamlines

Lemma 1 Let v(t,x) be a given spatial field, and X €  a fized reference point. Then the motion
starting at point X (i.e the function xx : R — T, with xx(t) = x(t,X)) compatible with the
velocity field (in spatial coordinates) v is a solution y : R — T of the (nonlinear) ODE

y'(t) =v(t,y(t)).

Proof. Indeed
y'(t) = 2k (t) = Op(t, X) = V(, X) = v(t,2(t, X)) = v(t,y(t))-

O
Definition 7 Let v(t,z) a given spatial field.
1. We call trajectory a solution of the ODE
y'(t) = v(t,y(t)). (1.3.21)
2. We call streamline a solution of the ODE
2'(s) = v(t, 2(s)), (1.3.22)

where t is a fixed parameter.

Remark. If the velocity field is constant wrt ¢, the trajectory and stremline coincide. Indeed
the streamline obtained from wv(tg,x) is the trajectory of a body with constant velocity field
v(t, z) = v(tg, x) V.

[Lecture 4: 22.04]

Time derivative and Reynolds transport theorem

Definition 8 (time derivative) Let ¢ : T — R™, be a spatial field. The time derivative of ¢ is
the usual partial derivative
d¢
—(, 7).
ot (t2)
The material time derivative of ¢ is the partial derivative in time of the material description of
©, evaluated then in spatial coordinates. Precisely:
Dy

ﬁ(t@) = [Ospml, (t, )

13



Lemma 2 Let ¢ : T — R™, be a spatial field. The material time derivative can be written as
ZZ(t,x) = Byo(t,x) + T - Vo(t, ) (1.3.23)
where T-V(t, z) == 27:1 v (t, )0y, 0(, x).

Proof. Using ®(t, X) = ¢(t,z(t, X)) we have 0, = (0:0)m + »_; Vi(0z,)m- Going back to
spatial coordinates, the result follows. O

Definition 9 We define a test volume U as a (small) portion of the body in the reference config-
uration. Precisely U C Q is open, connected, finite and with C' (or piecewise C* boundary).

Let U be a test volume and ¢(t, z) some given spatial field. Our goal is to study integrals of the

form
[ et x)aa
U(t)

where dx = H;l:l dx; is the product Lebesgue measure.

Key remark. By performing a coordinate change we have

/ o(t, X)dz = / om(t, X)T(t, X)dX, (1.3.24)
U U
where ¢, (t, X) = o(t, z(t, X)) and

J(t, X) = det [0x,z(t, X)],; ._, = det(Dx) (1.3.25)

d
4,j=

is the Jacobian.
The main consequence of (|1.3.24) is the following theorem.

Theorem 3 (Reynolds’ transport theorem) Let » : R x Q@ — R? be a motion and
@ : T —R™ a C'spatial field. Then for alli=1,...,m

d . .
at [/U(t) <Pi(t7x)dx] = /U(t) [Oro(t, ) + div(p;U)(t, )] dz (1.3.26)
- /Um Dep(t,2) + it 2)div(D)(t,2)] da (1.3.27)
where
d
div(9)(t, z) := Zaxl’ul(t,x) (1.3.28)
1=1
d
div(p;0)(t, x) == Zaml [piv](t, x) (1.3.29)
1=1

Proof. Using ([1.3.24)

4 l / (t)mx)dx] -4 [ / som<t,x>J<t,X>dX}

_ / Orom (£, X )T (8, X)dX + / ot X[ (1, X)]dX
U U
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Going back to spatial coordinates the first integral becomes

/[8tg0m(t,X)]j(t,X)dX = [Orpm]s(t, x)dx :/ Dyp(t, z)dx
U U(t)

U(t)
To compute the second integral we use (1.3.30) (see Lemma below) and obtain
/ pm (t, X)T (8, X)[div(0)]n (1, X)dX = p(t, x)|div(0)](t, z)dz.
U U(t)
Hence the result. O

Lemma 3 We have

8T (1, X) = T (t, X)[div(D)]m (¢, X). (1.3.30)

Proof. For any C' matrix-valued function 4 : R x Q — R4 with A(t, X) invertible for all
(t, X), we have

Or(det A)(t,X) = > 1Ay Oa,,(det A) = Z@” (A71)ji(det A) = (det A)tr [A718,A]
ij
where we used 04, (det A) = (cofA);; = (det A)(A™1) i, since A is invertible. Replacing now
A = Dz we have 0,J (t,X) = J(t, X )tr(A~19, A), where

0 Aij = 010x,;w; = Ox, 0z = Ox, Vi(t, X)
d d

= axjvi(t,x(t7X Z@Ilvz t {E(t X)) 8X ml t X Z am,’l)l Alj.
=1 =1

Hence

tI‘(A_latA) - Z( ]18,‘, 17 ZAZ] B ]7, awlvz m Z(Sll 8111]7, m Z a$Lvl le( ))m
l

1] ijl

O

Example. If m =1 and ¢ is the constant function ¢(¢,2) = 1 for all ¢, x then fU(t) o(t, z)dx =
Vol(U (t)) is the volume occupied by U at time ¢ . Then by Reynolds transport theorem we have

iVol(U( t) = / div(0)dx = / U(t, x) - iy dHI(z)
dt U aU ()

where for each z € 9U(t), i, is the unit vector orthogonal to the boundary.

1.4 Continuum mechanics: conservation laws

1.4.1 Mass and momentum

We need to introduce now the notion of mass, momentum, angular momentum and force.

Mass Instead of having the mass concentrated on points, we assume the mass is now distributed
uniformly on the volume occupied by the body, i.e. we replace the Dirac measure Efil Oz, (t) bY
a measure dm(t,z) = p(t,x)dx absolutely continuous with respect to Lebesgue.

Definition 10 A reference mass density (i.e. in the reference conﬁgumtion Q) is a function
po € LY(Q) such that po(X) > 0 for all X € Q. For each U C Q open, [;; po(X)dX is the total
mass inside U.

15



Definition 11 Let z : R x Q — R? be a motion. A mass density is a spatial field p : T — RT
such that p(t,-) € LY(Qy) for all t and

/ p(t,a:)dx:/ po(X)dX (1.4.31)
U(t) U

for allU C Q open.

The last identity means the mass of a piece of material (that can be seen as a ’particle’) does not
change in time.

Definition 12 Let 2 : R x Q — R be a motion and p: T — RT a mass density.
The (linear) momentum of a test voume U € 2 is a function | : R — R defined as

WU, t) = /U(t) p(t,x)v(t, x)dz. (1.4.32)

The angular momentum of a test voume U € Q is a function L : R — R¥*? defined as

L(U,t) = /U(t) p(t,x)[x Av(t,x)]dz. (1.4.33)

Reminder. The wedge (vector) product is a map

A: RxR— R4
(a,b) =  (aAb)ij = ab; —ajb;.

By construction a A b is a skew-symmetric matrix i.e. (a Ab)! = —(a A D).
Special cases:
d=1:(anb)=0 for all a,b € R.

o . o 0 ((L/\b)lg
d=2:(aNb)= —(a A b)is 0
0 (a A b)lg (a A\ b)13 0 (a X b)3 —(a X b)g
d=3: (a/\b) = —(G,/\b)lg 0 (CI,/\b)23 = —(axb)3 0 (axb)1
—(a/\ b)13 —(CL A b)23 0 (Cl X b)g —(a X b)1 0

In d = 3 the wedge and cross products can be identified (through the independent matrix elements).

1.4.2 Mass conservation
Integral version. By (|1.4.31) we have

d d

— t,x)dx = — X)dX =0 1.4.34

dt/U(t)p(,x)x & | w0 (1.4.31)
for all test volumes U.

PDE version. If p € C!, then by Reynolds transport theorem

d

— p(t,x)dx = / [Dip + pdiv(v)]dz =0
dt Ju U
Since U, hence U(t) is arbitrary we obtain
D.p(t,x) + pdiv(v)(t,x) =0 V(t,z) € T. (1.4.35)

This is called the continuity equation.
From now on we will always assume that p is at least C.

The following lemmas are consequences of mass conservation.
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Lemma 4 Let : T — R™ be a Clspatial field. Then

p(t, 2)Y(t, x)dx = / p(t,x)Dep(t, x)dx. (1.4.36)

dt U(t) U(t)

Proof By Reynolds transport theorem

jt/U(t) p(t, )y (t, x)dx :/ [Di(p) + ppdiv(v)]de

U(t)

— /U(t) [D:(p)y + pDi() + pypdiv(v)]de = / pD; (V) + [Di(p) + pdiv(v)|bdx

U(t)
The result now follows from ([1.4.35|). O

Lemma 5 Let V C R" a fized open connected set (with piecewise Ctboundary) such that V. C Q;
for all t € (t1,t2). Then

d

D ot 2w = — / p(t,) Tt 7) - e AHI () V1 <t < b,
dt Jv av

This result implies that the variation of the total mass contained in the (fixed) volume V' is the
mass flux through the boundary.

Proof Reynolds transport theorem+ Gauss. O

Lemma 6 The material is incompressible i.e. Vol(U(t)) = Vol(U) for all t, if and only if we

have div(v)(t,x) =0 for all (t,z) € T.

Proof By Reynolds transport theorem with m =1 and ¢(¢,z) = 1 for all (¢, z) we have
Aoy = & / b(t, z)dz — / 10,6 + div(¢0)] (¢, 2)da = / div(v)dz = 0

dt dt Ju ) U(t) U(t)

for all test volume U. This holds iff div(v)(¢, x) = 0. a
[Lecture 5: 27.04]

1.4.3 Forces

We consider two types of forces.
1. Volume forces: forces acting on every part of the body (external forces such as the gravity)

2. Surface forces: contact forces between two parts of the material (example: friction, pressure
difference. . .)

External forces acting on the boundary of the body are also a type of surface force, but
will be treated as part of the boundary conditions (since they apply only on the external
boundary 012).

We will use the following assumptions.

Volume forces. We assume there exists a volume force density f : 7 — R? such that the
(volume) force acting on a test volume U at time ¢ is given by

Fy(U 1) = /U i

For example the gravitational force (in d = 3) is given by F(U,t) = —gp(t,x)(0,0,1).

17



Surface forces. We assume the Cauchy hypothesis holds, i.e. there exists a surface force density

ST x84t — R where S9! is the unit sphere in R?, such that the (surface) force that the
portion Q\U(¢) of the material exerts on U(t) is given by

FS(U,t):/ S(t, 2, n,)dHI ()
ouU(t)
where n, € S?! is the direction orthogonal to OU(t) at x. S is called the stress vector. For
example, the hydrostatic pressure is given by S(t,x,n) = —p(t,z)n with p: T — R.
Definition 13 A system of forces is a pair (f,S) (volume and surface force density) with
e f€C(T;RY), and

e S : T x 81 — R? is Borel measurable, locally bounded in all variables and for every
n €81 S(.,-,n) € C(T;RY).

The total force acting on a test volume U is a function F : R — R? defined by

F(U,t) = Fy(U,t) + Fy(U,t) = » F(t,x)dz + /a » S(t, 2, ng)dH (2). (1.4.37)

The total torque on a test volume U is a function M : R — R4*4

M(U,t) = / x A f(t,z)dr + / x AS(t,x,n,)dH (x). (1.4.38)
U(t) ou(t)

1.4.4 Conservation of momentum and angular momentum.

Integral version. For any test volume U, the variation of the (linear) momentum is given by

di
S(U.t) = F(U1). (1.4.39)

By (1.4.36)) this can be written as

/ p(t,z)&(t,x)dz :/ f(t,x)der/ S(t,x,ng)dH ™ (z). (1.4.40)
Ut Dt Ut) au (%)

For any test volume U, the variation of the angular momentum is given by

dL
— (U.t) = M(U.1). (1.4.41)

This can be written as

/ ot 2) (m D”(t,@) dx :/ (@ A f(t,2)) d:c—i—/ (2 A S(t, 7,n,)) dHI(2).
Ut Dt Ut aU (¢)
(1.4.42)
Indeed, applying again , the time derivative enters the integral and becomes D;(x A v) =
(Dix) ANv+ a A (D). To compute Dyz: we consider the spatial field ¢(t,z) = x :
Dixj = Dij(t,x) = 0s;(t,x) + (T- V)d;(t, ) = v;(t, x).

Finally we use v Av = 0.

PDE version. To obtain a PDE, we need first some additional information on the stress vector.
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1.4.5 Cauchy theorem

Theorem 4 et z be a motion, (f,S) a system of forces such that S is continuously differentiable
in x. Then conservation of linear and angular momentum m hold iff there exists a
matriz-valued spatial field o : T — R4 such that

(1.) S(t,z,n) =o(t,x)n (S; = EJ 1041 ) t.e. S is linear in the n argument,

(2.) o7 =

(3.) o satisfies the equation of motion

Dv

P oy = div(e) + f (1.4.43)

where we define
[div(o Z Op,04j.

The spatial field o is called the stress tensor.

Proof of =. We prove that (1.4.40), (1.4.42) = (1.) + (2.) + (3.) .

First step. Let us assume we have already proved existence, i.e. (1.) holds. We prove that
(1) = (3), i.e. existence of o implies the equation of motion (1.4.43)).

Indeed, replacing S;(t,z,n) = [o(t,z)n); = 25:1 0i(t,x)n; in the conservation law (1.4.40) we
get

x%xx: i(t, x)dx o(t, 2)ngl dH ™ (z
/ = [ g e s [ fottamldnt (). (1.4.44)

U (t)

For each i, let w* € R? be the vector defined by w! := 0; (i.e. w' is the i—th row of o). Then
[on]; = &* - 7 and

o(t, z)ng|;dH¥ " (z) = x d-1 iv(w')dz = iv(o)]i(t, z) dz,
[ et @ = [ @it - [ e [ o)

where we used Gauss theorem. Finally (|1.4.40)) becomes

Dv;
[ oty Trtade= [ (fit.a) + vt o) do
U(t) Dt u)
Since U, hence U(t), is arbitrary we obtain ((1.4.43)).

Second step. Assume (1.) holds. We prove that (1) = (2).
We have already proved (1) = (3), hence p3Y — f = [divo]. Replacing this relation and S; = [on];
in equation ([1.4.42)) (conservation of angular momentum) we get

0= /U@) (1: A {p(t, x)%(t, z) — f(t, x)D dz — /M(t) (x A St ng)) dH ! (2)
_ /U (e ldive]) o — / (2 A S(t, 7,n,)) dHO (2)

U (t)

Now, for fixed 7, j we have

(@ NS)ij =8 —x;8; = Z(xmﬂ —ziou)n = Wi
1

19



where W% € R, is defined by I/V;j = (4041 — z;04). Then
/ [ A S(t 2, m,)],, AR (2) = / (W5 (t,2) -7, ) dH* () = / div(W7)(t, 2) da
U (t) au(t) U(t)

where in the last step we used Gauss theorem and div(Wij) => 6lelij . Now

le(W”) = Z@z, (LUZ'O'jl — (Ejail) = 04i — 045 + xi[divo]j - l'j[diVU]i = 04; — 045 + (LC A\ [leU])”
l

Inserting this in the integrals above we have
0= / [(m A [dival),; — dlv(W”)] dx = —/ (0ji — 0ij)(t, z) dz.
U(t) U(t)
Since U, and hence U(t), is arbitratry this implies o;; = 0;;. for all ij. Then ¢' = 0.

Third step. Finally we prove that (1.4.40)+ (1.4.42) = (1.). We will need the following result
(whose proof is given later).

Lemma 7 Let @i € S¥' a fized arbitrary direction and let fi, e f(; an orthonormal basis of R?
s.t. n{ = (- f;) >0Vj=1,..d (we can always rotate the axis to garantee this condition). Then
we can write S as linear combination of stresses in the elementary directions f;, i.e.

S(t,x,n) Zn S(t fi)- (1.4.45)

With this lemma we will show that, if €1,...,€q is the standard basis and n; := (i - €;) € R, we
have

(a) S(t,z,n) = ijl njg(t,os,ej), and

(0)

Uy

(t,z,—e;) = f§(t,x, ej) Vi =1,...d, and, more generally,
S(t,z,n) = —S(t,x,—n) ¥n € 8! (action-reaction’ principle).

Proof of (a) and (b). Let i, € S ! a fixed orientation and let fi,...f; and orthornormal
basis (depending on no) such that (no) > 0 for all j. Then we can find a neighborhood U(ng) of
no in S?1 such that n >0 for all j =1,..,d and for all n € U(ng). By Lemmaabove we have
S(t,z,n) = — Z; 11 S(t x, —f;) for all n € U(ng) hence S is locally continuous on S¢1.

Then, by continuity, (1.4.45) remains valid also in the limit n = (7 fk) J 0. In particular we can
choose 7i = €; for some j. Then n; = ¢;; > 0 and from we get S(t,z,e;) = —S(t, x,—e;).
For any n € S4! we can find an orthonormal basis such that n = f; for some j, hence g(t, x,n) =
—S(t,x,—n). This gives (b).

To prove (a), fix some n, let €1,...,&4 be the standard basis and let f; = sign(n;)€; a new
family of vectors. Then fi,..., fs is an o.n. basis and n; = sign(n;)n; = |n;| > 0 Vj. Then
S(t,z,n) = ij 1 fS(t x, —f;), where

55"( —fi) = njg(t,x, —ej) = —njg(t,x,ej) if n; >0,

;g( fJ) = —njg(t,x,ej) if n; < 0,

where in the first line we used (b). Then S(t,2,n) = — 2?21 nfg(t, —f;) = Z 1 nJS(t,x, e;).
This gives (a).
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Finally, from (a) we get S;(t,z,n) = >_, 0i;(t,2)n; where we defined
O'ij(t, (ﬁ) = S,L(L Z, ej).
With this definition o € C(7;R%*?). This concludes the proof of the = part.

[Lecture 6: 29.04]

Proof of <. We prove that (1.)+(2.) 4+ (3) = (1.4.40)) and (1.4.42)). Easy: replace the relations
in (1.),(2.), (3.) above in the integrals.

Proof of Lemma [7| (Cauchy’s tetrahedron argument) Let
A={zecRY (- f;)>0Vjand (&-7) <1}

be the simplex created by intersecting the plane (Z - 7)) = 1 with the d planes orthogonal to the d

axis. The region A has d+ 1 corners: the origin 0 and the d points Cj = %f% j=1,...,d. A has
J

also d + 1 faces.

o The first d faces are the intersections of A with the planes orthogonal to each direction f;.
Precisely the j—th face is given by

a; '={z €Al z; =0}, j=1,...d
e The last face is the intersection of A with the plane (Z-7) =1:
a={zeA| (¥ n)=1}.
Let |a;|, |a| be the area of the face a;, a respectively. We have

Ig_q Ig_q
|la| =

‘al| =1 )
na

where I := f[o 14 1izm<dy® and na = H?Zl n;. Hence

lai] = nylal, 1=1,...,d.
For a fixed ¢, we take now as test volume U(t) = Us(xo) = {xo} + As, where xg € ; and Ay is
the rescaled simplex As = {x € RY| x = §y, y € A}, with § > 0. Clearly SUD,ev; (z0) [T — To| = 0

as § — 0, the volume satisfies Vol(Us(z9)) = O(d¢) and the surface satisfies |0Us(z0)| = O(6¢71).
By (1.4.40) we have, for all § > 0,

. [ /U 5 [p(t,x)DUi (t,2) f(t,x)} de— [ S(t,z,na)dH " (@)| = 0.

dt oUs

Since the first integral scales like 6% we have

5§—0 §d—1 6—0

lim —— /U 5 [p(t,x) Z;’i (t,2) — f(t, :v)] dz = lim O(6) = 0.

Hence we must have
S(t,z,n.)dH¥ 1 (x) = 0.

lim ——
50 §d—1 U

Since Us — {zo} the integral above is given (up to higher order corrections in §)

d
S(t,zo,n)lal + Zs(ta o, —fj)la;| = 0.

=1

Replacing |a;| = nj|a|] we get the result. This concludes the proof of the lemma, hence the proof
of the Cauchy Theorem. O

21



1.4.6 Equations in spatial and material coordinates

Until now we obtained two main PDEs, both in spatial coordinates

D
Ff + pdiv(v) =0 continuity eq.

D
Zv_ div(e) + f eq. of motion

We now look for similar equations in spatial coordinates.

Continuity eq. in material coordinates.

Lemma 8 The material description of the mass density (p)m satisfies

pm(t, X) = detpl?)gc)((t?X)' (1.4.46)

Proof. By (1.4.31)) and a coordinate change we have
/ po(X)dX = p(t,x)dx = / pm(t, X)det Dz(t, X)dX.
U U(t) U
Since the test volume U is arbitrary this implies the result. O

Remark. Eq.(1.4.46) is the analog of the continuity equation in material coordinates:

po(X) o {Dp i pdiv(v):| =0

mth_
pm(t, X) D1

~ det Dz(t, X)

m

Indeed (D¢p)m = O0i(pm) by definition of Dy, and from (1.4.46) Oipm = —pm aagfg;”z. Moreover,
by Lemma [1.3.30] (div(v)), = 259t P2 Hence the result.

det D
Equation of motion in material coordinates
Our goal is to write p2¢ = div(o) + f in material coordinates.
Lemma 9 The equation of motion in material coordinates becomes
po(X)02x(t, X) = (det Dx)(t, X) fn(t, X) + DIV(S)(t, X) (1.4.47)
where S : R x Q — R js a matriz-valued material field defined by
Sij = o Cof(Dx)],; (1.4.48)

and DIV denotes the divergence in material coordinates

[DIV(S); ==Y 0x,Sij-

S is called the Piola-Kirchhoff tensor.
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Proof. By definition of D; we have (Dv),, = 8;V = 8?x = acceleration. By the continuity
equation above we know that p,, = po/(det Dx). The equation becomes

po(X)02x(t, X) = (det Dx)(t, X) fr(t, X) 4 (det Dx)(divo),, (t, X)

It remains to write (det Dx)(divo),, as a divergence in material coordinates. Using the relation
o(t,x) = on(t, X (t,x)) we get

oXy
[div(o Z&”cm = Z o i [0x,, (om)itls

iw

Hence

(det D) [(divo)]s = 3 (det D) (aXl’ ) D, (0w )i

1L axl

Note that for any material field ® we have dx,® = 3_(0z,®s)m 6‘,9;?/ = >;(02;®s)m(Dx) 1.
Applying this to ® = X; we get

OX) (Do)

o ) = -

The expression for (det Dz)[(divo),,]; above becomes

u l

We will prove later that Y-, dx,, [(det Dz)(Dz);;}] = 0. Then
(det Dx)[(dive)m Z@X,, [ (det Dx) Z (Dzx);, l/l (om l} Z@X,, [omCof (Dx)], -
v 1 v
This concludes the proof. O
Lemma 10 Let x be a motion. Then

> 0x, [(det Dz)(Dz);] =0 V. (1.4.49)
7

Proof For any matrix-valued material field A : R x Q — R¥*4 differentiable in X, with A(t, X)
invertible for all (¢, X), we have

)

> 0x, [(det A)A '] = (det A) {Zaxl, i)+ (AR (A ox, A

4 ajl’

where we used Ja,, det A = (CofA);; = det A(A™!)j;. Using A = Dz we have Ox, Ay =
dx, 0x,x; = Ox, Air. Then

Z(A;il)axz'Aij = Z(A;zl)aX] A = Zaxj
J

i i

Z( jZ zl’

i

Z A Ox, (A

The first term gives dx,d; = 0. It remains

D (ALH(A;NIx, Ay = = Aw(Ap))dx, (A Zax

ijl’ il

Hence the result. O
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1.4.7 Energy

Remember that for particles we had

1 N
B =3 3 mils/(0F

E=E,+E,
N
P=3fial
i=1
E'{t)=P

where Ey, E,, E are the kinetic, potential and total energy respectively, and P is the total work
per time (power) of the external forces. Our goal is to define the analogous quantities in the
continous context. The main difference is that, in the continuous case, the energy is not just
modified through forces (power) but also through heat exchange. There are two types of heat
exchanges.

1. Volume effect: heat supply (we heat the whole system, example by radiation).

2. Surface effect: heat exchange between different parts of the material (one area may be
hotter). This is described by a heat flux through the surface of a test volume U.

Definition 14 Let x be a motion, p a C' mass density, (f,S) a system of forces and ¢ a C*
spatial field (the internal energy density).
The kinetic energy of a test volume U is defined by

Ex(U,t) = ;/U(t) p(t, x)|v(t, z)|*dz. (1.4.50)

The potential energy of a test volume U is defined by

Ey(U,t) :== /U(t) p(t, x)e(t, z)dx. (1.4.51)

The total work per unit time (power) done solely by forces on a test volume U is

—

Py (U, t) := ft,x) - v(t, z) do +/ S(t,x,ny) - 0(t,z) dH* (z) (1.4.52)
U(t) au(t)

The total work per time (power) done by heat on a test volume U is defined by
Py(U,t) == / r(t,x) dx 7/ qt,x) - it, dH 1 (2) (1.4.53)
U(t) au(t)

where v : T — R is the heat supply and q : T — R? is the heat (outward) fluz.
Finally the total energy and total power are defined by

E(t,U) = Ey(t,U) + E,(t,U)
P(t,U) := P¢(t,U) + Pu(t,U).

[Lecture 7: 4.05]
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Lemma 11 The total energy and total power can be written as
[v]?
E(t,U) = pl— te|dx (1.4.54)
U(u 2
(u)
P(t,U) = / [f - v+ div(c'v) + r — div(g)] dz (1.4.55)
U(u)

where

div(o'v) = Z Ox, (0:0;), div(q) = Z 0z, .-
ij i

Proof. The first relation (1.4.54) follows directly from the definitions. For (|1.4.55) we use
S = on, (v,on) = (cv,n), where (a,b) = a - b is the standart scalar product in R%. Finally we
use Gauss theorem.

Conservation of Energy

Integral version. For any test volume U and any time ¢ we have

d
S E(t.U) = P(t.U). (1.4.56)

PDE version
Lemma 12 Energy conservation (1.4.56|) holds for all U iff

De

T tr(c'Dv) +r —div(q)  V(t,z) €T (1.4.57)

where (Dv);; == g;’J

Proof. By Reynolds transport theorem and mass conservation we have

d D [|v|?
—F = = | = .
= (t,U) /U(t)th[ 5 +e] dx

Now, using the equation of motion we get

pDy|v]? = 2v - (pDyw) = 2v - [f + div(o)].

Hence
/ pDye dx = / [div(c*v) — v - div(o)] dz + / [r —div(q)] dz
U(t) U(u) U(u)
Note that
div(atv) — - diV(O’) = Z 6:,:1 (O'jﬂ}j) — Z ’UjaxiO'ji = Z O’jiazi’l}j = tI’(O’tDQ)).
ij ij ij
The result follows. O

1.4.8 Summary

Functions we introduced.
e motion, velocity: x,V, v

® Imass: p(t7 Jf), pO(X)7 pm(ta X)
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e forces: f,S = [on], §:=[0,,Cof(Dzx)]
e cnergy, power: E(t,U), P(t,U) €(t, x)
e heat: r(t,z),q(t,x)
Material fields.
e scalars: pg, pm
e vectors: x,V
e matrices: Dx,0,,,S
Spatial fields.
e scalars: p,e,r
e vectors: v, f,.5,q
e matrices: Dv,o
Integral identities.
o mass: [;;, p(t,2)dz = [; po(X)dX
e momentum: fU(t) p(t, 2 v(t, x)dx = fU(t) [f(t,z) + div(o)(t, z)] dx

e angular momentum: % fU(t) x A (pv)de = fU(t) x A fdx + faU(t) NS dHI(z)

o cnergys 4 fy o p [ 145+ ] do = ) [ v+ div(o) 47— div(g)).
PDEs in spatial coordinates.

e continuity eq. % + pdiv(v) =0

e eq. of motion pBY = f + div(c)

e energy cons. pB¢ = tr(o!Dv) + r — div(q)
PDEs in material coordinates.

e continuity eq. pr, = 2%

e eq. of motion pdix = (det Dx)f,, + DIV(S)

1.5 Constitutive laws

The explicit form of o, q, ¢ depends on ther material properties.

Example 1: heat flux Let # : 7 — R the temperature function and assume the heat flux
depends only on local temperature differences (D0); = 0,,0, i = 1,...d. Then there exists a

function
g: R —R?
w = q(w)

such that q(t,z) = ¢(DO(t,x)).
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Example 2: elastic material Assume the stress tensor depends only on local deformations
(Dx);j = Ox,xi, i,j = 1,...d. Then there exists a function

6: GL.(RY) — RIxd

sym

F — o (F)

such that o(t,z) = 6(Dxy).

Example 3: fluid with viscosity Assume the stress tensor depends only on local deformations
(Dx);; = Ox,x4,1,j = 1,...d, and on local velocity changes (Dv);; = 0x,v4, 14,7 = 1,...d (neighbor
portions at different velocities creat a friction). Then there exists a function

G: GLo(d)x RIxd _ Rdxd

sym
(F.G) — o(F,G)

such that o(t,z) = 6(Dzs(t, x), Dv(t, x)).

g, 6 are called constitutive laws.

Notation
GL(d) = {F € R det F # 0} SL(d) = {F e R det F =1}
GL,(d) = {F € R det F > 0} SO(d) = {F e R™”Y F'F =T det F = 1}
R = {F e R™| F! = F} R = (F e R Ft = —F}

[Lecture 8: 6.05]

1.5.1 Coordinates changes

We have introduced two coordinate systems (¢, X) and (¢, z), where X €  describes the reference
configuration of the material, while 2 € Q; describes the material ’seen’ at time ¢, (point of view of
an oberver taking a photo at some given time). Both ©,Q; € R?, and until now we used the same
orthonormal basis ey, ..., eq to parametrize both coordinates. But we could also use a different
basis. This corresponds to perform a change of coordinates either in X or in x separately. As a
result we will obtain some contraints on the possible form of the constitutive laws.

We will consider here two types of coordinate changes.

1. Changing the observable. We will consider only time-independent rotations
(t,z) = (t,2") = (t,Qz), Q€ SO(d).

2. Deformations of the material. We will consider only deformations that do not change the
physical structure i.e.

XeQ—->X"eg, X'=gX g €@,

where G is a symmetry group for the material.
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Examples of material symmetry groups:

material G

cristalline solid  discrete subgroup of SO(3)
istropic solid SO(3)
ideal fluid SL(3)

Indeed, in the case of a cristal, the description does not change if we perform rotations that are
compatible with the lattice directions. In a isotropic solid we can do any rotation, while in a liquid
we can also change the shape.

Transformation rules under observable change

Let Q € SO(d) a rotation. We define the transformation

Q: T = QT ={({t,z")|t € R,z* € QQ;}
(t,z) — (t2"(z)) = (t, Q)

The quantitities we introduced transform as follows
1. spatial coordinate : = — z*(z) = Qx

2. deformation gratient: (Dz)(t,X) — (Dx*)(t, X) = Q(Dx)(¢t, X)

3. velocity: v(t,x) — v*(¢t, z*(x)) = Qu(t,x)
4. density: p(t,z) — p* (t,z*(z)) = p(t,x)
5. spatial gradient: z— — 81 (Qa%)j

6. force density: f(t,x) = f*(t, 2% (x)) = Qf (¢, x),
S(t,z,n) = S*(t,x*(x),n*(z)) = QS(t,z,n), where n* = Qn

7. stress tensor: o(t,x) — o*(t,2*(z)) = Qo (t, z)Q"
Piola-Kirchhoff tensor S(¢, X) — S*(¢, X) = QS(¢, X)

8. energy and heat supply: e(t,z) — €*(¢,2*) = e(t, z(x*)), r(t,x) = r*(t, z*) = r(t, z(x*))
9. heat flux: q(¢t,z) — ¢*(t,2*(x)) = Qq(t, x)

10. temperature gradient: DO(t,z) — D*0*(t,z*) = [QDO](t, z(z*))

11. velocity gradient: Dv(t,z) — D*v*(t,x*) = [QDvQ!](t, z(x*))

Proof 1. isjust a deﬁnition

For 2. we write (Dz*);; = 8X => Qvl = >, Qu(Dx);.

For 3. remember that v(t,z) = V(t,X(t,m)) [0sx(t, X)]|x=x (t,0)- Then

v (t, ") = [0px* (1, X)] | x=x (t,0) = [QOwx(t, X)]|x=x (t,2%) = Qu(t, z(x")).

4. follows from the fact that p is a scalar field.

For 5. take any function f(x(x*)). Then using Q! = Q' we have

2L—vim () =niep () = (Tien) /.

6. Under the rotation @ the test volume and its boundary rotate U(t) — QU (t). and oU(t) —
QOU(t) as well as the corresponding normals n; — n; = an(z*). Hence the force density
transforms as f*(¢,2*) = Qf(t Q x) and S(t,x,n) — S*(t,z*,n*) = QS(t,Q 'z, Q" 'n).

7. From S = on and $* = o*n* = QSn we get QT *Qn =on for all n, hence the first result.
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For the second identity, since & = 0,,Cof(Dz) we have $*(t,X) = o7, (¢, X)Cof(Dz*)(t, X).
Inserting Dx* = QDx we get

Cof(Dx*) = (Dx*) " det Dx* = Q(Dz) " det Dx

where we used det Q = 1 and Q! = Q~!. Finally ¢, Cof (Dz*) = Qo,,Q'QCof (Dz) = Qo,,Cof (Dx).
8. Same argument as for the density

9. As for 6.

10. We have (D*0*); = 9% =3, Qu 2% 8901 = (QDO);(z(z*)).

11. We have

(D7)t 2%) = G () = 52, Qugs (ba(@")) = Ly QuQur [82] (t w(a™) = (@QDvQ")s (1 (2)).

Definition 15 A quantity g(t,z) is called a
e objective scalar if g*(t,z*(x)) = g(t, z),

e objective vector if g*(t,x*(z)) = Qg(t, x),

o objective tensor if g*(t,z*(x)) = Qg(t, x)Q¢,
for any Q € SO(d).
In our case we have

e objective scalars: p,e€,r

e objective vectors: z, Dz, v, 0., f,q,D0,S

e objective tensor: o, Dv
Remark. Though Dz and S are matrix-valued functions they act as objective vectors under
rotations on x.
Transformation rules under material deformation
We will consider only linear transformations on € :

X = X" =gX,

where g € G, G is some subgroup of GL(d) (it will depend on the material).
We will always assume det g = 1.

Lemma 13 Under the change of coordinates X — X* = gX the deformation gradient and the
Piola-Kirchhoff tensor transform as

Dx(t,X) — Dx*(t, X*(X)) = Dx(t, X)g~*, S*(t, X* (X)) = Sp(t, X)g". (1.5.58)
All the other quantities we introduced above are invariant i.e.
" (t, X* (X)) = o(¢t, X). (1.5.59)
In particular *(t, X*) = z(t, X).
* dx; i i _
Proof (Dx*);; = axT = 24 g;)% gﬁ, =2 gfglgz] (D g~1)ij.
S*(t, X*(X)) = o}, [(Dz*) "t det DX* = 0, (t, X)[(Dz g~ 1) )t det[ Dz g~1] = Sp(t, X)g', where
we used det g = 1. O

Definition 16 (Frame indifference) We say that a material satisfies frame indifference if its
constitutive laws are independent of the observer, i.e. they are invariant under the transformation
r—x* = Q.

Definition 17 (Material symmetry) The group G C GL(d) is a material symmetry for ma-
terial if the constitutive laws are invariant under the transformation X — X* = gX Vg € G.
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1.5.2 Frame indifference in elastic and hyperelastic materials
Elastic material

The constitutive law for an elastic material is a function 6 : GL4 (d) — ngxr‘i such that o(t, a?)
6(Dz). Since o is an objective tensor, o*(t,z*(x)) = Qo(t,z)Q!, and Q6 (Dz)Q! = QoQ! = o* =
6*(Dz*) = 6*(QDwz). Hence 6* must satisfy 6*(QF) = Q6 (F)Q*.

Given &, the constitutive law for the Piola-Kirchhoff tensor & = o0,,Cof(Dz) is the function
S : GLy (d) — R defined by

S(F) = 6(F)Cof(F). (1.5.60)

Since S is an objective vector *(QF) = AA(F)
Note that though & is a symmetric matrix, S(F') is in general not symmetric, but it must satisfy
S(F)F' = o(F)det(F) € R&xd. (1.5.61)

Definition 18 We say that an elastic material with constitutive functions & and S satisfies frame
indifference if 6*(Dx%) = 6(Dz?%), and 8*(Dx*) = S(Dz*).

By frame indifference we have

5(QF) = Q6(F)Q!  VF € GL,(d),¥Q € SO(d) (1.5.62)

S(QF)=QS(F) VF e GL.(d),YQ € SO(d). (1.5.63)

Hyperelastic material

Definition 19 Consider an elastic material with constitutive law for the stress tensor o(t,x) =
6((Dx)s), and constitutive law for the Piola-Kirchhoff tensor S(t,X) = S(Dz), with S(F) =
o(F)Cof (F). 8 : GL, (d) — R4,

The material is called hyperelastic if there is a function W € CY(GL(d);R) such that

The function W is called the stored energy.

Definition 20 We say that hyperelastic material with constitutive functions &, S, W satisfies
frame indifference if 6* = &, S =8 and W* =W.

Lemma 14 For a hyperelastic material the following three assertions are equivalent.

(i) The constitutive law for the stress tensor 6 : GLi(d) — Rfyxn% satisfies frame indifference
i.e.

6(QF) = Q6(F)Q'  VF € GL,(d),YQ € SO(d).

(ii) The constitutive law for the Piola-Kirchhoff tensor 8 : GLy(d) — R4 satisfies frame
indifference i.e. . .
S(QF) =QS(F) VF € GL(d),VQ € SO(d).
and S(F)F' € Rexd.

(iii) The stored energy function W : GL, (d) — R satisfies W* = W and

W(QF)=W(F) VFeGL.(d),YQ € SO(d).
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Proof (i) « (i) is just a consequence of the definitions of o and S.
(#31) = (1). Remember that S;;(F) = 8%]W(F). Since W(QF) = W(F) VQ € SO(d) we have
J 0
F =
5 V(QF) = 5

(W(F) = Si(F).

Performing the derivatives in the first term we get

0
8Fij

(W(QF)) = 0r,(QF)w [aF,,/W} (Q'S(QF))y;

uw QF

Hence Q'S(QF) = S(F). It remains to prove that S(F)F' € R%*4. Since W(QF) = W(F)

sym*
VQ € SO(d), this is true also for all Q of the form Q,, = e** with o € R and X* = —X. Then we
have

0=0W(QaF)jaz0 = ¥ _[0a(QaF)i]jaz00r, W(F) = tr(S(F)(XF)") = tr(S(F)F'X".
i

For any matrix M, the identity trMX = 0 for all Xt = —X iff M* = M. Indeed for any skew-
matrix X we can write
Tr(MX) = (Mi; — M;;)Xi; = 0.
i<j

Since the matrix elements (X;;);<; are independent it follows M;; = Mj;. This concludes the proof
of symmetry.

(i1) = (iii). We want to prove that W (QF) = W (F) i.e 'morally’ doW (QF) = 0. Since SO(d)
is not a linear space, we cannot apply the derivative directly, but we have to pass through the
corresponding Lie group (tangent space.) The analog of d,; (derivative in direction j) for a linear

space is OQVAV(eaXQF)‘a:o. For any X' = —X (corresponds to a direction in the tangent space)
we have

OaW (X QF)jaz0 = Y _[0a(e** QF)i)ja=0[0r,, WI(QF) = tr(S(QF)(XQF)") = tr(QS(F)F'Q'X" = 0

w
where in the last step we used (S(QF) = Q(S(F) and QS(F)F'Q! is symmetric. Then W (QF) =
W(F). |
1.5.3 Material symmetries in elastic materials

Definition 21 The group G C GL,(d) is a material symmetry for an elastic material with con-
stitutive law & if & satisfies

6(Fg) = 6(F) YF e GL.(d), Yg € G.

We have seen that G = SO(d) for a homogeneous solid and G = SL(d) for a fluid. The following
result garantees there is no symmetry between a fluid and a solid. An elastic material can be only
a solid or a fluid.

Theorem 5 (W. Noll) . Let d > 2 and SO(d) € G C SL(d) group. Then we must have
G = SO(d) or G = SL(d)

Proof. See W. Nollll O

1 "Proof of the maximality of the orthogonal group in the unimodular group’, Arch. Rat. Mech. Anal. 18
(1965), pp. 100-102
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Elastic fluid

Theorem 6 Let us consider a Cauchy-elastic material satisfying frame indifference, and with

material symmetry group G = SL(d), i.e.
o there exists 6 : GLy(d) — R‘Sj;n‘ﬁ such that o(t,xz) = 6(Dx),
e by frame indifference 6(QF) = Q6 (F)Q* VF € GL4(d),¥Q € SO(d),
o by material symmetry 6(Fg) = 6(F') Vg € SL(d).

Then there exists a function p: (0,00) — R such that

-5k

where p is called the pressure.
Proof. exercise

Hyperelastic materials

(1.5.64)

The material symmetry implies restrictions on ¢ and S , but NOT becessarily on the stored energy

W. This is the content of the next lemma.

Lemma 15 W € CYGL,(d);R) be the stored energy for an hyperelastic material and let G C

SL(d) a group. Let us consider the following three statements.
1. W(F)=W(Fg) Vg € G, VF € GL, (d).
2. §(Fg)g' = S(F) VF € GL(d).
3. 6(Fg) =06(F)VF € GL4(d).

Then 2. holds if and only 3. holds, 1. implies 2., but 2. does not imply 1..

Proof exercise sheet

In the special case of a hyperleastic solid with material symmetry in the stored energy, the function

W takes a simple form.

Lemma 16 The two following statements are equivalent.

1. for any F € GL(d) we have material symmetry W(Fg) = W(F) Vg € SO(d) (material

group for a isotropic solid), and frame indifference W (QF) = W (F) VQ € SO(d).

2. there exists a function g : (0,00)¢ — R such that
W(F) = g\ (F), ..., a(F))

where N\i(F), i =1,...,d are the singular values of F.

Reminder. For any F € R4 there exists three real matrices R, T € SO(d) and A = diag(\, . . .

such that A
F = R)T.

The diagonal elements A;(F'), i = 1,...,d are called the singular values of F.
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Proof. Let F' = RAT be the singular value decomposition of F. Then
W(F) = W(RAT) = WAT) = W) = g(\)

where in the second equality we used frame indifference and in the third material symmetry. O

[Lecture 9: 11.05]

1.5.4 Frame indifference and heat flux
We need the following preliminary definition

Definition 22 A material is isotropic if the reference mass density is constant i.e.
P(](X) = pPo VX e Q.

Lemma 17 An isotropic material with constant reference density pg has density

Po

p(t,z) = dot(D2).(t0)" (1.5.65)
Proof. The continuity equation in material coordinates gives
pm(t, X) = po(X) _ Po .
det Dz(t, X)  det Dz(t, X)
Hence the result. m|

Let 6 : T — R the temperature function and assume the heat flux has constitutive law

G: RT - R4
w = g(w)

such that q(t,z) = ¢(DO(t, x)).

Change of observable. Since g is an objective vector then ¢* (¢, z*(z)) = Qq(t, x), and Q4(D0) =
Qq = ¢ = ¢*(D*60*) = ¢*(QDH). Then ¢* must satisfy

¢(Quw) = Qq(w)  Yw € RLVQ € SO(d). (1.5.66)
Definition 23 We say that the heat flux satisfies frame indifference if ¢*(D*0*) = G(D*6*)

By frame indifference we obtain
i(Quw) = Q4(w)  Yw € R, VQ € SO(d). (1.5.67)
Energy equation
We assume that the material is
e homogeneous: the reference density is constant po(X) = pp VX € Q,
e static: no motion i.e. z(t,X) = x(0, X) V¢, hence v = 0.
Then the energy conservation reduces to
Oe(t, ) = r(t,x) — div(q), (1.5.68)

where we used Dye = dye + v - Ve = Ose, and div(etDv) = 0, since v = 0.
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Fourier’s law. Let ¢ € C' and assume the following properties.

1. The material is isotropic i.e. the description does not change with rotations ¢(w) = §*(w)
Vw. Hence

G(Quw) = Q4(w)  Yw € R, VQ € SO(d). (1.5.69)

2. The heat flux is parallel and opposite to the temperature gradient and ¢ = 0 when D8 = 0 (if
no temperature gradient is present, there is no flux) Then there exists a function h: Ry —
Ry, such that ¢(w) = —h(|jw|)w.

3. The flux depends linearly on D, (Fourier’s law) i.e. 3 a matrix H € R%*? such that

4(DO) = H D

Linearity+isotropy (1. and (3.) imply that Q 'HQw = Hw for all w € R? and all Q € SO(d).
Then H = ald, where o € R. By (2. we have a = —h < 0. As a result

divg = —hA8.

Heat equation. We assume the following constitutive law for the internal energy
e(t,x) = cl(t, )

where ¢ > 0 is a constant called the specific heat. Then ([1.5.68) becomes

0,0 = iAg +
poc PocC

where ﬁ is a positive constant and ﬁ may depend on (¢, z) through . This is the heat equation

in d dimensions with an external source.
[Lecture 10: 13.05]

1.5.5 Frame indifference in fluids

Ideal fluid and Euler equation

Definition 24 An ideal fluid is an isotropic elastic material with constitutive law for the stress
tensor o satisfying frame indifference and with material symmetry group G = SL(d) i.e.

o(QF) = Qo(
6(Fg)=0o(F)
From Theorem |§| above, there exists a function p : (0,00) — R such that

. . 1
6(F)=—p (detF) Id
Po

where p is called the pressure. From Lemma [L7| above we know that p(t,z) = Tt (Do) ) hence

o(t,z) = 6((Da)s) = —p (metngc)s) Id=—p ("’f}(}x)) Id (1.5.70)

34



Lemma 18 An ideal fluid with no external forces, and py = 1, satisfies the system of equations

Dp : _
“H+pdive =0
Bh,, R 1.5.71
{ p% +Vi(p) =0 ( )
These are called compressible Euler equations and can be written also as follows
Op + div(pv) =0
. R 1.5.72
{ p0i(pv) + div(pv ® v) + Vp(p) =0 (1.5.72)
where
®: RIxR? — Réxd
(a, b) — (a ® b)lJ = aibj
and

[div(e ® b)]; = z 0z, (a @ b)j.

Proof ((1.5.71)) is just a consequence of the realations above. To prove the second equation in
(1.5.72]) we replace in the equation of motion

pDv; = porv; + p(v - V)v; = 0e(pvi) — (Oep)vip(v - Vv,
= 0y(pvi) + Y [Ou, (pv)vs + pridayvi] = By(pvi) + Y O, (purvi)
1 1

where in the second line we used the continuity equation. O

Viscous fluid and Navier-Stokes equation

We assume now that o depends on local deformations Dz and also on local velocity changes Dv.
The constitutive law is then a function

6: GLi(d) x Rixd o Rdxd

sym

(F,G) — 6(F,G)

such that o(t,x) = 6((Dz)s, Dv). Remember that Dz is an objective vector, while o and Dv are
objective tensors. Then Q&(Dx, Dv)Q! = QoQ! = o* = 6*(Dz*, D*v*) = 6*(QDx, QDvQ?). By
frame-indifference 6 = 6*, hence 6 must satisfy

G(QF,QGQY = Q6(F,G)Q"  VF € GL,(d),G e R™*? vQ € SO(d)  VQ € SO(d).
(1.5.73)
Under material deformation o* = o, Dx* = Dxg~! and Dv* = Dwv, hence material symmetry
6 = ¢*, implies

6(Fg~',G)=6(F,G) Vg€ SL(d).
Additional assumption. We assume viscosity is a small perturbation of the idea fluid i.e.
6(F,G) =61(F,G) + L(G)

with £(0) = 0. Frame indifference and material symmetry hold for any F € GL,(d),G € R¥*4
hence also for G = 0, then &7 must satisfy 61(QF) = Q1(F)Q" and 61(Fg~!) = 61(F), hence
61(F)=—p (ﬁ) Id. As a consequence £ must satisfy

Q'L(G)Q = L(QGQ").
If we assume isotropy, then

o(t,x) = —p (p’;) + L(D). (1.5.74)
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Theorem 7 (fluid with linear viscosity) Let d = 3 and assume £ : R¥3 — R332 is
linear. Assume that o(t,z) = —p (p%) + L(Dv) and L satisfies frame indifference L(QGQ!) =
QLQ! VG € R**3,YQ € SO(3). Then there exists \, 1 € R such that

t
2@ -2, 6FGC

+ A(trG)Id. (1.5.75)

Remark Note that since trG :trG"’TGt the function £ depends only on ReG = G%Gt

Proof exercise sheet.

Lemma 19 A fluid with linear viscosity, no external forces, and pg = 1, satisfies the system of
equations

{ B+ p dive =0 (1.5.76)
p5e = —Vp(p) + pAv + (4 A)V(divo)
These are called compressible Navier-Stokes equations
Proof We need to replace (1.5.74]) and (1.5.75|) inside div(o). We have

div(=p(p); = 02,0 (p)

[div(Dwv)]; = Av;

[div(Du")]; = B, (div(v))

[div(trDv)Id]; = Oy, (div(v))

= [div(0)]; = =Vip (p) + pAv; + (p+ A)V;i(divo).

Inserting this in the equation of motion we get the result. O

Note that if we set u = v = 0 we recover Euler-equations.

Incompressible fluid

In an incompressible fluid the volume occupied by the test volume U is independent of time
U(t) = U Vt. By Lemma [6] this holds iff div(v) = 0.

Lemma 20 Assume x(0,t) = X, the fluid is isotropic and incompressible. Then the mass density
is constant: p(t,x) = po Vt, .

Proof. Inserting div(v) = 0 in the continuity equations we get D;p = 0, which is equivalent to
Otpm = 0. Then pp, (¢, X) = p (0, X) Vt. By isotropy pm(t, X) = WM, hence p., (0, X) = po
VX since Dx(0,X) = Id. O.
In the following we replace the continuity equation for an incompressible isotropic fluid just by
div(v) = 0. To enforce the incompressible constraint in the equation of motion we must replace
p(p) by an independent function p(t, z), the physical pressure. This can be seen as a Lagrange
multiplier for the constraint div(v) = 0.

Lemma 21 An incompressible isotropic fluid with linear viscosity and mo external force satisfies
the system of equations

dive =0
{[D):VAUV(;L) (1.5.77)
where v, p are two unknown functions and v = %. These are called incompressible Navier-Stokes equations
If we set 4 = 0 we obtain
dive =0
{ % _ v (p%) (1.5.78)

These are called incompressible Euler equations
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2. Hydrodynamics

2.1 Introduction

The starting point are incompressible Navier-Stokes and Euler equations from the last chapter. We
assume in the following frame indifference, isotropy, material symmetry group SL(d) and linear
viscosity. We consider

dive =0 (t,x) e T
%’ZZVAU—V(,%) (2.1.1)

where v, p are two unknown functions and v = p”—o. We now need to insert boundary and initial
conditions.

2.1.1 Boundary and initial conditions

The boundary may be external (the fluid is contained in the region §2) or internal (the flow goes
around some obstacle). At infinity we always assume the fluid has constant velocity (see Lecture 1).
For finite boundary point we will consider two types of boundary conditions.

e Fluid with viscosity ¥ > 0. One generally fixes the velocity at the boundary v(¢,2) = 0
Vo € 0. These are called no slip (or sticky) boundary conditions (the fluid sticks to the
boundary).

e Fluid without viscosity ¥ = 0. One generally fixes the normal velocity at the boundary
v(t,z) -n(x) = 0 Vo € 99, where n(x) is the vector orthogonal to the boundary at . This
means there is no fluz through the boundary.

Remark Both boundary conditions imply that the boundary does not change: 99Q; = 0 Vt.
That implies Q; = Q, V¢, i.e. T =R x Q. Indeed we have z(t, X) € 99, iff X € 9.

Let vjpq, = 0. Then 0;x(t, X) = 0 VX € 9. This means particles on the boundary do not move,
hence the result.

Let v(t,z) -n(z) = 0 Vo € 0N2. Then the velocity is zero in the orthogonal directions and particles
on the boundary must remain always on the boundary, though they may move along it.

[Lecture 11: 27.05]
Initial boundary value problem The classical initial boundary value problem consists in

solving

Po

(2.1.2)
dive=0 t>0,z€0

{ ov+v-Vo= uAv—V(ﬂ)

with boundary condition vjpq = 0 if ¥ > 0, and (v - n)|sq = 0 if v = 0, and initial condition
v(0,2) = vo(z) Ve,
This means we need to find a pair of functions (v, p), v : [0,00) x Q@ — R4 p:[0,00) x 2 — R,

with some minimal regularity properties satisfying the equations above.

37



Remark 1 No initial condition is given on p

Remark 2 The function p cannot be unique. If p(¢, z) is a solution, then p+ h is also a solution
for any function h : [0,00) — R depending only on ¢.

Remark 3 A solution v is called stationary if d;v = 0.

2.2 Vorticity formulation

Definition 25 Let x be a motion and v the corresponding velocity field. The vorticity in d = 3 is

defined by
w: T— R3
(t,z) > w(t,z)=curl w=V X0

In components (curl w); = ij eijkazjvk. The vorticity in d = 2 is defined by

w: T— R
(t,x) = w(t,x) = 0z v2 — Opyv1.

The vorticity gives information on how much the flow is 'winding’ locally. It is related to the
velocity gradient as follows.

Lemma 22 Let W = %, and S = %Dv)t the skew-symmetric (respectively symmetric)
part of Dv. Then

(i) we have W' = —-W, S* =S, Dv=W + S,
(#i) when d =3 it holds

== Wi, Wij=—2> P, (22.3)
i p

(iii) for any vector V € R® we have
1
(WV); = i(w x V).

Proof (i) : easy. (ii) : note that we have the relations

(a x b); Ze”kajbk, (a AD)yj Ze”k (a X b)g Va,b € R3.
Then
1 1 1 1 ijk 1 ijk
Wij:§(Dv,;jf(Dv)j,;):5(8jvifaivj):f§(V/\v)ij :7526 (va)k:f§Ze W -
k k

Moreover

w; = (V x v); Ze”kV/\vjk— Ze”kwk

1 iik 1
:ZWijij—izﬁj Viwk = 5w x V);
J Jk

since a X b = —b X a. O

We will need the following result from linear algebra.
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Lemma 23 Let A € R?’_%B some matriz s.t. trA =0. Let S = AEAt, W = AEAt and let w € R3
the vector w; = — ij €9*W. Then the following identity holds

Z Gijk(AQ)kj = —(Sw)i.
Jk

Proof exercise

2.2.1 Local structure of the flow

The matrices W (hence the vorticity) and S encode information of the local structure of the
flow. Precisely W corresponds to local rotations while S to local dilatation (or stretching). To
understand this let us consider two examples.

Example 1 [Jet flow] Assume W (t,z) = 0 and S(t,x) = Sy constant for all (¢,2). Then
Dv = § and 0,,v; is constant, hence v is a linear function of x. Precisely there exists a function
vo(t) such that

v(t,x) = vo(t) + Sz

The trajectory z(t, X) is a solution of the PDE
Oz (t, X) = v(t,z(t, X)) = Sz(t, X) + vo(¢)

i.e.

t
z(t, X) = e¥z(0, X) —|—/ e =Sy (7)dr.
0

We assume now that vo(t) = 0 and (¢, X) = X. Then v(¢,z) = Sz and z(t, X) = " X. Inserting
these relations into N-S (2.1.1)) and assuming pp = 1 we get

{ Wl ) (2.2.4)

where we used
D = (0;V)s, OV (t,X)=0%x(t,X) = S%x(t, X),
A?)i = Z@ijvi = Z(?IJ (Dv)ij = Z&z]S” =0
J J J

since S is constant. The solution of 9,,p = —(S%z); is

p(z) = —%x - S%z,

This solution is not unique since we can add any ¢ dependent function. Finally S must satisfy
trS = 0. Since S is real symmetric we can diagonalize it performing a rotation. In the new basis
S = diag(y1,72,73)- Inserting this expression in v = Sz, and (2.2.4)) we obtain

Vi = VYili = LL’Z‘(t,X) = 6t%Xi
trS=m+v+v3=0

3
1
p(z) = 3 Z “le"?
j=1

If we take v1 = 72 = v < 0, we must have y3 = —2vy > 0, hence z;(t) — 0, j = 1,2 and
x3(t) = oo as t — oo. The flow concentrates along the z—axis and is ejected at infinity. Note
that v3(t) — oo as t — oo.
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We must still insert the boundary conditions. Assume we are on the half-plane x3 > 0. Then there
is a boundary at 3 = 0. The normal direction n is then n3 and v-n = vs = y3x3 is automatically
zero at the boundary. So no-flux boundary conditions are automatically satisfied. On the contrary
we cannot ensure no slip b.c. unless v =0, i.e. S =0 and v = 0 everywhere.

A problem arises at |z| — oo since the velocity diverges. This is physically impossible. Therefore
this example can only describe a finite piece of fluid.

Example 2 [Vortex flow] Assume S(¢,z) =0 and W (t,z) = Wy constant for all (¢,x). Then
Dv =W and (as above) 0,,v; is constant, hence v is a linear function of . Precisely there exists
a function wvg(t) such that

v(t,z) = vo(t) + Wa.

Assuming vy = 0 we get the trajectory
z(t, X) =V X.
Since WT = —W we have
(etW)tetW — W tW W) tW Id, det eV = W — 1
hence e € SO(3), i.e. W is the infinitesimal generator for a rotation in R3. We can always

rotate the basis in such a way that W generates rotations in the x — y plane only. In that case we

have
0

a 0
W=|-a 0 0 (2.2.5)
0 0 O

Note that W? = —a?Id, hence W?" = (—a)"Id, W?"*! = (—a)"W, and

t" t2n £2n+1
W= "= 2n 2n+1
=2V =29 — W
S b PIE=LEEDD @n+ 1)
nz0 n=0 n>0

W cos(ta)  sin(ta) 0

— (102 8) cos(at) + — sin(at) = | —sin(ta) cos(ta) 0
“ 0 0 1

Then z(t, X) = rotation around the z—axis with constant angular velocity «. Note that
vl = T2, U2 = —QTq, vz =0,

hence ||v|| = a dist(z,e3) — oo as dist(x,e3) — oo, i.e. the velocity grows if we are far from
the z—axis, since the angular velocity is constant. To avoid the unphysical situation of having
a diverging velocity as dist(x,e3) — oo, we can take an infinite cylinder of radius R, i.e. Q =
{(z,y,y)|2? + y*> < R?}. Note that the direction normal to the boundary at = = (x1,z2,73) is
Ng = %(ml,me) hence

(n-v)=(n-Wz)=an- (xe,—21,0) = 0.

So we have naturally no-flux boundary conditions.
Now, inserting these relations into N-S (2.1.1)) and assuming py = 1 we have as before Dyv = W2z,
and Av = Zj 0y, Wij = 0 since W is constant, hence

W2x = -V (p) (2.2.6)
where div v = tr(Dv) = tr(W) = 0 by construction since W* = —W. The solution is

1 1 1 1
p(r) = —5% W2z = fi(x,WQx) = 7§(Wt1',Wl’) = §||Wx|\2

up to some arbitrary additive function h(t). For W as in (2.2.5) we get p(z) = $[dist(z, es)]?.
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Remark 1. Note that since W is skew-symmetric we have - Wz = 0 Vo € R3, but (W?)! = W?
hence z - W2z need to be zero.

Remark 2. The portion of fluid far from the z—axis is hard to move since the pressure diverges
as dist(z,e3) — oo.

2.2.2 Vorticity formulation of N-S in d = 3

Theorem 8 Let d = 3 and (p,v) be a solution of ([2.1.1) with po = 1 Then the vorticity
w = curlv satisfies the equation
Dyw = Sw + vAuw, (2.2.7)

Duv+(Dv)*

where S = 5

Note that we need at least v € C%(I x Q;R?) for some finite time interval.

Proof. Applying curl to both sides of N-S equation we get
curl [0 +v-Vo—vAv] = —curl [Vp] =0

where in the last equality we used curl Vp = V x Vp = 0, by symmstry. Now exchanging
derivatives we get
curl Oy = Ow, curl Av = Aw.

Moreover
[curl v-Vv]; = Z €9k9;(v- Vv, = (v-V)w—FZeijk@jvl Oy, = (U~V)w—|—z % (Dv); (Do)
jk jkl jkl

= (- Vw+ > (D) (2238)
jk

Since divo = tr(Dv) = 0 by Lemma [23] we have
[curl v-Vv]; = (v Vw — (Sw);.

Inserting this result in the equation above we get the result. |
[Lecture 12: 01.06]

2.2.3 Vorticity formulation of N-S in d = 2

Theorem 9 Let d = 2 and (p,v) be a solution of ([2.1.1) with po = 1 Then the vorticity
w = Oy, V2 — 0,01 Satisfies the equation

Dyw = vAuw, (2.2.9)
Proof. exercise

Remark For v = 0 the vorticity is ’frozen’.

2.3 Vortex lines

Definition 26 Letd=3. A curve a € C1((0,1);Q) is called a vortez line at time t if there exists
A1 (0,1) > R s.t.
da(s)
ds
i.e. « is tangent to the vector field w at time t.

= A(s)w(t, afs))
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0 6 0

Example In the case of the vortex flow with S = 0and W = | =6 0 0| we have already
0 00
found vs = 0, v; = fx2 and va = —Ox;. The vorticity is given by w = —es||w]||, where ||w| = 26

is the angular velocity. Note that w is orthogonal to the plane of rotation. Then the function
a(s) = ses is a vortex line for any time ¢ and in general a(s) = h(s)es is a vortex line for any time
t for any function h at least C''. Note that since w is parallel to e all vortex lines must be also
parallel to es.

2.3.1 Vortex lines in an ideal fluid.

When v = 0, the vorticity in d = 3 satisfies the equation D;w = Sw. In particular vortex lines
have a 'non mixing property’, i.e they remain separated, as stated below.

Lemma 24 Let (p,v) be a solution of (2.1.1) with v = 0. Then the vortezr lines move with the
fluid i.e. if a(s) is a vortex line at time t = 0, then a(s) := x(t, a(s)) is a vortex line at time t.

Since the motion z(¢, X) is an invertible function, if we have two different vortex lines a1 (s) # a(s)
for some s then (aq):(s) # (a2)¢(s) for all .

Proof By definition 42(s) = A(s)w(0, a(s)) for some function A : (0,1) — R. To prove ay(s) is

a vortex line a time ¢ we must find a function A; : (0,1) — R such that

dat
o (8) = M(s)w(t, a(s)).

Inserting ay(s) := x(t, a(s)) and the definition of a(s) we get

d(ar)i  \ _ 92i(t; als))

do
ds (5) Os

=Y (Dz); (t; a(s)) 7= (s) = Als) [(D)(t, als)) w(0, a(s))]s-

J

We will prove below that
W (t, X) = Da(t, X)w, (0, X). (2.3.10)

As a consequence
(Dx)(t, a(s)) w(0,a(s)) = wm(t, als)) = w(t,z(t, as))).
Inserting this result above we get

%(S) = A(s) w(t,z(t, a(s))) = Als) w(t, au(s)).

The result follows taking A\:(s) = A(s). O
The proof of (2.3.10) is a corollary of the following theorem.

Theorem 10 Let v be a smooth velocity field, z(t, X) the corresponding motion and h : R3 x
R, — R3 some other smooth spatial field. Then we have

Dih(t, ) = (Dv)(t,2)h(t,z) &  hu(t,X) = Da(t, X)h(0, X),

where we assumed x(0, X) = X, hence h(0,2) = h(0,X) = (hn)(0, X).
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Proof (Exercise sheet)
(«). Let ho(X) := h(0,X) and suppose h,,(t, X) = Dx(t, X)h(0,X) = (Dx)hg. Then 0;(hy,); =
Zj 3t(Dx)” (hO)j' Now

(D) (t, X) = (90x,3:)(t, X) = Ox, (v3)m (t, X) = Ox, (v03)(t, 2(t, X))

= (O, vi)m (£, X)(Ox,2k) (£, X) = [(D0)n (D2)]i5(t, X)  (2.3.11)
k

Inserting this formula we get

Oy (hn)i = Z&(Do:)ij (ho); = [(Dv)m(Dz)holi = [(Dv)mhmli = Dihi = [0i(hi)m]s = (Dv)h.
(=). Suppose D;h = (Dv)h. We want to prove h,,(t, X) = (Dz)(t, X)h(0, X). Note that
B (t, X) = (D) (t, X)hpm (0, X) < [(Dx) *hy](t,X) = h(0,X) independent of .
Fix X € Q and let ¢(t) := ((Dx) " 1h,,)(t, X). It is enough to prove that v’(t) = 0. Now
V' (t) = [0:(Dx) " hiy + (D2) ™! (Othim) = (D)~ [~(9:Dx)(Dx) ™" + (D)) by

where we used D;h = (Dv)h and the formula 9;(A~1) = —(A71)(9;A4)(A~') which holds for any
matrix-valued differentiable function ¢ — A(t) such that A(¢) is invertible Vt. From (2.3.11]) above
we have 0;(Dx) = (Dv), Dz, hence

—(0:Dz)(Dz)™* + (Dv),y, = —(Dv)(D2)(Dz) ™" + (Dv)m = 0.
This concludes the proof. O
Proof of (2.3.10) From (2.2.7) with v = 0, w satisfies
1
Dyw = Sw = (Dv—W)w = (Dv)w — QWX w= (Dv)w,

where we used Dv = S+ W and Lemma (m) By theorem (10| with the field h replaced by w we
have wp, (¢, X) = (Dz)(t, X)w(0, X') hence the result. O
2.4 Local existence of strong solutions for N-S

We consider the incompressible N-S equation in infinite volume and small time interval:

{ o — vAv = —v - Vo — V(p) (2.4.12)

div (v) =0 t € (0,t,),r € R4

With initial condition v(0,z) = vo(z). Since we want to study small perturbations of a fluid at
rest we take the boundary condition

lim v(t,z) =0 Vt.

|| —o0

For the same reason we consider only initial velocity vy with compact support (localized initial
perturbation) or at most in L?. Note that in this case the kinetic energy at t = 0 is finite

E(0,RY) = %/p(t,x)|v(t,x)|2dx - %/|vo(x)|2dx < o0,

where we used p = pg = 1.
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Regularity requirements. For the equations above to be well defined we need v to admit
at least one time and two space derivatives. If the time interval is small enough we expect the
solution to remain in L?(R?;R?). Note that differentiability plus L? guarantees that the boundary
condition lim|;|_,o v(t, 2) = 0 is satisfied.

[Lecture 13: 03.06]

2.4.1 Reorganizing the problem

Helmholtz decomposition

Definition 27 Let L2 and L2 the subspaces of L?(R%;R?) defined by

L2 ={he L*(R4ERY) | div h=0in D'} (2.4.13)
Ly = {h € L’(R4RY) | 3g € W,2(R?) with g = D} (2.4.14)
(2.4.15)

where (Dq); = D;q and Dj is the weak derivative wrt z;. Finally div h =0 in D’ means
/ﬁ-ﬁg dr =0 VEe C2(RY).

Theorem 11 The sets L2 and L2 are closed subspaces of L*(R%R%), L2 | L% and
L*RERY) = L2 o 12,
In particular, every f € L?(R% R?) has a unique decomposition
f=h+Dq, heL.DqeL}.
This is called the Helmholtz decomposition.

The proof is divided in three steps.

Step 1: L2, is closed (hence L?(R%;RY) = L3 @ (L)1)

Step 2: L% 1 L2 (hence L2 C (L%)%)

Step 3: L% = (L2)* (hence L2, is closed and L?(R%;RY) = L2 @ L2))

Proof of Step 1. Let g, be a Cauchy sequence in L%. Then there exists g € L%(R%; R?) such
that ||gn — g|lzz — 0. We want to prove that g € L%, i.e. that there exists a function ¢ € w2

loc

such that ¢ = Dgq. Since g, = D(q, + ¢) for any constant ¢ € R we can assume that each ¢,

satisfies
/ gndz =0 Vn.
B(0,1)

Then there exists a constant cg > 0 such that the following Poincaré inequality applies (see
exercise sheet)

lan — amllL2(B(0,R) < crllgn — gmllL2(B(0,R))-
As a consequence g, is a Cauchy-sequence in W12?(B(0, R)), hence 3¢ € W12(B(0, R)) such that
Dq = g and ¢, — ¢ in L?(B(0, R)). Repeating for all R > 0 we construct a function ¢ € Wllof (R%)
such that Dg = g.

Proof of Step 2. For all h € L2 and for all g = D¢ such that ¢ € C°(R9), we have
()i = [ Slggp)a)dn = [ S7(hy(@)Djata))dn =0
J J

To complete the argument it is enough to prove that {D¢| £ € C°(R9)} is dense in L% (exercise).
Hint: take qr(z) = q(x)dgr(x), where ¢r(x) = ¢(Jz|/R) and ¢ is a standard mollifier. Then
consider ¢g * qg.
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Proof of Step 3. Since we know from 2. that L2 C (L%)" it is enough to prove (L2%)* C L2.
Let h € (L%)*, then >;(hj, gj)r2 = 0 for all g € L3,. In particular this holds for all g = D¢, with

¢ € C°(R?), then div h = 0 in D’, hence h € L2.

Application to Navier-Stokes Let P, be the orthogonal projection on L2. Applying this to
NS we obtain
Ps (Opv — vAv) = =P, ((v - D)v) — Py (Dp)

Assuming p € W2*(R?), we have Dp € L3, hence P, (Dp) = 0. Moreover div (v) = 0 hence
v E Lf, and P,v = v. We will see below that P, commutes with 9; and D, hence

0w —vAv = =P, ((v- D)v),
where the p dependence has disappeared.

Strategy

(1) Weak formulation: we replace the space derivatives 9, with weak derivatives in the Sobolev
space W™2(R?; R%). Using Helmholtz decomposition we rewrite then (2.4.12) as

O — vAu = F(u,u), (2.4.16)
u(0,7) = ug(z), we€lL?

where, for any two functions v € WH2(R4;RY), v € W™2(R4,RY), 1 > 0,m > 1 we define

F(u,v)i i= =Py (> ujDjvy). (2.4.17)

Note that the p dependence has now disappeared.
(2) We will see that (2.4.16]) is equivalent to solve the fixed point equation
u=Gu (2.4.18)

where the operator G,u acts on functions u : Rt x R? = R? as

t
Gy (u)(t,x) := [T, (t)uo) (x)/ [T, (t — s) F(u(s),u(s))] (z)ds. (2.4.19)
0
Here T, (t) = T(vt), where T'(t) is the heat-kernel (defined below in eq.(2.4.23)) and
u(s) : R* — RY is defined by u(t)(x) = u(t, z).
(3) The solution obtained in this way turns out to be more regular than expected, in particular
weak derivatives can be replaced by ordinary derivatives.
Setting up the function spaces
We replace spatial derivatives by their weak version. Therefore we need to have
v(t,") € W3RERY) = H™(REGRY) m > 2, >0

(at least two space derivatives, functions in L?). The next result ensures that the projection P,
leaves H™(R%; RY) invariant.

Theorem 12 Letm > 1, f € H™(R%RY). Then P,(f) € H™(R%RY), and for all multiindices
a € N with |a| < m we have

(i) D*P,f =P,Df,
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(i4) |1D*Py {22 < \D*F|lz2, in particular | Py fll o sy < £l et ey
To prove this theorem we need the following result.

Lemma 25 Let p € [1,00). For h € R, h # 0 and i = 1,...,d we define the difference quotient
D™ ¢ Lin(LP(RY); LP(RY)) by

[+ he)) = f(z)

p" .
g h

The following are equivalent.

(i) f € WHP(RT))

(ii) sup{|| D" fllo| h #£ 0,5 € {1,...,d}} <
Moreover, if (i) or (ii) hold then

lim D" f = D;f in LP.
h—0

Proof. homework

Proof of Thm Assume first m = 1. By linearity PUDz(h)f = + [PoTinf — Pof] (), where

Tinf(x) := f(x + he;). By translation invariance P,7; , = 7;,,P5, hence Png(h) = DEh)Pg for all
i, h. Then
| D" Po flliz = [P D™ fll2 < 1D £l 2.

where the last step holds since P, is an orthogonal projection. By Lemmal[25] (ii) f € W2 implies
sup{||D" fll 12| b £ 0,i € {1,...,d}} < oo = sup{| D" P,fllL2] h#0,i € {1,...,d}} < oo,

hence P, f € W12, Finally, by Lemma [25{ and continuity of P, we have lim;_, ’PUDEh)f =P,Df
and limy,_,o D"P, f = DP, f in L2, hence D*P, f = P, D" f.
The case m > 1 is treated by induction. |

[Lecture 14: 8.06]

In the following we will see the function u(¢, x) in two different ways:

e as function of two variables taking values in R¢

u:RY xR — R? ie. (1) — u(t,z);

e as a function of one variable taking values in a function space
u:RT — H™(REGRY), e, t — u(t, )

The relation between these two descriptions is the content of the next definition and lemma.

Definition 28 Let X be a Banach space with norm || - |x and I C R an interval. We denote by
CP(I; X) the set of continuous bounded functions f: I — X. We introduce the norm

[ flleorx) = Sup 1f ()] x- (2.4.20)
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Remarks: If I is compact then CP(I;X) = CY(I; X). Moreover, we can define the X-valued
integral f f(s)ds. In particular we have ||f f(s)ds|x < f; I f(s)]|xds.

Lemma 26 We have
(i) If X is a Banach space then Cp(I; X) is a Banach space wrt the norm || - leo(rx)-
(ii) C(I;RY) can be identified with a subspace of C°(I x RY).

(iii) If m € N, p € [1,00], then any map f € CO(I; W™P(R?)) can be identified with a measurable
map f: I xR = R,

(iv) If m € N, p € [1,00), and I is compact then C>° (I xR?) is a dense subset of CO(I; W™P(R4)).
Proof. exercise sheet i

2.4.2 Nonlinear heat equation

We will consider first the the simpler situation when v = 1, the unknown function is a scalar
function u : 7 — R, and the function F(u,u) = —P,(u - Du) is replaced by a function f(u)
f R — R. We study then

Ou — Au = f(u), (2.4.21)
u(0,z) = ug(z), wue L2

Heat kernel

Definition 29 The heat kernel is the function ® : R4 — R defined by

o e >0
O(t, x) { 0 20 (2.4.22)
Fort > 0 we define the map T(t) : L*(R?) — L?(R?)

(T )= { Jr P02 )2 0 (24.23)

Remark. & satisfies || ®(t,-)||p1 = [pa P(t, x)dz =1Vt > 0.

Properties of T (see Introduction to PDEs):
(i) smoothing: (t,x) — (T(t)u)(z) € C=((0,0) x RY) for all u € L2(R9);
(i) continuity in t: lims ||T(s)u — T(t)ul| L2(rey = 0 for all £,5 > 0.

(iii) boundedness: ||T(t)ull 2wy < ||ullp2(raey for all £ > 0.

Let t, > 0. We define C12((0,t,) x R?) = set of continuous functions with first oder derivative in
t and second order derivative in z continuous. The following result was proved in Introduction to
PDEs.

Theorem 13 (linear heat equation) Let g € C*2((0,t.) x RY) N CY(R x RY) and ug €
L?(R%). The system

Oru — Au = g(x), (2.4.24)
u(0,2) = ug(x),
has unique solution

u(t)(-):T(t)uo(-)—i—/o T(t — )g(s, )ds. (2.4.25)



We can now state the main result of this subsection.
Theorem 14 (nonlinear heat equation) Let f € C*(R) N Lip(R) with f(0) = 0. Then 3t, > 0
(dependent on f) s.t for any initial condition ug € C2(R?) the system
Ou — Au = f(u), (2.4.26)
u(0, ) = uo(x),

has unique solution u € C12((0,t,) x RY) N CO(R x RY).
Proof. Step 1. We rewrite the system (2.4.26)) as a fixed point equation. Let I = [0, t.], t. > 0.

Similarly to the solution ([2.4.25)) of the linear heat equation, for any measurable map u : I xR% — R
we define the operator Go(u) : I x R? — R by

Go(u) :=T(t)ug + /0 T(t —s)f(u(s,-))ds (2.4.27)

Let B := C%(I; L*(R%)). Then B is a Banach space wrt the norm || f||z = sup,c; || f(t)]| 12(ra). We
will show that

L] go :B— B
(0 — A)Go(u) = f(u)
Qo(u)(O,x) = Uo(.]?),

e Gy is a contraction i.e. 30 < A < 1 sucht that ||Gou—Gov||p < A|u—v||g Yu,v € B. From this
one can prove that there exists a unique u € B such that u = Gyu, hence a unique solution

for (2.4.24)).

Step 2. We prove that Gy : B — B. The first term (¢, z) — (T'(t)uo)(x) is C=((0,00) x R?), and is
continuous in ¢ on [0,00). Therefore we need to study only the second term.
For this purpose note that since f € Lip(R), we have

1/ (u(s,)) = fult, )z < Lip(£)l[(uls, ) = ult, )Lz = 0 as s — .
Morever since f(0) = 0 we have

[f(8)] = 1f(s) = F(O)f < Lip(f) |s| VseR = |[f(u(s,")llez < Lip(f)l|(uls, )| L2

hence s — f(u(s,-)) € B, for all u € B, and

e Go(u) satisfies {

/0 IT(t = s)f (u(s))l|L2ds <t sup |[f(u(s))ll2 <t Lip(f) [lulls.

s€[0,t]

This implies fot T(t—s)f(u(s))ds € L*>(R?) for all t € I. Finally, s — T(t —s) f(u(s)) is continuous

IT(t = s)f(u(s)) = T(t = ") f(u(s) L2 < ([T = s) = T(t = s)f (uls)) ]2 + 1Tt = ) (uls)) = f(uls))]] L2
< [T(t = 5) = Tt = s (wls))ll> + Lip(f)lluls)) — u(s) |2 =5 0.

Similar arguments show that ¢t — fot T(t — s)f(u(s))ds is continuous.

Step 3. G is a contraction i.e. Jt, > 0,0 < A < 1 sucht that ||Gou — Gov|ls < Allu—v||g Yu,v € B.
To prove this note that,

1Gou — Govlls = sup [|Gou(t, -) — Gov(t, )| L2 = sup || / T(t = s)[f(uls,-)) = fu(s,-))]ds| 2
tel tel 0

< Sup/o IT(t = s)[f (uls, ) = f(v(s,))]llL2ds

tel

< sup Lip(f)/O I(uls, ) = v(s,)llL2ds < tuLip(f)|u = vl|s-

tel
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Setting A = t,Lip(f) we have a contraction for any ¢, < ﬁ(f)'

Step 4. Conclusion: existence and uniqueness.

By the smoothing properties of T" and the solution of linear heat equation we have Gou €
- O — A)Go(u) = f(u)

CY2((0,t,) x R NCOR x R?) and Go(u) satisfies (O ’

((0,:) x R) N CHR x RY) and Go(u) Go(u)(0,2) = o (x)

Moreover, if u is a solution of (2.4.26)), then w := u— Gy (u) is a solution of the linear heat equation

(12.4.24) with g = 0 and ug = 0. The unique solution is then w = 0. Hence w is a solution of ([2.4.26|)

iff u is a fixed point i.e. u = Go(u).

Finally, to construct a fixed point, let (wy,)nen be the sequence in B defined by wq(t)(z) = uo(z)

Vt, and w, = Go(wp_1), Yn > 1. To prove this is a Cauchy sequence note that

for any u € B.

||wn+1 - wnHB == ||g0wn - ngn—lHB S )\Hwn - wn—l”[ﬁ’ S >\n||w1 - wO”B;

and hence for any n > m

n—1 m _ \n
[wn = wmlls < Y wkgr — wills < Jlwy — woll5B—4 = mnso0 0.
k=m

Finally, to prove unicity, let w = Gow, u = Gow two fixed points. Then
[w—wlz = [|Gow — Gowl||s < Allw — ||z < ||w — |-

That is impossible hence w = w. O

[Lecture 15: 11.06]

2.4.3 Navier-Stokes: preliminary results

In the case of NS equation, the nonlinear term f(u) becomes F'(u,v) = —Py(u - Dv) defined in
(2.4.17)). The following results collect some important properties of this expression.

Lemma 27 Assume d = 2,3. We have
(i) Ifl<m,m>2, fe H"(RY), g€ H(R?), then fg € H(R?) and
If gl < c [flam llgllms

for some constant c.
(i) Ifm>2 ue H*(R4GRY), v e HMHH(RYGRY), then F(u,v) € H™(R%RY) and

1 (w, 0) | m < C lul| zrm||0]] greess
(iii) Ifu € H?2(R%GRY), and v € H*(REGRY), or u € HY(REGRY), and v € H3(RYRY), then
F(u,v) € H'R%RY), and

C |lullzz vl z2
C lullz vl ms

VP, 0) | < {

We will see the proof only in the case d = 3. We will use the following tools
e Sobolev embedding: || fllwtamey < C [|flwmomey if1<m, 1% =m— 2

e Morrey inequality: assume d < p < oo then || f||co.~ray < Cp all fllwip@ay with v =1 — %.
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We will also use the following preliminary result.
Lemma 28 Let u: R? — R3. We have

(1) 1 fllze < Crllfll a2

(2) [ flle= < Co| fllwrs

(3) I fll= < Csl fllm=

) 1 Flzs < IS
(5) 1flls < Call fll

Proof. (1) holds By Sobolev embedding. (2) holds by Morreys inequality. (3) is obtained by (1)
and (2) as follows

£l < Callfllwre < Colllfllze + 1D fllze] < CoCLlIf Nl + IIDfllm] < Csll fll e,

where in the first inequality we used (2) and in the third (1).
To obtain (4) we use Cauchy-Schwarz ineq.

I£1Zs = 1 e = 1 Lol < W2l ez = 112 f11Ze-
To obtain (5) we use (1) and (4)

1 3 1 3
[flles < fz2llfllize < WSzl fllzn < ClIf

where we used (4) in the first, (1) in the second inequality and finally || f||z2 < C||f|lz:- O
Proof of Lemma [27] for d = 3.

Proof of (i). Let f € H™(RY), g € HY(R?), with I < m, m > 2. We know that fg admits [
weak derivatives and D®(fg) € L' V|a| < I. To prove (i) it is enough to show that D%(fg) € L?
Vla| <1 and || D*(fg)llr2 < ¢ ||fllzm gz, for some constant ¢ depending only on m. For this
purpose we write D*(fg) = >, DPfD*Pg, where B < aif 0 < B; < a; forall i = 1,...,d.
Then

ID°(a)l% < €3 [ 1DPSPD" g da

B<a

for some constant C' > 0. We distinguish now three cases.
Case 1: |8] <m — 2. Then
/]Rs |DP f2| D P g2 da < | D f|[3 1D gl 72 < CI D flI32llD* P gll7

< Cllf W15 190 1= < CIF N gl

where in the second inequality we used Lemma [28| (3) and in the last we used 2 + |8] < m and
a—pl <t

Case 2: || =m — 1. Then

3 3
/ IDﬂf|2|D“‘ﬂg|2dm§( / IDBfI“dw) ( / |Da-ﬂg4dm)
R3 R3 R3

= 1D 71D P gllZs < CUD? fI7n 1D gl

< ClF s 190 10— = ClF I Frm 19l Fas1ams

a0



where in the first line we used Cauchy-Schwarz, in the second Lemma [28] (5). To estimate |a — f3]
we consider all cases when |3| = m — 1 can be realized. Note that |5] < |a] < I < m, and
m > 2, hence m —1 > 1. Then || = m — 1 only if ] = m — 1 or [ = m. In the first case
I>1land o] =1 =18 =m—1>1. Hence 1 + |a — f| = 1 < . In the second case | > 2
and one of the following two situation may happen: |a| =1 = m then 1+ |a — | =2 < I, or
jal=1—1=|8|=m 1 then 14 |a— | = 1 < L. Finally |D° fD™ |2, < C| I gl

Case 3: |8] =m. Then || =|a]=1l=m >2, a— =0 and

/RS D™ f2lglPda < ID™ fl[Z2llglZ < ClFImllgliz < CULAIZm gl 7
where in the second inequality we used Lemma [28] (3) and in the last m = [ > 2.

Proof of (ii). Let u € H™(R%RY), v € H™(R% R?), with m > 2. Remember that
d
F(U,’U)Z‘ = _Pa(ﬁ' Dv)i = _ZPU(UijUi)

Jj=1

Let f = uj, g = Djv;. Then since f € H™,g € H™" we have fg € H™, hence by Thm.
Ps(fg) € H™ and

1P (fo)llm < N fgllam < Clflamllgllam < Cllugllamllvill gmses
where in the second inequality we used (i). The result follows.
Proof of (iii). Letu € H?(R%;R?), and v € H2(R% R?). Then f =u; € H? and g = Djv € H'.
Applying (i) with m =2, 1 =1 we get fg € H', hence P,(fg) € H' and
1P (fo)llar < (FDlar < Clflarllgllaz < Cllugllm2 vl m2-
Similar arguments work in the case v € H'(R% R%), and v € H3(R%; RY). O

Finally, to set up a Banach fixed point argument we need to define fot F(s)ds with F(s) some
function taking values in H™. Therefore we need to define the notion of LP space in this context.

Definition 30 Let X be a Banach space, I C R a bounded interval, CS(I; X) the set of bounded
continuous functions f: I — X. let 1 < g < co. We define

e = L@ x e = [ / f<t>||§(dt} q

Moreover, we define LY(I; X) as the closure of C(I; X) in X1 w.r.t. this norm (modulo maps
that coincide a.e.).
Lemma 29 The following statements hold.

(i) LYI; X) is a Banach space.

(ii)) Let m € N, f € LY(L;W™P(RY)) with 1 < p < 00, 1 < ¢ < oo. Then f(t)(x) defines a
measurable function on I x R4

(iii) If I is compact then C°(I x RY) is a dense subset in LI(I; W™P(R%)) for all 1 < p < oo,
1< g < o0

(iv) f; f(t)dt is well defined.

Proof Homework

ol



[Lecture 16: 15.06]

2.4.4 Navier-Stokes: local solutions

Funtion spaces. Let I C R a bounded interval. We will work with the following spaces:
e L2 ={he L>R%4RY) | div h=0in D'}, see (2.4.13),

H™(R%RY) = Wm2(R%; RY)

o H™:= H™(R%RY) = Wm2(R%GRY) N L2,

o X™ = X"(I):=C%I; H") with the norm |u||xm = sup,c; ||[w(t)| zm,

o Y™ =Y™(I):= L'(I; HI") with the norm |[ully= = [} [[u(t)||amdt,

Note that X™, Y™ are Banach spaces w.r.t. the corresponding norms.

Theorem 15 Letd = 2,3, m > 2. There exists a constant c,, such that for any initial condition
ug € HI* and v > 0, setting the time interval I = [0,1.] with

CmV

t =
" ol + lluollF

there exists a unique function uw € X™(I) N Y™ (1) N CY(I; H™=?) satisfying

{ 0w — vAu = F(u,u) (2.4.28)
(0, ) = ug(+).

Proof. We consider first the case v = 1. We generalize to any v at the end. The proof is

separated into 6 steps.

Step 1: definition of the function space Z™ where we work, reformulation of the problem as a

fixed point equation © = Gu for an operator G acting on Z™

Step 2: properties of G.

Step 8: G is a contraction in the unit ball for Z™.

Step 4: contruction of the fixed point.

Step §: optimization of the time interval t,.

Step 6: extension to general v, conclusion.

Step 1 in the proof of Thm Let Z™ := X™ N Y™ with the norm

ull zm = max{ ullx ||U||Ym+1} (2.4.29)

K L

where the constants K, L will be chosen later (as functions of ¢, and ||ug||g=) to ensure the correct
estimates hold.
As in the nonlinear heat equation we define for each u € Z™ the map G(u) : I x R? — R? with

(Gu)(t,z) = (T(t)up)(z) + /0 [T(t— s)F(u(s),u(s))] (z)ds (2.4.30)

where F'(u,v) = —Py(Dv u). We will prove in Step 2 that G is well defined and G : Z™ — Z™.
Proving the theorem (for ¥ = 1) is equivalent to prove existence and uniqueness of a fixed point
u € Z™ for G, i.e. Gu = u. This is a consequence of the next two lemmas.

Lemma 30 Let d = 2,3, m > 2, ug € H™, f € C°([0,t,]; H™1). Let T be the heat semigroup
and set

(Gof)t == T(t)uo + /0 T(t — s)f(s)ds (2.4.31)

where the x dependence is not explicitely written for clarity. Then the following hold.
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(i) (Gof € CO([0,t.]; H™) N CH([0,t.]; H™2) and

(0 —A)Gof)=f 0<t<t.
{ (Gof)(0) = uo. (2.4.32)
(ii) If a function w € C°([0,t.]; H™) N C*([0,t.]; H™~2) satisfies
{ f(to)_fzt(f) =f 0<t<t. (2.4.33)

then we must have w = Gy f.
Proof. homework

Remark. The operator G defined above satisfies Gu = GoF'(u, u).
Corollary 1 Let d=2,3, m > 2, I =[0,t.]. The next two statements are equivalent.
(a) ue Z™ and u = Gu.
(b) we ZmNCYI; H™2) and
Oou — Au = F(u,u) V0 <t <ty

where the last equation holds in H™ 2
Proof. homework

Strong solutions. In the following we say that u is a strong solution of the N-S equation with
v =11f (a) or (b) hold. For general v we replace G with G, defined by

t
Gou = T, (Hug + / T, (t — $)F(u(s), u(s))ds, (2.4.34)
0
where T, (t) := T(vt). Finally the PDE in (b) is replaced by Oyu — vAu = F(u,u).

Step 2 in the proof of Thm[I5] We want to prove that G is well defined and G : Z™ — Z™.
Precisely we will prove the two following claims.

e Claim 2.1: Let 0 be the function 0(¢,z) = 0 V#,z. Then G(0) € Z™ and
I1G(0)[|xm < [[uoll
IG©O) |y m+r < Cr(ts + VE o] -

where C > 0 is some m-dependent constant.

e Claim 2.2: Yu,v € Z™ we have Gu — Gv € Z™ and
[Gu — Gul|xm < Caly,
1Gu — Gu|lym+1 < C102(ts + VEe) Ayy.
where Cy > 0 is some m-dependent constant, and
s = 1t = ol xcm fully mes + ol = 0llyss. (2.4.35)
To prove these claims we need the following preliminary lemma.
Lemma 31 We have
(a) t = T(t)uo € COL; H') and | T(t)uollrr < |[uol| s,
(0) T (ol gmsr < G-(1+172)|Jug | rm, ¥ > 0, ug € H™.

where the constant C; is the same as in the Claims 2.1 and 2.2 above.
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Proof of (a). By Lemma 30|t — T(t)ug € C°(I; H). Moreover for any ¢ > 0 and |a| < m
| D*T (t)ug||gm = ||T(#)D*uo||gm < ||D%uo|| g, hence ||T(t)ug||gm < |Juo|| gm . Finally div T'(¢)ug =
T(t)div ug = 0 in distribution since ug € L2. It is easy to see that the case ¢t = 0 holds too.

Proof of (b). Note that for ¢t > 0

|(9ﬁi*yi)|¢)(

0., P(t,x —y)| =
00, Bt — )| = "

t,l’-y)é @(Qt,,it—y),

SQ

for some constant C' > 0. Hence

1T ()| g < C

d
IT(tyuollrrm + - D aﬂfiDaT(t)UOHLQ]

i=1 |a|=m

< C//

T ()| e + % laz_m |DQT<t>uo||L2] |

This gives the result. |

Proof of Claim 2.1 By the definition we have G(0)(t) = T'(t)up. From Lemma [31| (a) we have

-, -,

G(0) € X™ and ||G(0)]|xn = supyes | T(t)uollzm < lluoll . Moreover

1G(0)]

t t
* o C * 1
voos = [ IG@ Ot < ol [0+ < ol + VB ol
0 0
where in the second inequality we applied Lemma [31] (b).

Proof of Claim 2.2 Since the function F'(u,v) is linear in the two arguments we can write
t
Gu(t) — Gu(t) = / T(t =) [F(u(s),u(s)) = F(v(s),v(s))] ds
0

= / Tt — s)F(u(s) —v(s),u(s))ds + / T(t—s)F(v(s),u(s) —v(s))ds
0 0

Inserting the norms and using Lemma [27] (ii) we get for all t € T

Hm dS

1Gu(t) — Gult)| < / 17— $)F(u(s) — v(s), u(s))l|nds + / I7(t — $)F(u(s), u(s) — v(s))]
< / 1P (u(s) — o(s), u(s))|| s + / 1P (0(s), u(s) — v(s)) | s

t

< 02/ [llu(s) = v(S)am luls) L amer + [lo(s) ]| am lu(s) = v(s)[|am+] ds
0

< Oy [[lu = vl xmllullymer + (vl xmllu = vllymi] = Caluy.

Then ||Gu — Gv||xm < Co/A,,. Finally using the same estimates as above plus Lemma (b).
t
[Gu(t) — Gu(t)|[gm+ < /0 |T(t — ) [F(u(s) —v(s),u(s)) + F(v(s) — v(s),v(s))] | zm+rds

< % / (14 (t = 5)7)|[F(u(s) — v(s), u(s)) + F(u(s), u(s) = v(s))|[ rmds
0

< C1C,
- 2

t

[nu—vnxm / (L4 (= )3 fu(s) | ads + o] xm / (L4 (= )3 fuls) = o(s)l|gmsrds
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hence

ty
1Gu = Golly s = / 1Gu(t) — Gu(t) | rrmdt < CLCo(t + V) A,
0

where we used
tx t N tx te—s N

/ / (1+(t75)’5)Hu(s)||Hm+1dsdt:/ Hu(s)||Hm+1/ (1+t72)dtds < (t42vE) ||ullym+
o Jo 0 0

and the same argment holds for u replaced by v — v. Finally, using similar arguments as for G (6)
one can prove Gu — Gv € CO(I; H™). This completes the proof of Step 2.

[Lecture 17: 17.06]

Step 3 in the proof of Thm[I5] ¢ is a contraction in the unit ball. Remember the two
constants K, L in the definition (2.4.29) of || - ||zm. We will prove the following Claim.

Claim 3.1: if we choose L = KC(t. + /t4), then

A
Zm) s with 5 = ClogK(t* + \/E) (2436)

|ul

A
gm < §||u —vllzm (JJullzm + ||v]

|Gu — Gol

Note that, once L is fixed, the only free parameters remaining are ¢, and K. The claim above
implies that, if we choose K and t, such that A < 1 we have

|Gt — Gollzm < Allu—v]

Zm Yu,v € Z™ st ||l

zm <1 and ||v|

gm < 1.

i.e. G is a contraction in the unit ball for Z™.

Proof of Claim 3.1 Using Claim 2.2 we have

[Gu=Go|

IGu — Gu||xm ||Gu — Gvllym+ 1 Cy(te + 1) ColA
m < < —
gm < max{ % , i3 < Cy/A\,, max 72 7 %

where in the last equality we used L = KC (t« + v/tx). Now using

u = vlxm < Kllu—vllzm, |Ju—vllym+: < Llju—o|zm,

we get Ay, < KL[||u|lzm + ||v||zm] |Ju — v]|zm, hence

1Gu — G

Zm S CQLH’LL — U‘

2 [l zm + ||v]| zm]-

Step 4 in the proof of Thm Construction of the fixed point. Let (U, )nen the sequence

in Z™ defined by
U() = gO, Un+1 = gUn Vn Z 0.

Claim 4.1: For any 0 < € < 1 there exists 0 < Ag(€) < 1 such that if |Up|jzm < e and A < Ag we
have |Up|lzm <1 Vn > 0.

Proof of Claim 4.1 By induction. By hypothesis the claim holds for Uy. Assume it holds for
all 0 < k < n. Using (2.4.36) and ||Ug||z~ < 1 for all 0 < k < n we have

[Uk+1 = Ukllzm = GUk = GUk—1llzm < MUk = Ug—illzm < N|UL = Upllzm, k=1,...,n.
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Hence

n n 1
HUn-"-lHZ"L S HUOHZ"L‘F];O”UIC—&-l*Uk' zZm S ||UO‘ Z’”+;O)\k||U17UO| Zm S ||U()| Z7n+ﬁ||U17UO| Zm.
Note that Uy — Up|zm = |GUs — G0||zm < 3||Us||%m, hence
M|Uol| zm Ae
U, m < |Uollzm [1+ 75— | <ell+—~—]) <1
[Unialz < 00l (14 J2Z8 ) < (14 525

if we choose A small enough, depending on €. This completes the proof of Claim 4.1.

Consequence of Claim 4.1 If ||Up|/zm < € and A < Ay, then U, is a Cauchy sequence in the
unit ball of Z™, hence U € Z™ with ||U||z» < 1 such that U = GU.

The fixed point U is unique in the unit ball, since if U, U’ are two fixed points with ||U]
and ||U’||zm < 1, we obtain a contradiction:

gm <1

|U = U'llzm = IGU = GU"l|zm < MU = Ul zm < U = U’||zm.

It remains to prove that we can ensure ||Up||z= < 1. Indeed

g6 m g6 m+41 (7 m
Zm = max{ || IEVX ) || |E/ . S || OI|(|vH

|Uollzm = [|GO

where we used Claim 2.1 and L = KC(t. + v/t.) If we choose K = 2||ug||g= then we can replace
e = 1 in Claim 4.1, hence A < A\o(1/2).

Step 5 in the proof of Thm[15 Optimization of ¢.. Let us summarize the relations we
obtained. C4,C5 are fixed constants. The parameter K is fixed to K = 2|lug||gm to ensure
lUo||zm < 1. The parameter L is fixed to L = KCy(t« + vtx) = 2C1||ug|| gm (£« + v/1x). Finally

A =2C1CoK (te + /1) = 4C1Colluol| rm (L« + V)

and to ensure we have a contraction we must have A < \g = A\g(1/2). Set A = Ag, i.e. the largest
possible choice. Hence ¢, must satisfy
1 4C1C! m
(te + V) = -  with .= ———2100H" QAHUOHH ,
a 0

then t, > (2a)~! or /£, > (2a)7! ie.

1 1 1 1 Cm
te > i 5.0 = Z 2
_mm{% <2a>2} max{2a, (20)?} = 20+ (20)2 ~ Juolln + [uol3n

for some constant c,,. Note that if uy is very regular then ||ug||g= is small and the time interval
gets very large.

Step 6 in the proof of Thm/15] General v. Let U(t,z) be the unique solution of

{ 9, — AU = F(U,U)

U(0) = T, (2.4.37)

on the time interval [0, t&l)] with £ =

solution of

. Then the function u(t, z) := vU(vt,x) is

Cim
llwoll zrm +luoll7m

{ (0 — vAYu = F(u,u)

u(0) = vUy = up. (2.4.38)
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on the time interval vt < tfkl)

,i.e.
v) 1 Cm, CmV
ty = — = , (2.4.39)
v[Uoll= + [Uoll3pm  vlluollzm + luollZm
where we replaced Uy = ©2. This concludes the proof of Thm a

2.4.5 Local solutions for Euler-equation.

Our goal is to construct a local strong solution for Euler equation by letting v — 0 in the local
strong solution we obtained for N-S in the previous section. The two main obstacles in this
program are:

(1) the time interval [0, t,] where we proved existence and uniqueness of N-S solution shrinks to
zero as v — 0 (see (2.4.39))). We will prove below that the time interval can be extended to
[0, T,] where T, still depends on the initial condition ug, but is now independent of v;

(2) we need to justify the limit v — 0 of the solution of N-S in the appropriate function space.

Here we will consider only the solution of Problem (1) (extending the time interval). We will
restrict to d = 3. In d = 2 one can obtain even stronger estimates. The main result of this section
is summarized in the following theorem.

Theorem 16 Let d =3, m > 3 and M > 0 some constant. Then there exists a constant ¢,
depending only on m, such that, for any v > 0 and ug € H* satisfying ||ug||gm < M there exists
a unique solution v € Z™([0,Ty]) of N-S with u(0) = ug on the time interval [0, T,] with

1
T, := — . 2.4.40
26, M ( )
Preliminary results: energy estimates
Remember that the total kinetic energy of our fluid is given by FEj(t fR3 p(t x)w =

Llu(t)[|22, where u(t,z) is the velocity field (in spatial coordinates) and we assumed incompress-
ibility and homogeneity: p(t,z) = po(z) = 1. The first lemma states that the kinetic energy can
only decrease in time.

Lemma 32 Let u € Z™ with m > 3 = d a solution of NS equation.

d
&Hu(t)lliz = —v[|Du(t)||7 < 0.

Proof. We multiply NS equation d;u — vAu + P, (u - Du) = 0 by u and integrate over space
0 —/ Z [ujatuj ujAu; —|—Zu]73 ukﬁku]] dx
R ; k=1

Since u € C'(I; H™2), the first term can be reorganized as 14 [, |u(t,z)|?dz. For the second
note that for any g € C°(R?) we have, integrating by parts,

/ gAgd:L':—/ |Dg|?dz.
RR3 R3

By density this holds also for any g € H?(R?). Hence — [o5 > i1 ugAugdr = [o, | Du|?dz. Finally,
for any g € C>°(R% R?) with div g = 0 we have

1
S 0 Pogitrgsdr = | Y gigedhgidr = = | S gudilgl2dz = 0
/ngjgg kO gjdx /ngjg]gkkg]x 2/nggkk|9 T
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where in the first step we used that g — P, g is a gradient and hence perpendicular to all divergence
free fields, and in last step we used again that div g = 0. By density the identity holds for u € H2.
Putting the integrals together we obtain the result. O

[Lecture 18: 22.06]

Lemma 33 Let m > 3 =d and o € N? with |a| < m. Then

(i) Yu € H™ we have
(D, D*F(u,u)) | < cllullm.

(ii) Yu,v € H™ we have

(D%, D*F(v,u)) 2| < cllullZpm [0]| -

(iii) Yu € H™H v € H™ ! we have

(D%, D*F (u,v)) 2| < cllullrm [[v]| rme-
Remark. Beware the changed order in (i7) and (¢i¢) for the arguments of F'!

Proof. Exercise sheet
A consequence of the estimates above are the following ’generalized’ energy estimates.

Lemma 34 Let u € Z™(]0,Ty]) a solution of NS for m > 3 = d on some time interval [0, T,].
Then there exists a constant ¢, > 0 depending only on m such that

1d

5 0 + VI Du(t) i < e u@lfn V0 < < T.. (2.4.41)

In particular

d _
Zlu®) s < Enllu@®Fn V0 <t <T.. (2.4.42)

Remark. Note that since u € C1([0, T.]; H™~2) we know that ||u(t)||.2 is differentiable in ¢, but
it is not clear why ||u(t)| g= should be differentiable in ¢. The solution comes from the following
corollary (which we give without proof).

Corollary 2 (higher regularity) Letd =2,3,m > 2,1 =(0,T.]. Ifu € CO(I; H™)NL'(I; H" )N
CY(I; H=2) is a solution of NS then Vk,l € N, Ve > 0 we have u € C*([¢, T.]; HL).
In particular u € C*=((0,T,) x R?) and dyu — vAu = F(u,u) holds pointwise.

In the present case u € Z™ hence u € C1([¢, Ti]; H™), hence the H™ norm is differentiable in t¢.

Proof of Lemma [34L

1 d 2 1 d [e" o . « «
iﬁnu(t)”h’ =5u Ca RSD u- D% dx = Z CQ/D@D u- D0 dx
lal<m la]<m

= Z ca/ D% - D¥Au + F(u,u)]dz
jal<m  7F

= Z co [(D%uy ADu) 2 + (D%u, D*F (u,u)) 2],
o] <m
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where ¢, is some combinatorial coefficient. Integrating by parts Z\a| <m Ca(D%u, AD%u) 2 =
=2 lal<m ca|D*Dul?, = —||Dul|3... Finally by Lemma (i) [(D*u, DF(u,u)) ;2| < c||ul/3m.
This proves the first claim. To prove the second claim note that

1d

d
il 2 = ~— m < G 3 .
thllu(t)llH |w(t)[ dtllU(t)llH < émllul®)|gm

O

Proof of Theorem Step 1: preliminary result. Let f € C°([0,T]) N C*((0,T)) such that
(a) £(t) >0 v,
(b) f'(t) < Kf(t)?> VO < t < T for some fixed constant K,
() T< ﬁf(o)'

Then we have f(t) < 2f(0) for all ¢t € [0,T].

To prove this fact assume first f(¢) > 0 for all ¢. Then

() < Kf(t)? iff IO ok i ( ! ) > _
- ()2~ @) -
Integrating over ¢t we get ﬁ — ﬁ > Kt > —-KT > —ﬁ, where in the last step we used
assumption (c). Hence ﬁ > 2f1(0)'
In the case f(t) > 0 we set € > 0 and f.(t) := f(t) + € > 0 for all t. Note that f/(t) = f/(t) <
K f(t)? < K f.(t)%. If we restrict to the interval [0, 7], with T, < T such that T, < then

fe(t) <2£.(0). The result follows by continuity taking € — 0.

1
2K fe(0)?

Step 2: estimate of the time interval. We prove the result by contradiction. Fix v > 0 and let

Ty := sup{t > 0| Ju strong solution of NS with u(0) = ug}

be the maximal time interval where the solution for NS exists. Let ||ug||gm < M. We want to show
that T3 > T, = ﬁ By constradiction assume T < T,. We will show that we can construct a
solution in the interval [T1, T + 0] and paste it to the one on [0,77]. As a result we will obtain a
solution on [0, Ty 4+ 6] which contradicts the definition of T7.

To construct the extended solution let To = T7 — € > 0 with 0 < € < 1. Since T5 < T} there exists
a unique strong solution for NS with u(0) = wg. This solution must satisfy the energy estimate

.4.42)

Now set f(t) = L||lu(t)||g=. Then f € C°([0,T5]) N C'((0,T3)), f(t) > 0 and f'(t) < & f(t)2
Moreover since 1o < T1 < T, = e we hzive Cm < m. Then we can apply Step 1. with
K = ¢y, ie. |[u®)]|lgm < 2luo|lgm <2M = M.

We consider now NS on the interval [Tz, T + t.] with new initial condition g (z) = u(Ts, ), and

ty = =7l Since || < 2M we have
* 7 vaollam +llaolZm S ol <

VCm

ty > —————— > 2
= oM +4p2 = €

if € is taken small enough. Then T5 + ¢, > T} and we obtain a contradiction. This ends the proof.
O
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3. Calculus of variations and elasticity theory

[Lecture 19: 24.06]

3.1 Introduction: equilibrium configurations
in a hyperelastic solid

Let x(t,X) describe the deformation of an hyperelastic solid subject to some external time-
independent force. After a long time the solid will stabilize into some new equilibrium config-
uration, described by a time-intependent function x(X). We will see that this function z(X) is
the solution of a certain PDE, and can be related to the minimizer of a functional integral.

3.1.1 Reminders
Remember the equation of motion in material coordinates (|1.4.47)):

po(X)02x(t, X) = (det Dx)(t, X) fn(t, X) + DIV(S)(t, X)

where f(t,x) is the force density and has the dimension [force]/[volume]. In the following it will
be more convenient to replace f by

f(t,z) = p(t,x)b(t,z), p=mass density, b: R x Q — R? = [force]/[mass]

In material coordinates, using (|1.4.46[), we have

po(X)
m(t, X) = pm(t, X)bp (8, X — b, (t, X),
Pl X) = ol X ot X) = G5 b1, )
hence the equation of motion becomes
po(X)022(t, X) = po(X)by(t, X) +DIV(S)(t, X). (3.1.1)

We will make the following assumptions.

e The material is elastic and satisfies frame indifference (see Sect-7 hence S(t,X) =
S(Dz), where S is the constitutive law of the Piola-Kirchoff tensor & : GL (d) — R*4.

e We have isotropy: po(X) = po =1 VX.
e The external force is time independent b,, = b, (X).

An equilibrium solution is a solution of (3.1.1)) that is independent of time x :  — R?. Hence
Oyr = 0 and z(X) must satisfy

b (X) 4+ DIV(S)(Dz(X)) = 0 (3.1.2)
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3.1.2 Stored energy

We assume the material is hyperelastic then (see Def in Chapter 1) there is a function W e
CY(GL4(d);R) such that
o .
W(F).
57 ()

Sij(F) =

The function W is called the stored energy and corresponds to the internal energy of the rnaterial
To see this, remember the expression for the total energy (1.4.54) E(t,U) fU 0P [ + e] dx,
where € is a C! spatial field (the internal energy density). The energy conservation equation

(1.4.57)) reads p% = tr(ctDv), where we assumed there is no heat exchange at equilibrium. In
material coordinates this equation becomes

det Dz p,, 016, = det Dz traanvm

Using (|1.4.46 m the left-hand side becomes det Dz PmOtem = p0(X)0O€m,. For the right-hand side
remember that, from (L.4.48)), we have o, = 25~ —L_8Dgt, and

0K ()i 0K O o
(DU)”—amj’Uz— - 8£Ej an - - axj atan_zk:[at(Dx)]zk(Dx)k]

where we used v, = 0;z and ‘9Xf = (Dz)y; ! Hence (Dv),, = [0:(Dz))(Dz)~*!, and

det Dz tr[o?, Dv,,] = tr[S'9, (D)) ZS”& Dzx); Z@t Dz);; 88?/ (Dx) = 9,W(Dx).

ij

Inserting all this in the equation above we get
dilpoem] = W (Dz) = po(X)em(t, X) = W (Dz(t, X)) + Eo(X)

where E(X) is some initial energy (independent of time). Hence W = internal elastic energy.

3.1.3 Equilibrium solution and functional integrals
Claim. Solving (3.1.2) is related to find a minimizer of the function

I(z(X)) := / [W(Dz) — by, - 2]dX (3.1.3)
Q

We will prove this claim rigorously in the next sections. A non-rigorous justification of this fact
is obtained as follows. Let x : @ — R% and y : @ — RY two fixed functions, set x,(X) :=
(1) + 7y(X), 7 € R and consider 7 — h(7) := I(x,). This gives the variation of the function
I(x) along the direction y. A necessary (not sufficient) condition for i to be minimal at 7 = 0 is
that the first derivative vanishes h'(0) = 0, for any choice of the direction y. Inserting this in the
expression for I, without worrying if the operations are justified, we get

d [ [ oW
E/Q[W(DxT)—bm-xT} dX_/Q Z(Dy)ijaTij(DxT)—bmy X

_ _/szz {DIV(S‘)(DQ;T)Z. 4 (bm)z dX

where in the last step we used S'ZJ(F) = %}Z(F) and integration by parts. Setting 7 = 0 we get

/ S0 [DIVS) (D) + (ba)i] dX =0 ¥y, = DIV(E)(Dx) + (b) = 0.
Q7
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3.2 First and second variation

3.2.1 Setting up: minimizer

In the following we will look for minimizers of some functional of the form

I(u) := A f(z,u(x), Du(z))dz, (3.2.4)

where
e O C R?is a bounded open set,

e u: Q) — R" n>1is a vector-valued function in some Banach space B (typically we will
take Whe(Q; R™)),

e depending on the problem we may have boundary conditions i.e. u(z) = g(z) Vz € 9.

The function f is called the Lagrangian.

Remark. In the case of a hyperelastic material n = d and wu(z) is replaced by x(X). Note that
in the general case Du(z) € R"*9,

Definition 31 (minimizer) Let Q C R? be a bounded open set, f a function

f: OQxR*xR™™ SR
(2,2,6) = f(z,2,€)

satisfying ©* — f(x,u(x), Du(x)) € LY(Q) for all u € WH9(Q;R™), for some q > 1. Finally, let
I:Wha(Q;R™) — R the functional defined in eq.(3.2.4).
We say that u € WH4(Q;R™) is a minimizer of I with respect to its own boundary conditions, if

Iu+w) > I(u) Yw € Wy 1(Q; R™).
Remark. w € Wol’p(Q; R™) implies that (v + w) = v on the boundary of Q.

Example 1. Let n =1, X = {u € C*(Q)| ujpq = g}, for some g € C°(9Q2). We define

I: X—=R
u— I(u) = [, [be(x)u(z) dx

where b € C°(Q2). Then ug € X is a minimizer for I, i.e. I(u) > I(ug) for all u € X iff ug is a

solution of
{ —Au=1> 1inside

Upo = 9
where 02 must be sufficiently regular.
Example 2. (minimal surface) Let u : Q — R. The set {(z,u(z))| € Q} defines a surface. The

corresponding area is given by I(u) := [, /1 + |Du|?dz. Then minimizing I(u) corresponds to
minimize the surface, w.r.t. some boundary conditions.
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Example 3. (isoperimetric problem) Set d = n = 1 and u(x) > 0. Then {(z,u(z))| z € Q} is
the surface generated by u, and {(z,y)| z € Q,0 < y < u(x)} is the volume generated by u. Let
I(u) = surface - A volume, i.e.

I(u) ::/Q\/mdx—)\/ﬂu(x)dx,

with A > 0 a parameter. To minimize I we need to minimize the surface and maximize the volume.

[Lecture 20: 29.06]

3.2.2 Directional derivatives

Definition 32 let u € B and w € C°(Q;R™). We define the variation of I(u) along the direction
w as the function

hyw: R—=R
T = hy () == I(u+ Tw)

The next lemma gives some conditions on the Lagrangian f under which directional derivatives
may be applied. To simplify notation we will collect all variables u; and (Du);; in a single big
vector X € RY. We replace then f(z,u, Du) with g(z, X).

Lemma 35 Let
g: OxRVN SR
(z,X) = g(z, X)

satisfying:

e O CR? is a bounded open set, g is Borel measurable,

o x— g(x,0) € L'(),

o X — g(x,X) € CP(RY), for some p > 1 and for all z € ,

e Jg > p and a constant K > 0 such that

|DL g, X)| < K(1+|X[97Y forallz € Q, X € RY and 0 <1 < p.
Let
I: LYYRY) =R
U—1U):= [,9(z,U(x))dx.

Then, for any fited U, W € L1(;RY), the function h : R — R defined by 7 — h(t) := I(U+71W),
is differentiable p times and V0 <[ <p

! T
Thr) :/Q S W) Wi () [ai...af(j g} (2, U () + W (2))da

J1y--01

Remark 1. z — g(x,U(z)) € LY(Q), hence I(U) is well defined. To see this write
1
9(z,U(x)) = g(x,0) + [g(z, U(x)) = g(z,0)] = g(,0) +/ Osg(z, sU(x))ds
0

= g(x,0) + Z Uj(x)/o Ox,9(x, sU(x))ds,
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where in the second equality we used x — g(x, X) is differentiable in X. Now x — g(x,0) € L}(Q),
and

> Ui) / dx,g(z, sU(x))ds| < K|U(z)| / (1+ [U(@)|7 s )ds < K(U ()] + |U()7]).

The result now follows from U € L1(Q2) and || < occ.
Remark 2. Note that in our case X = U € LY corresponds to u, Du € LY, i.e u € Wh9(Q; R™).

Proof of Lemma We do the proof only for p = 1, the general case being similar. It is
enough to study the derivative at 7 = 0 since for 7 # 0 we can study the derivative of h(7) :=
I({U 4+ W]+ 7W) at 7 = 0. The finite variation is given by

g9(z,U(z) + 7W (2)) — g(,U(x))

T

Mz/GT(x)d:m with G, (z):=
T Q
We claim 3G € L'(Q) such that |G, (z)] < G(z) Vo € Q and V|r| < 1. Then, by dominated

convergence lim, g fQ Gr(z)dx = fQ lim,_,o G, (x)dx. Finally, since X — g(z, X) € C! we have
lim, 0 G, (x) =3 y W;0x,g. To prove the claim we use Taylor integral formula

G,(x) = %/0 0s9(x,U(x) + sTW (x))ds = /0 Z Wj(x)0x,9(x,U 4 sTW)ds

Hence
|G ()] < [W ()| sup [Dxg(x,U(x) + sTW (2))|
s€|0,1
< KIW(2)|(1+ U (@) + stW (2)|771) < K'(W(@)| + [W (2)|7 + U (2)]9),
for some K’ > 0. The result now follows from U, W € L9(Q) and |Q| < 0. O

3.2.3 First variation and Euler-Lagrange equation

The following result relates the minimizer to the first derivative.

Lemma 36 Let
f: OQxR?* xR 4R

(2,2,€) = [(,2,€)
be a Lagrangian satisfying the assumptions of Lemma with p =1, i.e.
e QO C R? is a bounded open set, f is Borel measurable,
e v — f(x,0,0) € LY(Q),
o (2,6) = g(w,2,£) € CHR™ x R"™4)_ for all x € Q,
e Jdg > 1 and a constant K > 0 such that
D f] + |Def| < K(1+ 297" + [€]771) for all (x, 2,£).

Let u € WH(Q;R™) be a minimizer of I w.r.t its own boundary conditions (see Def. Then
for all w € W, (Q; R™) we have

0= / (D.f) w4+ (D¢f) - Dw]dx (3.2.5)
Q
where (D, f) -w =32, w;0;, f, and (D¢ f) - Dw = 3 (Dw) 0, f. In particular can be

reformulated as
div(Def)—D.f=0 in distribution, (3.2.6)

where div (Def)i = )21, D, (O, f)- (3.2.6) is called the Euler-Lagrange equation for I.
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Proof. Since I(u-+w) > I(u) for all w € W, 9(Q; R™), the function h(r) := I(u+7w) is minimal
at 7 = 0, hence h'(0) = 0 for all w. The proof follows by Lemma |35| replacing U by (u, Du) and
W by (w, Dw). a

Application: hyperelastic solid

Let us go back to the functional (3.1.3) I(u) = fQ[W(Du) — b - u)dz, where n = d, and W €
CY(GLy(d);R) is the stored energy. We assume b € CO(Q;R?), and W (0) = 0 (we can always

translate the energy by a constant to ensure that). Then f(z,z,£) = W (&) — b(z) - =z satisfies
= f(2,0,0) =0 € LYQ), and (2,€) — f(z,2,£) € CH(R™ x R"¥9).

[Lecture 21: 1.07]

3.2.4 Null Lagrangians
These are the analog of constant functions.

Definition 33 A function f € C*(Q x R™ x R"¥9) is called null Lagrangian if any function
u € C%(Q) satisfies the Euler-Lagrange equation.

Remark Since f € C°(Q x R™ x R"*%) and both v and Du € C°(Q), the integral I(u) is well
defined. Moreover, since f € C1(2 x R™ x R"*4) we can compute directional derivatives, hence
we can write the corresponding Euler-Lagrange equation.

Lemma 37 Let f € CHQ x R® x R"™4). Then f is a null Lagrangian iff I(u) = I(v) for all
u,v € C*(Q) with u =v on ON.

Proof. = Assume f is a null Lagrangian. Let u,v € C?(Q)) with u = v on 92, and set w = u—wv.
Then w € C?(2) and w = 0 on 9. Hence u+ 7w = u on I for all T € R. Let h(7) := I(u+Tw),
Since f is a null Lagrangian, this implies u + 7w is a solution of Euler-Lagrange equation for all
7, i.e. h/(7) =0 for all 7. Therefore I(u + 7w) = I(u) for all 7, i.e. I(u) =1(v).

< Assume I(u) = I(v) for all u,v € C?*(Q) with v = v on Q. Again let w = u — v and
h(7) := I(u + Tw), hence we have h(r) = h(0) for all 7. As a consequence h'(7) = 0 for all 7, i.e
u + 7w satisfies the Euler-Lagrange equation for all 7. This is true in particular for v and v. O

Lemma 38 Let n = d and consider the Lagrangian f(x,z,£) := det&. Then f is a null La-
grangian.

Proof. Exercise sheet

3.2.5 Second variation

Lemma 39 Let
f: QxR xR"™ 53R

(z,2,§) = f(z,2,¢)
be a Lagrangian satisfying the assumptions of Lemma with p = 2, i.e.

e QO C R? is a bounded open set, f is Borel measurable,
o & f(2,0,0) € LY(%),
o (2,8) = g(z,2,€) € C2(R" x R™*?), for all z € Q,
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e dg > 2 and a constant K > 0 such that
D fl+Def| < K(1+]2]% 1 +[€97") and
ID2f| + |DeD:f| + |DE| < K(1+ |2]972 +[€]772) for all (z,2,8).

Let u € Wl’q(Q R™) be a minimizer of I w.r.t its own boundary conditions (see Def Then
for all w € W, (4, R™) we have

[ [, (D2)0) + 2w, (D-De)Dw) + (Dw, (D) Dw)] d > 0 (3.2.7)
Q
where
(w (D2 ijwk az]amef) (w, (D D&f)Dw ij (Dw) kk’(azjafkk/f)
Jjk jkk’
(Dw, (D f)Dw) := > (Dw) 1 (Dw)gk (e, Ve, ., f)-
g kk!

Proof. If u is a minimizer, then I(u + Tw) > I(u) V7, hence %I(u + Tw)|r—9 > 0. Finally

(3.2.7) follows from Lemma |

Equations in second variation: scalar case.

We consider first the scalar case n = 1. Then u : Q — R is a scalar, Du : Q — R? is a vector and
f: QxR xR?— R. The second variation becomes

/ 2(0%f) +QZ (0;w)020¢, f + Y _(0;w)(Ow)(De, 0, f) | d >0
Q ik

for all w € Wy 9 (Q; R™).

Theorem 17 Let f be as in Lemma [39 with n = 1 and let w € WH9(Q;R) be a minimizer
w.r.t. its own b.c. Then

352f(1:,u(:17),Du($)) >0 as a quadratic form for a.e. © € §, (3.2.8)

i.e. Vb € RY we have >k 0j(0¢,; 0, f)by = 0. This is called the second variation equation.

Proof. The strategy is to construct a sequence of functions ws such that ws — 0 and Dws /4 0
as § — 0. This will be defined more precisely below. Let

ws(x) =0, Y(z)sin (B2), 0<6, <1, beRY ¢ € CX(YR),

then ws € C°(2;R). Moreover let
IL(w) == /Qw(x)2 2 f(x,u(x), Du(z)) dx
= 22/ ) 8.0, f (v, u(x), Du(z)) da

I3(w) == Z/Qajw(x)f)kw(x) 8§j£kf(x7u(x),Du(x)) dx

we will prove the following claim.
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Claim. There exists a sequence (0, )nen With 6, > 0 Vn and lim,,_,+ §, = 0 such that

lim Ih(ws,) = hm I(ws,) =0,
n—oo

lim I3(ws,) /w baéfb)

n—00

where (b, c’)gfb) = ij bjbkagjgkf(:c,u(x), Du(z)).

Consequence of the Claim. Since we know that Z?:l Ii(ws) > 0 V6 and ® is an arbitrary
function this implies 97 f (z, u(x), Du(z)) > 0 for a.e. z € Q.

Proof of the Claim. We have

[11(ws)] < wsl| 2o 102 fllzr,  [T2(ws)| < [|wsl|zee || Dws]| Lo [|0Z f 1

Since u, Du € L(Q), Q| finite and |D2f| + [DeD. f| + |DZ| < K(1 + |27 + [€]77?), we have
x — 0% f(x,u(z), Du(r)) € L'(Q). The same holds for the other second order derivatives.
Moreover ||ws||zes < 6]|%]| 1, and

Ojws(z) = Y(x) cos( ) + 00;1(x) sin (b;) = || Dwsl|p~ < Cy, (3.2.9)

for some constant C; > 0 independent of 0 < 6 < 1. Hence lim,, o0 11 (ws, ) = lim,, o0 Ia(ws,) = 0.
Finally, to prove the last limit, let j, & be fixed indices, set

hs(z) = OjwsOpws, p(x) = 8 ¢, f(x,u(z), Du(x)).
Therefore we need to study [, hs(z)p(z)dz, where ¢ € L'(Q) and hs € L>°(2) V6 > 0.

Let (dn)nen be some sequence with 6, > 0 Vn and lim,,_, o 0, = 0. From (3.2.9) sup,, ||hs, |1 <
C3, therefore there exists a subsequence §,, and a function h € L>(2) such that hs,, —* hin

L=(Q), ie. Vo € L(Q)
/ hs,, (2)p(a)de — / h(z
Q

It remains to check that the limit is indeed h(x) = I)b ib.. This follows from

) b-z\1° 1 1 2 - x
hs = 1 (x)*b;bs |:COS (5)} +0(0) = 51#(:1:) bjiby + §¢(x) b;by, cos <5> + O0(9).
O

Remark. Let H € R¥*? 3 matrix, a,b € R? two vectors. Using (a®b);j = a;bj, we can write
(a, Hb) =tr(Hla®b]") = H - (a®D).
Then positivity can be reexpressed as
(b, Hb) = tr(HbRb]") = H-(b®b) >0

Equations in second variation: vector case.

We consider u :  — R™, n > 1, hence the arguments of f(z, z, &) satisfy z € R”, £ € R"*9,
To simplify the notations in the second derivatives, we define, for any two finite sets I, I,

ROz .= (M2 (I x I,) — R} (3.2.10)
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the set of matrices indexed by I; and Is. In the following we will use the two following sets
I:=1(n), I'=1(n) x I(d) where I(n) ={1,...,n}, I(d) ={1,...,d}.
With these notations we can write
PfeR 9.0 f R, 2fe RN
and the second variation can be written as

/Q [(D2f) - [w®@w] +2(D.Def) - [w® Dw] + (D f) - [Dw ® Dwl]] dz >0, (3.2.11)

where w € R™, Dw € R"*? hence
w@we R we Dwe RIXI/7Dw®w e RI'XT',

Theorem 18 Let f be as in Lemma[39 with n > 1 and let u € WH9(Q;R™) be a minimizer
w.r.t. its own b.c. Then

O f(z,u(z), Du(z)) - [(a®b) @ (a®b)] >0 VaecR"be RY,  for a.e. x € Q. (3.2.12)
Proof Analog to the proof of Thm[I7] we introduce the sequence

wg(x) := ad P(x)sin (béx) , 0<é6<1,acR", beR?: e C(LR).

Now the derivative becomes
(Dws)ij(z) = a;bj(x) cos (b(;x> + 0(6) = (a®b);j¥(x) cos (ng) + O(9)

and

Dw;s @ Dws = (a ®b) @ (a @ b) ¥(x)? cos? <b6:r) + O(9).

The proof then works as in Thm[T7] |

[Lecture 22: 6.07]

3.2.6 Second variation and convexity
Definition 34 Let X = R?, or X = R™*?. A function f: X = RU oo is convex if

JAz+ (1 =Ny) <Af(@)+ (1= A)f(y)

for all z,y € X, \ €0, 1].

Remark 1. f is convex iff the function

hey: R =R

t = hyy(t) = f(z +ty) (3.2.13)

is convex (in t) for all z,y € X.

Remark 2. Let f € C?(X). Then f is convex iff 92f(z) > 0 as a quadratic form Vz € X, i.e.
D2f(x)-(b@b) >0 VbeR?Y if X =RY (3.2.14)
D2f(x)- (B®B)>0 VBeR™ if X =R"™9, (3.2.15)
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Convexity and second variation

Lemma 40 Let n = 1 and assume f € C*(Q x R x RY). Let u € WH94(Q;R) such that & —
flx,u(x),€) is convex in &, for almost all x. Then u is a solution of the second variation equation

B-2.11).

Proof. Convexity implies 3?f(m,u(x),§) -(b®b) >0 Vb€ Re This is true in particular for
& = Du. O

Lemma 41 Let n > 1 and assume f € C?(Q x R x RY). Let u € WH4(Q;R") such that £ —
flz,u(x),€) is convezx in &, for almost all x. Then u is a solution of the second variation equation
B212).

Proof. Convexity implies &7 f(z,u(z),§) - (B® B) >0 VB € R™*4. This is true in particular
for ¢ = Du. and B = (a®b), a € R*, b € R% a
Note that in the vector case covexity is too strong a condition. We only need rank-1 convexity.

Definition 35 A function f: R"*? — R U oo is rank-1 convex if

fAz+ (1 =Ny <Af(z)+ (1= A)f(y)

or a € 10,1}, and all x,y € such that rank|lr —y| = 1.
f Ixe|o1 d all Rxd h th k 1

Remark 3 (i) f is convex = f is rank-1 convex.

(ii) f rank-1 convex iff

Fly+A(z—y)) < fy)+Alf(x)—f(y)] for all A € [0,1], and all z, y € R™*9 such that rank[z—y] = 1,
iff

the function h,, defined in (3.2.13) is convex in ¢ for all x € R™*? and y € R™*9 of the form
y=a®b, with a € R",b € R“

(iii) Let f € C?*(R™*?). Then f is rank-1 convex iff
f(x) - ® > =a®b, ac ,b € . 2.
o2 f B®B)>0 VB b R™,beR? 3.2.16

Lemma 42 Let n > 1 and assume f € C?(Q x R x RY). Let u € Wh4(Q;R™) such that £ —
fz,u(x), &) is rank-1 convex in &, for almost all x. Then u is a solution of the second variation

equation (3.2.12]).

Proof. Convexity implies 8z f(z, u(x),€) - (e ®b) ® (a®b)) >0 Va € R",b € R This is true
in particular for £ = Du. O

Example. The determinant is rank-1 convex but not convex. To show this we study the function

f: R =R
t = h(t) == det(M + tN) (3.2.17)
where M, N € R™ ™. This function is a polynome of degree n in ¢, hence C*°. Without loss
of generality, we can consider only the second derivative at ¢ = 0 h”(0). We can also assume
det M # 0. Then f(t) = det(M + tN) = det(M) det(I + tM~*N). Note that, if N is rank-1, then
also M 71N is rank-1. Let us consider the function h(t) := det(I + ¢tN). If ¢ is small enough we
have
0< det(I+tN) _ elndet(IthN) — etrln(]+tN) — eg(t)’

where In(/4+tN) := > ¢, (tN)", and ¢, are the coefficients in the Taylor expansion for the function
In(14x). The relation Indet(I+tN) = tr In(I+¢tN) can be proved first for diagonalisable matrices,
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then extended by density to any matrix, such that the sum above is convergent. Since h(0) = 1,
the second derivative reduces to

h"(0) = [g"(0) + (¢'(0))*] -
Using
gt)=trln(I +tN) =tr(I +tN)"*N,  ¢"(t) = —tr(I +tN)"'N(I +tN)"'N,

we finally obtain
K'(0) = [(trN)? — trN?].

When N is rank-1 we have N = a®b = ab for two vectors a,b € R™, hence trN = tr(ab') = (b, a),
and trN? = tr(ablab’) = (b,a)?, where (.,.) is the euclidean scalar product. Therefore f”(0) =
h"(0) = 0. This proves the determinant is rank-1 convex. To show the function is not convex take

for exalple
7L*2 M*I N— O 1
’ ’ 1 0/)°

Then trN = 0,trN? = 2, hence f”(0) < 0.

3.3 Existence of a minimizer: direct method of calculus of
variation

Problem. Let X be some space of functions u : @ — R? (typically X = Wh4(Q;R9)), I : X —
RU {0} and g : 90 — R some fixed boundary condition. The goal is to prove that there exists a
function u, € X such that u, = g on 0 and I(u) > I(us) for all u € X with u = u, on Q.

3.3.1 Strategy
Let Xy = {u € X| u =g on 00}, and let

I, = ulen)gg I(u) (3.3.18)

If the set X, is empty we write I, = 4-o00.

Step 1: existence of a minimizing sequence. Our goal is to prove:
1, # +oo0. (3.3.19)
If this is true, then there exists a sequence {uy}ren of functions in X, such that

lim I(ug) = I,. (3.3.20)
k—o00

Note that the sequence u; may not have a limit in X.

Step 2: compactness. Our goal is to prove that there exists a subsequence wuy, such that

ug, — u, is a suitable topology 7. Note that I, = lim; I(u,) may not coincide with I(u,) unless
the function I is continuous.

Step 3: lower semicontinuity. Our goal is to prove that [ is at least lower semicontinuous in
the topology 7 i.e. given any sequence {v;};en in Xy and a function v € X it holds

v; v = liminf I(v;) > I(v) (3.3.21)

11—
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Conclusion. Putting together the three steps above we obtain

I, = lim I(ug,) = Uminf I'(ug,) > I(u.).
’ l—o0 l—o0

Hence I(u,) = I, by definition of I,.

[Lecture 23: 13.07]

3.3.2 Some examples.

Example 1. Let n =1, X = Wh2(Q). Let g : 9Q — R. Assume X, # 0, i.e. there exists at
least a function § € X such that § = g on 912, otherwise we cannot even start the argument. Note
that, if the function g is too ’bad’, the set X, may indeed be empty. Therefore we can write

Xy={ueX|u-geWy?*(Q)}=g+Wy*(Q).
Let
I(u) := /Q |Dul?dz = ||Du||2Lz(Q).

Step 1. Since I(u) > 0 we have I; > —oo. Moreover for u = § we have I(g) < ||g|lw1.2 < co hence
I, # F00 and there exists a sequence {uy}ren of functions in X, such that limy_ o0 I(ur) = I,.
Step 2. Let v; := u; — g. Since I, is finite we have

sup || Dvjl 2 ) < D4l 220 + sup [ Duj|lr20) < oo
J J

Moreover, since v; € W, (), we can apply Poincaré inequality lvillLe) < CllDvjllL2) V3.
Therefore sup; ||vj||W01,2(Q) < oo. Note that W, is reflexive, hence the unit closed ball is se-

quentially compact in weak topology. Therefore, since our sequence is bounded, there exists a
subsequence vj, and a function v, € W, such that v;, — v, and Dvj, — Dv, in L*(), i.e.

/ vj, (@)h(z)dr =500 / vy (z)h(x)dx

Q Q

for all h € L?(2) and the same holds for Dvj,. Finally, letting u. = v. + g, we conclude that
Uj, — Uy in X.

Step 3. The norm || - ||z, is not continuous in the weak topology. We will show later that this
function is nevertheless lower semicontinuous. Then we can conclude the argument.

Example 2. Let n =1, X = L*(Q). Let g : 9Q — R and assume X, # 0, i.e. there exists a
function g € X such that § = g on 99Q. Let b € L?(2) and

I(u) := /Qu(x)b(x)dx = (u,0) 120

For any constant K > 0 we can find a u € X such that I(u) < —K. Then I, = —co and Step 1
fails.

Example 3. We define X and X, as in Example 1. Let b € L?() and

I(u) = / [1Duf*(z) — u(@)b(z))dz = | Dul 22y — (b 12y
Step 1. Taking u = g we have

1(g) < I1Dgll72() + 13l 2@llbll 2(0) < oo,

71



hence I, < co. To prove a lower bound note that
I(u) > [|Dull72 gy — llull L2 0]l 22 -
As in Example 1, using v = u — g, and Poincaré inequality we have
lullr2) < 19llr20)+lIvllcz@) < 19lle2@) +CllDv|L2@) < |19ll20) +ClIDGll L2(0) +Cll Dull 2 ()
Then there exist two constants Cq,Cs > 0 (depending on b and §) such that
I(u) 2 ||D’U,||%2(Q) — Cl||Du||L2(Q) — 02 = ||Du||L2(Q) (HDUHLZ(Q) - Cl) - CQ > —K (3322)

for some constant /i > 0 independent of u. Hence I, # 400. Then there exists a sequence u; in
Xg such that hm]—>oo I(’U,]) = Ig.

Step 2. From sup; I(ux) < oo and above, we have sup; || Du;||L2(q) < oo. Moreover, from
vj = u;—g and Poincaré inequality we have sup; ||v; ||W§’2(Q) < 00, hence there exists a subsequence

v, and a function v, € Wol’2 such that vy, — v, weakly in WOI’Q. Hence up, — uyx = §+v,, weakly
in Wh2,

Step 3. The map u — (u,b) 2 is continuous wrt the weak topology and ||Dul| 2 is lower semicon-
tinuous. Hence I(u) is lower semicontinuous.

3.3.3 Convex Lagrangians

The following theorem gives a set of conditions sufficient (but not necessary) to ensure lower
semicontinuity.

Theorem 19 Let Q ¢ R? open bounded and with Lipschitz boundary. Let the Lagrangian

f: OxR*xR™™ 53R
(@, 2,8) = f(z,2,€)

satisfy
o f continuous on Q x R™ x R**9,
.« />0,
o V(z,2) £ — f(x,2,€) is convex and differentible,
o v — f(z,u(z),v(x)) € LY(Q) for all u € LI(RY), v € LI R D), for some q > 1.

Then I(u) = [, f(z,u(z), Du(x))dz is lower semicontinuous in the weak W'9(;RY) topology
i.e. for any function u, € WH4(Q;RY), and any sequence u; € Wh4(;RY) such that uj — u, in
Wha(Q;RY) we have

liminf I'(u;) > I(u.).

j—o0

Proof. Is is enough to prove that for any weakly converging sequence u; — wu, there is a
subsequence u;, such that iminf; o I'(uj,) > I(us).

Indeed, assume this is true and Iy := liminf,_, I(u;) < I(u.). Since liminf is an accumulation
point, there is a subsequence #; := u;, such that lim; I(%;) = Iy. Then there exists a subsequence
1y, such that Iy = limy @, = liminfy @;, > I(u.). But this is in contradiction with Iy > I(uy).
The proof of the theorem is then a consequence of Theorem below. Indeed, inserting the
subsequence u;, and the sets Ej, from that theorem, we have

liminf/ f(z,uj, (x), Duj, (z)) de > lim inf f(x,u;, (x), Duj, (x)) dx
b Ja h JE,
> : f(z,ue(x), Duy(z)) do  Vk.
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Then

k

limhinf/Qf(x,ujh(x),Dujh(x)) dx > sup/Ek f(z,us(x), Duy(z)) do = /Qf(ac,u*(m),Du*(ac)) dx.

This concludes the proof of Theorem O

Theorem 20 Under the same assumptions as in Theorem let uj be a sequence in Wha(Q;RY)
such that u; — w, in WHe(€; R?). Then there exists a subsequence uj, and a family of sets £y, C €,
k € N such that

(a) Ex C By VE,
(b) Uren Er = Q, up to a set of measure zero,

(¢) liminfy [, f(x,uj, (), Duj, (x)) dv > [, f(z,us(2), Dus(2)) dz for all k € N.
Proof. We distinguish two cases: f independent of z and general f.

Case 1. Assume f depends on (z,£) only. Since f is convex and differentiable in £ we have

f(x,&1) > f(x,&) + (&1 — &o) - Oc f (2, &o)

for all z € Q, &, & € R™*4, where - above indicates the matrix scalar product M - N = trM N?.
In the following we write v;(z) := Du;(x) and v, := Du,. Then, using the inequality above, we
have

/ flz,v;(x))dx > flz,ve(z))de Jr/ (vj(z) —vi()) - O f(z, vi(x))d
Q QY

’

for any ' C Q such that x — (v;(z) — v (x)) - O¢ f(w, vi(x)) € L'(€'). To construct such a subset
note that v; —v, € LI(€;R"*9). It is then enough to find ' such that 9 f (-, v.(-)) € LP(Q/; R™*9),
with  + % = 1. Now, let M > 0 and define

Quri=A{z € Q|0 f(z,vi(x))| < M}, (3.3.23)

where |-| denotes the matrix norm. Since J¢ f (-, v.(+)) is bounded on Q,y, it belongs to LP(257; R"*4).
Moreover, since v; — v, weakly in L(Qpr; R"*?), we have

[ 050 = 0 @) @ 100 Vi € LR
Q
Applying this to ¢(z) = 1q,, (2)0: f(z, v.(x)) we get

limjinf/Q (vj(x) —vi(@)) - Oc f (z, vi())dx = lijm A (vj(z) —vie(x)) - Oc f (2, v (x))da = 0.

Therefore

lim inf flz,vj(x))dx > flzyve(x))de + lim‘inf/ (vj(x) — vie(@)) - Oc f(z, vi())dx
J Qnp Qn 7 Qs

= f(z,va(x))de,
Qum

where we used liminf;(a; + b;) > liminf; a; + liminf; b;. Now, replacing M by a sequence My,
with My > My VEk and limy_, oo M}, = 00, the proof of Case 1 follows.

[Lecture 24: 15.07]
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Case 2. We consider the general case, when f depends on z,z and £&. We want to use Case 1.
As above let v; := Du; and v, := Du,. For any Q' C Q we have

[t @)de = [ fae).o )
+ [ i), 05(e) = o), vy(o)] da
The first integral can be treated as Case 1 with f(z,€) := f(2, us(2), €), hence
timinf [ fu (o) vy@)de > [ fla @) v@)dr V2 SO

Our goal is to find a subsequence u;,,v;, and a sequence of subsets Ej, such that the second
integral converges to zero. The idea is to first get rid of the v; dependence. For this purpose,

analog to (3.3.23)) let M > 0 and

Ajvr = {z € Q||v;(z)| < M}. (3.3.24)
Moreover let

Then, for all M > 0 and j € N we have

/A} [f (2, u(2), 05 (2)) = f(2, ua (@), 0(2))] do

<[ s
Aj v

We will use the next two claims (proved later).
Claim 1: there exists a constant C' > 0 idependent of M and j such that Vol(A; ) < < Vj, M.
Claim 2: for all M > 0 fixed we have

lim g(z,5,M) =0 for a.e. x € Q.
j—o0

From the assumptions of the theorem g(-,j, M) € L'(£2), and from Claim 2 g(-,j, M) converges
pointwise to zero for a.e. & € . Hence g(+,j, M) — 0 in mass i.e.

Vol{z € Q| |g(x,j,M)| > €} =506 0  Ve>0.
More precisely, Ve > 0 and V0 > 0 3j. s € N such that
Vol{z € O lg(e,j, M)| > e} <5 ¥j = jos.
Here we set h € N, and we define

1
M:2h7 €= Ev 5:2_h7 j6.6 = jh-

Then
Vol{z € Q| |g(x,j,2")| > £} <27  Vj>j. (3.3.26)

We are now ready to define the subsequence and the sets Ej.
Subsequence. We take the subsequence (u;, ,v;,) where jj, is defined above.
Sets. We first introduce the sets A, and By, defined by

Ap =A{z € Qv (z)] < 2h} =Aj, on, By :={z Q] |g(x,jh,2h)| < %} (3.3.27)
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Finally we define
Ey = thk(Ah n Bh). (3328)

This definition clearly satisfies (@) in Thm To prove (b) note that

Vol(Ef) = Vol(Un., (An)° U Bf) < Y [Vol(Af) + Vol(By)] .
h>k

By Claim 1 and (3.3.26)) we have
Vol(AS) < C 27" Vol(Bf) <27

Hence Vol(E}) < C" <k 27" 1 o0 0. Then ULE), = Q up to a set of measure zero.
Finally, to prove (c¢) note that

FE Q
/ g($,jh,2h)dx < VOl( k) < VOZ( ) —Fh—oo 0.
s 3 h

Therefore

1imhinf flz, uj, (x), v, (z))dz > 1imhinf flz, u(x),vj, (z))dzx
Ey Ey

where we used

lim
h—o0

/E (g, (), 050 (2)) — (0 (1), 05, ()] dt

< / g(x, jn, 2M)dz = 0.
Ey
To conclude the proof of the theorem it remains to prove the two claims.

Proof of Claim 1. v; — v, weakly in LY(Q;R"*%) = sup;, [|lv;[z« < oo, = (since ¢ > 1 and
Vol(Q2) < o0) S = sup; ||lvj|pr < oo. Then Vj we have

S > vl e :/Q|vj(x)|dx2/Ac |vj(z)|de > M Vol( ;M)

.M

Hence the result.

Proof of Claim 2. Remember that if O C R? is open, bounded and with Lipschitz boundary,
then the identity map Id : WH4(Q) — L%(Q) is compact for ¢ > 1. This means that for any
bounded sequence in W14(£2) there exists a subsequence strongly convergent in L9(2). Here
u; — u, in WH(Q; R™) hence sup; ||u; || < oo hence there exists a subsequence converging strongly
in L2(Q; R™). Finally, this implies there exists another subsequence (of the subsequence) converging
pointwise a.e. in . We restrict to this subsequence. Then for a.e. x € 2 we have u;(z) = u.(z).
The result is now a direct consequence of Lemma [43] below. This concludes the proof of Claim 2,
hence of the theorem. |

Lemma 43 Let M > 0, z; — z, € R” and f continuous on € x R™ x R4, Then

lim sup |f(z,z;,8) — f(z, 2, 6)| =0. (3.3.29)
I7oolg<M|

(6]



Proof. By contradiction. Suppose the limit is different from zero. Then there exists a sequence
& and 6 > 0 such that
|f(x,zj7£j) - f(xvz*agj” > d>0 vj

Since the closed ball By, = {¢] [¢] < M} is compact and §; € By, there exists a subsequence
&, converging to some point &, in Bys. Then (z, 2;,,&;,) — (2, 2+, &4). Since f is continuous this
implies

kh*{l;o|f(xazjk’£jk) - f(zvzﬂmgjk)‘ = f(xwz*’f*) - f(xvz*vf*) = 0.

Hence the contradiction. O
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