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Abstract

In this course, we introduce basic mathematical tools needed for the rigorous
analysis of quantum systems and we present some applications in many-body quan-
tum mechanics. The first part focuses on the spectral theorem for self-adjoint op-
erators and discusses several of its applications. In the second part we study low-
energy properties of bosonic many-body systems consisting of N particles moving
in R? and interacting through a two-body potential. Such systems may exhibit the
phenomenon of Bose-Einstein Condensation which will be explained in detail in the
so called mean field regime. The course concludes with basic results on the Bose gas
in the more challenging thermodynamic and Gross-Pitaevskii limits.
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1 Introduction

Consider a system of IV identical, non-relativistic, spinless quantum particles moving
in a box A; C R? of side length L. Such a system is mathematically described by a
normalized wave function 1y € L*(AY) with the interpretation that

d,uwN(l‘l,. . .,J}N) = ‘wN(l‘l, . .,QS‘N)|2 dl‘l . .d$N

defines the probability of finding the N particles near (z1,...,2y) € AY. In this course,
we restrict our attention to bosons which are particles that obey the so called Bose-
Einstein statistics. Bosons are described by wave functions ¢y € Lg(Ag ) which are
symmetric under particle exchange, meaning that

wN(xl7$25 ce 756]\[) = wN(xU(1)7$U(2)) B J"U(N))

for a.e. (z1,x2,...,2N) € A]LV and for all permutations ¢ € Gy. In particular, each
of the N particles can occupy the same one-particle wave function ¢ € L2(A) such
that, for instance, ®V € LZ(AY) is a bosonic wave function (this is in contrast to the
other class of particles, called fermions where no two particles are allowed to occupy the
same one-particle wave function). Bosons are of particular interest in physics, because
at low temperatures they undergo a phase transition to form a so called Bose-Einstein
condensate. The discovery of this phenomenon in the early twentieth century goes back
to N. Bose and A. Einstein [12] 24, 25]. Its experimental verification for strongly dilute
systems [2 23] has been awarded in the late nineties with the Nobel prize in physics.

In a Bose-Einstein condensate, the large majority of the N > 1 particles behaves like
a single one-body wave function ¢ € L?(Ay), the so called condensate wave function.
Mathematically, this means that ¥ is in an appropriate sense indeed close to a pure
tensor product ¢®V. One thus has a very efficient and simple effective description of
the large many-body system in terms of an effective one-body system. In particular,
physical observables are determined to leading order by the condensate .

In quantum mechanics, physical observables are described by self-adjoint operators
A : D(A) — L2%(AY). Given such an observable, its expectation value with regards
to the state ¢y € L2(AY) is given by the inner product (1n, Awn). For example, the
multiplication operator  that multiplies ¥ by € Ay measures the particles’ position.
With the probabilistic interpretation of |¢n(21,...,2n)|? dz1 ... dzy, notice that

<¢N,5¢N>=/ x|ij)N(ac1,...,:vN)|2dwl...de

AL

corresponds to a probabilistic average of the position of the particles. Analogously,
(n, Ay ) for general self-adjoint A : D(A) — L2(AY) has a probabilistic interpretation,
based on the spectral theorem for self-adjoint operators which tells us that A can be
diagonalized in an appropriate sense.

A particularly important observable in physics is the energy of the system. In case
of a non-interacting gas of IV particles without the presence of external fields, the energy



is purely kinetic and Hy takes the form

N

HE® =3 (- A).

1=1

Here, A,, denotes the Laplacian w.r.t. z; € Ar, describing the kinetic energy of the
i-th particle. For simplicity, we impose periodic boundary conditions s.t. a complete
orthonormal set of eigenfunctions of Hp is given by N-fold symmetric tensor products
of the plane waves Az > a — p,(x) = |Ar|73/2e®® € L?(Az), where p € Zr73. A plane
wave ¢, describes in quantum mechanics a particle with momentum p (the possible mo-
menta are discrete, in contrast to a classically mechanical description). The eigenvalues
of Hy are consequently given by finite sums of the form

Z npp2 with the restriction that Z ny, = N.

jUS 2%23 pE 27"23

For this explicitly solvable system, notice that the ground state wave function, the eigen-
function corresponding to the lowest possible energy En = 0, equals indeed a pure con-
densate 4,089: the non-interacting system of bosons exhibits Bose-Einstein condensation
into the constant wave function ¢g.

Despite typical experiments analyzing strongly dilute gas samples, a realistic descrip-
tion should take into account for interactions between the particles. Considering only
pair interactions for simplicity, this can be modeled through Hamiltonians of the form

N
Hy=> (-Az)+ > (@ — =),
i=1 1<i<j<N

In this case, Hy can not be diagonalized explicitly anymore. Can we still determine the
ground state energy or excited energies? Up to which degree of accuracy? And does the
ground state vector exhibit Bose-Einstein condensation in dilute regimes (for instance
in regimes of small particle density p = N/L3 < 1, possibly sending p = py — 0)?

Motivated by the preceding discussion, the aim of this course is twofold: first, we
introduce the functional analytic machinery that is needed to describe and analyze quan-
tum mechanical systems. Most importantly, this includes a thorough discussion of the
spectral theorem for general self-adjoint operators in Hilbert spaces and several of its
applications. Second, we would like to study weakly interacting Bose gases and under-
stand whether they exhibit Bose-Einstein condensation. Here, we start with the simplest
non-trivial interacting systems called mean field systems. In such a regime, systems of
N bosons trapped in a region of R3 are described by Hamiltonians

N

Hﬁf:Z(—A:vﬁ%xt(%))Jr% > vl —ay),

i=1 1<i<j<N

where the factor N~! in front of the two-body interaction ensures that the kinetic and
potential energies are of the same order in V. Among other results, we will show that, in



the limit of large IV, the ground state of the system exhibits Bose-Einstein condensation
into the minimizer ¢p of the non-linear Hartree energy functional

1
Eulp) = / {\VW + Vet ol® + 5 (v \s0|2)|90\2]
and that ¢ solves, for suitable ¢y € R, the non-linear Hartree equation

—Appg + Vextpr + (v * |<PH|2)<PH = €0¥PH-

As the name suggests, the mean field scaling describes a situation in which every par-
ticle interacts equally strong with any of the other particles such that, effectively, the
potential that is experienced by a fixed particle is given by a weak mean or average field,
generated by the remaining particles. After discussing mean field systems, the final
part of the course discusses basic results in the more challenging Gross-Pitaevskii and
thermodynamic limits, putting N particles in a box [~L/2,L/2]® of sidelength L and
studying the corresponding ground state energy in the limit N, L — oo s.t. the particle
density p = N/L? tends to zero like 1/N? (Gross-Pitaevskii limit) or is fixed, but small
(thermodynamic limit). This describes dilute regimes with rare, but strong collisions.



2 Selected Tools from Functional Analysis

In this chapter we introduce several basic tools that are important for the rigorous
analysis of quantum systems. In the presentation we follow for the most part

o Methods of Modern Mathematical Physics I: Functional Analysis
e Methods of Modern Mathematical Physics II: Fourier Analysis, Self-Adjointness
o Methods of Modern Mathematical Physics I1I: Scattering Theory

o Methods of Modern Mathematical Physics IV: Analysis of Operators
by M. Reed and B. Simon.

2.1 Hilbert Spaces

Systems in quantum mechanics are described with the help of complex Hilbert spaces.
First of all, let H be a vector space over C. We recall that a map (-,-) : H x H — C is
an inner or scalar product if it satisfies

i) For all ¢ € H, the map H > ¢ — (¢, ¢) € C is linear

ii) For all ¥, p € H, we have (¢, ¢) = (p, )
iii) For all ¢» € ‘H, we have (¢,1) >0

An inner product induces a norm, defined via || - || = v/(-,:). A complex Hilbert space is
a pair (H, (-,-)) of a complex linear space with inner product (-, )3 s.t. H is complete
w.r.t. the norm induced by (-, ). Two vectors 1, ¢ are called orthogonal if (1, ¢) = 0.
Given a set M C H, its orthogonal complement M- is defined as

Mt ={peH: (ih,p)=0Ypec M}

It holds true that H = M &M+, s.t. MNM~+ = {0}, for any closed subspace M C H. An
orthonormal set is a set of normalized vectors in which each two non-equal elements are
orthogonal to each other. An orthonormal basis S C H is an orthonormal set for which
there does not exist another orthonormal set which contains S as a proper subset. Every
Hilbert space has an orthonormal basis. Unless stated otherwise, we work for simplicity
with separable Hilbert spaces, which are spaces that contain a countable, dense subset
and hence, by Gram-Schmidt, a countable orthonormal basis.

Problem 2.1. Prove that an orthonormal sequence (1) en is an orthonormal basis in
H if and only if every vector 1 € H has the representation ¥ = ZJ-GN@/J]-, V);.

Example 2.1 (L*-spaces). Let (Q, A, i) be a measure space. Then the set of equivalence
classes L*(Q, A, p) = {f : @ = C measurable s.t. [, |f|* du < oo}, equipped with the
usual addition and scalar multiplication and the inner product

(fig)2 = /Qfg dp

defines a complex Hilbert space.



Example 2.2 (Sobolev spaces). Let @ C R? be open, then
HY(Q) = {u) € LA(Q) = L*(, My, Ag) : 00 € LX(Q), Vi = 1, .. .,d},

1s a Hilbert space when equipped with
W) = [ dei@)e) + [ doVpla)- Vola)

Here, 079 denotes the i-th distributional derivative of ¥ and V = (01, ...,0q).

In quantum mechanics, the space L?(£2, M Ao Ad) = L?(Q) (where M »; denotes
the Lebesgue o-algebra induced by the d-dimensional outer Lebesgue measure and Ay
denotes the d-dimensional Lebesgue measure) is used to describe a particle moving in 2 C
R?. The state of the system is described by a normalized vector, called wave function,
¢ € L*(Q). The interpretation is that duy(z1,...,24) = [¥(z1,...,24)|* dz1...dzg
measures the probability for finding the particle in a particular region in Q C R%.

To describe many-particle systems in quantum mechanics, one uses the tensor prod-
uct of Hilbert spaces. Given two Hilbert spaces Hi, Ho and vectors ¥ € Hi, 2 € Ho
we denote by 11 ® ¥g : H1 X Ho — C the conjugate bilinear form, defined by

(1 @ P2)(p1, p2) = (@1, %1) 21, (P2, ¥2) 3,

For such forms, we define

(V1 @ 2,81 @ o)y o = (V1,€1) 3y (Y2, 2) 3, -

By linearity we can extend this map to the linear space £ of finite linear combinations
of the maps 1 @y : H1 x Ha — C, ¢1 € Hy, 12 € Ha, and this yields an inner product.

The tensor product Hilbert space H1 ® Ho of H1 and Hs is defined as the completion
of the the linear space £ w.r.t. the norm induced by (-, )1, oH,-

Lemma 2.1. If {{)a }aen and {pg}gen are orthonormal bases of Hi and Ha, respectively,
then {Ya @ P} (a,8)enxn s an orthonormal basis of Hi1 @ Ha.

Proof. The sequence {9, ® C,Oﬁ}(a,g)ngN is an orthonormal sequence and the claim

follows if we can prove that £ is contained in & = span(yo ® ¢g : o, 8 € N) (why?). To
this end, it is enough to show that ( ® £ € S for every ¢ € H1,£ € Hy. By assumption

on {¢a}aeN and {sﬂg}geN, we can write

¢=> catha, £=Y dspp

aeN BeN
with
S50 =D leal®s 1113, = D Idsl*
aeN BeN



This implies >, 5y |cads|? < 0o which means that > apeN Cadppa ® Ppg € S. Finally,
approximating ¢ ® £ by ZaﬁeN:a,BgN Cadgpa ® 1Pg, we find that

lim sup ’C@é— Z Cadﬂ90a®¢ﬁu
N—oo a,BeN:a,B<N H1@H2
<limsup| Y dg(®@vs— Y cadspa @ 1/16‘
N=oo |l geng<n a,8eN:a,B<N M1
+ limsup [|( ® £ — Z dﬁC®¢BH
N—oo ,BENﬁSN H1®H2
< lim sup ‘C - Z CaPa H£||7-[2 + ||C||H1 §— Z dﬂwﬁ)’ =0.
N=roo a€N:a<N Ha BEN:BSN Ha

O]

Analogously to the product of two Hilbert spaces, we can define Hi ® - - - ® Hy, the
product of n Hilbert spaces Hi, ..., H, (the details are left to the reader).

Example 2.3. A system of two particles moving in R? is described by the Hilbert space
L*(R%) ® L*(R?). The space L*(R%) ® L*(R?) is unitarily isomorphic to L?(R??).

Proof. We first embed L?(R%) ® L?(R%) into L?(R??) through the linear isometric map
IR @ L2(RY) 3 o 09+ ((2,9) = @(@)b(y) ) € LARM),

Considering the fact that ¢ is a linear isometry, the claim follows if we show that ¢ is onto.
To see this, denote by (¢a)aen an orthonormal basis of L2(R?) so that (t(¢a ®¥5))a.seN
is an orthonormal basis of S = +(L?(R%) ® L?(R%)). Now, suppose ¢ € L?(R??) is s.t.

[ dsdya@ps)ile.) = 0. Vo, EN.

ie. ( € St This implies that z — [dy®s(y)((z,y) = 0 € L*(R?) (why?) so that
almost surely in € R?, we have

| dvsu)ca) =0, Ve

But this means that almost surely in € R%, we have ((z,-) = 0 € L?(R?) so that

2 _ 5\
/RdXRddxdy’C(:B,y)! —/Rddx</Rddy]§(;p,y)] ) — 0.

We conclude that S+ = {0} which is equivalent to S = L?(R??), O



Example 2.4 (Fock spaces). Let H be a Hilbert space. The Fock space F(H) over H is
FH) =Ca@PH™ = {(nnen, = (o, 91,82, )t [l + D [¢nll3en < 0o}
n=1 n=1

It is a Hilbert space with the inner product (1, ©) 73 = Vo0 + >opey (U, On)pgon .

In many-body quantum mechanics, particles moving in @ C R? (in the main part
of the course we mostly consider particles moving in R?) fall into two classes, they are
either fermions or bosons. To which symmetry class the particles belong to is related
to their spin, a property we will not discuss further in this course. To describe in
particular systems of bosons properly, we need to introduce the notion of the n-fold
symmetric tensor product of a Hilbert space H. Let &,, denote the permutation group
of n € N elements. We define S,, on the set of vectors ¥ ® o @ -+ ® ¥, € H®",
v, € Hyi=1,...,n, by

1
Sa(1@ @ @ Yn) = 1 Y Vo(1) @ Uo) @+ @ Uo(r)

O'EGTL

We extend S, to a linear map from the set of finite linear combinations of vectors of the
form 11 ® Y2 ®@ -+ ® ¥, € H®" to H®™ and it is not hard to see that S,, is Lipschitz
continuous with Lipschitz constant L equal to L = 1 (in the words of section itis a
bounded, linear operator on H®"). Since the set of finite linear combinations of product
wave functions is by definition dense in H®", S,, extends uniquely to a continuous map
from H®™ to itself. We define H®" = S, (H®") which is called the n-fold symmetric
tensor product of H. H®™ is a Hilbert subspace of H®".

Example 2.5. A system of N € N (identical, spinless) bosons moving in R? is described
by a wave function ¢ € L2(R™) = Sy (L*(RWN)). It is characterized by the property
that for any o € &y and for a.e. (x1,xa,...,xN) € R, it holds true that

w(l‘l,ﬂf% .. .,l’]\[) = ¢($a(1)7$a(2)7- . '?xU(N))

Example 2.6 (Bosonic Fock spaces). Let H be a Hilbert space. The bosonic Fock space
Fs(H) over H is the Hilbert space defined by Fs(H) = C ® @roy HE*™ C F(H).



2.2 Closed, Symmetric and Self-Adjoint Operators

In quantum mechanics, physically measurable quantities, called observables, are de-
scribed by self-adjoint operators. Loosely speaking, the idea is as follows. Consider a
finite dimensional, complex Hilbert space H ~ C" and a Hermitean matrix A : C" — C™.
From linear algebra, we know that A is unitarily equivalent to a diagonal matrix and
that its n eigenvalues are real-valued. Denote by 1, ..., ¢, an orthonormal eigenbasis
of A corresponding to the eigenvalues A\ < Ay < --- < A, (we assume for simplicity
that all eigenvalues are simple). If A describes an observable, then the eigenvalues of A
are interpreted as the possible values of that observable and the postulates of quantum
mechanics assign to each value a certain probability for finding it. More precisely, if the
state of the quantum system is described by ¢ € C", ||¢||cn = 1, the spectral measure
,u;? associated to A and ¢ € C" is defined on P(o(A)) with o(A) = {N;,i =1,...,n} by

w@ = Y wedel?

N EQCo(A)

The expected value of A is given by (1, AY). Note that this is equal to E(£4) where €4
is the random variable \; — £4(\;) = \; on the probability space (c(A), P(c(4)), :“’fb‘)'

In many cases, the Hilbert space H describing the system is not finite dimensional
(think for instance of L2(R3") describing N bosons in R3). Also, observables typically do
not correspond to bounded linear operators (like matrices on finite dimensional Hilbert
spaces), but are in general unbounded (for instance we need differential operators to
describe momentum and kinetic energy of a quantum particle). In such a setting, the
right class of operators to describe physically measurable quantities consists of self-
adjoint operators. In analogy to the above, for such operators it is possible to construct
appropriate Borel probability measures giving the probability for finding the value of an
observable in a measurable subset of R (see section .

A linear operator A : D(A) — H is a linear map from a linear subspace D(A) C H,
called the domain of A, to H. A is densely defined if D(A) is dense in H. We always
consider densely defined operators unless stated explicitly otherwise. A linear operator
A : D(A) — H is bounded if its operator norm is finite, that is

Al = 1A= sup — [[AP]lz < o0
weD(A),lln=1

If A is bounded, it is in particular Lipschitz continuous and can be extended uniquely
to a bounded operator on H. A linear operator is called unbounded if it is not bounded.

Example 2.7. Consider L?>(R) and let 7 : C°(R) — L?(R) denote the position operator,
defined by (Z(p))(z) = zp(x), v € R. Then & is densely defined and unbounded.

Proof. Tt is a standard fact that C2°(R) is dense in L?(R). The fact that 2 is unbounded
can be proved, for instance, by considering some 0 < ¢ € C°((—1,1)) with |p]2 =1
and its translates ¢, = ¢(- —n) € C°((n —1,n+1). Then ||@,||2 =1 for all n € N and

|Z¢nl3 :/ dz 2%|pn(2)]* > Cn® = 00 as n — oo.
(n—1,n+1)

10



O]

Problem 2.2. Show that iV : C2*(R?) = (L2(R4))? and —A = =YL | 02 : C°(RY) —
L*(R%) are unbounded.

Let A: D(A) — H be a linear operator. The resolvent set p(A) of A is defined by
p(A) = {2 € C: (A — 2) has a bounded inverse (A — 2)™' : H — D(A)} (2.1)

If 2 € p(A), we call R,(A) = (A — 2)7! the resolvent of A at z € C. The spectrum o(A)
of A is defined by
o(A) = C\ p(A) (2.)

The discrete spectrum oq(A) C o(A) of A is the set of isolated eigenvalues of A of finite
multiplicity. The essential spectrum ocess(A) is defined by gess(A) = o(A) \ 04(A).

Theorem 2.1. Let A : D(A) — H be a linear operator. Then p(A) C C is open,
o(A) C C is closed and the function z — R,(A) is analytic in p(A). Moreover, the set
{R.(A) : z € p(A)} is a set of commuting operators and it holds true that

RA(A) = Ru(A) = (A= w)RA(AR,(4) (7 i, X € p(4))

Remark 2.1. Analyticity of z — R,(A) in Theorem means that for any zo € p(A),
the operator-valued map z — R.(A) has a norm-convergent power series erpansion in
z — 2g for all z € p(A) in some neighborhood around zy.

Proof. That [R,(A), Rx(A)] = 0 follows from [(A — i), (A — X)] = 0, which implies that
R, (A)R)(A) is the inverse to (A —p)(A —\), i.e. equal to Ry\(A)R,(A). The remaining
claims follow from a geometric series argument and the useful identity

A—z=(A=2)(1-(A=2)""(z - 20))

for suitable z,z9 € p(A) . Indeed, if 29 € p(A), then the previous identity shows that
B, (z0) C p(A) for r = ||R,,(A)||, because for z € B,(zp), we have

(1 —(A- zo)_l(z — zo))_l = ZR];O(Z — zo)k

k>0

Note that the r.h.s. in the previous equation is a norm-convergent series in z — zg. This
proves that p(A) is open, o(A) is closed and that z — R,(A) is analytic in p(A). The
resolvent identity follows from

Ry(4) = Ru(A) = Ry(A)(A — = A+ MR, (A) = (A — i) Ra(A) Ry (A).

11



As mentioned earlier, we will need to work with unbounded operators like differential
operators. Typically, we start with a domain like C’SO(Rd) on which we understand
the action of the operator very well - in order to be able to talk about self-adjoint
realizations of a given operator, though, we need in general to extend the operator onto
larger domains (and possibly add some boundary condition, see below for examples and
more details). For such extensions, we typically want to satisfy at least some minimal
requirement: we call an (not necessarily densely defined) operator A closed if its graph

T(A) = {(¢, AY) : ¢ € D(A)}
is closed as a subset of H x H. In other words, A is closed if and only if
tp w1 EH and Ay, > pEH as n— o

implies that
e D(A) and Ay = ¢.

Equivalently, D(A) equipped with || - [[p(a) = [| - [[3 + [[A(-)[|3 is a Banach space.
Problem 2.3. Find an explicit example of an operator which is not closed.

We call Az an extension of Ay if I'(A;) C I'(A2), which means that D(A;) C D(A2)
and (Ag)‘D(Al) = A;. We say that an operator is closable if it has a closed extension.

Lemma 2.2. If A is closable, it has a smallest, closed extension A with T'(A) = T'(A).
Moreover, A is closable if and only if ¥, — 0 and Ay, — ¢ as n — oo implies ¢ = 0.

Proof. Let A be closable, then it has a closed extension B, by definition. This means
I'(A) c I'(B) and I'(B) is a closed, linear subspace in ‘H x H. Now, consider the closure

I'(A) Cc T'(B). Since I'(B) is the graph of a linear operator, it has the property that

(0,¢) e I'(B) implies ¢ =0.

As a subset of T'(B), also I'(A) has this property and it is also clear that I'(A) (and thus
I'(A)) is a linear subspace of H x H. Define A : D(A) — H by

D(A) = m(T(A)), Ap = m({1} x HNT(A)) Vo € D(A).

Due to the linearity of I'(A), the domain D(A) is a linear space and due to the property
above, A is well-defined: if (v, ), (¢,¢’) € T'(A), then (0,¢ — ¢') € T'(A) and thus

¢ = ¢'. In other words, for every 1 € D(A), there is a unique ¢(= Av) € H such that
(1, ) € T(A). The linearity of A follows from this with the linearity of I'(A).

In conclusion, A is a closed linear operator with I'(A) = I'(A4), in particular it is a
closed extension of A. Any other closed extension B has the property that I'(4) C T'(B),
so A is the smallest closed linear extension of A.

For the second statement, notice that A is closable if and only if W has the property
that (0,¢) € T'(A), then ¢ = 0. Both the if- and the only-if-statements follow from the

previous arguments. ]

12



Example 2.8. ([63, Problem 1]). Let {¢n, € H : n € N} be an orthonormal basis of
a separable, infinite dimensional Hilbert space H. Let poo € H be an element that is
not a finite linear combination of the basis elements {p, € H : n € N}. On the dense

subspace D(A) = span({p, € H : n € N} U {pw}), we can define the linear operator
A:D(A) = H by

N
A()\Sooo + Z Un@n) = oo

n=1

Then T'(A) is not the graph of a linear operator, because (Yoo, Po), (Poo,0) € T'(A).

Example 2.9. (Linear differential operators are closable). Consider a linear differential
operator A =73, n Aa0" on C®(RY), where a = (v, ..., aq) € N& and

0% =07 ... 9y
Then A : C*(RY) ¢ L2(R?) — L?(RY) is closable.

Proof. We show that v, — 0 and A¢,, — ¢ € L?(R%) as n — oo implies ¢ = 0. Let
¢ € C*(R%), then by integration by parts

(6602 = lim (6. dv) = i [ o (3 (D006 )il

i
n—oo d
R la|<N

— tim (3 0T ) e =0,

lal<N
Hence, ¢ = 0 by density of C2°(R?) in L?(R%), so that A is closable. O

Next, we introduce the adjoint of a linear operator. Let A : D(A) — H be a densely
defined operator on ‘H and define D(A*) by

D(AY) = {cp € H:3IneH with (p, A)y = (n, V) Y € D(A)} CH

Given ¢ € D(A*) s.t. (@, Ay = (n, )y for all » € D(A) we set A*¢ = 7. The
operator A* : D(A*) — H is a well-defined (why?), linear operator and called the adjoint
of A. If A* is densely defined, we let A** = (A*)*. For the notion of self-adjointness, we
need to know whether A* is densely defined. In general, this need not to be the case.

Example 2.10. Suppose f is a bounded, measurable function, but such that f ¢ L*(R).
Define D(A) = {¢ € L*(R) : [ dx f(x)y(z) € C}. Then D(A) is dense in L*(R) (why?)
and on D(A) we set A = ([ dx f(z)(z))o, for some fied 0 # 1y € L*(R). Let’s
consider the adjoint A* of A. If ¢ € D(A*), then

()2 = g Av)a = ( [ dn f@)(@) (g v)a = [ do (g v)a) Fla)ota)

for all ¢p € D(A). This means that A*¢ = (p,%0),f, but f & L*(R), so that we must
have (p,10)2 = 0. In particular, D(A*) is not dense, but consists of {1}*.
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Theorem 2.2. Let A: D(A) — H be a densely defined operator on a Hilbert space H.
Then the following holds true.

i) A* : D(A*) — H is a closed operator.
ii) A is closable if and only if D(A*) is dense, and in this case A = A**.

iii) If A is closable, then (A)* = A*.
Proof. i) Consider ‘H x H as Hilbert space with the inner product

(01, Y2), (01, 02))Hxw = (1, 01)n + (P2, 02)1 (VaP1, 91, 01,02 € H)
Define V : H x H — H x H by

V() = (—p,9).

Then V is clearly unitary. As a consequence, V(E)+ = V(E') for every subspace
E CH xH. Indeed, if (£, Vn)pxn = (V*E muxy = 0foralln € E, then { = V(V*E) €
V;(EL). On the other hand, if £ = V(€) € V(EL), then (£, V))uxn = VE VD) uxn =
(€M puxpn =0 forallp € E, ie. &€ V(E)™..

Now, denote by T'(A) the graph of A. We claim that V(I'(A))*+ = I'(4*), showing
that T'(A*) is closed. Indeed, (¢, ¢) € V(I'(A))* if and only if

0= <(§7 90)7 (_A¢>w)>’H><"H = _<§7A'¢>H + (907 w>H7 Vw S D(A)a

which is the case if and only if (£, AY)y = (@, 1)y for all b € D(A). The latter statement
holds true if and only if £ € D(A*) and ¢ = A*¢, i.e. (& ¢) € T'(A*).

ii) Assume that A* is densely defined. Since A is linear, I'(A) is a linear subspace of
H x H. With V2 = 1 and the proof of i), this implies

L(4) = (DA = (VAI(A) 1) = (VI(VIT(A)H)T = (VI(A)F =T(4™)

This shows that I'(A4) is the graph of A**, so that A is closable with A = A**.

If we assume on the other hand that D(A*) is not dense, we may consider an element
0 # ¢ € D(A*)*. It then follows that (v,0) € I'(A*)* which implies that V(I'(A*)1) =
(V(T'(A*)))* can not be the graph of a linear operator, because (0,v) € V(I'(A*)1).
But by the previous step, (V(I'(A*)))* =I'(A), so that A is not closable.

it1) If A is closable, D(A*) is dense in H and A* is closed s.t.

—— i)

A =T 2 Ay = () = (a2 @Ay
U

In contrast to the finite-dimensional case, in infinite dimensions there is an impor-
tant distinction between symmetric and self-adjoint operators — the spectral theorem
mentioned earlier is only true for self-adjoint operators (but not for symmetric opera-
tors which are not self-adjoint). Having a self-adjoint realization of a given unbounded
operator is often intimately connected with choosing an appropriate domain. In fact,
spectral properties of unbounded operators are sensitive w.r.t. the choice of the domain.

14



Example 2.11. Consider A : H'([0;1]) — L%([0;1]) defined by Ay = i0,. Then
the spectrum of A is given by the whole plane o(A) = C. Indeed, every z € C is an
eigenvalue of A with a possible eigenfunction given by x +— e~ € H1([0;1]). Notice
also that A is closed, because H'([0;1]) with the graph norm is a Banach space.

At this point, let us recall that any ¢ € H'((0;1)) admits an absolutely continuous
representative 1 € C'([0; 1]), which satisfies

. _ b
3(b) = d(a) + / ds ' (s)

for every a,b € [0;1]. In particular, this gives meaning to ¢(0) and v (1). In the following
we therefore identify implicitly H'([0; 1]) with H*((0; 1)), including the boundary of (0; 1)
as a reminder of this fact.

Example 2.12. Consider A : D(A) — L*([0;1]) defined by A = id1b, as in the
previous example, but on the modified domain

D(A) = {v € H'([0;1]) : (0) = 0}.
The operator A : D(A) — L?([0;1]) has empty spectrum.

Proof. We will show that A — z is invertible for every z € C, with bounded inverse.
Indeed, given ¢ € L%(]0;1]), this amounts to solving the ODE

Opp = —izp —ip  with  ¢(0) =0.
Motivated by Duhamel’s formula, we analyze the operator S, : L?([0;1]) — D(A)
(Se0)a) = =i [ dse ()
for which we have
(=280 = (=i [ dse ™ 90s) ) 50—

ie. (A—2)S, =1, as well as
(S:(A — 2)p)(z) = / ds @9 (D, — i) (5)
0

= p(x) — e *p(0) + /Om ds e iz — izp)(5) = ()

for all ¢ € D(A), by integration by parts. Thus, S.(A — 2) = 1|p(4). This means that
S, = R, is the resolvent of A at z € C and we can also check that it is bounded. Indeed

1 2
Hstf?H%S\ISZSOHgoS(SUP / ds,e—ww—%(s)\)
z€[0;1] JO

1
< ( n /0 ds|e—”<f—s>|2>||so||% < .ol

z€[051
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by Cauchy-Schwarz, where C, > 0 is some finite constant. Notice that the boundedness
of S, follows alternatively from the closed graphed theorem. O

A linear operator A : D(A) — H is called symmetric if A C A* meaning that
D(A) C D(A*) and Alp(ay = A. This is equivalent to

(¥, Ap)y = (AY, p)n

for all ¥, € D(A). An operator is called self-adjoint if A = A* (ie. if A C A* and
A* C A), that is, if A is symmetric and D(A) = D(A*). If A: D(A) — H is symmtric,
it is closable by Theorem [2.2ii), because D(A*) D D(A) is dense in 7. In this case, the

closure of A is given by A = A**. Since A* is also a closed extension of A, we deduce
ACA™ C A”

for any symmetric operator A : D(A) — H. If A is also closed, we have
A=A" CA”

and if A is self-adjoint, we have that A = A™ = A*.

We call a symmetric operator A : D(A) — H essentially self-adjoint if its closure
A : D(A) — H is self-adjoint. If A: D(A) — H is closed, we call D C D(A) a core for A
if (A|p) = A. If Ais essentially self-adjoint, it has a unique self-adjoint extension: indeed,
if B is some self-adjoint extension, we have A*™* C B and B = B* C (A™)* = A*™* C B.
An operator A : D(A) — H is essentially self-adjoint if and only if A C A** = A*.

Problem 2.4. Check, more generally, that if A C B are both densely defined linear
operators and B extends A, then A* extends B*, B* C A*.

Example 2.13. Let’s consider again A = i0, and let’s define it on D(A), where

D(A) = { € H'([0;1]) : 1(0) = 0 = (1)}

We might suspect that, the more boundary conditions we impose on A, the fewer restric-
tions we have on the domain of A*. In fact, we have A C A* with D(A*) = H1([0;1]).

Proof. To see that A is symmetric, let ¢, € D(A), then integration by parts implies

(. Ay = [ dapla)(i0:0)@) = 5]~ [ do @) a)ila) = (A0

Hence, A C A*. To compute D(A*), we notice that the same computation involving
integration by parts shows that H'([0;1]) € D(A*). On the other hand, suppose that
¥ € D(A*). By definition, this means that there exists n (= A*1) € L?([0;1]) such that

1 1
WA@FfAM@@@@ZAW@%@
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for all ¢ € D(A). In particular, the last identity holds true for all ¢ € C2°((0;1)) and this
just means that the distributional derivative of 1) can be identified with —in € L2([0; 1]),
i.e. D(A*) C H([0;1]). By the Sobolev embedding in R, we know additionally that 1)
has the absolutely continuous representative

0:1] 3 o 1b(x) = (0) —/0 dsn(s) € H'(0:1]).
O

The operator A = i0, represents the momentum of a quantum particldﬂ Since
observables should correspond to self-adjoint operators, the previous examples lead to
the question whether A admits any self-adjoint extension at all.

Example 2.14. This time we define A = i0, on the domain
D(A) = {y € H'([0:1)) : $:(0) = (1)},
then A : D(A) — L*([0;1]) is self-adjoint, i.e. A= A*.

Proof. Integration by parts shows as before that A C A*. To show the other direction,
we argue as in the previous example to see that D(A*) ¢ H'([0;1]) with A% = i0,%) for
all v € D(A*), using that C2°((0;1)) C D(A). But then, if ¢ € D(A*), we can choose
¢ =1¢€ D(A) and conclude

1
0= (4, Ag)y = i /0 ds (0.0)(s) = i((1) — P(0)),

so that ¢ € D(A). O

Problem 2.5. There are in fact uncountably many different self-adjoint extensions of
A =i0,. Prove that A: D(A) — L?([0;1]) is self-adjoint if we consider it on

D(A) = {¢ € H'([0;1]) : (0) = a9p(1)},
where a € C is fizred and such that |a| = 1.

As a final remark with regards to the previous examples, we mention that the closed
symmetric extensions of a given closed symmetric operator, and the question whether or
not it admits self-adjoint extensions, can be characterized precisely by using the notion
of deficiency indices. We refer the interested reader to [64, Chapter X.1].

More precisely, the momentum operator p in quantum mechanics corresponds to the generator of
the unitary group of translations. It corresponds to the physical quantity that is preserved in closed
systems due to the homogeneity of Euclidean space. For suitable ¢, we therefore have

(59) () = —i lim = (U(y)p — 9)(x) = —i lim ~ (p(z — y) — p(z)) = (1Basp) (x),

y—=0 Yy y—0 Yy

interpreting U(y) = e~ ?¥ (see the section on the spectral theorem below for the rigorous definition of
the strongly-continuous unitary group (U(y))yecr).
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Theorem 2.3. Let A: D(A) — H be a closed, symmetric operator on a Hilbert space
H. Then the following holds true.

i) We have that ran(z— A)* = ker(z— A*) and dim(ker(z — A*)) is constant throughout
the open upper and lower half-planes in C.

ii) The spectrum of A is equal to one of the following subsets of C: the closed upper
half-plane, the closed lower half-plane, the entire plane or a subset of the real line.

iii) A is self-adjoint if and only if o(A) C R.

Proof. Before we start with the proof of i), let z = v+iu € Cs.t. u# 0. For ¢ € D(A),
we have by the symmetry of A and Cauchy-Schwarz

1z = A)ll3, = v2llelif; + Al — 2v(p, Ap)a + 1llel3, > w2 llell% (2.3)

We deduce from here and the closedness of A that ran(z— A) C H is closed, that (A —z2)
is injective whenever Im(z) # 0 and that | R,(A)|lop < [Im(2)| 7L if 2 € p(A).

i) The equality

ker(z — A*) = ran(z — A)* (2.4)

follows from (¢, (Z—A)g)y = 0 for all ¢ € D(A) if and only if (z—A*)y = (Z—A)*¢Y = 0.

Given z = v+iu € C\R as above, we show that dim(ker(z — A*)) is locally constant.
To this end, consider w € C and let ¢ € ker((z + w) — A*), |||l = 1. Now suppose
that ¢ € ker(z — A*)L, that is, (¢, )3 = 0 for all ¢ € ker(z — A*). By and the
closedness of ran(z — A), this implies that ¢ € (ran(z — A)1)+ = ran(z — A). Hence,
there exists some ¢ € D(A) with (z — A)¢ = v so that, by (2.3),

0= ((z+w = A, = V5 + T, n > 1 = wlligln = 1= [pl ]
Obviously, the last inequality gives a contradiction if |w| < |u| in which case therefore
ker((z +w) — A*) Nker(z — A*)T = {0}
But this implies
m = dim(ker((z + w) — A%)) < dim(ker(z — A*)) = n.

Indeed, assume w.l.o.g. that m is finite. Denoting by P : ker((z + w) — A*) — ker(z —
A*) the orthogonal projection onto ker(z — A*), restricted to ker((z + w) — A*), the
rank theorem implies m = dimker(P) 4+ dimran(P). By the above equation, however,
dim ker(P) = {0}, because ker(P) = ker((z +w) — A*) Nker(z — A*)* = {0}. But then
ran(P) C ker(z — A*) contains m linearly independent vectors so that m < n.

Now, if we switch the roles of z and z + w and assume |w| < %', we also conclude
that dim(ker((z + w) — A*)) > dim(ker(z — A*)). Indeed, switching the roles of z and

z + w implies as above

0={((z— A%, n > 1— |p+Imw| |w| > 1 —2|u| |l
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which is a contradiction if |w| < % Thus dim(ker((z + w) — A*)) > dim(ker(z — A*))
and hence dim(ker((z + w) — A*)) = dim(ker(z — A*)) for |w| < %

i1) The bound implies that (z — A) is injective for any z € C\ R and the inverse
(z— A)~!:ran(z — A) — D(A) is defined on all of H if and only if

dim(ker(zZ — A*)) = 0 = dimran(z — A)~*.

In the latter case, z € p(A) with ||R.(A)|lep < [Imz|~!, by (2.3). By parat ¢), we know
that dim(ker(z — A*)) is locally constant around z € C with Imz # 0. This implies
that the upper and lower half planes are both either entirely contained in p(A) (if e.g.
dim(ker(i — A*)) = 0 for the upper half plane and dim(ker(—:i — A*)) = 0 for the lower
half plane) or they are contained in o(A). Since o(A) is closed, it can therefore either
be empty, equal to the closed upper half plane, to the closed lower half plane, to the
complex plane or a subset of the real line.

i11) Suppose A = A* and ker(i — A) # {0}, that is dim(ker(z — A*)) # 0 for z = —i.
Then, there exists 0 # ¢ € D(A) s.t.

i, Yy = (o, APy = (A, ) = =iy, )n

This implies 1) = 0, a contradiction. Arguing in the same way for ker(i + A), we conlude
from i), %) and A = A* that o(A) C R.

Conversely, if 0(A) C R, i) and ) imply that ran(+i — A) = H. Let ¢ € D(A¥)
and choose £ € D(A) s.t. (i — A*)yY = (i — A)&. Since £ € D(A) C D(A*), we have
(¢ — &) € D(A*) s.t.

(1—A)W—-§ =0
This means that (¢ — &) € ker(i — A*) = ran(—i — A)* = {0}, i.e. E =4 € D(A). O
Corollary 2.1. Let A : D(A) — H be self-adjoint and s.t. {p, Ap)y > 0 for all
¢ € D(A). Then o(A) C [0;00).
Proof. For x € (—o0;0), the positivity implies that

Iz — A)ell3, = I ApllF, — 22(p, Aphn + 2|l 0ll, > 2°llll3

for all ¢ € D(A). Arguing as in Theorem we deduce that dim(ker((z — A*)) is
constant for all z € C\ [0, 00). Since A is self-adjoint, we conclude dim(ker((z— A*)) =0
for all z € C\ [0, 00) such that o(A4) C [0; c0). O

Corollary 2.2. Let A : D(A) — H be a symmetric operator. Then, the following is
equivalent.

i) A is essentially self-adjoint.
i) ker(A* i) = {0}.
iii) ran(A £ 1) is dense.

Proof. We apply Theorem and notice that ran(A £ 1) = ran(A 4 i) (ezercise). [
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2.3 Examples of Self-Adjoint Operators and Self-Adjointness Criteria

In this section, we give several examples of self-adjoint operators which are important
for the analysis of the Bose gas in the later part of the course.

Proposition 2.1 (Multiplication Operators). Let (€2, A, u) be a measure space and let
f:Q = R be a real-valued, measurable function which is finite for a.e. x € Q). Define
Aj : D(Ay) = L*(Q, A, p) as the multiplication operator As(p) = fo on the domain
D(Af) = {¢ € L*(Q, A, p) : fp € L2, A, n)}. Then Ay is self-adjoint.

Proof. Let ¢ € L*(Q0, A, 1). Using the Dominated Convergence Theorem, we see that
the sequence (Y X{|f|<n})nen With ¥xy r<ny € D(Ay) for all n € N, satisfies

Jim ¥ — ¥xqf1<nille =0

Hence, D(Af) C L?(Q, A, u) is dense. Since f is real-valued, it is clear that Ay is
symmetric. Ay is also closed, since ¢, — ¢ € L*(Q, A, u) and Af(p,) — ¢ € L*(Q, A, p)
as n — oo imply ¢¥(z) = f(z)e(z) for a.e. x € Q by choosing suitable pointwise a.e.
convergent subsequences. In particular, ¢ € D(Ay) and ¥ = Af(p) = fe. Finally,
(f+i)7': L2, A, ) = D(Ay) and (f —4)~' : L3(Q, A, u) — D(Ay), defined pointwise
a.e. in ) as multiplication operators, are well-defined and bounded which follows from

1 +3) " Hloos 1(F = 9) " Hloo < 1
Thus, {£i} € p(Ay) s.t. o(A) C R showing that Ay is self-adjoint by Theorem 2.3 [
Example 2.15. The Laplace operator A : H>(R?) — L*(RY) is self-adjoint. Denoting
by & : L2(R?) — L2(RY) the L?(RY)-Fourier transform, that is
FUNG) = [ doe e f@) (v peR)

the Laplacian is in fact unitarily equivalent to the multiplication operator FAF' :
F(H*(RY)) — L*(R?) defined by

(FAF ) (p) = —4n?[p[*P(p), for a.e. p € RY

Moreover, A is essentially self-adjoint on C°(R?). To see this, let ¢ € D(Alc’coo). By
definition of the closure, this implies that there exists a sequence (¢n)nen in C2°(R?)
and v € L*(R?) such that

Jim [lo = pplla = lim [l — Appll2 =0

We conclude from the Fourier characterization of H?(RY) that (¢n)nen s a Cauchy
sequence in H?(R?). By the completeness of H?(R?), this implies that o € H?(R?)
and 1) = Ap, i.e. Ao C A Since C*(RY) c H*(R?) is dense, it is also clear that
A C @, so that altogether Ajco = A.
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Notice that in the last example we have used that self-adjointness is preserved under
unitary transformations. That is, if A : D(A) — H is self-adjoint on the Hilbert space H
and if U : H — # is a unitary map to the Hilbert space , then UAU ! : U(D(A)) — H
is also self-adjoint. In fact, the spectrum o(A) of a linear operator A is invariant under
unitary conjugation, because R,(UAU 1) = UR,(A)U~! for all z € p(A).

Example 2.16. Consider the space L*([0;1]%) for which {x — €>™P* : p € Z} is a
complete orthonormal basis. The discrete Fourier transform §q : L*([0;1]4) — ¢2(Z%)
is a unitary map and we can define the Laplacian with periodic boundary conditions
A : D(A) — L2([0;1]%) as the Fourier multiplier

(Fa AT, )y = —4n2|p|* [, Vp € 27

with domain D(A) = S(;l{f = (fp)pezd € 2(z7%) : > pezd ]p|4\]?p|2 < oco}. We can
identify the operator with the Laplacian A on L?(T?), where T¢ = RY/Z9 denotes the
d-dimensional unit torus.

In quantum mechanics, a special role is given to the Hamilton operator, or simply
Hamiltonian, which is a self-adjoint operator describing the energy of the system. For
the systems considered in the later parts of the course, it is essentially given by the sum
of an operator describing the kinetic energy of the particles and an operator describing
the interaction energies among the particles. The kinetic energy is described by (a self-
adjoint realization of) the Laplace operator while the interaction energy is described by
a multiplication operator. To ensure the sum of such operators to be self-adjoint, we
present two basic results: the Kato-Rellich Theorem and Kato’s inequality.

The Kato-Rellich Theorem shows that self-adjointness is stable under suitable per-
turbations, as defined as follows. Let A : D(A) — H and B : D(B) — H be densely
defined linear operators on some Hilbert space H. We say that B is A-bounded if

i) D(A) C D(B)

3 (2.5)
it) Ja,beRst. Ve D(A): [|Bo|ln < allAp|lx + blle|n

Note that to assume i) is quite reasonable if B is supposed to be a perturbation of
A: if Ay makes sense, By should certainly make sense as well.

The infimum over all @ € R such that i7) holds true is called the relative
bound of B with respect to A. If the relative bound is equal to zero, we say that B is
infinitesimally small with respect to A.

Theorem 2.4 (Kato-Rellich Theorem). Assume that A : D(A) — H is self-adjoint, that
B : D(B) — H is symmetric and that B is A-bounded with relative bound ay < 1. Then
A + B is self-adjoint on D(A) and essentially self-adjoint on any core of A.

Proof. By Theorem it is enough to prove that ran(A + B +iu) = H for p € R with
|| sufficiently large. To this end, the perturbative idea is to rewrite

A+B+ip= (1+BA+ip) ") (A+in)
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and to show that C = B(A +ipu)~! has operator norm less than one. As a consequence,
1+ C :H — H is invertible: its inverse can be computed using the Neumann series

[e.9]

(1+C)h=> (-1)*c*

k=0

and, since iy € p(A), we conclude that ran(A + B +ip) = H.
So, let us prove that C has operator norm less than one if |u| is sufficiently large.
First of all, we have for all ¢ € D(A) that

1A +i)ellz, = | ApllF, + 12l el > [ Avllz,

This implies that [|A(A + i) gy < 1. From Theorem we also know that
[(A+ip) Yz < [pl~!. Hence, from the A-boundedness of B we find for some a < 1

IB(A+ip) "l < all ACA +ip) ™l + bl (A + i)™ lla < (a+ ] ~10)[9]]

for all ¢ € H. If we choose |u| sufficiently large, we obtain that ||[C[zz) < 1.
The statement about the operator core can be seen as follows. Let D C D(A),
then ¢ € D(Ajp) iff there exists a sequence (¢n)pen in D, such that ¢, — ¢ and

Ap, — ¢ € H as n — oco. By (2.5), (Byn)nen and, therefore, (Ag, + Bn)nen
are Cauchy sequence in H so that (¢p, (A + B)gn)nen converges to some element in

L((A+ B)|p), i.e. D(A) = D(A)p) € D((A+ B)p). This implies with the first step
and (A + B)|D C (A + B)|D(A) that

H =ran(A+ B+i) Cran((A+ B)p £1).
Thus, (A + B)p is self-adjoint and (A + B)|p = (A + B)|p(a), because
(A+ B)p C (A+ B)pa) = (A+ B)pay C (A+ B)p.
U

Proposition 2.2. Let V € L?(R3)+ L>(R3) be real-valued. Then —A+V is essentially
self-adjoint on C2°(R3) and self-adjoint on H*(R3).

Proof. We apply Theorem and view the potential V' as a perturbation of —A. Write
V = Vi + Vi, where Vo € L?(R?), V., € L>(R3), then for ¢ € C>(R3), we bound

Vella < [[Vallzll¢lloo + [[Vaollooll@ll2-

Applying the inverse Fourier transform and Cauchy-Schwarz, we estimate

1
lellse < 13701 < /|> LI pIPF (@) (p) + Cell o2
plze™

Ip?

< </p|2€2 dp |pl’4>l/2</RS dp !p|4131(90)(p)\2> -

< Cef| = Aplla + Cellgll2
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for some universal constant C' > 0 and for all € > 0. By density of C°(R3), the previous
inequality is also true on H?(R?) and the proposition follows from Theorem The
statement about essential self-adjointness follows from the fact that —A is essentially
self-adjoint on C2°(R3). O

As a corollary, we conclude that —A — % is essentially self-adjoint on C°(R3).

This Schrodinger operator describes (after a change of variables to center of mass and
relative coordinates) the hydrogen atom, consisting of one proton and one electron (—e is
interpreted as the charge of the electron). That the potential z + |x|~! is infinitesimally
small with respect to —A can alternatively be seen through Hardy’s inequality.

Lemma 2.3 (Hardy’s inequality). For all ¢ € H'(R?) and d > 3, we have that

2
[l el], < mHVgon-

Proof. We follow [53, Prop. 10.3]. Denote by p = iV and by Z multiplication by z in
R?. Tt is an elementary computation to check the commutator identity

d\a:r2 = —i[\x|71ﬁ|xlfl,§] =: [|w!718j|:c\*1,:cj],

d
=1

J
in C°(R?). Indeed, we have
[|a:|_10j|x|_1,xj] :]:U|_10j|1‘|_1a:j — xj|x|_18j]x|_1|x]_1(8jxj — xjaj)|x|_1 = |x|_2.
This shows
dll|z| " |3 = dp, x| %p)2 =(p, —i[|z| ' Dlz| ", Z]e),
=2Im(|z|"'p|z| o, Tp)2
=2Im(p o, Zlz|>p)2 + 2(e, x| *p)2,
so that for all ¢ € C°(R3), we have
(d—2)||lz| " ¢ll3 = —2Im(p e, T |z %p)o.

The claim now follows by applying Cauchy-Schwarz on the r.h.s. of the last equation
and by using the density of C°(R?) in H'(RY). O

Problem 2.6. Use Hardy’s inequality to prove that x — |z|=! is infinitesimally small
with respect to —A in R3.

Proposition 2.3. Let v € L?(R3) + L>(R3). Then the operator

N
Hy = Z(_Aa:i) + Z v(z; —xj)
=1 1<i<j<N

is essentially self-adjoint on C°(R3*N) and self-adjoint on H?(R3Y).
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Remark 2.2. The Hamiltonian Hy defined in Theorem describes a system of N
particles that move in R® and interact through the pair potential v € L*(R3) 4+ L™ (R3).
By (—=Ay,), we denote the Laplacian w.r.t. the i-th coordinate v; € R®, i=1,...,N. It
describes the kinetic energy of the i-th particle.

Proof of Proposition[2.3. As before, we apply Theorem [2.4] by viewing the interaction
operator as a perturbation of the Laplacian. Choose w.l.o.g. ¢ = 1,57 = 2 and let
v = vy + vz where v; € L2(R?), vy € L™®(R?). For any ¢ € H?(R3V), we certainly haveﬂ

[v2(z1 — 22)0ll2 < (U2l lll2

Hence, let us focus on bounding v; € L?(R?) in terms of the Laplacian. Denoting by
Xn_2 = (x3,24,...,2N), we proceed as above and use Fubini so that

v (21 — 22) |3 < /
R?’ N

= 6/3N |(_A:Jc1)90($1,$2,XN_2)|2 dridradX n_o
R

(= 2 ages o 2, Xov-) e ey drad Xy

+C€/ ’@(xlaq"ZaXNfQ)‘Z dxldSUQdXN,Q
R3N
N

<c [ [ Eane@| dotcpls

i=1
Since € > 0 can be chosen arbitrarily small, the claim follows from Theorem O

Hamiltonians as in Proposition describe particles that move in all of R? and
interact via some pair interaction. When we study the energy of a system of bosons,
we consider instead Hamiltonians which describe particles that are trapped in a finite
region in R3. This can be modelled by adding an external potential Vey; € Li2, (R3) with
Vext () — 00 as |x| — oo. The growth of Vi at infinity prevents that particles escape
to infinity so that they are effectively trapped in a finite region in R3. To prove the
self-adjointness of Hamilton operators with growing potentials, we use Kato’s inequality
which is a suitable bound interpreted in distributional sense. Before discussing this
result and its consequences, let us recall a few basics on distributions. For concreteness,
we describe a hands-on approach as discussed for example in [73, [46].

A natural problem in analysis is to solve partial differential equations. Given such an
equation, one may ask for example if it admits a regular solution, but of course we can
in general not simply integrate a PDE. It is usually not even clear if a solution exists and
what its optimal regularity might be. The question then arises where, i.e. in what kind
of function space, we should start to look for a solution - and with minimal assumptions,
we might want to look in a space of rather rough objects whose regularity properties
can then be analyzed once a solution is found. Distributions are a certain class of such

2For notational simplicity, we denote by v(z; — x;) the multiplication operator which is defined a.e.
in R®" as the multiplication by v(z; — x;) at & = (1,...,Ti,...,Lj,...,Tn) € RV,
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rough objects and they generalize the concept of a function. Let 2 be some open subset
in RY, then we denote by D(Q) = D = C(Q) the set of test functions (unless stated
explicitly, the choice of base space Q will be clear from context). In D, we define the
following notion of (sequential) continuity: a sequence (¢n)nen, such that ¢, € D for
all n € N, converges to ¢ € D in D if and only

i) 3 K C Q compact such that supp(y,) C K Vn € N,
i) lim sup |0%(¢n — )| =0 Va € N&.

n=00 1)
A distribution T is a linear functional 7' : D — C which is (sequentially) continuous in the
sense that lim, o T(¢n) = T(¢) whenever lim,_, ¢, = ¢ in D. It is straightforward
to check that the set of distributions with the usual addition and scalar multiplication
forms a vector space which is denoted in the sequel byE| D'(Q2). We say that a sequence
of distributions (7},)nen, such that T, € D’ for all n € N, converges (weakly) to T' € D’
if and only if lim, o Ty, () = T'(p) for every ¢ € D.

Example 2.17. Let f € LY (Q), then f determines the distm’butiorﬁ

loc
Ty(g) = /Q dx (@) ().

Recall that functions are uniquely determined by the associated distributions: if T(yp) =
Ty(p) for all ¢ € D, then f = g almost surely by standard measure theoretic arguments.

Example 2.18. Let pu be a Radon measure on §2, then u determines the distribution

Tu(p) = /Q () (z).

The previous example shows that distributions naturally generalize the concept of a
function: although some object may not correspond to a classical function, it may still
have a natural action on sufficiently nice test functions, like a Radon measure.

A prominent example from physics, which models e.g. point masses or point charges,
is the Dirac § distribution 6, : D — C centered at x € ), which is defined by

Informally, one may write 6,(¢) = [, dz d,(y)¢(y) and think of d, to correspond to a
function which is infinite at « € € and zero else. Although mathematically, a J, function
in this sense does not exist, the intuition it provides is nevertheless quite useful.

3The notation clearly suggests that D’ is the (topological) dual space of D equipped with a suitable
topology that is consistent with the notion of sequential continuity defined above. This can in fact be
made precise, see below for some references and a short discussion on this.

4Since we work in the complex setting, this definition is consistent with the L? inner product and
the usual Riesz representation theorem that identifies f € L?(Q) isometrically with (f, )2 € (L*(Q))* ~
L?(Q). By analogy, it is common to use the notation T(¢) = (T, p)prxp = (T, @) for T € D', € D.
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Problem 2.7. Show that there exists no function f € L, .(Q) such that Ty = &,.

Generalizing the concept of a function by duality (i.e. f vs. Tf), one can also
attempt to generalize basic properties of functions by duality, like e.g. differentiation. If
T : D — C is a distribution, its derivative 9*T : D — C, for o € N, is the distribution
(exercise), defined by

0°T(p) = (-1)IT(@%) (0" =" ... 957).

This is consistent with the usual integration by parts formula for functions in D. Defined
in this weak sense, every distribution is smooth, i.e. has derivatives of all orders.

Example 2.19. Let h(r) = X|[0,0c) denote the Heaviside function in R. Then

9:Th(p) = — /0 " D) = p(0) = (),

that is 0,Tp, = 0 = dy (compare this with the interpretation of 0 as an infinite peak
centered at zero, mentioned above).

Problem 2.8. Suppose that f € C*(2). Show that 9Ty = Ty ¢ for every a € N& with
la] <k, i.e. in case of a reqular function its distributional derivatives coincide with its
classical derivatives.

Using duality arguments as above, there are many further properties which can
be generalized naturally from classical to generalized functions, e.g. the concept of
the convolution of a distribution with a test function ¢» € D (see [73] 46] for further
properties). For simplicity of notation, let us consider = R? for the remainder of this
discussion. We can interpret (T * ) of T' € D' with ¢ € D in two ways: setting

Yy(x) =¢(x—y) and  Pgr(z) =Y(-z) V¢ € CP(R?),

we can define (T * 1)) € C*®(R?) on the one hand as the smooth function z + T((¢g))
and, on the other hand, we can interpret (T x 1) € D’ as the distribution defined by
(T'xv)(¢) = T(Yr*). Note that we assume ) € D for both objects to be well-defined.
That the two notions coincide, in the sense of distributions, follows from the next lemma.

Lemma 2.4. Let T € D' and p € D. Then, R 3 x — T(p,) € C®(RY) with

03T (a) = (=1)INT((8¢)a) = (0°T)(x).

Moreover, if ib € D we have that

[ aeT(enit@) =T x ) (2.6
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Proof. Let us prove that x +— T(yp,) € C'(R?); the smoothness follows with analogous
arguments and induction (ezercise). Let us start with continuity. Suppose that h, — 0
as n — 00. Since ¢ € D, we have for every o € Ng and e > 0 that there exists a constant
Cy > 0 such that for n > N so that |h,| < €, we have that

sup [0%z(y) — 0%@pin, (y)| < Cae, ¥V > Ne.
yER4

Combining this with the fact that for a suitable compact set K C R%, we have

supp(2) U ) supp(¢zin,) C K,
neN

we conclude that limy, 00 @zth, = @z in D. Since T € D', we get that

lim T'(pain,) =T (pz)

n—o0

and since z € R? and (h,,)p,enwere arbitrary, this shows that = — T(¢,) € C(R?).
To prove continuous differentiability, we argue very similarly, observing in this case
(with analogous notation as above) that we have

0 (1hal™ (Pon, ) = 29) = (~D)(Ve)alw) - lhin|~'hn) | < Cae, ¥ > ..

sup
yeRC

Arguing as above, this implies that

d

lim |h]1‘T(g0x+h) — T(ps) = Y T(=(9ig)a)hi
=1

:07

i.e. z+ T(p,) is differentiable with derivatives in C(R?), given by

aﬁﬂiT((Px) = (alT) (4,033)

In order to prove (2.6, we use an approximation argument. By the first part and
the fact that supp(y) C R? is compact, the integrand = — T(¢,)¥(x) on the Lh.s. in
[2.6) is a C°(R?) function. Hence, we can approximate it by a Riemann sum

N
lim Ax S Tlen (o) = [ deT(pn)i(@)
NJZ:; ® /]Rd ®

N—oo

for suitable lattice points (:cj)é\’:l with mesh size Ay — 0 as N — oo. Similarly, we have
the uniform approximations

sup
z€R4

o ANéw — bl - 0 x 9)@) )| =0

for every multi-index o € N&. This implies that 1y = Ay Zévzl (- —x;)(x;) converges
to (1*¢) in D, arguing similarly as before. Combining this with T € D', we get (2.6). O
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Problem 2.9. Eztend ([2.6) to ¢ € L'(RY), assuming supp(y)) C R? to be compact.

Proposition 2.4 (Fundamental Theorem of Calculus for Distributions.). Assume that
T € D'(R?) =D’ and let p € D. Then we have that

1 d 1
T(soy)—T(cp):/o dtzyj(ajT)(cpty)E/O dty - (VT)(pry)- (2.7)
j=1

Proof. Let us denote the function defined through the r.h.s. in by y — G(y). By
Lemma the map z — (VT)(¢z) € C®(R?) with 9;,(VT)(¢s) = —(VT)((0;¢)z)-
Using the smoothness and the fact that we integrate over a compact interval, we compute
the derivative of G by interchanging integration with differentiation and obtain that

1 1
9,Gly) = — /0 QT (D)) -y + /0 dt (9,T) 01y
1 d 1
= [ @S @) (@50 + [ @)1
o O 0

= [Laa(@mew) + [ @omew = 00,

where the second to last step follows with similar arguments as above (ezercise) and the
last step follows from integration by parts. Finally, the function

y = Gly) = T(py) — T(p) € C*(RY)
has the same derivatives as G and it follows with G(0) = G(0) = 0 that G = G. O

Problem 2.10. Assume that f € Wl’l(]Rd). Prove that for every y € R%, we have

loc
1
f(a:+y)=f(:r)+/0 dty -V f(z + ty)

for almost every = € RY.

Recall from Problem 2.8 that the distributional derivatives of smooth functions
correspond to their classical derivatives. We can now also show that if a distribution has
continuous derivatives, it corresponds to a classical, continuously differentiable function.

Lemma 2.5. Suppose that T € D' is such that g; = ;T € D' can be identified with
gi € C(RY) (in the usual distributional sense). Then T € CY(R?) and its classical
derivatives O;T are equal to O;T = g;.
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Proof. Pick ¢ € D. By Proposition and Fubini, we know that

1 d
T(py) — T() = /O dt Sy (0T ()

j=1

/dt Zy]</ d g (x )ea(ﬂf—ty)>

:/Rd dz (/01 dt Zngj(erty))w(w)-

Jj=1

Now, pick some ¥ € D with fRd dx 1 (x) = 1, then the previous identity implies that

1) = [ oo - [ awi( [ e ([ S vt v w) o)

7j=1

~tweo) - [ ar( [ av [ vty Zy]g]zﬂy)so()

= /Rd dzx <T(wz) —]Z::I/Rd dyw(y)/o dtngj(ﬂty))so(x)v

representing T as an explicit function in f € C(R?).
Now, recalling that 0,,T(1);) = (0;T)(¢) in classical sense and

9j9i = (9:0;T) = dig;

in distributional sense, we get

d 1 d 1
8901'2/0 dt y;gi(z + ty) :Z/O dt y;(9;g;)(z + ty)
j=1 J=1

1
= /0 dty - (Vgi)(z+ty) = gi(z +y) — gi(x)

and consequently (exercise) with 0,7 = g; that in the sense of distributions, we have

O, (T(%) = Zi:/Rd dyw(y)/oldtngj(wrty)) = gi().

Finally, using the local integrability of f and the weak derivatives g;, we may apply
Problem 2.10 that shows for every y € R? that

fle+y) = +Z/ yjgi(x + ty) = +Zygg] ) + o(lyl)
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almost surely in € R? and hence, by continuity, for all 2 € R?. Here, we used in the
last step the continuity of the g; € C(R?). By definition of differentiability, this shows
that f € C1(R?) with (classical) partial derivatives 0;f = g;. O

Problem 2.11. Let T € D' with ;T =0 for alli=1,...,N. Prove that

T(p)=C [ drxo(x)
Rd

for some C € R and for all p € D.

Finally, let us introduce the space of tempered distributions and their distributional
Fourier transforms. As before, we might in a first attempt define the Fourier transform
of T € D' by duality, i.e. f((p) = T(p). However, here we encounter the problem that
©» need not be an element in D so that T is ill-defined in D. To resolve this problem,
we may enlarge the space of test functions (i.e. we consider a smaller, more regular set
of distributions) to the well-known space (see e.g. [63]) of rapidly decaying functions
S(R?) - the Schwartz functions - which is defined as the space

SRY) =8 = {p € C¥RY) : plas = sup [2°0" ()| < 00 ¥ a,B € NG}.
zER?
It is well-known from basic Fourier theory that ¢ € S whenever ¢ € S, that the Fourier
inversion formula holds in § and that ||¢||2 = ||@]|2 for all ¢ € S. We say that a sequence
(¢n)nen, such that ¢, € S for all n € N, converges to ¢ € S in S if and only if

. d
nh_)rgo o — ¥nlap =0, Ya,B eNg.

We denote by S’(R?) = &’ the space of linear (sequentially) continuous functionals
T : S — C that satisfy lim, 00 T(n) = T(p) whenever lim, oo op, = ¢ in S. An
element in &’ is called a tempered distribution.

Problem 2.12. Show that D C S, that convergence in D implies convergence in S and
that 8" C D'. Show that every ¢ € S can be approzimated (in S) by a sequence in D,
up to errors that vanish asymptotically. Find an example of a distribution T € D' which
does not admit a continuous extension to S, i.e. a distribution which is not tempered.

In contrast to distributions in D', a tempered distribution has a well-defined Fourier
transform, defined by duality. That is, we define T' € S’ by

~

T(p):=T(p) VoeS.

Problem 2.13. Prove that pn, — ¢ in S implies lim, 0 || — onllLpray = 0, for every
p > 2, and that ¢, — @ in S. Ezplain why Teds if T eS.

In analogy to classical Fourier properties, we have the following.
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Problem 2.14. Let T € 8’ and a € N¢. Prove that (9°T) € S’ and that

o —

(0°T) = T(2miz*()) = (2miz®)T.

Let us now conclude the discussion of distributions by stating some further interesting
theorems and commenting, through a sequence of problems, on the definition of S and
its S’ as locally convex spaces (see [73} [46] and [63] [67] for further details).

Theorem 2.5. Let T € §’. Then, there exists some polynomially bounded, continuous
function g € C(R?) and some multi-index o € N such that

7(p) = [ do (-1)lg(o) @) (o).

i.e. a tempered distribution is a derivative of some mildly growing continuous function.

For the proof of the previous theorem, see [63] Chapter 5|. The following theorem
illustrates that the theory of distributions turns out to be quite useful in order to find
solutions to partial differential equations.

Theorem 2.6. Every constant coefficient partial differential operator L = Z| al<m Ca 0%
on R? admits a fundamental solution, i.e. there exists T € D' such that L(T) = 6.

Notice that given such a fundamental solution, we have
L(Txg) =T+ L(g) = (L) x o =5 x p = .

That is, we obtain a smooth solution to the PDE in distributional and hence by standard
arguments in the classical sense. A proof of the theorem can be found in [73, Chapter
3]. Without giving a rigorous argument, let us remark that the heuristic idea behind the
proof is to find the fundamental solution via

627rip~a:
e [t
r:  P(p)
where P(p) = >, <y Ca(2mip)* denotes the characteristic polynomial of L.

As indicated earlier, the space S’ can be identified as the topological dual space to
S equipped with a suitable topology. We start with the following observation.

Problem 2.15. Show that ||, s : S(R?) — [0;00) defines a seminorm, for all a, 3 € N§.
Show that the family of seminorms (| - ’a,ﬂ)a,ﬂeNg separates points.

Now, let 7s denote the weakest topology such that the seminorms (|- [q,5),, Bend are
continuous and let us identify S = (S, 7s) as the topological space with topology 7s.

Problem 2.16. Show that an open neighborhood basis around 0 € S is given by the sets
Ny Borcon e = {90 €S |plap <€ Vi=1,... ,n} forn e N oy, B; € Ng Vie>0.

Show that Nu, gs.....cn,8n,e 15 convex and that + : SxS — S, - : CxS — S are continuous.
Finally, prove that o, — ¢ in (S, 7s) if and only if |¢ — pplap — 0, for every o, B € Nd.

31



Motivated by the previous problem, one calls & a locally convex topological vector
space. Since its topology is induced by a sequence of seminorms, we can also introduce
the concept of Cauchy sequences in S: (¢ )nen is a Cauchy sequence if |, —om|as — 0
as n, m — oo, for every a, 5 € Ng.

Problem 2.17. Show that S is a metrizable space with a metric inducing the same
topology and yielding the same Cauchy sequences. Show that S is complete, i.e. every
Cauchy sequence has a limit in S.

A complete, metrizable locally convex topological vector space is called a Fréchet
space. Now set
S = {T : S — C: T is linear and continuous}

and denote by 7s/ the usual weak-* topology induced by the maps ¢, : &’ — C, defined by
to(T) = T(p), for ¢ € S. The space (S’, 7.s/) is called the space of tempered distributions.

Problem 2.18. Prove that T, — T in (S',7s/) if and only T,,(p) — T(p) for every
@ € S. Prove that for every T € S’ there exists C >0, n € N and (o, 8;)1, so that

n
IT(@)| <CD |@lass, Vo €S
i=1
A thorough discussion on D(Q2) and its relation to D’'(€2) can be found in [67, Chapter
6] (see also [63, Chapter V]). Here, we just record the following basic facts and definitions.
Setting for compact K C Q (with Q C R? open)

Dk = {p € C™(Q) : supp(p) C K},

we can equip Dy with the topology 7k generated by the semi-norms ||0%(-)||~ and it
turns out that Dg becomes a Fréchet space. Now consider sets V' C C2°(€2) which are
convex and balanced (|]A\| =1 and ¢ € V' implies Ap € V) and which are such such that
V NDg € 1 for every compact K C 2. Then, we say that a subset

UcCDERQ)=CX0Q) = U Dy
K CQ:Kcompact

is open in D(N) if and only if it is of the form ¢ + V for some ¢ € C°(Q2) and some
V C C°(Q) as above. The collection 7p of such open sets defines a topology with local
base given by the sets V' as above and (D(2),7p) defines a complete locally convex
topological vector space (which is, however, not metrizable). Moreover, Tk is equal to
the subspace topology of T restricted to D, for every compact K C €2, and convergence
in D(Q) is equivalent to the convergence notion introduced earlier. D'(Q) is defined by

D'(Q) = {T : D(Q) — C: T is linear and continuous}

and considered a topological space with the weak-x topology induced by the maps
D'(Q) 5T — T(p), for ¢ € D(Q). The elements in D'(Q) are called distributions.

After this digression on the theory of distributions, let us explain Kato’s inequality.
We say that a distribution 7' € D/(Q) is non-negative if and only if T'(¢) > 0 for all
¢ € D. Saying that Ty > T, for T}, T5 € D’ means then that T} — Ty > 0.
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Theorem 2.7 (Kato inequality). Let u € L} (R%) s.t. its distributional Laplacian Au
is such that Au € L} (RY). Let

0 if u(z) =0,
u(x)/lu(x)] if u(z) # 0

Then (sgnu)Au € L} (R?) is a distribution. If Alu| denotes the Laplacian of the distri-

loc

bution |u| € L} (R?), we have in distributional sense

(senw)(z) = {

Alu| > Re [(sgnu)Aul (2.8)

Proof. The proof consists of two steps. In the first step, we verify for smooth
functions v € C*(R?). In the second step, we approximate a general u € Llloc(]Rd) by
smooth functions to conclude for the general case.

Step 1) Assume that u € C®(R?). Define for ¢ > 0 the function u. € C>®(R%)
pointwise by u.(x) = \/|u(z)]? + 2. If we differentiate u? = |u|? 42 at € R?, we find

2uc(2)(Vue) (z) = 2Re [u(z)(Vu)(z)]

This and |u| < |ue| imply |(Vus)(x)| < |(Vu)(x)|. Moreover, if we take the divergence
of the last equation, we find

ue(2)(Aue) (@) + |(Vue) (2)]* = Re [a(@) (Au) ()] + [(Vu) ()]
so that (first pointwise and therefore) in distributional sense
(Auc) > Re [(u/ue)Au] =: Re [ sgn, (u)Aul

Step 2) Now let u € L%OC(Rd) as in the assumptions and choose an approximate
identity of smooth functions (¢n)neny in CP(RY) s.t. ¢, = nip(n.) for some fixed

0 < ¢ € C(RY) with [z ¢(2) dz = 1. Define u,, = u * p, € C*(R?), so that
(A(un)e) = Re [sgne(un)A(un)]

Letting n — oo we know that uw, — u, A(u,) = (Au), — Au in L _(RY). Hence,
this holds true as well in the sense of distributions. Choosing a suitable subsequence
of (un)nen, we can w.lo.g. assume that u,(z) — u(x) for a.e. x € R? as n — oo.
This implies that also sgn,(u,)(z) — sgn.(u)(z) for a.e. z € R? as n — oco. Since
|| sgn. (un)|oos | 580 (u)||oo < 1, we can use the Dominated Convergence Theorem to
prove that sgn,(u,)A(u,) — sgn.(u)Au in LL (R?), and therefore in distributional
sense, as n — 0o. Since also (A(up):) — (Au.) in distributional sense as n — oo, we
find altogether that

(Aug) > Re [ sgn, (u)Au]
As e > 0 was arbitrary, we get (2.8)), using again a dominated convergence argument. [J

Proposition 2.5. Let V € L? (RY) be such that V(z) > 0 for a.e. x € R, Then

loc

—~A+V : CX(RY) — L2(RY) is essentially self-adjoint.
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Proof. Recall from Theorem that the (closable) symmetric operator —A + V' :
C®(RY) — L2(R?) and its closure have the same adjoint (—A + V)*. Since more-
over —A +V > 0 (as an operator) implies that also its closure is non-negative as an
operator, the claim follows from Theorem and the proof of its corollary if we show

dim(ker((-A+V +1)")) =0.

Indeed, this implies that (~A+V +1)jce = (-A + V + 1)*. Hence, assume that
(~A+V +1)*u =0 for u € L?(R?). Testing against elements from C°(R%), we get

Au= (V +1)u e LL (R

in distributional sense (it is here where we use V € L2 (R?)). Hence, Theorem [2.7|yields

loc
Alu| > Re [sgn(u)Au] = (V + 1)|u| > 0.

But this implies v = 0 € L*(R?). In fact, if |u| € D(A) = H?(R?), this would follow
directly from the fact that A < 0 as an operator, together with v € L?(R%). For a
general u € L*(R%), we define (|uly)nen in H2(R?) as |ul, = |u| * ¢, with a sequence
(¢n)nen as in the proof of Kato’s inequality. Since ¢, > 0 pointwise, we get

0 < (Alul, n * [uln) = ([uln, Aluln) <0
so that |ul, = 0 € L2(R%) for all n € N. Since u, — v in L?(R%), we get u = 0. O

Corollary 2.3. Let Vo € L (R3) be s.t. Vey(z) — o0 as |z| — oo. Moreover, let

loc

v € L2(R?) + L>®(R3) with v > 0 pointwise. Then

N

H]t\;”ap = Z ( - Axl + Vemt(l‘i)) + Z U(l‘i - l’j)

i=1 1<i<j<N
is essentially self-adjoint on C°(R3N),

The Hamiltonian Hy P describes N particles trapped in a finite region of R* and
interacting through the pair potential v. We remark that the assumption v > 0 in
the previous corollary can be dropped. The proof is, however, a bit more involved and
eventually we only consider repulsive interactions in the analysis of the Bose gas. For a
thorough discussion of self-adjointness criteria and its consequences, see [64].
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2.4 The Spectral Theorem

In this section, we discuss the Spectral Theorem for self-adjoint operators. We saw
already at the beginning of Section a short motivation why self-adjoint operators
are suitable to describe physically measurable quantities. In the finite dimensional case,
one can use them to define spectral measures, associated to the state of the system, that
measure the probability of finding the values of an observable in a given interval (or,
more generally, in a given Borel subset of R). The spectral theorem shows that this can
be done for general self-adjoint operators A: it gives meaning to the operators xq(A),
2 C B(R), where xq denotes the characteristic function on €. These operators can then
be used to measure the probability (¢, xo(A)Y)y of finding the value of the observable
associated to A in the measurable set §2 if the state of the system is ¢ € H.

The spectral theorem tells us in fact much more. Put in the multiplication operator
form, it states that any self-adjoint operator is unitarily equivalent to a multiplication
operator as in Proposition More precisely, we prove the following theorem.

Theorem 2.8 (Spectral Theorem, Multiplication Operator Form). Let A : D(A) — H
be a self-adjoint operator on the Hilbert space H. Then, there exists a measure space
(2, B(Q), 1), where u is a finite Borel measure, a unitary map U : H — L*(Q, B(Q), )
and a real-valued, Q-a.e. finite p-measurable function f:Q — R s.t.

i) ¢ € D(A) if and only if f(.)(UY)(.) € L*(Q, B(Q), ).
i) If p € U(D(A)), then (UAU1(p))(z) = f(x)p(z) for pa.e. v € Q.

Clearly, this generalizes the finite dimensional case. In particular, once we have the
Spectral Theorem we can use it to define functions f(A) of A for a suitably large class of
functions f. This provides a so called functional calculus. We will see that {f(A)} forms
a C*-algebra - an important observation in view of the modern axiomatics of quantum
mechanics, see e.g. [74]. More importantly in view of the proof of Theorem is that
we can turn this picture around - having first a suitable functional calculus, one can
deduce Theorem by employing the Riesz Representation Theorem |2.25

The proof of Theorem [2.§] consists of several main steps which are presented below.
The proof assumes a couple of results which may be taught in a basic functional analysis
course. The overall presentation follows [63, Sections VII.1-VIL.3; VIIL.3].

2.4.1 Spectral Theorem for Bounded Self-Adjoint Operators

In the first step, we develop a functional calculus for bounded, self-adjoint operators.
That is, we want to find a reasonable definition for f(A) € L(H) when f € C(c(A);C).
Since o(A) C R is compact for any bounded, self-adjoint operator A € L(H), we can
consider first polynomials of such operators and then use the Stone- Weierstrass Theorem
(see Appendix for its statement) to extend our map uniquely to continuous functions
f€C(o(A);C). As a preparation we need two lemmas.
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Lemma 2.6. Let B € L(H) a bounded operator on H. Let P € C[X] be a polynomial
in the variable X with complex coefficients such that P(X) = Zg:o an X", with a, € C
forn=1,...,N. We define P(A) = "™ a,A" € L(H). Then

o(P(A) = {P(N) : X € o(A)}

Proof. Let A\ € C. Then A is a root of the polynomial P — P(\), which implies that
P(A) — P(\) = (A — X\)Q(A) for another polynomial @ : C — C. Since Q(4) € L(H),
we conclude that P(\) € p(P(A)) implies A € p(A), because in that case

1= (A= N(Q)(P(A) = P() ™) = (QUA)(P(A) — P(A) ) (A= N)

Thus, P(c(A)) C o(P(A)).

Next, assume that v € o(P(A)) and write P(A) —v = (A—X1)(A—X2)--- (A—An)
for complex roots A\, € C, n =1,--- ,N. Since v € o(P(A)), at least one root \, must
be contained in o(A) (why?), denote it by A. Thus P(A\) —v =0, i.e. v € P(o(4)). O

Lemma 2.7. Let A € L(H) be a bounded normal operator, i.e. [A, A*] = 0, and let
P € C[X] denote a polynomial in X, as in the previous lemma. Then

1Pz = sup [PA)]-
A€o (A)

Proof. P(A) is normal if A is normal. Hence

1P(A)l|cmy = lim [P(A)" (|5, =rpay = sup  [Al= sup |[P(N) (2.9)
£ n—00 £ P(4) Ao (P(A)) A€o (A)

Notice that we used the identity || B"(| () = ”BHZ(H) for any bounded, normal operator
B € L(H), which can be proved by induction (ezercise). The second and third steps are
well-known facts from basic functional analysis. O

Note that, in particular, any bounded self-adjoint operator is normal. Equipped with
the two previous lemmas, we thus deduce the following theorem.

Theorem 2.9 (Continuous Functional Calculus). Let A € L(H) be self-adjoint on H.
Then there ezists a unique linear map ® : C(o(A);C) — L(H) such that

a) ® is an algebraic x-homomorphism, i.e. for all f,g € C(c(A);C),\ € C we have
D(fg) = (f)®(g), P(\f) = A(f), ®(1) = 1y, O(f) = ®(f)"

b) ® is bounded with | ()| cia) = || flleo for all f € C(a(A);C).

¢) Let f € C(0(A);C) be defined by f(z) = . Then ®(f) = A.

In addition, ® satisfies the following properties.

d) If Ay = X for some ¥ € H, X € R, then ®(f)v = fF(\) for all f € C(o(A);C).
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e) If f >0, then ®(f) > 0.

f) a(@(f)) ={f(A) : A € a(A)} =ran(f) for all f € C(o(A);C).

Remark 2.3. Given f € C(c(A);C), we write f(A) = ®(f).

Remark 2.4. Notice that the image of ® in L(H) forms a norm-closed abelian algebra
that is closed under adjoints, i.e. an abelian C*-algebra. As indicated earlier, C*-

algebras are the starting point for a modern description of physical systems; for a short
introduction of this viewpoint, see for instance [7}], Chapters 1 and 2].

Proof. We apply Lemmas and the Stone-Weierstrass Theorem We define
®(P) = P(A)

for any polynomial P € C[X]. The set of polynomials, viewed as functions from
o(A) C Rto C, is dense in C(o(A); C) by Theorem [2.24] (why do the polynomials separate
points?), and by Lemma ® can be extended to a linear isometry from C(o(A);C)
to L(H). Using that A = A*, properties a), b), ), d) are true for polynomials and carry
over to C(o(A); C) by density. Also, a),b),c) and the linearity of ® determine ® on the
set of polynomials, because

@(;an]) = ;ajAj

By a density argument, this shows that a),b), c) and linearity characterize ® uniquelyﬂ
To prove e), we write f = (v/f)? and use a) which implies

o(f) = (V) =2(/ ) e(V/]) 2 0.
To prove f), assume first z ¢ ran(f). Then (f — 2)~! € C(0(A); C) exists with
_ 1
H(f_z) 1Hoo < dist < 00

(f(o(A)), 2)

and we have

Ly = ((f = 2)(f = 2)71) = (2(f) = 2)@((f — 2)71) = @((f — 2)7)(@(f) - 2),
so that z € p(®(f)). This shows that o(®(f)) C f(o(A)).
On the other hand, assume that z € o(A), then for any polynomial P € C[X], we
have P(z) € o(P(A)), i.e. P(A) — P(z) does not have a bounded inverse. Writing
O(f) = f(2) = lim (Po(A) — P(2)) € L(H)

n—oo

for a suitable sequence of polynomials (P, )nen, we conclude that f(z) € o(®(f)), because
the set of operators with bounded inverse is openﬁ in L(H), so f(o(A)) Co(P(f)). O

®Notice that it is enough to assume [|®(f)|z) < [|f]ls for all f € C(o(A);C) in order to prove
uniqueness of the continuous functional calculus.

Indeed, if A € L£L(H) has inverse A™* € L(H), the inverse of B = A(1 + A7 (B — A)) exists if
|1B — Az < HA71||Z(1H) by a standard Neumann expansion.
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With the continuous functional calculus at hand, we can prove the analogue of Theo-
rem for bounded self-adjoint operators. First of all, we need to relate A to a suitable
measure space. The crucial observation is that, given any 1 € H, the map

Clo(A);C) > f = (W, f(AY)n eC

is a positive, linear functional. By the Riesz Representation Theorem there exists
a unique, positive Borel measure uﬁ : B(R) — [0; 00) s.t.

(W, F(AYp)y = / S i), 9 € Clo(a0) (2.10)

We call ,uﬁ the spectral measure of A associated with the vector v € H. The connection
to L?-spaces comes from noticing that implies that for all f € C(0(A);C) we have

1F ()Pl = (0, FA) F(A) = (W, | f(A)Pohn = / N (@) dpjp(z)  (2.11)

g

If we knew that H = span{f(A)y : f € C(c(A);C)} for some fixed Vecto Y e H,
equation would immediately imply Theorem for bounded self-adjoint oper-
ators, with the self-adjoint operator A being unitarily equivalent to multiplication by
the function 0(A) > = — fa(x) = x. Notice in particular that C(c(A);C)} is dense
in L(c(A), B(c(A)), M;z)’ whose proof uses that the measure u;ﬁ is regular (indeed, one
may approximate first a characteristic function of some Borel set B by a characterstic
function of some open set O O B and some compact set K C B, by regularity of ,u,ﬁ.
Then we can find a continuous function which is equal to one on K and shrinks to zero
when we approach the complement of B). However, in general we can only expect that

span{f(A)y : f € C(c(A);C)} & H.

Lemma 2.8. Let A € L(H) be self-adjoint on the separable Hilbert space H. Then,
there exists a direct sum decomposition H = @7]:/ Hp with N € N or N = o0 s.t.

i) For each n € N, H,, is invariant under A.

ii) For eachn € N, there exists some @, € H s.t. Hy, = span{f(A)en : f € C(c(A);C)}.
Proof. We proceed inductively. Choose an ONB {¢; : i € N} C H of H and define
Hy = span{f(A)r : f € C(0(A);C)}

for 11 = 1. We decompose H into the direct sum H = H; @ Hi and denote by
Pj- € L(H) the orthogonal projection onto Hi. If H = Hi, we are done. If not,
pick the smallest ;7 € N\ {1} such that ¢;, & Hi. Now, we repeat the first step with
Yo = Pi-¢i, /|| Pi- i, ||3 to obtain a direct sum decomposition

H=H &M@ (H1®Ha) "

"A vector ¢ € H with the property that H = span{Amy : n € No} is called cyclic for A.
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with {¢1,...,04} C Hi1 @ Ha. Iterating this procedure, we obtain a (possibly
finite) sequence (¢, )nen of normalized vectors in H with associated orthogonal sub-
spaces (Hp)nen (¥, is cyclic for Hy), which are A-invariant and which are such that

N 1
1/)6(@7{”) — ¢ e {p:ie Ny = {0},

ie. H=@DNH,. O

Theorem 2.10. Let A € L(H) be self-adjoint on the Hilbert space H. Then, there exist
finite, positive Borel measures (M}?)lgnSN where N € N or N = oo, and a unitary map
U:H— @7]:[:1 L?(o(A),B(0(A)), uf) such that

(UAU ), () = zpp(z), forpae zco(A),V1<n<N (2.12)

for all ¥ = (Yn)1<nen € Doy L2(a(A), B(o(A)), 114)).

Proof. We decompose H = @2{ H,, with H,, = span{f(A)p, : f € C(c(A);C)} as in
Lemma The map U is defined componentwise on each H,,. For ¢, = f(A)p, € H,
with f € C(0(4);C), we define Utp, = f € C(c(A);C). By (2.11), U extends to a
linear isometry from Hy to L2(o(A), B(c(A)), ua) where pi is the spectral measure
of A wr.t. ¢, € H,. Notice here that we use the fact that C'(c(A);C) is dense in
L?(0(A),B(c(A)), u2). Since 0(A) > z — x continuous, we conclude (2-12)). O

The following corollary shows that every self-adjoint, bounded operator is unitarily
equivalent to a multiplication operator of the same form as in Proposition [2.1

Corollary 2.4. Let A € L(H) be self-adjoint on the Hilbert space H. Then, there
exists a finite measure space (M,B(M),n) with p a Borel measure, a unitary map
U:H — L*(M,B(M),u) and a bounded, measurable function f : M — R such that
for all v € L*>(M,B(M), i)

(UAU ) (z) = f(2)¢(x), for pae x€ M (2.13)

Proof. With the same notation as in the proof of Theorem [2.10, we choose the cyclic
vectors @; € H; s.t. ||¢illy = 27", We then define the measure space simply as

N
M=]]o(A) ={(i,):ie{l,...,N},z € o(A)}
=1

with its Borel o-algebra (the smallest o-algebra generated by the open sets in M). Recall
that M is equipped with the finest topology such that the injections ®; : 0(A) — M,
fori=1,..., N (the index referring to the i-th copy of the spectrum o(A)), defined by

®,(x) = (i,x2) € M,
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are continuous. More precisely, a set U = ]_[f\il U; C M is open if and only if ®; 1(U) =
U; C o(A) is open, for all t = 1,..., N. Given M, we then define p through

N N
M(Hoz‘) = ZM?(Oz’)y
i=1 =1

so that u(M) = Zf\il pl(o(A) = Zf\il 27% < 0o. The previous identity means that

N
dpxyy o = / dyi* xo,
/M L=, O: ; a(A)

for measurable sets O; € B(a(A)), i =1,..., N. Hence, writing v € L2(M,B(M), 1) as

N
V= VoL 1o(A) 11 110
i=1
for v; = ;. : 0(A) — C denoting the restriction of ¥ to the i-th copy of o(A), and
using the orthogonality of the different summands in L?(M, B(M), i), we conclude that

A
2 _ E A(dz) ; (2)]?.

In other words, the map

N
L2(M78(M)wu) DY (%,u-ﬂl)z\/) € @L%a(A),B(a(A)),,uf),

=1

is a unitary map and it is straightforward to check that A acts in L*(M,B(M), ) as
(UAU ) (i, z) = 2;(x) for each i = 1,..., N and z € o(A4). O

2.4.2 Spectral Theorem for Bounded Normal Operators

In this section, we explain the main ideas on how to extend the Spectral Theorem from
bounded, self-adjoint operators to bounded, normal operators. This extension enables us
to prove the Spectral Theorem for unbounded operators. The strategy one should have in
mind is that, given an unbounded self-adjoint operator, its resolvent is a bounded, normal
operator. If we knew that such operators are equivalent to multiplication operators, we
would deduce that also the original operator is unitarily equivalent to a multiplication
operator. An important question is then: why can we expect the spectral theorem for
normal, bounded operators to hold? The key is that a normal operator is the sum of
two commuting self-adjoint operators and we can develop a functional calculus for such
a pair of operators. Some details of the arguments are left as reading assignments for
which we refer to [56, Chapter 5] and [63, Chapter VII, Problems 4,5].
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Before we explain the Spectral Theorem for bounded, normal operators, let’s observe
that we can extend the continuous functional calculus from Theorem 2.9 to the set of
bounded, Borel measurable functions on R, denoted by M(R). Indeed, with the notation
from Corollary we may define f(A) € L(H) for a given f € M(R) vid

(UFAUP)(@) = (fo g)(@)y(z), for p ae. xe M,

if A corresponds to multiplication by g in L?(M,du). With this definition, we derive
similarly to Theorem [2.9] the following measurable functional calculus.

Theorem 2.11 (Measurable Functional Calculus). Let A € L(H) be self-adjoint on H.
Then there exists a unique linear map ® : M(R) — L(H) such that

a) ® is an algebraic x-homomorphism.
b) @ is bounded with || B(f)|l ) < || flloo for all f € M(R).

¢) Let (fa)nen be a sequence in M(R) s.t. |fo(z)| < |z for alln € N, z € R and
lim, 00 fn(z) = x for all x € R. Then (®(fn))nen converges strongly to A.

d) Let f € M(R) and let (fn)nen be a bounded sequence in M(R). Assume that fy
converges to [ pointwise in R, then ®(f,) converges strongly to ®(f).

In addition, ® satisfies the following properties.

e) If At = M\ for some ¥ € H, XA € R, then D(f)v = F(\ for all f € M(R).
f) If f >0, then ®(f) > 0.

g9) If [A,B] = 0 for some B € L(H), then [®(f), B] =0 for all f € M(R).

Proof. By Corollary we can assume w.l.o.g. that A corresponds to multiplication
by some measurable function g : M — R on L*(M,B(M), ) =: L*(du). Then we define
®(f) (= f(A)) through multiplication by fog € M(R), for f € M(R). The properties
a) to d) are straightforward to verify (notice that the inequality in b) may be strict -
exercise!). For example, for part d), the dominated convergence theorem implies

1(F(A) = fa( )03 = /M dp() | f o g(x) = fu o g(x)P|o(2) > = 0

as n — oo, for every v € L?(dp), if lim, oo fn(x) = f(x) for all x € M for a bounded
sequence (fn)nen in M(R).

For part e), notice that if Ay = A, then 1 is supported in g~ '({\}) € M and thus
(f(A)Y)(z) = f(N\)¢(z) for a.e. z € M. Similarly, we argue for part f).

8Notice that for bounded operators A € L(#), our definition makes sense for a larger class of functions,
including those which need not be bounded in R. In view of the functional calculus for general (possibly
unbounded) self-adjoint operators, we formulate the functional calculus nevertheless in terms of M(R).
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To prove g), we first argue that [X(4)(A), B] = 0 for all —oo < a < b < co. Here,
we use that, by the Stone-Weierstrass Theorem the closed *-subalgebra of

Co(R) = {f € O(R;C) 1 Tim f(z) =0} (C M(R))

generated by z — (z — i)"Y, (z +4)7! is dense in Coo(R) (w.rt. | - |loo). In fact,
this subalgebra separates points (why?) and is closed under complex conjugation in

{f € O(X) : f(do0) =0},

where X = R U {£oo} denotes the extended real numbers (as a compactification of R).
Observe here that C(R) is isometrically isomorphic to C(X).
Since [A, B] = 0 = [1y, B, it follows that

(A4+D[(A+i)" L, Bl=0=[(A+i)", B](A+1),

which implies that [(A +4)~!, B] = 0, because (A +i) : H — H is invertible. Similarly,
[(A —i)~% B] = 0 so that by part d), we conclude [f(A), B] = 0 for every f € Cs(R).
Then, another application of d) shows that [x(4)(4), B] = 0 for all —co <a <b < co.

To conclude g), consider now the set A = {S C R: [xs(A), B] = 0}. Our previous
arguments imply that A contains every open set (why?) and we also observe that A is
a o-algebra. In fact, using that

XSC(A) = XR(A) - XS(A) =1- XS(A)7 XS1NS2 (A) = X5 (A)XSQ (A)7

xuze,s;(A) = xs;(A) (if SN Sj = 6ij),
j=1

we conclude that A is a Dynkin system stable under intersections. Since it contains
the open sets, B(R) C A. Finally, every f € M(R) can be approximated pointwise
(everywhere) by a sequence of simple functions s.t. [f(4), B] =0 for all f € M(R).

Finally, let’s explain the uniqueness of the functional calculus. Suppose that ¢ and
¥ both satisfy properties a) to g). Using parts a), ¢) and d), we first deduce that

Iy =0z (z£i) ) (A+i) = (A+0)d(x s (x+i)7"),
so that C/IS(ac = (zxi) ) = (A+i) = \f/(az — (z+4)') (arguing analogously for \T/)

As in the proof of g), this implies that EI\>(f) = CI\I(f) for all f € Cx(R). Applying d) once
more, we deduce that ®(xg) = ¥U(xs) for all S € B(R) and then ® = ¥ in M(R). O

Now, let’s explain how to use the measurable functional calculus to prove the spectral
theorem for bounded, normal operators. Let A € £(H) be normal, i.e. [4, A*] =0
Then we can define two bounded, self-adjoint operators B = 1(A + A*) € L£(H) and
C = (A — A*) € L(H) that satisfy

A=B+iC, B=B*, C=C* [B,C]=0

We have already a functional calculus for B and C, separately, but what we need now is
a joint functional calculus for B and C. To this end, we proceed in the following steps:
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Step 1)

Step 2)

Denote by Y the product space
Y:Y1 XY2 :O'(B) XO’(C)

Let f € M(Y) be a finite linear combination of characteristic functions of the
form x = xq, ® xq, € M(Y) for measurable subsets Q; € B(Y;),i = 1,2. We
define x(B,C) = xa, (B)xq,(C) € L(H) and then f(B,C) € L(H) by linearity.
For such f € M(Y'), we have

1F (B, C)llcze) < sup [f(y)]- (2.14)
yey

If f=xq, ®xa, C M(Y), this follows in fact from Theorem b), xo(B) =
X(C) = 0 and supyey [xQ, ® X,| = Supy, ev; [X0: (Y1) 8UPy, ey, [X0, (42)]- T
@ x o) n @7 x0f") =0 (=@ naf) x @ nay)),

we therefore have that Xo®noW) ® Xof (B,C) =0.

ey

Now, if f is a linear combination of characteristic functions, we may write
Y O o 0 A () « QU
f= ;)\ixggi) D X0 QY x QY n @Y x Q) =0 fori # .

By Theorem g), we have [xq, (B), xq,(C)] = 0. Therefore, we find that

(X @ Xqo (B, O), X @ Xqu (B, C)¥)u
= <(XQY>XQ§J'>)(B)¢, (XQgi)XQéj))(CW)H
= X nat) (B)¥: Xqomnau (C)¥)u
= (¥, XgwnaW @ Xg@naw (B, O =0

for every ¥ € ‘H and i # j so that

1F(B.Cypl5 <D P\z‘!Q(%XQgi) ® X (B, C))u < sup

=1 1=1,...

Il 1113,
N

Given f € C(Y;C), we approximate it uniformly in Y by a sequence of simple
functions as in Step 1). Then we construct a continuous functional calculus as
in Theorem [2.9] More precisely, we define a map X : C(Y;C) — L(H) satisfying

a) X is an algebraic *-homomorphism.

b) X is bounded with ||X(f)| () < || flleo for all f € C(Y;C).

c) Let f € C(Y;C) be defined by f(y1,y2) = y1+iya. Then 3(f) = B+iC = A.
)

d) If f € C(Y;C) satisfies f > 0, then X(f) > 0.
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We write in this case X(f) =: f(B,C).

Step 3) We observe that for f,g € M(Y), ¢ € H and A = B + iC, we find some finite,
positive Borel measure i, such that

(f(B,C), Ag(B, C))n :/Ydﬂw(th)f(yhm)( 1+iy2)9(y1, y2)-

Thus, A is represented on LQ(d,uw) as the multiplication operator that multiplies
with (y1,y2) — y1 + iye. We then proceed as in Section and prove the
following spectral theorem.

Theorem 2.12. Let A € L(H) be normal on the Hilbert space H. Then, there
exists a finite measure space (M,B(M), ) with 1 a Borel measure, a unitary
map U : H — L*>(M,B(M), 1) and a bounded, measurable function f : M — C
such that for all v € L*(M,B(M), i)

(UAU ) (z) = f(x)p(x), for pae z €M (2.15)

Moreover, A is self-adjoint if and only if the function f : M — C is real-valued.

2.4.3 Spectral Theorem for Unbounded Self-Adjoint Operators

Proof of Theorem[2.8, Let A : D(A) — H be self-adjoint. The resolvents (A —i)~! and
(A+4i)~' € L(H) commute and they are normal, because ((4 — i)_l)>k = (A+4)7 !
Moreover, we have that D(A) = ran(4 —i)~! = ran(A +4)~!. By Theorem
there exists a finite measure space (€2, B(€2), ) with u a Borel measure, a unitary map

U:H— L*Q,B(R), 1) and a function g : Q — C such that for all ¢ € L2(, B(2), 1)
(UA+) U ) (x) = g(x)p(x), for pae. z€Q, Vo LA (Q,B(Q),n)  (2.16)

Since ker(A +i)~! = {0}, we must have g(z) # 0 for a.e. x € (, because otherwise
0 # U_lxgq({o}) € ker(A +i)~!. Therefore, the measurable function f defined by

is finite for p a.e. x € Q.
Now, let 1 € D(A). Then ¢ = (A +4)" 1 for some ¢ € H. Hence, U()) = gU(yp)
and thus
fUG = (f9)U(p) = (1 — ig)U(p) € L*(2, B(Q), ).

Conversely, if fU(z)) € L*(Q, B(2), i), we also have that

L2(Q,B(2), 1) 3 (f + DU (y) = g~ U W) = Uly)

for o = U= (g71U(x)) € H. This implies that ) = (A +1i) !¢ € D(A) and it concludes
part a) of Theorem
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To prove part b), let ¢ = (A +i)"tp € D(A). With Ay = ¢ —itp and U(yp) =
g U (¥), we find

(AU (U(v)) =Ulp) —iUW) = (¢ = i)U() = FU().

Thus, A is unitarily equivalent to multiplication by f. It remains to show that f is
real-valued. Since A is self-adjoint, multiplication by f is self-adjoint. If Im(f) # 0,
we find a bounded set S cC Cy s.t. 0 < p(f'(5)) < oco. For the characteristic
function xy-1(g) associated to this set, this implies fx;-1(5) € L2(9, B(), ). Hence,
Im(qu(s), fo—l(S)) > 0. But this is a contradiction, because multiplication by f is
self-adjoint. We conclude that f is real-valued. O

As in the bounded case, Theorem [2.§] enables us to define a measurable functional
calculus for bounded, measurable functions g € M(R). Given a self-adjoint operator
A : D(A) — H on a Hilbert space H and g € M(R), we define g(A) € L(H) as the
multiplication operator that multiplies on L?(£2, B(2), ) by the function

Ug(A) U™ =go f
where we used the notation of Theorem We deduce the following theorem.

Theorem 2.13 (Measurable Functional Calculus, unbounded case). Let A : D(A) - H
be a densely defined self-adjoint operator on H. Then there exists a unique linear map
U M(R) — L(H) such that

a) ¥ is an algebraic x-homomorphism.
b) W is bounded with |V (g)|lzcx) < gl for all g € M(R).

¢) Let (gn)nen a bounded sequence in M(R) s.t. |gn(x)| < |x| for alln € N, z € R and
limy, 00 gn(z) = x for all x € R. Then (V(g,))nen converges strongly to A.

d) Let g € M(R) and let (gn)nen be a bounded sequence in M(R). Assume that gy
converges to g pointwise in R, then ¥(g,) converges strongly to ¥(g).

In addition, ¥ satisfies the following properties.
e) If Ay = X\ for some ¢ € D(A), A € R, then U(g)y = f(A)¢ for all g € M(R).
f) If g € M(R) satisfies g > 0, then ¥(g) > 0.

Proof. The existence was explained above and follows from Theorem 2.8 The reader is
invited to check properties a) to f). O

We close this section with a remark on the Spectral Theorem in the so called pro-
jection valued measure form. By Theorem [2.13] we now have a reasonable definition for
the projections Po(A) where Q C B(R) (here, Py denotes the characteristic function on
the set ). Given a vector ¢ € H, the map

B(R) 3 Q= (¥, xa(A)y) € [0;00)
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defines a positive Borel measure and is interpreted as measuring the probability to find
a value of the observable associated to A in the set . In fact, the family of operators
{xa(4) : @ € B(R)} has the properties that each yq(A) is an orthogonal projection,
xp(A) = 0, xg = 1, xq is the strong limit of (Z:‘L:l XQ; (A))neN for a disjoint union
Q= U, Q; and finally that xo,(A4)xq,(4) = xa,n0,(A). Such a family of operators
is called a projection valued measure. The important point with regards to quantum
mechanics is that such families of operators are in one-to-one correspondence with self-
adjoint operators. This is the content of the spectral theorem in its projection valued
measure form which is equivalent to the multiplication operator forms discussed above
and which gives meaning to the formula

A= /R)\X(d)\),

in close analogy to the finite dimensional spectral theorem. We refer the reader to [63,
Theorem VIIL.6] as well as the discussion preceeding it for the details.
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2.5 Applications of the Spectral Theorem

In this section we discuss several applications of the Spectral Theorem. The main results
are the existence of the time evolution of quantum systems, the characterization of the
discrete eigenvalues below the essential spectrum of a given self-adjoint operator and
the existence and uniqueness of ground state vectors of Schrodinger operators. We also
discuss basic results relating self-adjoint operators with symmetric quadratic forms.

2.5.1 Existence of Quantum Dynamics

In quantum mechanics, the time evolution of the system is determined by the time-
dependent Schrodinger equation. More precisely, given a self-adjoint Hamilton operator
A: D(A) — H, asolution t — 1(t) € C(R; D(A))NCY(R; H) of the Schrédinger equation
with initial data ¢y € D(A) solves the initial value problem

5(0) = o, (2.17)

The next proposition ensures the existence of such quantum dynamics if the Hamiltonian
of the system is a self-adjoint operator.

{iatw = Avp,

Proposition 2.6. Let A: D(A) — H be self-adjoint and define U(t) = e 4 fort € R.
Then the following holds true.

i) (U(t))ter is a strongly continuous one-parameter unitary group, i.e. t +— U(t) is
strongly continuous, U(t) is unitary and U(t 4+ s) = U(t)U(s) for all t,s € R.

ii) If ¢» € D(A), then limtﬁo%(U(t)w — ) = —iAyp. Conversely, if the limit
limy—o (U () — ) exists for some ¢ € H, then ¢ € D(A).

iii) For allt € R, U(t) leaves D(A) invariant and commutes with A on D(A).

Proof. The proof of i) follows directly from the functional calculus, Theorem and
the corresponding properties of the family of maps x + e~ € M(R), t € R.
Hence, let us prove ii). From

1 —itx - ! —itxs
(e —1)=—iz | dse ,
t 0

we infer that |1 (e~ —1)| < |z|. Combining this with Theorem ¢), the first direction
follows. Conversely, define B : D(B) — H by

| o1 .
By =ilm-(U(thp—v) on  D(B)= {1/1 € H: lim ™ (U0 — ) ex1sts}
Then B is a symmetric operator that extends A. In fact, symmetry follows from
(. it (U )Y — ) = (i(=t) " (U(=t)p — ), )
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for all 9,9 € D(B). Hence A C B C B* C A* = A and therefore D(B) = D(A).
Finally, #i7) is another consequence of the functional calculus. Indeed, if A corre-

sponds to multiplication by f, by the spectral theorem, then U(t) = et commutes with

f and fo € L?(dy) if and only if €"f fo € L?(dy) for each t € R. O

Proposition [2.6/shows that that the map ¢ + U(t)yg € C(R; D(A))NC!(R; H) solves
the Schrodinger equation . It is not hard to see that this is the only continuously
differentiable solution ¢ € C(R; D(A)) N C*(R;H) of the initial value problem (2.17).
Indeed, suppose 1 € C(R; D(A)) N C'(R; H) is another solution of (2.17)). Then, we can
consider t — ¢(t) = U(—t)y(t) € C(R; D(A)) N CH(R; H) with

lim l(U(—t — R)Y(t + h) — U(=t)y(t)) = lim l(U(—t —h) = U(=))9(t)

h—0 h
+ ]Pn%) U(—t— h)% (v(t +h) — (1))
= —AU(—t)y(t) + U(—t)(Ay(t)) = 0,

that is, ;¢ = 0 in ‘H. This implies ¢(t) = 1bo so that ¥ (t) = U(t)yo for all t € R.
The following fundamental structural result shows that every strongly continuous
one-parameter unitary group is generated by a self-adjoint operator.

Theorem 2.14 (Stone’s Theorem). Let (U(t))ier be a strongly continuous one-parameter

unitary group on a Hilbert space H. Then, there exists a self-adjoint operator
A D(A) — H such that U(t) = 4 for all t € R.

Proof. Before defining our candidate for A, we first need to find a suitable dense domain
on which we can differentiate ¢ — U(t)(-). Using that, heuristically, ¢ ~ e"*“4¢ for small
t (assuming we knew the existence of A already), it is useful to consider for f € C°(R)
and ¢ € H the vector space generated by vectors of the form

bf = /R it FOU ()6 € H.

Here, the integral on the r.h.s. can be defined as a vector-valued Riemann integral (and
coincides with the usual Bochner integral). Set

D =span(¢ys : f € C°(R), ¢ € H).

Then D C H is dense, because for a standard approximation of the identity (fy)nen in
C°(R), we have that

165 — lln = H [ atsaowos- ¢>H < s U6 dlln 0
R H  tEsupp(fn)

as n — oo (we can choose [, fn=1,0< f, <1, supp(fn) C (—1/n;1/n) Vn € N).

48



Next, we want to define A (initially on D) through the derivative of ¢ — U(t). Given
¢r € D, we compute

fim S (U ()0 = 0) = lim 5 [ ds FOU(E+5) = V()

—tim = [ ds(f(s— ) — F(s))U(s)o

t=01t Jp
. / F($)U(8)6 = oy,
R

where in the last step we applied the dominated convergence theorem. This suggests to
define the operator A : D — D through

Ady = igp = —ilim - (U(1)o; — by).

By definition of the functions ¢ € D, let us observe that U(t) : D — D for each t € R
(Ut)ps = ¢p(—1))s A: D — D and [U(t), A] = 0 in D. Also, A is symmetric, because
(A, Sghn = lim (=it~ (U (t) — 1)y, dg)n
BERT 1. N
= lim {0y £ (U (—1) = Do)
1 T —1 o o
= tim (6, ~i(—) " (U (1) ~ Dy}

To finish the proof, we show that A is essentially self-adjoint and that the exponential
of its (self-adjoint) closure is equal to U(t). For the first part, suppose that ) € D(A*)
with A* = 1. Then, for each ¢ € D, we compute

(U )¢, V) = (LAU ()@, Py = (U (t)d, 1)

Solving the ODE, this means that (U ()¢, ¥)3 = (¢, 1)xel, which implies that (¢, 1)y =
0, because ¢! — oo as t — oo while [(U(t)d, ¥)n| < ||6llxl|¢]|3. Since ¢ € D was
arbitrary and D = H, this implies that 1 = 0. Repeating an analogous argument for
the case A*) = —iyp, we deduce that A : D — D is essentially self-adjoint. B

Finally, denote by A : D(A) — H the self-adjoint closure of A and set V (t) = 4.
Given ¢ € D, we compute that

0 (U(1)d — V(1)¢) = 1AU (t)d — iAV (t)d = iA(U(t) — V(1))o,
which implies
AU 1)6 — V(©)6|} = 21m{AU ()6 — V(1)6), Ut — V(1)),, = 0.

Thus, U(t)¢ = V(t)¢ for all t € R and ¢ € D, so that U(t) = V(t), using D = H. O
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Example 2.20. Consider the translation group (U(y))yer acting on L*(R) as

(Uy)v)(x) = ¢(x+y) forae. xeR,

for ¢ € L2(R). Clearly, (U(y))yer is a strongly continuous unitary group and by Prop.
2.0, ¢ € H is in the domain D(A) of its generator if and only if
1

iig% ;(U(y) -1y

exists. In this case, the limit equals —iAw. Comparing this with standard results on
Sobolev spaces, we conclude that D(A) = H'(R) and U(y) = e~ %0) As mentioned
before, the observable corresponding to translation of the wave function is momentum.

To view the gradient iV as the generator of translations in R, analogously to the
previous example, we record the following generalization of Stone’s Theorem and we
refer to [63, Theorem VIIL.12] for its proof.

Theorem 2.15. Let RY =y U(y) be a strongly continuous map of R into the set of
unitary operators on some separable Hilbert space H and such that

Uly+2)=Uy)U(z) Vy,zeR?

Set D = span( [gady f(y)U(y)¢ : f € CE(RY),¢ € H). Then D is a domain of self-
adjointness for each of the generators A; corresponding to the strongly continuous unitary
groups y; — U(0,...,0,9;,0,...,0), A; : D — D and [A;, Ag] = 0 in D. Symbolically,

we write U(y) = eV = ¢ 2 5= YA

2.5.2 Weyl’s Criterion and the Min-Max Principle

The Spectral Theorem gives us precise information on how general self-adjoint oper-
ators look like. In this section, we use this information to characterize the essential and
part of the discrete spectrum of a general self-adjoint operator. The essential spectrum
is described by Weyl’s Criterion. To describe part of the discrete spectrum, the part of
it below the essential spectrum, the Min-Max Principle is useful.

Before we state and prove Weyl’s criterion, we need the following preparation.

Lemma 2.9. Let Ay : D(Af) — L*(Q,B(Q), 1) be the self-adjoint multiplication op-
erator on L?(Q, B(Q), ) that multiplies with the measurable function f :  — R on
D(Ag) = {v € L(2,B(Q), p) : oo € L*(2,B(), w)}. Then

o(Af) ={X€R:Ve >0 we have pu(f'((A—e;A+¢e)) >0)} =: ess-ran(f)

Proof. We show that p(Ay) NR = R\ ess-ran(f). Indeed, A € R\ ess-ran(f) if and
only if there exists some g9 > 0 such that u(f~*((A — £9; A+ €0)) = 0. But this means
that the measurable function = + g (x) = (f(x) — A\)~! is bounded by |gx(x)| < g5 ! for
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pa.e. x € €. Hence, the multiplication operator that multiplies by g, defines a bounded
operator on L?(Q, B(Q), 1) that inverts Ay — A, i.e. A € p(Ay).

Conversely, if gy defines a bounded operator, there must exist some ¢y > 0 such that
pu(ft (()\ —E0; A+ 60)) = 0. Otherwise, we get a contradiction to the boundedness of gy
by evaluating the norm of gy, for

x(fTH (A=A +9)
p(f~H (A= Ar+e)

Indeed, we have that ||gxtbc||2 > et and ||1)c||2 = 1 for each & > 0. O

Ye = € L*(Q,B(Q), u).

Let A : D(A) — H be self-adjoint on the Hilbert space H. We call (1, )nen in D(A) a
Weyl sequence for A and X € Rif ||¢,||% = 1 for alln € N and lim,,—, || (A=) || = 0.

Theorem 2.16 (Weyl’s Criterion). Let A : D(A) — H be self-adjoint. Then \ € o(A)
if and only if there exists a Weyl sequence for A and . Moreover, X € gess(A) if and
only if there exists a Weyl sequence for A and X that converges weakly to zero.

Proof. Without loss of generality we can consider a multiplication operator Ay on the
Hilbert space H = L?(Q2, B(Q), 1), as in Lemma

Assume first that A € o(Ay). If ker(Ay — X) # {0}, we can choose ¢, = ¢ €
ker(Ay — X) for all n € N and a fixed, normalized 1) € ker(A; — X) to obtain a Weyl
sequence for A and A. If we assume in addition to ker(Ay — \) # {0} that A € oees(Ay),
we have either dimker(A;y — A) = oo or that A is not isolated in o(Ay). In the first
case we can find an orthonormal Weyl sequence of eigenvectors of Ay, which converges
weakly to zero. In the second case, we can construct a monotonically decreasing and
positive sequence (&, )nen With lim, o €, = 0 as follows. Defining

Qo =F1((A—emA+en)

such that Q,+1 C Q,, we choose (gp)nen s.t. (2 \ Qpt1) > 0. Indeed, if for some
fixed ng, (2, \ Qng+1) = 0 for any choice of €py41 > 0, this would imply that
p(f7H (X = eng; A+ €ng) \ {A}) = 0. This, in turn, would imply that X is isolated
in 0(A), which is what we excluded. Hence, let us choose (ey,)nen as claimed, then the
sequence (¢, )nen defined by

Un = X\ 12 X\ nis € D(Ay)

is an orthonormal Weyl sequence due to ||(A — A\)¢y,|| < &, — 0 as n — oo. Since it is
an orthonormal sequence, it also converges weakly to zero.

Next, assume that A € 0(Ay) and ker(Ay — X\) = {0} so that, in particular, A €
Oess(Af). Then, we can repeat the previous argument and choose 2, and 1, n € N to
find a Weyl sequence that converges weakly to zero. In summary, we have proved that
A € 0(Ay) implies that there exists a Weyl sequence for Ay and A and that the sequence
converges weakly to zero if A € oess(Af).
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Conversely, assume that (1,)nen is a Weyl sequence for Ay and X\. Then, we claim
that A\ can not lie in p(Af). In fact, if we assume that A € p(Ay), then
(A—=X)"':H — D(Ay) is bounded. But this yields a contradiction, because

L= {[¢nll2 < [BACAD) i I(Ar = Mtnlla = 0 (n = o0).

Finally, if the Weyl sequence converges weakly to zero, we claim that A & oq(Ay).
Indeed, assuming that X\ € oq(Ay), let us denote by Py the orthogonal projection onto
the finite dimensional subspace ker(Ay — A). Notice that P is equal to the operator
that multiplies by x y-1({x}) (this is true for all eigenvalues A of A, independently of their
multiplicity): if App = f1p = M), 1 must have support in f~1({\}), so that

ker(Af - )\) = {Xffl({A})’(/J VNS D(Af)}

Now let PAL = 1 — P,, then the previous observation and the assumption that X is
an isolated point in the spectrum imply that

(P) (@) = xw\ g1 () (@)8(2) = XR\ f-1((Abirt6)) ()0 (2) (2.18)
u — a.s. for some & > 0. Indeed, for € > 0 small enough, we know that
g(Ap)N(A—eg X +e)\ {A} =0.

Using the characterization o(Af) = ess-ran(f), a standard compactness argument and
the subadditivity of u, this shows that

p(fHIAN=A=TUN =€, A+6])) =0

for suitable ¢’ > 0 fixed and for every ¢’ > 0 sufficiently small. By continuity of yu, this

yields u(f~1 (A= d0; A+ 8]\ {A\})) = 0 and thus (2.18).
From (2.18]), we conclude that for all n € N, we have that

(A = N Piabnl2 > 6| P |
and therefore

Tim ([P <070 Tim [[(Ap = A)Piballa <671 lim [|(Af = N2 = 0.

Now, Py projects onto a finite dimensional space and (Pxy,)nen is a bounded sequence,
|Pxthn|| < 1 for all n € N: it has in particular a strongly convergent subsequence.
Since (Pi-tbn)nen converges strongly to zero, this means that (¢,)nen has a strongly
convergent subsequence and its limit must be zero, since (¢, )nen converges weakly to
zero, by assumption. But |[¢,]l2 = 1 for all n € N, a contradiction. Given a Weyl
sequence weakly converging to zero, we must therefore have A € oess(Ay). O

Remark 2.5. Observe that the proof implies that for A\ € oess(A), we find an orthonor-
mal, and consequently weakly convergent, Weyl sequence for A and ).
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Weyl’s criterion describes in particular the essential spectrum of a general self-adjoint
operator. This part of the spectrum is strongly related to the field of scattering theory,
see [65] for a thorough discussion. In the mean field examples below, on the other hand,
we are primarily interested in situations where the Hamiltonian has purely discrete spec-
trum and a fundamental task in quantum mechanics is then to determine the different
energy levels, i.e. the eigenvalues of the Hamiltonian. Since an exact calculation of the
spectrum is in general out of reach, one needs methods to approximate the eigenvalues.
A particularly useful criterion to estimate eigenvalues is the Min-Max Principle.

Theorem 2.17 (Min-Max Principle). Let A : D(A) — H be self-adjoint and such that
(W, Ap)y > CHI,ZJH%{ for all ¢ € D(A) and some C € R . Define \y € R, k € N, by
A = inf max (Y, Ap)

VCD(A), eV,
dim(V)=k [[¢[l2=1

such that (\,)ken s a monotonically increasing sequence and bounded below by C'. Then

i) Given any k € N, we have that A\, € 0(A). Moreover, we either have A\, = A4 for
alll € N or that A\q,...,\; are eigenvalues of A, counted with multiplicity.

ii) We have that Ey = inf 0css(A) = limg_yo0 A\p, and the spectrum below Ey is given
by o(A) N (—o0; Ep) = { A\, : k € N} N (—o0; Ey). In particular, if Ey = oo, then
g(A) =04q(A) = { A\, : k € N} and oes5(A) = 0.

Remark 2.6. In the context of quantum mechanics, the first min-max wvalue
A1 = infyepa),|glln=1(¥, AY) is called the ground state energy of the Hamiltonian A.
It describes the lowest possible energy the system can have.

Remark 2.7. Let A: D — H and B : D — H be self-adjoint and suppose that A < B.
Denote by (Ap)ken the min-maz values of A and by (p1;)jen those of B. Then Ay < py,
for all k € N.

Corollary 2.5. If A\y — 00 as k — o0, then there exists a complete orthonormal eigen-
basis of A and (A — C 4+ 1)~ : H — D(A) C H is a compact operator.

Proof. By the spectral theorem and the min-max theorem, we have a spectral decom-
position of A into the countable sum

A= Melon) (on] (2.19)
k=1

for an orthonormal sequence (¢g)ren of eigenvectors of A. Indeed, by the spectral
theorem, we can assume that A corresponds to multiplication by some f : Q@ — R on
a measure space (£, B(Q2), u). The spectrum o(A) of A is the essential range of f and
by assumption, it is purely discrete, 0(A) = 04(A). By definition of the essential range,
one can verify with a simple covering argument that u(f~1(R\ 04(A4))) = 0 so that

flx) = Z f@)xp-1qy(z) = Z Axp-1qay(z) for p—ae z e
)\EO'd(A) )\EO’d(A)
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Since the eigenspace Eig(A\x) of A for Ay is finite dimensional and equal to

Eig(A) = {¢ € L*(dp) : & = X p-1(pyy #— a5},

we obtain the representation (2.19). Analogously, for any v € L?(du), we have that

Z V(@) xp1qay (@) for p—ae z €,

>\€O’d(A)

so that the (¢k)ken form a complete orthonormal basis, that is H = span(¢y : k € N).
For the compactness of (A — C + 1)7!, we use the spectral decomposition

(Ae — C + 1)) (@rl-

NE

(A-C+1)t=

£
I

1

If (¢Yn)nen is a sequence in H such that [|¢,||y < 1 for all n € N, then for some
subsequence v¢,; — ¢ € H as j — oo for some weak limit ¢ € H. In particular, we
obtain that [(¢n;, or)u|* = [(¥, or)u|? for every fixed k € N. But then

_ 2 o 2
(A= C+ 1)y — )y < 3 o O g [, = 0o

. P - P
& OwC12 T vt

[(Vn; — ¥, o) |? 4
()\k’o C+1 +k§ e —C+ 12 (g - CF1)2

as j — o0o. Since A\, — oo as kg — 0o, this implies the compactness of (A—C+1)"1. O

Proof of Theorem [2.17. i) We proceed by induction. We claim that the following holds
true for all & € N: A\ € 0(A) and if there exists some j € N with j > k and s.t.
Aj < Ajg1, then Aq,..., A\ are eigenvalues of A counted with multiplicities. Observe
that this implies 7).

We start to prove the claim for k = 1. Here, we have that \; = info(A) € o(A). For
A is bounded from below by A1 (> C) and therefore o(A) C [A1,00). On the other hand,
A1 € o(A). If A corresponds to multiplication by f in L?(du), via the spectral theorem,
then A\; must be in the essential range of f, because otherwise u(f~1(A1 —&, A1 +¢)) =0
for some £ > 0 which would imply A > A1 + &: a contradiction to the definition of ;.

Next, let us assume that \y = ... = A; < Aj;q for some j > 1. Suppose by
contradiction that A; is not an eigenvalue, then A\; € o¢55(A). Then we can find an
orthonormal Weyl sequence (¢n,)nen for A1, as in the proof of Weyl’s criterion. But
choosing a suitable subsequence, we find for every § > 0 a (j + 1)-dimensional subspace

V =span(¢y, : l=1,...,j+1)

on which
(W, A)y < X +9
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for every ¢ € V with ||[¢||% = 1. Indeed, given § > 0, we choose the n; so large s.t.

1)
(A = Ay, || < NESh

For a normalized vector 1) = Z{ill by, with 1= [j1[|? = Z{:ll |oy|?, this implies

J+1
(s Ay =M < max (A = M) 13 lea] < 6.
=1

But the existence of such a subspace yields a contradiction, because for é small enough

Ajip1 < osup (Y, Ay <A+ < A
YeV:||Yllu=1

We conclude that A; € 0(A) must be an eigenvalue and, in fact, A\; € o4(A).

Consider now the inductive step. If A\gy1 = Mg, then A\piq € o(A). If Ay < Mgy,
then Ay, ..., \; are eigenvalues of A counted with multiplicity, by the inductive assump-
tion. Similarly, if we assume \; < Aj;q for some j > k + 1, the inductive assumption
implies that Aq1,..., \r are eigenvalues of A counted with multiplicity. In each of the two
cases, this means that we find Vj = span(¢1, ..., k) a k-dimensional subspace in D(A)
spanned by orthonormal vectors corresponding to the first £ min-max values A1, ..., Ag.
We then define the operator

A®) = (4) p vt i DA NVE = HAVE

and check as an ezercise that A*) is self-adjoint as an operator acting on a dense domain
in HN V,j-. The key observation is then that the min-max values of A®), denoted by
(vi)ien, are equal to v; = Agq4; for every i € N.

We verify this for v - the general case is left as an exercise. To show that 11 = A4
let us first exclude that v; < Apyq1. For if v1 < Agyq, just pick some normalized vector
k1 € Vib with (p, Ap)y < Mer1. If A\p < Agy1, this yields a contradiction to the
definition of A\xy; by controlling A in form sense on the (k + 1)-dimensional subspace
span(V U {p}) C H. Recall here that for a vector Z§:1 a;j; + Bpk+1, we have

k
< >y + Berir, A < > ag+ 590k+1> > = Nl + B pri1, Apria),

by orthonormality. Similarly, in the case that A\; < A;jy1 for some j > k + 1, then either
AL =+ = Ag41, which yields v; < A1: a contradiction. Or we find some jy € {1,...,k}
such that \j; < Ag41 = Ajo+1 = -+ - = k. In this case, just form the (jo+ 1)-dimensional
subspace Vj,41 =span(¢; : j =1,...,j0 or j = k+ 1) which yields the contradiction

Ajo+1 < max (@, Ap)z < A1 = Ajo1-
PEVjo+1,llelln=1
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In summary, we must have 1 > A\;;1 and we can also exclude that v; > Agyq. For
if the latter was true, there must exist some normalized ¢ € V,j with (p, Ap)y < v1,
contradicting the definition of vy. The existence of such a ¢ follows by observing that
V1 > A1 implies that we find a (k + 1)-dimensional subspace W11 on which

(W, AY)y < Xpy1 +0 < 11y

for normalized 1 € Wy, and small 6 > 0, by definition of A\gyi. If Py : Wiy — Vi
denotes the orthogonal projection into Vj, then k+1 = dim ker(Py) +dim ran(Py), where
dimran(Py) < k and where ker(P;) C Vi1, hence the claim.

In conclusion, v; = My € o(A®)), by the inductive assumption. Hence, by the
characterization of o(A) through Weyl sequences and by definition of A®) we conclude
Aet1 € 0(A). If in addition, v; < vji; for some j > 1, the inductive assumption
implies that 1 is an eigenvalue of A®) 50 that Akr1 18 an eigenvalue of A and we find an
eigenfunction in VkL. This means that Aj,..., A\p+1 are eigenvalues of A counted with
multiplicity. Using that A\gx1; = v; for all ¢ € N, this proves the inductive step.

i1) Let’s start to prove that A\ < Ej for all £ € N. We may assume that Ey < oo,
otherwise there is nothing to prove. Since o4(A) consists of isolated eigenvalues of A,
Oess(A) is closed (check this) and hence Ey € 0cs5(A). From the proof of Theorem
we find an orthonormal Weyl-sequence (¢, )nen with ||[¢,||2 = 1 for all n € N s.t.

nh_g)lo |<"/)n7 (A - EO)¢TL>| < nh—>n<;lo ||(A - EO)¢nH2 =0.

Choosing for small § > 0, as in the proof of i), a suitable finite subsequence (¢, )no<n< N,
for sufficiently large ng, Ng € N, we conclude

M gy, (A T E0)¥) < o+
No—no>k,[[¢2=1
Hence, A\ < Ej for all k € N. Note that trivially Ay € o4(A) if Ay < Ep.

Now let us prove that Ao = limg_oo A = Ep. If Ao < Ep, then Ay € 04(A). In
particular, A\ is isolated so that (A\g)reny must terminate. Assume w.l.o.g. that A\y = Ao
for all k € N. Then in U = Eig(Ao)®, we have that o (Ap(a)nr) C [Ae +&;00) for some
e > 0, again because A\ is isolated in o(A). But from the proof of part i), we have

A(A) = MimBig0))+1(A) = A (Apaynr) € [Aoo 4 &500) = [A1 + &5 00),

a contradiction. Hence Aoo = Ej € 0ess(A).

Finally, let’s prove that {\; : K € N} N (—o0; Ey) = 0(A) N (—o0; Ep). Part i) and
the arguments from above show that {\; : k¥ € N} C o(A4) N (—oo; Ep]. Conversely,
let ¢ € o(A) N (—o0; Ep). This means by definition of Ey that p € o4(A). What we
need to show is that u € o4(A) implies that p is equal to some A\, < Ey. We certainly
have 1 > Ay and p < A, for some kg € N, because p < limy_,oo A = Ep. Then either
€ {A1,..., Ak} or there are min-max values \; < u < A\y1. But the latter contradicts
the definition of \;1; by evaluating A in form sense in the (I + 1)-dimensional space
formed by the orthonormal eigenvectors related to the eigenvalues A1,..., A\ and p. O
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Problem 2.19. Prove that A®) | defined in the proof above, is self-adjoint and determine
its domain. Prove that v; = A4 for all ¢ € N.

The Weyl criterion and the Min-Max Principle are quite powerful tools for studying
the spectrum of a self-adjoint operator. One important consequence for us is the dis-
creteness of the spectrum of Hamiltonians with trapping potentials. The picture is that
a potential that grows to infinity as |z| — oo makes it impossible for the particles to
escape to infinity, that is, they are effectively trapped in some finite region Q C R¢,
Corollary 2.6. Let H=—A+V : D(H) — L*(R%) be self-adjoint, where V € L2 (RY)
is a locally bounded potential satisfying V(x) — oo as |r| — oo. Then, the min-max
values \p(H) of H satisfy \g(H) — 00 as k — 0o and cess(H) = ().

Remark 2.8. Recall from Proposition that (—=A +V)|coe ey is self-adjoint.

Proof. Let w.l.o.g. V >0, denote by (A;)ken the min-max values of H = —A + V. We
assume by contradiction that

lim A = Ao = infoess(—A+ V) < 0
k—o00

By Theorem there exists a Weyl sequence (¢, )nen for H and A that converges
weakly to zero. In particular, we have that

lim |:/ dx [|v¢n(g})|2_’_V(LL‘)’¢n(gj)|2] — Ao | = 0.
n—00 R

This shows that (¢,,)nen is bounded in H'(R?). Now fix some R > 0 and denote by
¢or € CX(Bg(0)) C C*(R%) a smooth, compactly supported and non-negative function
which is bounded by one and which is s.t. pr(z) =0 for all |z| > 2R and pgr(z) =1 if
|z| < R/2. We consider (¢,¢R)nen in H(R?) and conclude from the Rellich-Kondrashov
Theorem (see [46, Theorem 8.9]) that (1, ¢R)nen has a strongly convergent subsequence
in L2(R?), denoted again by (¥n¢r)nen. Since the weak limit of (1, )nen in L2(R?) is
zero, we must have lim,, o0 Ynpr = 0 in L2(R%). But we also have

-1

/Rd dz (1 — SDR)Wn(l‘)’Q < (ess—inf|x|23/2 V(;L‘)) Moo

for some constant C' > 0 which is independent of n € N. Choosing first R > 0 and then
n € N sufficiently large, shows that 1 = ||¢,||2 — 0 as n — oo: a contradiction. As a
consequence, we conclude that inf oess(—A + V) = 00, i.e. ess(—A + V) = 0. a
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2.5.3 Existence and Uniqueness of Ground States

We have seen in Corollary that Hamiltonians with trapping potentials have purely
discrete spectrum. In this section, we use the functional calculus to show that the ground
state energy of such Hamiltonians, i.e. their lowest eigenvalue, is non-degenerate and
that the corresponding eigenvector, the ground state vector, can be chosen to be positive.
This result as well as the idea for its proof are interesting. As we will see in the next
chapter, the result is sometimes also useful for proving the uniqueness of minimizers of
nonlinear functionals. The presentation follows [63, Chapters VIIL.7 and VIIL. 8], [66,
Chapter XII1.12] and [75, Chapter 10.5], where further details can be found.

Throughout this section, we work in the Hilbert space H = L?(R%). We begin with
an abstract result which provides a strategy to prove the uniqueness and positivity of
eigenfunctions of Schrédinger operators. Sometimes this is referred to as the Perron-
Frobenius Principle, in analogy to the well-known result from linear algebra. To state
and prove the theorem, we need to introduce some notation:

An element f € L?(R?) is called positive if f(z) > 0 for a.e. x € R? (it is called
non-negative if f(z) > 0 for a.e. x € R%). If f is positive (non-negative), we write
f>0(f>0). A bounded operator A € L(H) is called positivity preserving if Af > 0
with Af # 0 whenever f > 0 with f # 0 and it is called positivity improving if f > 0
with f # 0 implies that Af > 0 is positive. Finally, A € £L(H) is called real if it maps
real functions to real functions. Notice that a positivity improving operator is real: if
1 =1 —1p_ is real and split into its positive and negative parts, then Ay = Ay, — Ayp_
and both A, AyY_ > 0. In particular, they are real valued, so A is real.

Proposition 2.7. Let A € L(H) be a self-adjoint and positivity improving operator.
Then, if X = || Al z(n) s an eigenvalue of A, it is simple and the corresponding normalized
etgenvector can be chosen to be positive.

Proof. Let ¢ € H denote a normalized eigenvector of A s.t. Ay = \p. Since A maps real
functions to real functions, the real and imaginary parts of ¢ are also eigenvectors of A
with eigenvalue A. Therefore, let us assume w.l.o.g. that 1 is real-valued and normalized.
We can decompose 1 into the sum of its positive and negative parts, ) = ¥+ —1_ where
1y = max(t),0) and ¢»_ = max(—1,0). We claim that (¢, Ap)y = (9|, A|Y|)n. Indeed,
this follows from

A= (1, Ay < (Y], [A ) = ([¥], [Avg — A} < (W], Al Da < [[All ey = A
where we used that |¢)| = ¢4 +¢_. Thus (¢, AY)y = (|¢|, A||)% and we find that
1 1
(1, AV = U101+ 9), Al = 9)w = {6, AV — (|9l ALl = 0.
Since A is positivity improving and the inner product of two positive functions is positive,
we conclude that either ¢ = 14 or ¥ = ¢_. Let’s assume for definiteness that ¥ = ¥

and ¥ = 0. Then, ¢ = HAHE(IH)Aw > 0. Hence, every real eigenfunction of A with
eigenvalue A is positive, up to multiplication by a constant. If we assume that there
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are two different real eigenfunctions 1, o with eigenvalue A\, we may assume w.l.o.g.
that they are orthogonal, but two positive functions in L? (Rd) are never orthogonal. We
conclude that A is simple and we can choose the eigenvector to be positive. ]

Proposition [2.7] is a statement about bounded self-adjoint operators. Of course, the
operators that we typically analyze are not bounded. However, as already used in the
proof of the spectral theorem, we can also obtain information about the ground state
vector of a self-adjoint operator by considering its resolvent.

Proposition 2.8. Let A : D(A) — H be a self-adjoint operator, bounded from below
and such that \g = inf o(A) is an eigenvalue of A. Assume moreover that the set

{e*m it €[0;00)} C L(H)

is a family of positivity improving operators. Then, Ag is a simple eigenvalue of A and
the corresponding eigenvector is positive, after multiplication by a constant phase.

Proof. Let < Ag. An application of the spectral theorem proves the useful formula
WA= b= [ = [Tt a (220)

for all ¢, € H. Fixing ¢ > 0, the assumption on {e=* : ¢t € [0;00)} C L(H) and
show that (A — )~ € L(H) is positivity improving, because ¥ > 0 is arbitrary.
Now, if g is an eigenvector of A with eigenvalue A, then vy is also an eigenvector of
(A — p)~! with eigenvalue (Ag — p)~!. But we have for any ¢ € H that

0 < (o, (A=) 2@)n < (Mo — 1) e, (A=) e)n < (Mo — 1) llel%
Hence, [|(A — )™ Y)llz@) = (Ao — 1) 7" so that Proposition [2.7] implies the claim. O
Apparently, a crucial assumption of Proposition is that the family of semigroups
{e_tA it €[0;00)} C L(H)

is positivity improving. The basic example of such a family is given by the one induced
by the Schrodinger operator of non-interacting particles.

Example 2.21. Consider —A : H*(R?) — L*(R%). Then {e"=2) 1t € [0;00)} C L(H)
18 a family of positivity improving operators. In fact, using that the inverse Fourier
transform of a Gaussian is again a Gaussian, we find for all ¢ € H*(R?) that

1 2 2
“t=D)y()y = =l —yl?/4t du = (278) "2 (=1 17/(2)
e e(") (4nt) 7 /Rde o(y) dy = (2mt)~"*(e )
Hence, e "(=2) acts as a convolution with a positive function and is positivity improving.

Notice that [0;00) 3 t — ¢y = e U2y solves the heat equation:

{&Hﬁt = Ay,
(¢t)|t=o = .
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From the fact that a typical Hamiltonian has the form H = —A + V with a multi-
plication operator V', and the fact that the semigroups {e 2t e 000 } C L(H)
are positivity improving, one may expect that also et s p081t1v1ty improving under
suitable assumptions on V. To show this, we use the Trotter-Product Formula, which
enables us to compute the exponential of H = —A + V in terms of e t(-2) and eV

Theorem 2.18 (Trotter-Product Formula). Let A : D(A) — $H,B : D(B) — $ be
self-adjoint operators on a Hilbert space $). Assume that A, B are bounded from below
and that A+ B is self-adjoint on D = D(A) N D(B). Then we have for any ¢ € D and
t € [0;00) that
ef(A+B)tw — lim (efAt/neth/n)nw
n—oo
Proof. Suppose for simplicity that A, B > 0, such that the norms of the operators
e~ 45 e=Bs ¢=(A+B)s ¢ £(§) are all bounded by one, uniformly in s € [0; 00).
Now, for ¢ € D and t € [0;00), the first observation is that we can write
[(efAt/neth/n)n o (67(A+B)t/n)n]w

(6 At/ne—Bt/n)n—l [e—At/ne—Bt/n _ e—(A—i—B)t/n]w

+ [(e At/ne—Bt/n)n—le—(A-i-B)t/n _ e—At/ne—Bt/n(e—(A-i-B)t/n)n—l]w

L [ At/me=Bln _ o~(A+B)/n] (o~(A+B)t/myn=1y, (2.21)

n—1
[ fAt/neth/n]k[efAt/neth/n _ 67(A+B)t/n] [67(A+B)t/n]n—1—kw

k=0
Note that e=(AtB)s s € [0;00), leaves D invariant (e.g. by the spectral theorem). Thus

H [(e—At/ne—Bt/n)n . ( —(A+B) t/n n]wuﬁ

< |t] Sl[l()p] (t/n) [ —At/n ,~Bt/n _ef(A+B)t/n]67(,4+3)stﬁ (2.22)
se

At the same time, we find for any ¢ € D = D(A) N D(B) that

lim t_l (e—Ate—Bt _ e—(A+B)t)

t—0 v
_ }g% (%(e_m _ l)e_Btgo i %(e—Bt 1) — %(e—(A-i-B)t _ 1)90)
—-Bt _ —tA _ —Bt _ —(A+B)t _
e G I Gl B ot i 1 Y
It implies that
lim (¢/n)~ [e—At/ne—Bt/n _ e_(A+B)t/”]e_(A+B)Sw -0 (2.23)

n—oo

for any 1» € D and any fixed s € [0;00). If the convergence in ([2.23) was uniform in
s € [0;¢] for a fixed t > 0, we could conclude the theorem from ([2.22]).
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To finish the proof, we prove that the convergence in (2.23)) is uniform in s € [0;¢].
This follows from the Uniform Boundedness Principle. We define the family of bounded
maps

K, = T—l(e—A’Te—BT o e—(A+B)T) D — 5;:)7

viewing D as a Banach space with the graph norm ||¢||p = ||¢lls + ||(A+ B)¢|ls. With
this norm, recall that D is indeed a Banach space, because (A + B) is (as a self-adjoint
operator) closed. We know that lim,,y K, = 0 and an application of the spectral
theorem shows that lim,_, K, = 0 as well, for every ¢ € D. Since the map 7 +— K, ¢
is continuous, this implies that

sup || Kr¢llg < oo.
T€[0;00)

The Uniform Boundedness Principle implies that there exists a constant C' > 0 s.t.

sup [|K-¢lls <Cllollp, VYeeD

T€E[0;00)

Now suppose that S C D is compact. Given € > 0, we cover S by open balls of radius
e/(2C) and extract finitely many elements ¢,, n = 1,2,...,n9 € N, s.t. S is covered
by the open sets B./s(¢n),n = 1,...,n9. Hence, by the previous bound, there exists a
790 > 0s.t. forall 0 <7 < 719 and all ¢ € S, we have

[Krplls < max (1Ko~ pa)lls + [ Krpulls) < ¢

=4.-510

where we choose ,, appropriately. That is, the convergence K,p — 0 as 7 — 0 is
uniform on compact subsets of D. Finally, we notice that the set

{e_(A+B)S¢ :s€[0;t]} €D

is compact. Indeed, for any fixed 1) € D, the map [0;¢] > s — e_(A+B)51/J is continuous
from the compact set [0;¢] to the Banach space D. This proves that the convergence in

(2.23)) is uniform in s € [0;¢] and thus concludes the theorem. O

As a first application, the next corollary shows that trapping Hamiltonians admit
unique, positive ground state vectors.

Corollary 2.7. Let H = —A+V : D(H) — L*(RY) be self-adjoint, let V € L (RY) and

C
assume that C2°(R?) is a core for H. Suppose, moreover, that inf o(H) is an eigenvalue

of H. Then, inf o(H) is a simple eigenvalue and the corresponding eigenvector is positive
after multiplication by a constant phase.

Proof. By Proposition the claim follows if
{eT 1 te[0;00)} C L(H)

is a family of positivity improving maps. To apply the Trotter-Product Formula
we first approximate H by H, = —A + V,, where V,, = Vx(V~([-n;n])) € L>(R?).
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Notice that H,, : H2(R%) — L?(R?) is self-adjoint and essentially self-adjoint on C°(R9)
for all n € N by Theorem[2.4] Moreover, the Trotter-Product Formula[2.18 and Example
imply that e~ 7! is positivity improving for any n € N and any ¢ € [0;00). Indeed,
for ¢ € L*(R?%) s.t. 1 > 0, ¢ # 0, we have the pointwise lower bound

(7 memntimymy) (2) 2 e~ (e” V) (2) > 0 (for ae. z € RY),

uniformly in m € N, which follows from Example and the fact that |V,,| < n.

We would like to deduce from the above that also e ~#* is positivity improving. To this
end, let’s start to show that e~ converges strongly to e~ #t. Applying the Monotone
Convergence Theorem, we find lim, .« ||[(H — H,)|lzy = 0 for any ¢ € C°(R?). Thus

0< lim [[(H —2)7"¢ — (Hp — 2) "'l < [Tmz[™" lim [|[(H — Hy)(H = 2) 7' 9llz = 0

for any z € C with Imz # 0 and any ¢ € (H — 2)(C>*(R%)). Here, we used that
[(Hn—2)""|£(2¢) < |Imz|~*, uniformly in n € N. Notice also that (H—2)(C*RY)) Cc H
is dense (for Im(z) # 0), because C2°(R?) is a core for H. As a consequence

i [|(H — 2) 7 — (Hy — 2) =0
for all ¢ € H. From the strong convergence of the resolvents, we obtain the strong
convergence of the operator exponentials as follows:

First, recall that the Stone-Weierstrass Theorem implies that the C*-subalgebra
of Cou(R) = {f € C(R) : lim, o f(z) = 0} generated by z — (z —i)~' and z —
(z + i)~ is dense in Coo(R) = {f € C(R) : lim,_, f(x) = 0}, equipped with the
sup-norm. Indeed, we observed already in the chapter about the spectral theorem that
this subalgebra separates points and is closed under conjugation in

{f € C(X): f(#o0) = 0} =~ Cuo(R),

where X = R U {#co} = R denotes the extended reals (as a compactification of R).
An application of the functional calculus shows then that we can approximate e~ #* and
e Hnt strongly by polynomials in (H — i)', (H + i)' and (H, — )7, (H, +1)7!,
respectively, noticing that

e = f(H)e ™ and e ' = f(H,)e "t
for any f € C(R) which is such that fjjc,oc) =1 and f(e;c—1) =0 if H, H,, > C. Thus

lim |le™ ) — e Hnty)||3p = 0 (2.24)
n—oo
for every t € [0;00). Since zero can not be an eigenvalue of e =¥ (why?), this shows that
e~ Ht is positivity preserving for every t € [0; 00).
What remains is to show is the stronger statement that e™"" is in fact positivity
improving. Here, we argue as follows. Let ¢ > 0, ¢ # 0, and suppose ¢ > 0 is such that
(p, e Htp) = 0 for all t > 0. Then, as a function in L?(R?), we have that

Ht

pe My =0 e L2(RY).
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Hence, also (e"7p) e~y = 0 for all n € N and all ¢ > 0. Invoking the Trotter-Product
Formula, Theorem [2.18] again, we deduce that

—(H-Vp)t —Ht T —Ht/k Vat/k\F —Ht _
<€ P, e Tb)?—t klig.lo<(e € ) P, e ¢>H 0

and, arguing as in the previous step, this implies that

(e, e M)y = 0

for every t > 0. If ¢ # 0, then e®tp(z) > 0 for a.e. x € RY, so (P, e Hlp)y > 0 (e~ H?
is positivity preserving). Hence, we must have ¢ = 0.
In conclusion, we have proved for ¥ > 0,1 # 0 that

ngO/\(go,e_Htl/J>:0 — p=0.

Choosing ¢ = X {zerd: e~ Hiy(z)<0} (= X{zcRd: e~ Hiyp(z)=0} a-5-), We get e Hy > 0. O]

Let us conclude this section with another interesting corollary, which is related to the
path integral formulation of quantum mechanics - the Feynman-Kac formula. Our short
discussion of this result is a digression and we refer to [64, Chapter X.II] and [10] for
further details. Let us denote by u, the Wiener measure for one-dimensional Brownian
motion starting at x € R. Wiener measure u, is a Gaussian probability measure and can
be defined on the space Q = C([0;T];R)N{f € C([0;T];R) : f(0) = x} of continuous
functionsﬂ starting at * € R. As a Gaussian measure, it is characterized by its mean
Jo dpz w(t) = z and its covariance, which is equal to

C(s,t) = /Qd,ux(w)(w(t) —z)(w(s) —x) = min(s, ).

In other words, the random variables Q 3 w — w(t) € R, defined on the probability
space (2, B(Q), 1), are Gaussian with mean x and variance . Moreover, given times
0<ty<ty <- <ty the increments w(t;) — w(ty), w(te) — w(t1),...,w(tn) — w(tn—1)
are independent. The stochastic process (w(t));ejo;r) is called Brownian motion.

Referring for the more technical aspects to basic courses on stochastic processes,
the measure u, can be constructed essentially as follows. Pick an orthonormal basis
(k) ken of L2([0; T]) and a sequence of independent standard Gaussian random variables
(X )ren, defined on some probability space (2, F,P). For f € L*([0;T]) such that

F=Y onpe with Yol = || £]3,
keN keN

the random variable

G(f) = arpr

keN

9This means that the push-forward measure £.(u.) is a Gaussian measure on R, for any £ € Q*.
Notice, for instance, that the Dirac-6 centered at ¢t € [0;7] lies in 6; € Q* for any ¢ € [0;T.
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is a centered Gaussian random variable with variance

EG(f)* = |I£15.
Now, define (By);cjo;r) by Bt = = + G(X[0;1)), then it is straightforward to check that
e By=xPa.s.,
e finite linear combinations of the (B; — x) are centered Gaussian random variables,
o E(B; — z)(Bs —x) = min(s, t) for all s,¢ € [0;T].

One says the stochastic process (Bt)te[o;T] defines a Gaussian process (the map G is an
isometry from L? to a Gaussian space) and it is called pre-Brownian motion. It satisfies
all properties of Brownian motion mentioned earlier, except that the sample paths

[0;T] 5t~ By(\) € R

need not be continuous for P-a.e. A\ € ). With regards to the remaining properties,
notice for example that for s <t < u, one has

E(B, — Bt)Bs = min(u, s) — min(¢,s) = 0,

which implies that B,,— B is independent of o(Bs : s < t) by basic properties of Gaussian
processes. In courses on stochastic processes, one then learns how to modify (Bt)ejo;7)
to another process (w(t));c(o;7 such that

t — wi(A) is continuous for every A € Q and P({B; = w¢}) = 1Vt € [0;T].

Wiener measure i, is then simply the law (i.e. the push-forward measure) of the random
variable (Q, F,P) € w — ([0;7] 3 t — wy € C([0;T};R)). For a detailed introductory
discussion of Brownian motion and their properties, see for example [40].

Assuming now the existence of i, and (w(t)).c[o;7] as above, we see that

/dﬂ (w)f(w(t)):/e_w_mf(y)dy
[¢) ’ R \/27‘&1

for every f € L?(R). At the same time, we recognize that for a.e. z € R, we have

—(y-u)? /2t
| ety = (A ) @),

which relates Brownian motion to the free heat semigroup {e_t(_A/ 2t > 0}. The
Feynman-Kac formula tells us similarly how to compute (e*t(*A/ 24V) f) () for suitable
potentials V' in terms of a path integral over the Wiener measure.

Corollary 2.8 (Feynman-Kac Formula). Let V € C.(R), then for all f € L*(R)

(e—t(—A/2+V)f) ($) _ /

Q

ot Sy en (- [ Vi(w(s)) is).
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Proof. The proof follows from the Trotter-product formula (it is left as an ezercise to
check that we may apply the formula). Indeed, we claim that

(( —(=A/2)t/n,, th/n // / x5 Tns t/1)p(Tn; Tp-15t/n) .. p(x2; 15t /0)

X exp ( - — ZV xj > x1)dridxs ... dx,

= [ew ( Sy v<w<jt/n>>) F () dpia(),

(2.25)
where p denotes the heat kernel, i.e.
e—(@=y)?/2t

p(a;yst) = W(Zp(w—y;o;t) =p(0;z — y;1)).

While the first equality follows simply by iteration (ezercise), for the second equality
we use the fact that (w((j +1)t/n) — (]t/n)) __1 are i.i.d. Gaussian under p, with the

increment w((j + 1)t/n) — w(jt/n) having variance t/n for all j = 1,...,n. Indeed, let’s
verify the second step for n = 2 and leave the general case as an exercise. We compute

t t
[ e ( - vt - 2v<w<t>>)f<w<t>> Qb ()
t t
- [ ( ~ Ivtlt/2) - v (i - wi/2) + w(t/2>>)f<w(t>> o ()
= [ [ stonszerptonsvst/2exn (= Vi) = 5Vn -+ ) ) £l + ) e
RJR
= /R/Rp(m;xg;t/Q)p(xl;mg;t) exp ( — %V(wl) — ;V(x2)>f(x1) dx1dxs.

Generalizing the above computation to arbitrary n € N, we conclude . Finally,
taking the limit n — oo for a suitable subsequence on the lL.h.s. by the Trotter-product
formula (to obtain the a.e. equality in L?(R)) and applying the dominated convergence
theorem on the r.h.s., using that V € C.(R) as well as

t — t
lim — » V(w(jt/n)) = [ V(w(s))ds

for each path w € €, we conclude the theorem. O

Remark 2.9. The Feynman-Kac formula is also valid in higher dimensions and with
much weaker assumptions on the potential, see e.g. [64, Theorem X.68]. For the sake
of simplicity, in C’omllary we focus on dimension one and potentials V € C.(R).

The Feynman-Kac formula can be used to understand a number of interesting prob-
lems in mathematical quantum mechanics. We refer the interested reader to [71].
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2.5.4 Quadratic Forms and Self-Adjoint Operators

In this section, we discuss basic results about quadratic forms. We show that every
closed, semibounded form corresponds to a unique self-adjoint operator. As a basic ap-
plication, we introduce the Laplacian with Dirichlet and Neumann boundary conditions.
Given a dense linear space of a Hilbert space H, we call a map ¢ : Q(q) X Q(qg) — C
a quadratic form with form domain Q(q) if ¢ — q(¢, ) is anti-linear and ¥ — q(p, )
is linear, for every v, ¢ € Q(q). We say that ¢ is non-negative if ¢(i,) > 0 for all
¥ € Q(g) and, more generally, we call ¢ semibounded if q(v,v) > M|¢[|3, for some
M € R. Finally, we say that ¢ is symmetric if q(v, ¢) = q(p, 1) for all p,1 € Q(q).
Since we work in complex Hilbert spaces H, notice that a form is symmetric if it is
semibounded. Indeed, semiboundedness implies that ¢(¢, () € R so that by polarization

4q(p, V) = qle + v, 0 +9) —qlp — ¥, 0 — ) —iqp + i, o + i) +iq(e — i, p — ir))
=qW+ o, 0+ @) —qb — 9, — ) —iq( —ip, Y —ip) +iq( +ip, P +ip)

=4q(¢, ¢).

We call a semibounded quadratic form ¢ : Q(q) x Q(q) — C s.t. q(p, ) > —M]||p||3,
closed if the form domain Q(q) is a Hilbert space when equipped with

If ¢ is closed and D C Q(q) is dense with respect to the induced norm || - |41, we call D
a form core for q. We say that ¢ is closable if it has a closed extension. If ¢ is closable
and has a smallest closed extension, we call the latter its closure.

Lemma 2.10. Let q : Q(q) x Q(g¢) — C be a semibounded quadratic form. Then g
is closed if and only if whenever (n)nen s a sequence in Q(q) that converges to
in H and is such that q(vn — Y,V — Um) — 0 as n,m — oo, then ¥ € Q(q) and

limy 00 Q(wn - 1/}7 wn - ¢) =0.

Proof. Suppose that ¢ is closed and suppose (¢, )nen in Q(g) converges to ¢ in H and is
such that q(¢y, — ¥m, ¥n — ¥m) — 0 as n,m — oo. This clearly implies that (¢, )nen is
Cauchy with respect to the induced norm || - ||+1. By completeness, (¢, )nen has a limit
in Hyp = (Q(q), (+,)11), call it . Since [[¢n — @llg < [[tn — @ll41 — 0 as n — oo, we
conclude that ¢ = ¢ € Q(q) and hence lim,, o0 ¢(V, — 1, Py, — 1) = 0.

On the other hand, suppose ¢ is a form with the property that whenever (1,)nen is
a sequence in Q(q) that converges to ¢ in ‘H and is such that ¢(¢,, — Y, ¥n — Ym) = 0
as n,m — oo, then ¥ € Q(q) and limy, o0 ¢(¢n, — ¥, 1, — 1) — 0. Then suppose that
(¢n)nen is a Cauchy sequence in Hy1. Again, by || - ||% < || - ||+1, we find that (¢,)nen
has a limit ¢ in H and, moreover, ¢(¢n — ©m,Pn — ©m) — 0. Thus, ¢ € Q(q) and
limy, 00 0, = ¢ in Hq, so q is closed. O

Example 2.22. Suppose that A : D(A) — H is a self-adjoint operator. By the spectral
theorem, suppose w.l.o.g. that H = L*(Q,B(Q),u) and that A = Ay corresponds to
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multiplication by f : Q2 — R on D(A) = {s € L*(dp) : f1 € L*(du)}. Define
Q) = {v & )+ [ d@)lf @)@ < o} (= D(AP)
and q: Q(A) x Q(A) — C by

4, ) = /Q () () D) pl).

Then q is called the quadratic form associated to A and Q(A) is called the form domain
of the operator A. By slight abuse of notation, we sometimes write q(¢, p) = (¥, Ap)y
although Ay need not make sense for all p € Q(A).

Suppose A is semibounded s.t. q is a semibounded form. Then q is closed. Indeed,
assume w.l.0.g. that A > 0 so that f(x) > 0 for p-a.e. x € Q. Let (¥n)nen be a sequence
in Q(A) that converges to ¢ in H and that is such that

/Qdu(x)f(:c)](wn )@ =0 as n,m — oo

By completeness of L*(u), we see that (fY/%0,)n_ee converges in L?(p) to some ¢ €
L?(dp). Choosing suitable pointwise almost surely converging subsequences, we must
have that o = f1/2%4 p a.s. so that f1/%) € L?(dp), i.e. ¥ € Q(A), and

/ﬂ Apu(@) ()] (Yo — V) @) = 0 as n— oo,

Problem 2.20. Let g : Q(A) x Q(A) — C be the form w.r.t. a semibounded self-adjoint
operator A : D(A) — H. Prove that any operator core of A is a form core for q.

Our first main result about quadratic forms is the following.

Theorem 2.19. Let q : Q(q) x Q(q) — C be a semibounded, closed quadratic form.
Then, there exists a unique self-adjoint operator A : D(A) — H such that q is the
quadratic form associated to A, that is, q(v, ) = (¥, Ap)y as in Example .

Proof. We assume without loss of generality that ¢ is non-negative. As above, we denote
by H.1 the Hilbert space (Q(q), (-,-)+1). We then denote by H_; the space of bounded
conjugate linear functionals on Hyi. Analogously to the usual Riesz representation
theorem, every £ € H_1 is uniquely represented by some )y € H1. More precisely, the
canonical linear isomorphism that sends ¢ € Hq to ®(¢) € H_1, defined by

is an isometric isomorphism of H; into H_;. Finally, we denote by 7 : Hi1 — H the
canonical embedding of H,1 into H and by j : H — H_1 the embedding of H into H_1
that is defined by j(¢) = (-, %)%. Notice here that

@)@ < llllallplln < lPlllell+a
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so that indeed j(¢) € H_1. With ¢ and j as above, we have that

Hir s HDH .
To prove the theorem, we will find a self-adjoint operator B : D(B) — H such that
(0, B)y = (@, ¥) + (0, 0 = (0, V)ry = 2(¥) () (2.26)

for a suitable dense domain D(B). Once we find such an operator, it will be simple to
conclude that the quadratic form ¢ is the form associated to A = B — 14.
To find the right operator B, eq. (2.26)) motivates to define

D(B) ={y € Hi1 C H : ®(¢)) € Ran(j)} = @' (Ran(j)),
B =(j"")Ran(5® : D(B) = H,
Indeed, this implies for ¢» € D(B) that

(o, BY)n = j(BY)(p) = ©(¢)(p).

B is certainly a symmetric operator, because for all ¢, p € D(B), we have

(0, By = @(¥)(¢) = q(p, ) + (o, V)u = q(¥, 0) + (¥, ) = (B, ¥)n.

Let us show next that D(B) C H is dense. To this end, we first argue that Ran(j) is
dense in H_;. For if not, we find some 0 # ( € H*, that vanishes on Ran(j). By duality
(more precisely, using that #H.y; is isometrically isomorphic to H*,), ¢ corresponds to
some 0 # ¢ € Hy1 C H so that in particular

CW) = J()(pc)

for all » € H. This means that 0 = j(¥)(¢¢) = (¢¢, )y for every ¢ € H. But this is
not possible, because ¢ # 0. Thus, Ran(j) is dense in H_; and since ® is an isometric
isomorphism, D(B) = ®~!(Ran(j)) is dense in H1. Since, moreover, |- || < |- ||+1, we
conclude that D(B) is dense in H.

Finally, we argue that B is self-adjoint. To this end, consider the linear operator
C:®71j:H — Hy C H: it is clearly injective and it is symmetric, because its inverse
B is symmetric. Since it is defined on all of H, it is self-adjoint. Using the spectral
theorem, one checks that its inverse B = C~! : ran(C) — H is self-adjoint as well.

Finally, to conclude that A is the unique self-adjoint operator whose form corresponds
to ¢, suppose that ¢ is also the form associated to a self-adjoint operator A : D(A) — H
and suppose w.l.o.g. that AA > 1 st. 0.€ p(A)N p(A). Then, Q(A) = D(AY?),
Q(A) = D(AY?) (viewing both A'/2] AY/? as self-adjoint operators in their canonical
form) and in particular A='/2y € Q(A) = Q(A) = Q(q) for every ¢ € H. But then

(W, o) = (AVPAT 2, AVZAT )y = g(A71 29, A7)
= (AV2A71 2 A2 47120,

for all ¥, ¢ € H, which implies that U = A2 4712 g unitary. This means that UU* =

Iy = AY2A71AY2 g4, A~' = A~! and therefore D(A) = D(A) and A = A. O
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Example 2.23. In L*(R), set Q(q) = C°(R) and define q : Q(q) x Q(q) — C through

q(f,g) = £(0)g(0).

Clearly, q is a non-negative quadratic form. Does it correspond to a self-adjoint op-
erator? We might suspect that this is not the case, because otherwise q would cor-
respond to multiplication by a Dirac d-function. In fact, q does mot correspond to a
self-adjoint operator, otherwise it would be closed. But choosing a sequence of func-
tions (¢n)nen in Q(q) such that 0 < ¢p, < 1 with supp(pn) C Bin(0) and such that
(90")\31/%(0) = 1 while (gon)m\Bl/%(o) =0, we see that lim, o0 ©n = 0 in L2(R) as well as
limy, 100 4(©n — @m, n — om) = 0, but q(¢n, on) =1 # ¢(0,0). Hence, q is not closed.
The argument also shows that q does not have a closed extension with form core CZ°(R).

Our second main result with regards to quadratic forms introduces the Friedrich’s
extension. In many practical situations, one starts with a semibounded, symmetric
operator A : D(A) — H and it is a priori not clear how many self-adjoint extensions the
operator has and which one to pick. The Friedrich’s extension is a particular self-adjoint
extension with a number of desirable properties, most importantly that the domain of
the original symmetric operator is a form core for the form associated to the Friedrich’s
extension. This implies, for instance, that the ground state energy of the extension can
already be computed (via Theorem based on knowing the domain D(A).

Theorem 2.20 (Friedrich’s Extension). Let A : D(A) — H be a non-negative and
symmetric operator. Define the quadratic form q on D(A) x D(A) through

Then q is a closable quadratic form and its closure q 1is the quadratic form of a unique
self-adjoint operator A : D(A) — H, the Friedrich’s extension. A is a non-negative
extension of A and D(A) is a form core for q. Furthermore, A is the only self-adjoint
extension of A with its domain being a subset D(g) C Q(q) of the form domain of q.

Proof. As before, we set (¢, )11 = q(1, ¢) + (¢, ). Since A is non-negative, (-, )11
defines an inner product on D(A) and we can consider its completion H41. What we
would like to show is that Hi1 — H can be identified with a subset of H. If that’s
the case, it follows that ¢ is closable and we obtain its semibounded closure ¢ with form
domain H4q1 C H. Notice also that D(A) is then a form core for ¢, by construction.

Let’s denote by i : D(A) — H the identity map. Since || - || < || - ||+1, 7 is
bounded from the dense set D(A) C H4; into H. In particular, ¢ has a bounded
extension i : Hir — H. We claim that Qs injective, showing that Hy — H. To
see that 7 is injective, suppose that ?(cp) = 0. By definition of i, this means there
exists a sequence (¢n)nen in D(A) such that lim, o [|¢ — @nll+1 = 0 and such that
limy, o0 [|7(n) || = limp—o0 ||nll% = 0. This implies that

||90H3-1 = lim lim (¢n, Pm)+1 = lim lim (<%0naASDm>H + <‘Pn7%pm>7—[) =0,

m—00 N—00 mM—00 N—00
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hence ¢ = 0 € ‘H4. Observe that the non-negativity of A is used to define 7 while the
fact that ¢ is defined through A implies that iis injective.

We conclude from the previous argument that H41 < H so that ¢ has a closure q.
As a semlbounded closed form, ¢ corresponds to a unique self-adjoint operator A by
Theorem More precisely, ¢ is the form associated to A _and D(A ) C Q(q) is a form
core. Moreover A extends A. For if ¢ € D(A) and 1 € D(A) C Q(), then

so that ¢ € D(A*) = D(A) with A*gp = Ap = Ap, ie. AC A If Ais any other
symmetric extension of A with D(A) C Q(q), then the same argument shows that A
extends A; in particular, if A is self-adjoint, then A=A O

Example 2.24. In the setting of L>((0;1)), consider A = —92 on C°((0;1). Then

1013 = 10013 + 19113

corresponds to the H'((0;1))-norm. In particular, if lim, oo ¥, = ¥ in Hi1, then
¥ € HY((0;1)) extends to an absolutely continuous function in [0;1] and we have that
Jim ¢y, (2) = 1(2)
for every x € [0;1] so that 1¥(0) = (1) = 0. This means that the Friedrich’s extension
A of A is the self-adjoint extension of —0? with_Dirichlet boundary conditions. The
spectrum of this operator is explicitly given by o(A) = {(n7)? : n € N} (why?) with the
corresponding eigenfunctions {x — sin(nwz) € C*°([0;1]) : n € N}.
Using g, we recover the well-known Wirtinger’s inequality

1 1
/ dz | (2)|? > 72 / dz ()P,
0 0

valid for all ¢ € C°((0;1)), which follows from the lower bound on A. Notice that this
lower bound is also true for the form induced by A.

We also notice that, in general, a self-adjoint extension of A need not satisfy the same
lower bound like the form induced by A. For instance, another self-adjoint extension of A
is the Laplacian —Ay : D(—=Apy) — L*(R) with so called Neumann boundary conditions,
defined by D(—An) = {¢ € H*([0;1]) : ¢'(0) = ¢'(1) = 0}. In this case, the lowest

etgenvalue )\gN) of —AN corresponds to )\gN) = 0, with constant eigenfunction. On the
other hand, there also exist self-adjoint extensions of A that are different from A, but

have the same lower bound on the spectrum - this is left as an exercise.

The previous example mentions the Dirichlet and Neumann Laplacians, often found
in applications. We finish this section with their definition for general domains 2 C R™
and with a characterization of them when 2 is a box. We refer to the monograph [68]
for more details on self-adjoint realizations of the Laplacian on general domains.
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Assume that Q@ C R™ is open. The Dirichlet Laplacian —A% is defined as the
Friedrich’s extension of the non-negative, symmetric operator —A : C°(Q) — L?(£, dz).
In other words, —A% is the unique self-adjoint operator whose form corresponds to the
closure of the form

() o /Q 4z VP (x) - Vo(x)

on C2°(£2). On the other hand, the Neumann Laplacian —AY, is the unique self-adjoint
operator whose assocated form is equal to

(,0) /ﬂ 42V (x) - Vp(x)

on the domain H'(f2). Note in particular that this form is closed in H*().

Proposition 2.9. Suppose that Q@ = (—1;1)" C R™ is a cube and denote by —Ap and
—Ap the Dirchlet and, respectively, Neumann Laplacian for this domain. Then:

a) Dp = {f € C®(Q) : flan = 0} is an operator core for —Ap and for such f € Dp,
we have that

~Apf=-) Of
=1

b) Dn = {f € C*(Q) : (0f/0n)jpa = (Vf -0)jaq = 0} is an operator core for —An,
where N denotes the outward pointing unit normal to Q). For f € Dy, we have that

~Anf=-) O

=1

Proof. The proofs of a) and b) are similar. We focus on part b) to see where the boundary
condition on the gradient comes from. Part a) is left as an ezercise.

We denote by A = — > | 87 : Dy — L%(2). Our goal is to show that A is essentially
self-adjoint and that A = —Apx. The essential self-adjointness can be seen as follows.
Consider the orthonormal sequence (¢x)ken,, defined by

1
\/i’
for z € (—1;1). Then, a basic key fact is that (¢y)ken, lies in C°°([—1;1]) and forms
an orthonormal basis of L?((—1;1)). Morerover, each 9}(1) = ¢},(—1) = 0 satisfies the

Neumann boundary conditions in one dimension, which will also imply the Neumann
boundary conditions in the general case. Indeed, the family

Yo(z) = Yop—_1(x) =sin((k — 1/2)mx),  tor(x) = cos(kmz)

{Vj1,jn = jy @ jy ® - @), 1 j1,...,Jn € No} C Dy C L*(Q)
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is an orthonormal basis of L?(Q) and this set is in fact a subset of Dy (ezercise).
Enumerating the functions by (¢j)jeNg7 we obtain an orthonormal eigenbasis of A with

2 N
7T .
Ay = My = Y 5y
=1

With this notation, we claim that ¢ € D(A) if and only if

> Al @) < oo, (2.27)
jenr
Indeed, suppose that (2.27) holds true. Then (ZU‘SN@/JJ-, <p>1/1j)NeN has the property
that (A ZIjISNWJ’ cp)wj)NeN = (EUISN )\J-Q(wj, g0>wj)N€N is Cauchy and we have that

Jim o= 3 ] =0
<N

that is, ¢ € D(A). On the other hand, if ¢ € D(A) and ¢ € C*(2) (C Dy), we have
A = = 1 2 . .
<C,A(,0> - <AC7 90> - J&g)noo <C7 Z )‘j <w_]a (P>w,]>
JI<N
By density of C>°(2) C L%*(Q), this means that >lil<n )\j2<1/;j,<p)gpj — Ay weakly in
L?*(Q) as N — oo. In particular, (2.27) holds true. What this shows as well is that

Ap =" My, 0)0

jeny

for every ¢ € D(A). In other words, A is equivalent to a multiplication operator with
canonical domain (in the (5)jeny basis) and hence, A is self-adjoint.

In order to show that A = —Ap, we need to analyze the form ¢ associated to A.
Here, we first notice that for f,g € D(A), we have by integration by parts that
dg

o1.0) = | 00VF@)- Vo)~ [ as 5t~ [ dw V@) Vola)

If we denote by gy the form associated to —Ay, this shows that (¢n)pa)y = qp(a)-

Since D(A) C H'(Q) is an operator core for A, it is a form core for ¢ and we infer
that Q(A) C H'(£2). What remains to be shown is then only that H'(2) C Q(A). So,
suppose that f € H'(Q), then f € Q(A) will follow if we show that

DXy, HF < Clf I o)

jeng

To see this, suppose that g € C1(Q) is such that g(£1,22,...,2,) = 0. Then

(Ot g) = —(f.0ng) + /d dS fg1 =1, 019). (2.28)
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Here, the integration by parts formula is justified, because f € H'() admits a trace
fion € L?(09), by standard properties of Sobolev functions in the box €.
The reason why ([2.28)) is helpful, is because the functions

{§ =05 ©vp @@y, 1, ja €N} C O®(Q)
for op_1 () = cos((k — 1/2)mz) and oy (x) = sin(knz) are still orthonormal with
.
g = ig]le'

Therefore, by Bessel’s inequality for orthonormal sequences, we get

4
> Gl f) - Z (O], &)l _prH%{I(Q)

jeNn jENn

and repeating the argument for each coordinate, we conclude that

> (1+*Zﬂz) Wy A= 3 (4 A DI < Cll .

JeNg JENR

Problem 2.21. Carry out the proof of part a) of Proposition .

2.5.5 Tensor Products of Operators

We finish the chapter about applications of the Spectral Theorem by collecting some
basic properties of tensor products of operators. Throughout this section we assume
that A and B are densely defined operators on the Hilbert spaces Hi and Ho. Let’s
denote their domains by D(A) C H; and D(B) C Ha, respectively. We define the space
D(A) ® D(B) = span{p ® ¢ € H1 @ Ha : ¢ € D(A),vp € D(B)}, such that we have in
particular D(A) ® D(B) = H1 @ Ha. We define A® B : D(A) ® D(B) — H1 ® Ha by

(A® B)(¢p @) = Ap ® By

Lemma 2.11. A® B : D(A) ® D(B) — Hi ® Ha is well-defined, and it is closable
whenever A : D(A) — Hi and B : D(B) — Ha are.

Proof. Let f = 37, cnAipi @ i = 3 ey 1P @ 1;]’ € D(A) ® D(B), with coefficients
Ai, ;€ C. By the Gram-Schmidt orthogonalization we can find orthonormal bases
of the closures of the spaces span{yp; € D(A) : i € N} U{p; € D(A) : i € N} and
span{y; € D(B) :i € N}U{v¢; € D(B) : i € N}. Let’s denote them by {& € H; : i € N}
and {6; € Ha : j € N}, respectively. Then, for all 4, j € N, we have

iR =Y (G ® 0,0 ®i)romabe @0 = > e @0,

kleN kleN
Pi®v =Y (6 ©60,3 @V memnbk @0 = Y @l 06,
kleN kleN
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so that, by assumption on f, 3, .y Niak, = > jeN ,uj&il . This shows that

ZNA%‘ ® By; = Z Nk, Ag; ® BO; = Z ,ujaigA& ® BO; = ZﬂjASZi ® B
ieN ik, lEN jk,lEN jEN

so that A ® Bf is well-defined. To show that A ® B is closable, we only need to show
that D((A ® B)*) is dense in H; ® Ha, by Theorem To this end, we notice that

<A* ® B*g7 f)'H1®'H2 = <g, A® Bf>H1®'H2

whenever ¢ € D(A*) ® D(B*) and f € D(A) ® D(B). We conclude that
D(A*)® D(B*) C D((A® B)*) s.t. D((A® B)*) is dense. O

We define the tensor product of two closable operators A : D(A) — Hi, B: D(B) —
Ha, as the closure of A® B : D(A) ® D(B) — Hi ® Ha, and we denote the resulting
operator again by A ® B. Of course, the above generalizes to finitely many tensor
products of densely defined operators A4; : D(A;) — H;, i = 1,...,n € N. The following
result characterizes the spectrum of tensor products of operators.

Theorem 2.21. Let Ay : D(Ax) — Hi, k = 1,...,n € N, be self-adjoint operators
and let P € R[X1,...,X,] denote a polynomial in n variables with real coefficients and
assume that P has degree ji in the k-th variable. Suppose that Dy, k = 1,...,n, is a
domain of essential self-adjointness for Ai’“. Then

i) P(A1,..., Ay) is essentially self-adjoint on @Q)_, Dy.

i1) The spectrum of P(A1,...,Ax) is given by

o (P(Al, e An)) = P(o(A1),...,0(An))

Proof. The proof of i) requires some auxiliary results related to the Spectral Theorem
and we refer the interested reader to [63, Sections VII.3 and VIII.10]. Here, we only
explain the proof of ii) instead.

By the Spectral Theorem we may assume that each Aj is the multiplication
operator that multiplies by a measurable function f; on an appropriate domain in
L2(Q, B(Q), ux). P(A1, ..., Ag) is equivalent to multiplication by P(fi,..., fx) on

D(P(Al,...,An)) :{chLQ(Ql XX Q) P(f1,. o fi)p € LA ><--~><Qn)}

where L2(Q1 X -+ x Q) = L*( x ... X Qp, @F_ 1 B(Q), n = @F_, ux). The spectrum
of P(Ay,...,Ay) is given by the essential range of P(fi,..., fx), by Lemma

Now, suppose that A € P(o(A41),...,0(Ay)). If I C R is an open interval containing
A, then P~1(I) contains a product I; x --- x I, C R™ of open intervals I C R with
I, No(Ay) # 0. Since o(Ay) = ess-ran(f), we have u(f, ' (I)) > 0 s.t.

PP(frs e ) TH) 2 n(F7 ) %o S (1)) = I 5 00) > 0
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Since I was arbitrary, this implies that P(o(A1),...,0(4,)) C a(P(Al, . ,An)). On
the other hand, if A & P(0(A1),...,0(Ay)), then (P(f1,..., f,) — A)~! is a bounded,
measurable function so that A € p(P(Al, e ,An)>. O
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2.6 Tools for Complete BEC

In this section we introduce several tools directly related to the study of complete Bose-
Einstein condensation. We first introduce the trace and the Hilbert Schmidt classes
and summarize some of their basic properties. Equipped with the basics on trace class
operators, we introduce the notion of complete Bose-Einstein condensation.

2.6.1 Trace Class and Hilbert-Schmidt Operators

The trace class and Hilbert-Schmidt are subspaces of the (Banach) space of compact
operators on a Hilbert space H. Recall that every compact operator admits a represen-
tation in terms of its singular values: defining the absolute value of A by

|A| = VA*A e L(H),
and denoting by (A, )nen is eigenvalues, one finds ON sequences (¢n)nen, (¥n)nen S-t.
A= Z Anlen) (tnl;
neN
where from now on |¢) (1| denotes the rank-one operator defined by |¢)(¥|¢ = (¢, ().

Problem 2.22. Let A € L(H) and suppose A > 0. Prove that its square-root /A is
unique, i.e. there exists a unique B € L(H), B >0, s.t. B?> = A.

Problem 2.23. Let A € L(H) be compact. Show that |A| is compact as well.

The trace class and Hilbert-Schmidt operators are those compact operators whose
sequence of singular values lies in ¢! and ¢2, respectively. To study some of the basic
properties of these classes, we start with a useful lemma: similar to the decomposition
z = |z|e**8(?) for any complex number z € C, we can decompose bounded operators.

Lemma 2.12 (Polar Decomposition). Let A € L(H). Then, there exists a partial
isometry U € L(H) s.t. A= UJ|A| and U is uniquely determined by ker(U) = ker(A).

Proof. Define the map U : ran(|A|) — ran(A) by setting U(|A|¢)) = Ay. We have

A7, = (v, A" Ap)y = | AYll3, = |UIAl 1%
so that U : ran(|A|) — ran(A) is well-defined and an isometry. Due to the last fact, we
can extend it to U : ran(|A|) — ran(A). We then set U equal to zero in ML. Notice
that MJ— = ker(|A]) = ker(4), since |A] is self-adjoint. Thus, ker(U) = ker(A).
Finally, given another partial isometry U s.t. A = U|A| and ker(U) = ker(A), we have
ﬁ—UzOonMandonker(A):mL, ie. U=U. O

Problem 2.24. Generalize Lemma to the case where A : D(A) — H is a densely
defined, closed operator. In this case, the difficulty is to construct |A| =V A*A, because
a priori it is not clear that A*A is densely defined and self-adjoint. Circumvent this
question by using a quadratic form argument to construct |A|.
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The polar decomposition turns out to be useful when studying some properties of
the trace class and Hilbert-Schmidt operators with which we start now. As mentioned
earlier, the trace class is a subclass of the compact operators s.t. their sequence of
singular values lies in ¢!. Let’s introduce first the trace of a positive operator. Given
any A € L(H) s.t. A > 0 and an orthonormal basis {¢,, € H : n € N} of the Hilbert
space H, we define the trace of A by tr A = Y (on, Apn)n € [0;00]. The following
proposition shows in particular that the trace is well-defined.

Lemma 2.13. Let A, B € L(H) be non-negative, let A\, u € C and suppose that U € L(H)
1s unitary. Then the following holds true.

i) tr A is independent of the chosen basis {¢©n € H :n € N}.
ii) tr(AM 4+ puB) = AMtr A+ ptr B.
i) trUAU ™ = tr A.

Proof. Denote by {¢, € H :n € N}, {1, € H :n € N} any two bases of H. Then

> ok Apr)y =Y (Z |<¢laA1/2<Pk>H‘2>

keN keN \ leN
= (Z ‘<Al/2¢z,<ﬁk>7{\2> = (W, Agr)y
keN \ leN leN

This proves that tr A is independent of the chosen basis. Linearity of the trace is obvious
and iii) follows due to the fact that {U 1, € H : n € N} is a basis of H whenever
{on € H:n eN}is, if U € L(H) is unitary. O

We define the trace class J1 as
Ji={Aec L(H):tr|A| < oo}

As can be expected, J7 turns out to be a Banach space when equipped with a suitable
norm. Before we prove this, we need to collect some of its basic properties.

Proposition 2.10. [J; is a x-ideal in L(H), meaning that
i) Jh is a vector space.
ii) If A€ Jy and B € L(H), then AB € J; and BA € Jh.
iit) If A€ Jh, then A* € 7.

Proof. i) It is clear that J is closed under scalar multiplication, since |AA| = ||| A| for
any A € C, A € L(H). To prove that A+ B € J; whenever A, B € J;, we make use of
Lemma Suppose that A+ B = U|A+ B|, A = V|A| and B = W|B]| for partial
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isometries U, V,W € L(H) and let {¢, € H : n € N} be an orthonormal basis of H.
Then, by Cauchy-Schwarz,

[e.o]

tr[A+ Bl = {on, U V|Alpn)n + Y _{pn, U'W|Blgn)u

n=1 n=1
o0

1/2
g(tr|A|>1/2(Z<son,U*V|A|v*U¢n>H)

n=1
)

1/2
+ (tr ]B|)1/2<Z(g0n, U*W|B|W*Ugon>H>

n=1

Now, U, V,W are partial isometries and, by Lemma taking traces is independent
of the chosen basis. Therefore, we deduce

tr|A+ B| < tr|A| + tr|B|

which concludes the proof that 77 is a vector space.

i1) Suppose first that U € L(#H) is a unitary operator. Then [UA| = VA*U*U A = |A|
and |[AU| = VU*A*AU = U*|A|U (recall that the square root is unique, by Lemma ?7).
Therefore, UA € J; and AU € [J1, whenever A € 7.

Now, let B € L(H). Such operators can be written as a linear combination of four
unitary operators, which proves ii) by applying 7). To prove that B can be written as
such a linear combination, we note first that B can be written as a linear combination
of two self-adjoint operators. More precisely, we have

B= %(B +BY) + %(iB* —iB)
If 0 # C € L(H) is self-adjoint, on the other hand, it is equal to C' = 6HCHL(H) where
5 Um0 mea2] L LA A2y
C=3[C+i1-c? }+2[C i(1—C?) ]

is the linear combination of two unitary operators.
ii1) We write A = U|A]| for a partial isometry U € L(H), by Lemma IfAen,
then clearly |A| € Ji. But then also A* = |A|U* € Ji, by ii). O

Remark 2.10. One might be tempted to use |A+ B| < |A| + |B| in order to show that
tr|A+ B| < tr|A| 4 tr|B|. However, the first inquality is in general not true. Consider
the following example due to E. Nelson (see Problem 16 in [63, Chapter VI]). Define

=) ()

A= (3 7)) aes= (Y )

Then

1 1 0 V2
so that (o, |A+ Ble)cz > (¢, (|A| + |B|)@)cz for ¢ = (0 1) € C2.
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Theorem 2.22. Define ||Al| 7, = tr|A| for A€ Ji. Then (J1,]-|l7) is a Banach space
and |[Allz¢ny) < | All g, for all A € Ji. Moreover, any A € Jy is compact and a compact
operator lies in Jy if and only if the sequence of its singular values lies in (.

Proof. The proof of Proposition has shown that || - || 7, defines a norm on ;. That
Al 2y < |All 7, for all A € J1 follows from the fact that [|A| 2 = ||[Alll£(2) and

Al = sup (o, |Alp) < tr|A]
M, [lplln=1

where we used that |A| € L(H) is self-adjoint. Now, assume that (A, ),en is Cauchy in
Ji. Since the Ji-norm dominates the £(H)-norm, (A, )nen converges in particular to
some A € L(H). Writing A = U|A| and A,, = Uy,|A,| for partial isometries U, Uy, n € N,
by Lemma we have for any orthonormal basis {¢, € H :n € N} and N € N that

N N
> {ons |Alpn)w = lim > (on, U Uk| Agln)n < suptr|Ag| = sup || Agl|z < oo
e k—roo ~— keN keN

Letting N — oo, this proves that A € J;. Arguing similarly for ny:l(gon, |A— Aglon)n
shows that limg_, ||A — Agll7, = 0. Hence, (J1,] - ||7,) is a Banach space.

To show that J; is a subset of the set of compact operators, we show that any
A € Jp is the norm limit of a finite rank operator. To this end, let A € J;. By
Proposition ii), also |A|?> € J1 so that tr|A]|?> < co. Now, given an orthonormal
basis {¢, € H : n € N} and a normalized vector ¢ € {¢1,...,on}* for some N € N,
we conclude that

N
A7, < tr|AP = {en, [APpn)3 — 0
n=1
as N — oo. The last bound implies that
N
0= lim sup  [|AY[ly = lim  sup [JA(E =) len){enl)€
N=20 yefon,mpn ), N=oo cen, ; R "
|2 <1 €l <1
N
= i A— A
i, sup (104 =D Jen)(en)elle

Il <1

from which we conclude that A € J; is compact.

Finally, notice that A € J; if and only if |A| € J; and that the singular values of
A are the eigenvalues of |A|, which is self-adjoint. Since compact, self-adjoint operators
admit an eigenbasis which is a complete orthonormal basis of H, it follows that a compact
operator A € L(H) lies in J; if and only if its sequence of singular values lies in ¢*. [

In analogy to the properties of the Lebesgue-integrable functions, we can define the
trace of any trace class operator (so far, it was only defined for positive operators).
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Proposition 2.11. Let A € Ji and assume that {¢, € H : n € N} is an orthonormal
basis of H. Then, the sum Y " {¢n, Apn)y converges absolutely and is independent of
the chosen basis {pn € H :n € N}.

Remark 2.11. We call tr : J1 — C where tr A = > (pn, Apn ), the trace.
Proof. We write A = U|A| = U|A|'/?|A|'/2, by Lemma The absolute convergence

follows from

0o oo 1/2 , o© 1/2
5l Anbul < (S MAM0 0l ) (S UAM el ) < trla
n=1 n=1 n=1
The independence of the basis follows exactly as in the proof of Lemma [2.13 O

Problem 2.25. In Prop. we have seen that Jy is an ideal, meaning that AB € Jy
and BAe€ J1 if A€ Jh and B € L(H). Prove that

tr|[BA| = tr [AB| < || B[ tr |Al.
Hint: It may be useful to prove first that A > B implies VA > /B, using e.g. the
functional calculus and a suitable integral representation of v/A.

Problem 2.26. Suppose that ¢ € L*>(RY) and v € L>®(R?) such that 0 < v € L'(R%)
(here, v denotes the distributional Fourier transform of v, viewed as a (tempered) dis-
tribution). Show that the operator K, defined by its integral kernel

K(z;y) = @(@)v(z —y)e(y),
18 a non-negative trace class operator K € J1 and find its trace.

Problem 2.27. Show that A € Ji if and only if Y o2 [{(on, Apn)| < oo for every
orthonormal basis (on)nen. Find an example of an operator B ¢ J1 and an ONB

(Yn)nen such that "7 1 |(n, Bin)| < 00.

Proposition 2.12. Denote by C(H) the set of compact operators on H, which is a closed
subset of L(H). Then the following holds true.

i) The map J1 > A — tr(A-) € C(H)* is an isometric isomorphism s.t. C(H)* ~ J.
i) The map L(H) > B tr(B-) € J;* is an isometric isomorphism s.t. J; ~ L(H).

Proof. We argue as in [63, Chapter VI, Problem 30] and explain 7); 1) is left as exercise.
Let f € C(H)*, ¢,7 € H and define the compact rank-one operator ly , € C(H) by

Ly = @) (]

The key is to express f(|¢)(1]) as a trace of |¢) ()| tested against a suitable trace class
operator. To find the latter, we use the Riesz lemma: the map ¢ — Iy, € C(H) is
conjugate linear so that j, : H — C, defined by

Y= ]w(w) = f(lzﬁ,so)
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is a bounded, linear map j, € H*. Indeed, we have ||j,|[3+ < || flle()-[l¢ll2- By Riesz’
lemma, there exists a unique ¢, € H such that

ng = <Ctp7 >'H
#+. Using (,, we define a linear operator B : H — H by

BSOZC@

with [[Colla = [l

such that we have for all 1, p € H

tr (lo)([B) = (&, Bo)u = (W, CGo)n = flly.p) = f(lo) (W)

It is simple to check that B is indeed linear and from ||joll3+ < || fllcen)«llella, we
conclude that || B|| £z < [|flle(n)-- Writing B = U|B|, by Lemma we observe that

N N N
> (n 1Blen)r =D (Un, Bon)p = f<Z<Uson, Y s0n>

n=1 n=1 n=1

for any orthonormal basis {pr : & € N} of H. Using that U is a partial isometry, we
conclude that
N

N N

2

HZ<U<pn,->Hs@n = sup < (Upn, )3 0m, > (Upm, & Hsom> <1
n=1 L) eett|igfln=1 1 m—1 H

n—

and hence B € J1 with || B|7, < ||fll¢(2)+- Moreover, we find that
#(T) = w(BT)

for all T € C(H) using that f(|p)(¥|) = (¢, Be)y = tr(B|e){(1|) and density of the finite
rank operators in the space of compact operators. This shows that

1Bl < I fllec~ = sup [ tr(BT)| < || Bl
TeC(H) Tl cry=1

and it implies that J; 5 A+ tr(A4-) € C(H)* is an isometric isomorphism. O

Before closing this section, we briefly introduce another important operator class, the
Hilbert-Schmidt class. If J; can be thought of as an operator class analogue of ¢!, then
the Hilbert-Schmidt class is the analogue of 2. More precisely, we define an operator
A € L(H) to be Hilbert-Schmidt if and only if tr A*A < oo, i.e., if and only if |A|? € J;.

Theorem 2.23. Let Jo = {A € L(H) : tr A*A < oo} denote the set of Hilbert-Schmidt
operators. Then the following holds true.

i) J2 is a x-ideal.
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i) Defining (A,B)g, = Y ooy {(pn, A*B, o)y for any A,B € Jo, then (A, B)g, is
absolutely summable and independent of the chosen basis.

ii1) (Jo, (- ) 7) is a Hilbert space and ||Allziq) < || Al < [|Allgy for any A € L(H).

i) Any A € Jo is compact and a compact operator lies in Jo if and only if its sequence
of singular values lies in ¢2.

Proof. The proof uses very similar arguments as in the proofs of Proposition [2.10] and
Theorem 2.221 We leave it as an ezercise. O

Since we often work in the L?(€2, A, i) setting, it is useful to observe that Hilbert-
Schmidt operators have a concrete realization in this case.

Proposition 2.13. Consider the Hilbert space H = L*(Q, A, iu). Then A € Jo if and
only if there exists an element K € L*(Q x Q, A® A, u ® i) such that A is equal to the
integral operator acting on f € L*(Q, A, ) by

(Af)(z) = /Q K(2:9)f(y) duly)  for pae.z €9

Moreover, in this case we have ||A||?72 = Joxa K@) du(z)du(y).

Proof. Denote by Ak the integral operator associated with K € L?2(Qx Q, AQA, u® p).
For any f € L?(f, A, 1), a simple application of Cauchy-Schwarz and Fubini implies

/Q(/deu(y)) (/QK(:U;z)f(z) du(z))du(:p)

< /QXQXQ K (23 9)|| £ (21K (3 2)]| £ )] dpa()dp(y)dp(z) < K320 11320

Hence, Ag is a bounded operator in L*(Q, A, ) with [|Ax |z < 1Kl 12(axq)- Now
let {¢,, € H : n € N} be an orthonormal basis of L2(£2, A, ). Then {¢,, ®%,, € HRH :
m,n € N} is a basis of L?(Q x Q, A® A, 1 ® u) so that

o
K = Z Kpn ¢m @ Ppy Kmn = (om ®¢mK>L2(Q><Q (Vm,n €N)
n,m=1
Define Ky € L*(Q x QA® A,p®p) by Ky = 30
the operator kernel of Ag, € L(H), defined by Ak, = Z%,n:l Kn{@n, )2 @m. Since
limy o0 [[ K= KN | 2(0x0) = 0, the first step implies that imy o0 [|Ax — Ak y [l £¢) = 0.
This implies that Ax is compact and we find furthermore that

Kpnpm @ ¢,,. Then Ky is

A Ax = Y IlAxealls = D lem Axen)ol* = D [(pm @, K) 200l

n=1 m,n=1 m,n=1

= | K172 (qxa) < o0
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This implies that the map ® : L?(Q x Q, A® A, u ® p) — Jo, given by K + A, is an
isometry. In particular, it has a closed range. Moreover, any finite rank operator can be
represented as an integral operator with kernel in L?(Q x 2, A® A, 4 ® p), so that the
range of ® contains the finite rank operators. These operators are dense in J2, which
follows for instance by approximating A € J5 by the sequence (An)nen

N
AN = Z {@m; Apn)|on) (Pml.
n,m=1
Notice indeed that
. * . 2
Jim 1 (A Ay)*(A - Ay) = lim n%; (1 = xpo;3 (n) X[053 (1)) (P, Agp) | = 0

d

2.6.2 Complete Bose-Einstein Condensation

In this section, we define the notion of (asymptotically) complete Bose-Einstein conden-
sation. There are different notions of Bose-Finstein condensation in the literature, but
the one introduced here is the one with which we will be concerned in the next sections.

As motivated in Section [I, we consider N bosons moving in some region 2 C R3,
The system is described by a wave function 1y € L2(QY, B(QY), ®§V:1u) = L2(QN) =
HON | where H = L2(2). We saw in Section |I| that Bose-Einstein condensation can
be understood as the property that, in the limit of large N, a macroscopic fraction of
particles occupies the same one particle wave function. However, typical wave functions
of interest, like the ground state wave function of a many-body Schrodinger operator
with non-vanishing interaction potential, are never given by pure tensor products, so
we need to specify what we actually mean if we say that a macroscopic fraction of the
particles of the many-body wave function occupies the same one-particle wave function.
The appropriate object that gives precise meaning to the latter idea, is the one-particle
reduced density matriz. Given a normalized wave function 1y € L2(Q%), the associated
one-particle reduced density matrix 'y](\}) € J1 is the positive trace class operator with
integral kernel

7](\})(56;11) = /N 11/)N(9C;ZC2,---,wN)wN(y;xz,---y«’BN) dza...dzy
V-

It is clear that (¢, 7](\})@2 > 0 and, applying Plancherel and Fubini, we also see that
o0
1
o) =3 [ Hemun (0P ax = [ unC X ax = oyl =1
= Jan-1 QN-1
where we introduced the abbreviation X = (z,...,zy) € QV L.
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The one-particle reduced density matrix contains all information of the wave function
that is needed to compute the expectation of observables that measure one-particle
properties. That is, if A® 1®---® 1 € L(L*(QY)), then a simple ezxercise shows that

(PN, ART® - ® L) 2an) = tr (A7)

If we look for a suitable notion of condensation, then at least (a suitable subclass of)
the one-particle observables should be determined by the one-particle wave function
that describes the condensate. The notion we consider in this lecture, goes back to
a definition proposed by Penrose and Onsager in [57]. Consider a sequence (¥n)neN
of normalized wave functions in L2(QV) with associated one-particle reduced density
matrices (7}\}))1\761\1 and let ¢ € L?(Q)) be normalized. We say that (¢¥n)yen evhibits
complete Bose-Einstein condensation into the wave function ¢ € L?(Q) if

dim [y = @)l 5, = tim |y — el = 0 (2.20)

Let us make a few remarks. The definition above is a comparatively strong and an
asymptotic notion of condensation. It is an asymptotic definition, because it is a state-
ment about the behaviour of the one-particle reduced densities in the limit N — oco. It
is a strong definition, because it specifies the condensate wave function as well as the
asymptotic fraction of particles occupying the condensate. This fraction is given by the

expectation <g0,7](\})g0>2 and (2.29) implies that

1= (0,100 = tr [l) el (1) (el 9] < tr ) = ledel| 2 0 (V= o0)

That is, asymptotically, all particles occupy the same one-particle wave function which
is why the above notion is called complete Bose-Einstein condensation. In fact, we have
the following equivalent formulation of complete BEC.

Lemma 2.14. Consider a sequence (Yn)nen of normalized wave functions in L2(QN)

with associated one-particle reduced density matrices (’y](\}))NGN and let ¢ € L*(Q) be
normalized. Then (Yn)nen exhibits complete BEC into ¢ if and only if

lim (1— (0,7 Pp)s) =0 2.30
Jim (1= (e, 7np)2) (2.30)
Proof. We claim, first of all, that the compact, self-adjoint operator ’y](&) — )l € T

contains at most one negative eigenvalu Assume by contradiction that 71(\}) — lp) (¢l
has two negative eigenvalues A1, Ao < 0 with corresponding orthonormal eigenvectors
£1,& € L?(Q). Then we can find a linear combination 0 # ¢ = ¢1&; + c2&o, c1,¢2 € C,
s.t. c1&1 + 22 is orthogonal to ¢. This, however, implies that

0 < (6,712 = (161 + eaba, (V) — |0) (D) (161 + ca€a))a = [er]P A1 + [eaAz < O

10This argument goes back to R. Seiringer.
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Hence, 'yj(;) — |¢) (| contains at most one negative eigenvalue. Let’s denote the eigen-

1 : 1 .
values of 7y = @) (] by (tn)nen. Since tr(vyy) — [p)(@]) = Y02 = 0, either
’yN) — @) (] = 0 or we may assume w.l.o.g. that g1 < 0 is the only negative eigenvalue

(1
of 1\ = 1) (l. Since |7y — [¢)(@lll c(z0) = |11, this shows that

tr ]y = 1) (el = Ll + D" o = 210§ = 1)l 2
pr (2.31)

< 2|0\ — o)l <222 (1 - (e AV e)2)

where we used that H’Y](\})HJQ < ||fy](\})||‘71 - 1. O

For practical computations, the criterion turns out to be quite useful. In the
next chapter, we will see an equivalent formulation of in a Fock space setting
which underlines very clearly the physical interpretation of the convergence .

We close this section with a few further remarks on the definition . As we have
just seen, the definition implies that, asymptotically, all particles occupy the same
one-particle state. Weaker definitions of the concept of Bose-Einstein condensation can
be obtained by saying that asymptotically only a finite fraction of size A € (0; 1] occupies
a particular one-particle wave function. An even weaker notion of condensation could
simply be the postulate that limy_, ny](\}) lz(20) > 0 or liminfyn o ny](\}) 22 > 0. The
original proposal in [57] defines BEC indeed as the property that the largest eigenvalue
of the one-particle reduced density matrix remains asymptotically of order O(1).

Finally, we remark that, analogously to the one-particle reduced density matrix,
one can define the so called k-particle reduced density matrices, k = 2,...,N. Given a
normalized wave function ¢y € L2(2V), the k-particle reduced density matrix 'y](\];) €
J1(L%(QF)) is the positive trace class operator with integral kernel

%(\];)(Xk;yk) = / YN (X Trgt, o N)UN (Y Thg1s - 2N) dTpgr .. don

QN-k

where we abbreviate X = (z1,...,21), Yz = (y1,...,%) € QF. One can prove that
complete BEC, i.e. (2.29)), implies also the convergence

: (k) _, ®k\/ @k —
Jimtr [y — [N = 0

for any fixed k € N. We refer the interested reader to [3§] for the proof.
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2.A The Stone-Welerstrass Theorem

To define the continuous functional calculus, we make use of the complex version of the
Stone-Weierstrass Theorem as stated and proved in [63, Section IV.3].

Theorem 2.24. Let X be a compact Hausdorff space and let B be a subalgebra of
C(X;C) which is closed under complezx conjugation. If B is closed and separates points,
meaning that for all z,y € X there exists some f € B with f(x) # f(y), then B =
C(X;C) or for some xo € X, we have B ={f € C(X;C) : f(zo) = 0}. If B separates
points and if 1 € B, B = C(X;C).

2.B The Riesz Representation Theorem

We use the following form of the Riesz Representation Theorem characterizing positive
linear functionals on C(X;C), the space of continuous, complex-valued functions on a
compact metric space X. A careful proof can be found in [73] Section 1.7] (for real-valued
continuous functions, but this implies the complex version as well).

Theorem 2.25. Let X be a compact metric space and let ¢ : C(X;C) — C be a positive
linear functional s.t. ¢(f) > 0 whenever f > 0 pointwise. Then, there exists a unique
finite positive Borel measure iy : B(X) — [0;00) s.t. for all f € C(X;C) we have

o(f) = /X £(x) dpig () (2.32)

In particular, pg inner and outer regular (as it is finite).

Remark 2.12. [t is enough to prove the theorem for real valued continuous functions;
this implies the complex valued case as well by splitting a general f € C(X;C) into its
real and imaginary parts. With a little more work (see [73, Chapter 1, Section 7.2]),
Theorem can be used to show that (C(X;]R))* is tsometrically isomorphic to the
space of finite signed Borel measures, equipped with the total variation norm. Related to
this, notice that a positive linear functional ¢ : C(X;C) — R is bounded, because

O(Iflloo = () 20 = [o()] < S flloc-

Proof. We follow [73, Chapter 1, Section 7.1] and prove the theorem in the setting of real-
valued functions. So, let ¢ be a positive linear functional on C'(X; R). We first construct a
suitable outer measure p, on P(X) with the property that . (E1UFE2) = p.(E1)+ps(E2)
if dist(£71, E2) > 0. This yields a regular Borel measure 14 by Caratheory’s construction,
see e.g. [72, Chapter 6]. Afterwards we verify the identity for pg.

To start with the outer measure, we need to relate the measure of a set with the
functional ¢. Heuristically, we would like to define p.(E) ~ ¢(xg) where E denotes the
characteristic function on £ C X. Of course, characteristic functions are not in C'(X;R),
but we can make this idea rigorous through a limiting procedure. We first define

p(U) = sup {¢(f) :supp(f) CU, 0< f <1} >0
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for ) # U C X open and p() = 0. We then set
p«(E) = inf {p(U) : EC U, U C X open} > 0.

It is clear that u.(0) = 0 (recall that p(0) = 0) and that p.(E1) < p«(Es) if By C Fs,
by definition of p.. The sub-additivity of pu. follows from standard arguments if we
prove it first for open sets on which we have p, = p. So, consider a sequence (Ug)ren
of open sets U, C X and set U = U2, Uy. Then, if 0 < f <1 and supp(f) C U, then
by compactness, we have supp(f) C UN_ Uy for some N € N. Associated to (Ug)¥_;,
denote by (wk)fy:l a standard partition of unity, so that in particular f = ij:l fg
with fiyy € C(X;R), supp(fvox) C Ux and 0 < fipp, < 1 for each k =1,..., N. Then

N N 00
S(F) =D o(fur) <> p(Ur) <D ua(Up).
k=1 k=1 k=1

Taking the supremum over all such f, we conclude that ., (U) < 377 114 (Uy) as desired.
For the general case of sets (Ej)ien, pick € > 0 and choose (Ug)gen so that

5

ps(Ug) < pa(Ey) + ok

so that by monotonicity and the previous step

u*< U Ek) < ZH*(Uk) < Z,U*(Ek) +522*’“.

keN keN keN keN

Letting € > 0 tend to zero, we conclude that u, is an outer measure.
To see that Caratheodory’s construction yields a regular Borel measure, it is enough
to prove that
px (B U Ea) = pa(Ev) + pa(E2)

whenever dist(E7, E2) > 0. Notice that for Ej, Fy open, this statement is true, by the
definition of p and the fact that supp(f) C Uy U Uy with dist(Uy,Us) > 0 if and only if
f = fi+ fo with supp(f1) C Ui, supp(f2) C U,. For the general case, we can choose
U1, Uy open such that Fy C Uy, Es C Uz and dist(Uy, Uz) > 0. Then, if £y U Ey C U for
some U C X open, we have that

p(U) 2 e (UNUD) U (U NUa)) = pu(UNUL) + (U N U2) > p1u(Br) + pc(Ba),

which implies that p.(E1 U Eg) > ps(E1) + s (E2) by taking the infimum over all open
U C X open such that £1 U Ey C U.

Let us denote from now on by u, the finite measure obtained through Caratheodory’s
construction. It remains to prove the formula and to this end, suppose that
f € C(X;R) with 0 < f < 1: the general case can be reduced to this by splitting
g € C(X;R) into the difference of its positive and negative parts and by rescaling. To
relate ¢(f) to pg, we split f into N € N continuous pieces according to the open sets

Upy={zeX: f(zx)>(n—-1)/N} CX.
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One has U,4+1 C U, for each n and one can check that f = 25:1 fn, where

1/N vif x € Upgq
fu(x) =4 f@)—(n—-1)/N :ifxecU,NUS,
0 : else.

Note that f, € C(X;R) with 0 < f,, <1/N, supp(f,) C U, C U,_1. This implies that

#(Un+1) = p(Unt1) < ¢(Nfn) = No(fn) < Np(Un-1) = p(Un-1),

where the first inequality follows from the fact that (N f,),,, = 1 and the positivity
of the functional ¢. By linearity, we obtain that

N
%ZM(Un-H) <o(f) < i ZM(Un—l)-
n=1

=

Similarly, we have that
pU) = [ dig <N [ (o) noldo) < plUn),
Un+1 X

again by the properties of f,, (and monotonicity of the integral). Thus, we find that

1 N 1 N
N;M(Un-&-l) < /Xf(x) po(dz) < N;M<Un—l)

and therefore (recalling Uy, 11 C Uy,,—1)

N
. 1

’Qﬁ(f) ~ [ 5@ otie)

Finally, uniqueness follows by approximating p4(U) for U C X open through

po(U) = lim ¢(fn)

n—o0

for a suitable sequence (fy)neny in C(X;R) with 0 < f, < 1, supp(f,) C U and
lim, o0 fn(z) = xu(z) for all x € X, applying dominated convergence. This implies
that ¢ determines 114 uniquely on open and thus (e.g. by regularity) on Borel sets. [
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3 The Bose Gas in the Mean Field Regime

In this section we consider interacting Bose gases in the so called mean field regime.
In this regime particles interact through a weak potential which is proportional to the
inverse of the number of particles. With such a weak interaction, one expects that
the total potential a fixed particle experiences is given by an average or mean field
interaction due to the remaining particles. We either consider the particles moving in
R3, trapped in a region of order one by an external potential, or moving in T3 = R3/Z3,
the three dimensional flat unit torus (i.e. the particles are trapped in a box of volume
one and we assume periodic boundary conditions). We start our analysis by determining
the ground state energy of the interacting Bose gas up to leading order in the limit
N — oo. Moreover, we show that any approximate ground state of the system exhibits
complete Bose-Einstein condensation into the minimizer of the non-linear Hartree energy
functional. We then go one step further and determine the next to leading order ground
state energy as well as the excitation energies, up to errors vanishing in the limit N — oo.
This rigorously establishes the predictions of Bogoliubov theory in the mean field regime.

The study of mean field quantum systems has a long history. There exists a
considerable amount of important and interesting literature about it, of which we may
present only a few selected and simplified results. In this chapter, we focus on the presen-
tation of several relatively recent ideas and results from the articles [70], [34] 41 43, [44].
We refer to [70], [34] 41l 43}, [44], 59, 60, 61}, 13] and to the lecture notes [62] for further
references.

3.1 Ground State Energy and Complete BEC in the Mean Field Regime

In this section we consider N bosons moving in R3. The Hilbert space describing the
system is L2(R*N) and the Hamiltonian H ™ reads

N
Y™ = Y (A + Vel + 30 oo =) (31)

=1 1<i<j<N
We assume Vext € L2 (R?) and s.t. Vex(z) — 00 as |z| — oo. To ignore any regularity
issues w.r.t. the interaction, we assume for simplicity that v € S(R3) is a Schwartz
function - what’s more important for the following sections than its regularity is to
assume that v > 0, v is radial and v has non-negative Fourier transform v > 0. Under
our assumptions we know that Hy™" is essentially self-adjoint o Sn(C(R3N)), by
Prop. Moreover, by Remark [2.5/ and Corollary o(Hy™®) = oq(Hy™).

The scaling factor N~! in front of the two-body interaction in characterizes the
mean field regime. On the one hand, this choice makes the interaction quite weak. In
fact, when N — oo, its strength tends to zero. On the other hand, with such a choice
the kinetic and interaction energies can be expected to be of the same order O(NN). This

"Here, Sy denotes the symmetrization operator as defined in Section Notice that
Sy € L(L*(R3*N)) is a bounded orthogonal projection and leaves the Hamiltonian Hx invariant.
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means that, although the interaction is quite weak, it can not be neglected, but must
have a significant effect on the spectrum and the dynamics of the system.

In the non-interacting case v = 0, in the ground state of the system, all particles are
condensated into the ground state of —A+V.. In particular, all particles are distributed
in space independently from one another. If we assume that a weak interaction does not
change this picture dramatically, we may hope that the leading order contribution to the
ground state energy can still be obtained by minimizing H]t\;ap over tensor product wave
functions. Physically, this means that we expect correlation effects among the particles
to be negligible, at least in the context of computing the leading order contribution to
the energy. Assuming this for now, we arrive at the prediction that the ground state
energy En of H]téap should approximately be given by

' 1
Ey~N inf / [ywﬁ + Vet + < (v !WW!Q} (x) dz.
lplla=1 2

Before we make this rigorous, we analyze first the HartreeEenergy functional
E®: Dy — R, defined on Dy = H'(R?) N L?(R3; Vixy () dz) by

EnP(p) = / DVW + Vextlo* + %(U * !wlz)lw\Q] () da. (3.2)

In Theorem [3.1] below we prove the existence and uniqueness of minimizers of €. In
order to prove the uniqueness statement, we need two technical preparations. We start
with the convexity inequality for gradients (see [46, Theorem 7.8]).

Proposition 3.1 (Convexity Inequality for Gradients). Let f,g € H'(R%R). Then
/ ’V\/ 2+ 92’2(@ dr < / [\Vf|2(:r) + |Vg|2(m)] dz (3.3)

If moreover g > 0 in the sense that for all compact K C R® there exists an € > 0 s.t.
{z e K:g(x) <e}| =0,

then equality holds true in if and only if f = cg for some constant ¢ € R.

Proof. First of all, \/f2 + g2 € H'(R?) (see [46, Theorem 6.17]) with

(VW2 +)(a) = RS @) i (249 @) #0,
0

else

is now a direct consequence of the observation that, for (f? 4+ ¢*)(z) # 0, we have
VP () + Vol () ~ [V + g2 ()

= [VI1*(@) + Vol (@) = (f* + ¢*) T (FPIVIP + g [Vol* + 2fgV f - Vo) (@)

= (P + ) UPIVIP + 2V = 2f9V ] Vo) (x) = (f* +¢*) gV [ — [Vg|*(z) 2 0

120riginally introduced by D. R. Hartree in [35] as an approximation for the energy of the electrons
in an atom.
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Now consider the case of equality in . From the last identity, we see that this implies
(gVf)(z)=(fVg)(x) for a.e. z € ]Rd We will use this fact to show that f/g € L (R?)
has vanishing distributional derivative which implies f = c¢g. To this end, consider an
arbitrary ¢ € C®(R%), then /g € H'(R?) with

V(p/g) =Velg—¢Vg/g*.

This implies
[ti9ve= [ 190+ [ 10908 == [elovs+ [(ols1975 =0

by integration by parts in H'(R?). We conclude that V(f/g) = 0 in D'(R?). O

When proving the uniqueness of the minimizer for the Hartree function £, we need
to apply the statement about equality in . To be able to apply it, we need in addi-
tion the following result which provides a lower bound on eigenfunctions of Schrédinger
operators. The following proposition is adapted from [46, Theorems 9.9 and 9.10].

Proposition 3.2. Let f € C(RY;[0;00)) be non-negative and let W € L3 (R?). Assume
that f satisfies in distributional sense

—Af+WF>0. (3.4)

Then, for each compact set K C R?, there exists a constant C' > 0, which is independent
of f, such that

f@)>C /K f) dy, VreK (3.5)

Proof. Let K be compact, R > 0 and assume that N 6 N balls B; = Bg(x;), where
z; € Kfori=1,...,N, cover K. We define F; = [ f B, f(y) dy and since

/f dgc<Z/f dy< N I{MXNF

we may assume w.l.o.g. that F; > N~! fK f(y) dy. We then claim that there exists
some 0 < § < 1s.t. foreach:=1,..., N, we have

fw) =R =5 [ fw)dy. vwen, (3.6)
B;

Assuming this for the moment, let + € K and let v € C([0;1],RY) be a continuous
curve that connects x with x1 € B;. We can cover its trace by finitely many balls

Bj,,Bj,,...,Bj,,, M < N, with the property that B; N Bj,,, # 0. (3.6) implies

}ij+1 2 / AB f( )dy > 6’B]k mB]kH»l’};.’jk'

Ik+1
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Defining oo = min (1/2,min{‘B,~ N Bj‘ :B;NBj # @}), we conclude

ij+1 2 (504ij

Using again (3.6) and iterating the previous bound until we arrive at F} > z1, we
conclude that we have

F(@) > 0601y > N—L5(50)M ! /K Fy) dy

Since » € K was arbitrary, this proves the claim with C = N='§(5a)V~!. Notice that
C depends on K, but it is independent of f.
It remains to prove ([3.6). To this end, let @ CC R? be open and such that

N
U BSR@:z’) c Q.
=1

Moreover, let u > 0 be s.t. Wig < u?. As a consequence, the restriction of f to Q, i.e.
g = fio € C(2;[0;00)), satisfies in distributional sense

(—A+p?)g > 0. (3.7)

The lower bound on ¢ is based on a comparison argument between g and the positive,
radially symmetric solution J € C*(R%; (0; 00)) of

(—A+p®)J =0

with initial condition J(0) = 1. Such solutions exist and they can be expressed explicitly
in terms of Bessel functions. We use this here as a fact and refer the interested reader
to [46], Theorem 9.9] for more details about this. In R3, the relevant case for us, one has

sinh(ul])

o) ==

for all z € R3. Below, we denote by J(r) for 7 > 0 the value J(z) for some (and hence,
by radial symmetry, for all) z € R? with |z| = 7.

Now, let us prove . Assume first that g € C°°(€2). In this case holds point-
wise in R, Let z € Q be arbitrary and define J, € C*°(R%; (0, 00)) as the translation

Jo(z) = J(x — 2).

Then, by (3.7), the radial symmetry of J and integration by parts, we get

0>

1 1
Z 50 o B — (AT @ de = 1o |
1

- 50 Sr(z)(JZVg — gVLL) - dS = J(1)0[g)er () — [g)er (1) (D) T)(r)

V- (J.Vg— gV.J.)(z) da
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for all » > 0. Here, [g]., denotes the spherical average of g over S,(z), recalling that
/ (Vf)-dS = / (V) (w+2) - —dS(w) = r?! / O flrw + 2) dS(w).
S, (2) S,.(0) | $1(0)

The above arguments show that

9 [g]z,- _ J(ar[g]z;) — (&"J)[g]z,~ <0,

J J?

so that the map r — [g].,/J(r) is decreasing. By continuity of g, J(0) =1 and

1
lim [g],, = lim ——— dS(w)g(z+rw) = g(z),
T*)O[ ] r—0 ‘51(0)| S1(z) ( ) ( ) ( )
we arrive at ]
9lzr
> 9

for all r > 0 and z € . Integrating the last bound implies for all w € B; ( = BR(a:i))

L e 51Ol
g(w) = |B2R(0)\/0 drr 70)

(3.8)
> C2R/ g(y) dy > CQR/ 9(y) dy = Cm/ fy) dy
Bagr(w) Br(z:) B;

for Cop = (\BQR(O)|supy€B2R(O) J(y))fl. Choosing § = min(1/2,Csg) € (0;1) proves
for g € C*°(Q), recalling that g = fio. Finally, for a general g € C(f2), we use
a mollifying sequence and prove the pointwise lower bound first for a.e. w € B;.
Since g is continuous and the lower bound on the right hand side in is independent
of w e By, holds true for all w € Br(z). O

Theorem 3.1. The Hartree energy functional (3.2) admits a pointwise positive mini-
mizer oy € Dy N {Y € LA(R3) : ||1b||2 = 1} which is unique up to a constant phase and
which satisfies the Fuler-Lagrange equation

[— A+ Vear + (v loul?)Jom = coom (3.9)
where )
eo = E " (pr) + §<90H, (v len|*)on) (3.10)

Moreover, oy decays exponentially at infinity and o € C1(R3).

Proof. The existence of a minimizer follows from the direct methods of the calculus of
variations. For the remaining claims, we follow the arguments from [51, Appendix A].
We start with a minimizing sequence (¢;);jen in Dy, ||¢j]l2 =1V j € N, and observe
that supjey ||¢j]|g1 < C for some C > 0. Here, we make use of the fact that Ve
is bounded from below which follows from our assumptions. Hence, we find a weakly
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converging subsequence in H'(R3), denoted for simplicity again by (¢;);jen. Denote by

¢ € H'(R?) the weak limit. Since the sequence is minimizing for Etrap we Imay assume

sup/Vext|<pj|2 < 00
JeN

Using the last bound and that Vi (z) — oo as |z| — oo, we find for suitable R, R' > 0

1
sw [ P des g [ Vi@lei@Pdo 0 (R o)
JEN JBR(0)¢ JEN JVext >R/

Using the compactness of H'(Br(0)) — L?(Bg(0)), we may assume w.l.o.g. that
((¢4)Br(0))jen converges strongly in L?*(Bgr(0)) to ©|Br(0)- Choosing R large enough,
this implies that ||¢[|2 > 1 — ¢, for any € > 0. Since the L?-norm is w.s.l.s.c., we also
have [|¢|l2 < 1 s.t. in fact ||¢]l2 = 1. Hence, choosing another subsequence if necessary,
we may assume that (p;);jen converges to ¢ in L?(R3) and for a.e. € R? (using that
weak convergence and convergence of the norm implies norm convergence in L?(IR?)).

If VeXtXRs\ Br(0) =0 and |Vexe|x Br(0) < C, the L?-convergence, the pointwise conver-
gence and Fatou’s lemma imply

. . 1
timint [ [Vesslosl? + 5 (032 lof?] ()

i L v o) o] (x) dz
Z/Rg\BR() Vest ()]0 (= )d95+jlggo Vest ()] 05 (= )d$+2/[( o) |el?] (x) d

Br(0)

— [ Wl + 5 (04 o) o] o) da

Since the H! norm is also weakly sequentially lower semicontinuous (and [|¢;||2 = 1 for
every j € N), we conclude that ¢ € Dy is a normalized minimizer of Egap, because

inf gtrap = lim inf Etrap > Etrap
vep b, E1 (¥) = m in (¢5) ().

The fact that ¢ satisfies the Euler Lagrange equation (3.9)) follows from differentiating
t s EP(pyr) with gy = +th| for any fixed ¢ € COO(R3) at t = 0.

Next, let us prove that tLe minimizer is unique, up to multiplication by a constant.
Using Corollary and Proposition we first show that any minimizer is pointwise
positive after multiplication by a constant phase. In fact, the inequality

[19@ do < [ 19t ds

implies that €5 (|p|) < Egap(cp). Hence, if ¢ is a minimizer, also |p| is a minimizer
and therefore satisfies the Euler-Lagrange equation (3.9). But this implies that |p]
must be equal to the unique, positive ground state wave function of —A + W where
W = Vext + (v |p|?) € L2 (R3). If it was not the ground state wave function, |¢| would

loc
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be an eigenfunction orthogonal to the positive ground state of —A + W. But |¢]| is
non-negative and normalized, so it can not be orthogonal to a strictly positive function.
Since ¢ also satisfies the Euler-Lagrange equation , it follows that ¢ must also be a
ground state wave function of —A + W. Hence, by Corollary v is equal to |p|, up
to mulitplication by a constant of modulus one.

Let us remark that |¢| is in fact positive in the sense of Proposition For elliptic
regularity and the Euler-Lagrange equation imply that |p| has a continuous rep-
resentative (see [46, Theorem 10.2]). Thus, we can apply Proposition which shows
that |¢| is positive in the sense of Proposition

Now, to prove the uniqueness of the minimizer, let’s assume we are given two
pointwise positive minimizers \/p1,/p2 € Dy with [|\/p,|la = 1 for i = 1,2. Then

1/2
also @19 = (%Pl + %P2) /

p— Egap(\/ﬁ) is strictly convex for positive p > 0 with ||p||s = 1, we deduce from

€ Dy with [|®;5]2 = 1. If we can show that the map

1 1
inf gtrap < gtrap d < 75trap + 75trap _ inf gtrap ’
veD lbl=1 H (¥) < H ( 1/2) = 5%H (p1) 9CH (p2) veDmibla=1 (¥)

that /p1 = /p2, that is, uniqueness of the minimizer of Sgap. To prove the convexity,
define for t € (0;1) the function ®; by ®¢ = (tp1 + (1 — t)p2)1/2. We then trivially have

/ Vs (2)02() dar — ¢ / Vst (2)p1 () dz + (1 — 1) / Voipa(x) da.
By ¥ > 0 and the convexity of y — y2, we also find
(07,0 ®7) = (v, @} (—.) x 7)) = (7, [(D?)?)
< t(0,]p1)*) + (1 =)@, |p2*) = t{p1,v * p1) + (1 — t){p2, v * p2)

for smooth compactly supported functions p1,pa. By density of C°(R3) in LY(R3),
we conclude the convexity of the interaction term on all of L'(R3). Finally, the map
p— [ ]V\/EP is convex by Proposition On the set of strictly positive p > 0 with
llpll1 = 1, it is strictly convex. Indeed, equality in Proposition holds true if and only
if p1 = ¢po for some constant ¢ > 0. The normalization ||p1]1 = ||p2/1 = 1 implies ¢ = 1,
that is, p1 = p2. This concludes the proof of uniqueness.

From now on, we denote by ¢y the unique, positive and normalized minimizer of
Egap in Dy. It remains to show that ¢ has exponential decay at infinity. Once this is
proved, the Euler-Lagrange equation implies that Apy € L (R3), which in turn
implies py € C1(R3) (see [46, Theorem 10.2]).

To prove the exponential decay, fix some ¢ > 0. By , we have

(—A+t)pg = —(W —eo — t*) o

where W = Vi + (v * [p|?) € LSS (R3). This equality holds true in distributional sense.

loc
Recalling that W (z) — oo as |z| — oo, it follows that, again in distributional sense,

(—A+1*)on < —XBro)(W — 0 — t°) o
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for some sufficiently large R > 0.
Now, for t > 0, the operator (—A + ¢2) has a bounded inverse whose integral kernel
is given by the Yukawa-potential Y; (see [46, Theorem 6.23]), defined pointwise by

Yi(z) = (4nlz]) ™" exp(—t]z])

for x € R3. Moreover, (—A + t?) and its inverse leave the space of Schwartz functions
S(R3) invariant (why?). This implies

0 < p(z) < - /B o =DV 20— )on(s) dy

for a.e. x € R3. The r.h.s. of the last equation can be estimated by

sup [ —explelt) [ ¥ile —u) W)~ <o~ o) o]

T€ER3
_ exp((|z| — |z — y|)t)
T aere [ - /BR(O) i —g W) e t*)pn(y) dy]

exp(2Rt) }1/2 [ / ) ]1/2
<C esup[/ ——=d d <C < oo
Rt,e0 2R3 Br(0) 471"33 _ y,g Y Br(0) (PH(y) Y

for some constant C' > 0, which is independent of € R3. In the last step, we have used
that W € L (R3). Hence, 0 < ¢y (z) < Cexp(—|z|t) for a.e. x € R3. O

loc
Problem 3.1. Prove that (—A + )71 acts as convolution with the potential Yz, i.e.
z = Yi(z) = (4r|z)) "L exp(—t|z|).

Problem 3.2. Let Q CC R",n > 3, be open with 9Q of class C*. Let p > 2 and
assume that f € L?(2). Show that, in the sense of distributions, there exists a solution
u € HL(Q) to the boundary value problem

—Au+ [uP2u=f inQ,
ulBQ =0.

In the following, we denote by ey the minimum of Egap , that is,

ey = inf EaP (1)) = ghap .
0= et En (W) =& (o)

Having established the existence and uniqueness of the minimizer of Egap, the rest of
this section is devoted to the proof of the following theorem about mean field systems.

Theorem 3.2 (BEC and ground state energy in the mean field regime). Let (¢n)nen,
lvnlle =1V N €N, be a sequence of wave functions in the domain of Hxap defined in
(3.1), such that there exists a constant { > 0 so that for all N € N

(U, HNn) < Neg + C.
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Then (Yn)Nen exhibits complete BEC into the minimizer oy € Dy of Egap.

More precisely, denoting by ('7](\}))N€N the one-particle reduced density matrices of

(YN)Nen, there exists a constant C' > 0, independent of N € N and { > 0, such that

1+
1— (pm. N en) < CTQ (3.11)
Moreover, the ground state Ey of Hy™ satisfies
Ex = Neg + O(1). (3.12)

Remarks:

1) Equation (3.12]) of Theorem implies in particular that any ground of H]t\l;ap exhibits
complete BEC into the minimizer ¢z of the Hartree functional Sgap.

2) In view of the ground state energy asymptotics (3.12)), we call a sequence (Y n)nen
of normalized wave functions with the property that (¢n, Hy*9n) < Ney + ¢ a
sequence of approzrimate ground state wave functions.

3) It is clear that the threshold ¢ > 0 on the energy may depend on N € N i.e.
¢ =C((N). As long as ((N) = o(N), the bound (3.11]) implies complete BEC.

4) The rate of the condensate depletion of order O(N~1) in (3.11)) is optimal. This can
be proved, for example, with the methods explained in the next Section [3.2]

5) The validity of Hartree’s approximation Exy = Neg + o(NN) is valid under much
less restrictive assumptions, compared to those of this section. In particular, the
assumption v > 0 is not needed. We refer the interested reader to [41l [42].

Proof. The proof follows [70), 34]. Using the positive definiteness of the interaction v,
we give a lower bound on the many-body interaction in terms of the Hartree interaction
energy. The lower bound implies complete BEC into ¢y and that Exy > Neg + O(1).
The upper bound on E follows by using a simple trial state (a product wave function).

Before we bound the many-body interaction from below, let us notice that the Min-
Max Principle and its Corollary [2.6] imply that the one-body operator

h:—A—l—Vgxt—i—(v*go%{)

has purely discrete spectrum o(h) = {¢; € R: j € N} = g4(h) with the ground state
energy ¢g defined in . We may order the eigenvalues s.t. eg < &1 < e9 < ... where
the strict inequality €9 < €1 follows from the uniqueness of the ground state ¢ of h. In
the following let’s denote by {goj cL*R3):j¢€ N} , 00 = ¢H, a complete orthonormal
eigenbasis of h s.t. hg; = ¢;p; for all j € N.

With these preliminary observations, we start to prove the lower bound on Ey. To
get the right lower bound, it is natural to try to compare H]t\;ap with a non-interacting
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Hamiltonian whose ground state vector is @?N and whose ground state energy is given
to leading order by Nepg. Such an efffective Hamiltonian is given by

N N

1

HY' = Z (hl‘j - §<90Ha (U * |‘PH|2)90H>) = Neg + Z (hxj — 50),
Jj=1 j=1

recalling the Euler-Lagrange equation solved by ¢g. Now notice that the potential energy
can be written as

1

N N
1
N Z U(mi—:pj)%m/dmdyv(:v—y)(Zé(:n—m))<Z5(y—xj)>
1<z;<z; <N i=1 j=1
and, similarly, that the mean field interaction contribution to Hf\;f can be written as
N N
D (v pp) () = /dwdy (Z Sz — a?j))@(w —y)ea(y).
j=1 j=1

To connect the two expressions, we can use the positive definiteness of v and ’complete
the square’ to obtain a lower bound on the total potential energy:

N N
0< 2(x) — e §(z — i) Jv(z —y) | pa(y) — e oy — x;) | dad
/(900 NZ: ) y<<ﬁoy N; y > v
() - 2 e S ol )+ o0
i=1 1<i<j<N

This implies

N
S Y a2 Y e - Sk o s @) - 5000)

H
A
A
A
<.
A
2
i
(A

(3.13)

> ) (vxgg)(@i) — (b v 9g) + O(1).

M\Z

s
Il
i

To make the argument rigorous, we replace the J-functions by smooth (fe)eso, fe(z) =
€3 f(z/e) Vo € R3, for some radial 0 < f € C°(R?) with [ps f(2) dz = 1 and use that

i:: (z — xz)>v(w ) <<P0( ;,év: — :cz)> dxdy
N

%
- [ (e ﬁ (2 =) Yol — ) 0) - }VJZ(S =) dody

=1

0 < lim <<p3(

e—0
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Now, (3.13]) implies
N
Hy™ > Neg + ) (ha, —20) + O(1) = HY + O(1).
i=1
Now, notice that we have in L?(R?) the operator inequalities

oo

h—eo =Y il (il — 20 = (g5 — 0)lwj) (sl > (61— 20) (1 = |0} (w0l ) > 0.
j=0 J=1

Hence, we have for any normalized iy € D(H]t\l;ap) the lower bound
(UnHEPYN) > Ne + N(e1 = 20) (1= (0,75 %0)) + O(1).

If we assume to have an approximate ground state, i.e. (¢, H}D\l;apl/JN> < Neyg + (, we
obtain (3.11]). To prove (3.12), we use that 1 — |pg)(px| > 0 and obtain

Neyg +O(1) < Ex = inf  (¢n, HyPon) < (o8N, HRPoSN) = Ney.
YN ED(HEP),
l¥nll2=1
This shows that Eny = Neyg + O(1). O

3.2 Excitation Spectrum of Bose Gases in the Mean Field Regime

In the previous section, we have learned that the leading order term of the ground state
energy of a mean field Hamiltonian of the form (3.1) is given by the minimum of the
Hartree functional, defined in (3.2)): Theorem shows that

Exy =Neg + O(l)

and that any approximate ground state exhibits complete BEC into the minimizer ¢y
of the Hartree energy functional. A more ambitious question is to ask whether we can
find an explicit expression for the contribution O(1) in Theorem valid up to errors
that vanish in the limit N — co. Moreover, we may also ask for an approximation of
the eigenvalues lying above En (the excitation spectrum) and, moreover, for an approx-
imation of the ground state wave function in L2(R3") (and not only in the trace class
sense). The rigorous derivation of these approximations is the goal of this section.

Let us point out that a thorough understanding of the second order contribution
to the ground state energy via Bogoliubov theory as outlined below enables in fact a
complete perturbative treatment of the model [59] [60, 61, 13]: understanding the second
order theory is the crucial key step in order to solve the model to any order in N~

We work in this section in L2(AY), where A = T® = [-1/2;1/2]3/Z3 denotes the
three dimensional unit torus R3. The Hamiltonian Hy of the system is given by

N

Hy =S (-A,) + % S omi— ). (3.14)

i=1 1<i<j<N

99



We assume that v € C°((—1/2;1/2)3) is non-negative, radially symmetric and such
that (p) > 0 for all p € A* = 277Z3. Note that, by slight abuse of notation, we identify
v in the following with its periodic extension to a function in C*°(T3).

Observe that Hy is self-adjoint in H2(A"), which follows from Theorem and
Theorem Notice, moreover, that the spectrum of Hy equals o(Hy) = o4(Hy) by
the Min-Max Theorem and the fact that Hy > Zij\il(—Am). In the domain

Dy ={p e L*(N): > Ip]’|3pl* < oo} (= H'(A)),
pEA*
we define £ : Dy — R by
~ 1. T 2
En(@) = [IPPIZ + 50)| (1l =[] ]- (3.15)
peEA*
The analogue of Theorem reads in the translation invariant setting as follows.

Proposition 3.3. The Hartree functional Eg admits, up to multiplication by a constant
phase, a unique, normalized minimizer in Dg. The unique positive minimizer oy € Dy
is given by the constant wave function ppg = 14.

Proof. We may assume without loss of generality that ©(0) > 0, otherwise there is
nothing to prove. Let ¢ € Dp. Since |¢| is real-valued, we have |¢[ || _, = Hg0|p‘2 s.t.

~ ~ TR 2
pl18p1*) + 59(0)| (Il * [ D)ol

En(p) Zpien/\f*(

:'f
pgk*(

N = DN

P 2
50 X Wlafel_y) > 500) = Entom)

qeEN*

pI18pl?) +

where i = 1p. Hence, g is a normalized minimizer of £y in Dy. Moreover, the
bound is strict unless @, = 0 for all p € A*\ {0}, i.e. unless ¢ = Popy is constant. In
that case we have |py| = 1, by normalization, which proves the claim. O

The last proposition shows that, in the translation invariant setting, the role of the
condensate is played by the constant wave function py = 1), € L?(A). Before we
determine the excitation spectrum of Hy, let us introduce a Fock space setting which
enables us to focus efficiently on the orthogonal excitations around the condensate.

3.2.1 Fock Space and Excitations around the Condensate

Recall from Example that the bosonic Fock space F = F; (LQ(A)) is defined by

F=Co@PLiAb).
k=1
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Given a wave function ¢y € LZ(A"N) that exhibits complete BEC into some normalized
condensate wave function ¢y € L?(A), we know that in the sense of the trace class
topology, we have ¥y =~ (p%@N . Instead of considering the part of the wave function
1y that describes the condensated particles, we would now like to find a reasonable
description of the fluctuations or excitations around the condensate. Here, we follow the
approach introduced in [44] (see, in particular, [44, Section 2.3]) which yields a natural
description of the fluctuations of ¥ around go®N as a Fock space vector.
Suppose 1, € L2(A¥) and ¢ € L2(A!). Then we define ¢y, ®5 ¢ € L2(AFF)

Yy, ®s Py, .. wkﬂ)

m D U (@oys s Ta) V1 (ks Toerr)

0€6 4

for a.e. (z1,...,z541) € A Now, let {¢, : j € No} be a complete orthonormal basis of
L2(AN) and denote by L3 TN = span{¢g}* the orthogonal complement of the space

spanned by g € L?(A), as well as by F |, = Fs(L? Tp(A)). Then, given ¢y € L2(AN),
we can find a unique decomposition

Py = EOEN £ BN, W 4 pBN-20 @ 1 1o, ey 1 +D) (3.16)

where ¢ ¢ Li%(A)‘@Sk for k =1,...,N and & € Cy. Indeed, following [38] Section
3.3, let us denote by p = p(wo) = |0)(wo| € L(L?(A)) the orthogonal projection onto
@0 and denote by ¢ = q(wo) = 1 — p(po) € L(L2(A)) the projection onto its orthogonal
complement. Using these projections, we define the operators pg, qx € L(L?(AN)) by

Pr(i ® ... ® P, ®...Q Piy) =0i, ®...Q (Prpi,) ® ... Q @iy
and gy = 1 — pg, for k=1,..., N. Given any ¢y € L2(A"), we then have

N
ox =( @it a) Jon = ¥ Qv i i
k=1

TE{O 1}V k=1

> Y @i

7=0 T14+-+7Nn=] k=1

By the deﬁmtlon of p and ¢, we certainly have that (¢ (Z) U )> =0 for all ¢ # j. Then,
defining ¢U) (LLO (A))®5] by

. VNI L
5(])(x17"'7$j) - m@)?N 7, E\Jf)(xlw"?xj? ')>L§(AN*1)
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N
j 1
YN = 21/’](\]7) = Z m Z U(Q1Q2 - 4P +1Pj+2 - - ~pN?/)N)

j=0 j=0 T 0eByN

N N
1 RN—j (‘) RN —j (‘)
= - - a\p ®£J = @ ®s£]
].ZZO (N — j)INT UZEGN (0 ) ]-Z:o 0

where o € G acts on wave functions in L?(AY) as defined in Section This proves
(3.16). The representation (3.16]) enables us to study the fluctuation (or, equivalently,
excitation) vector

(&1, EN) e]-"ffpvo > Flpo»

describing the fluctations of ¥ around the pure condensate gof)@N . Here, we introduced
the notation ffg) for the subspace of F |, in which each element ¢ = (¢ © ™ )
has components ¢(*) = 0 for all £ > N. We notice that

) e 5 I I
(0™ 00 €065 T 0 €)= e D (e gD (e 8 60))

o,TEGN

d; ; ;
=37 > €917 = 8;xli€9)

ceG N

In particular, (3.16]) enables us to define the unitary map Un(go) : L2(AY) — ]-"f;\g

Un(po)onw = (€W,...,e™) e FEN

In view of Proposition and the fact that we consider the translation invariant case,
we choose for the rest of the section the basis

{op :p € 2073, p,(x) = "V € A}

so that g9 = 1|z plays the role of the condensate wave function. We also abbreviate

Unv = Un(go) and Fi,, =: Fy, ff;\g =: .F_EN (the + indicating that we consider
particles with strictly positive kinetic energy).

When working in the Fock space, where the particle number is not necessarily fixed,
it is convenient to introduce the bosonic creation and annihilation operators. For f,g €

L?(M), we define the creation operator a*(f) and the annihilation operator a(g) by
* n ]‘ a n—
(CL (f)C)( )(xlv e 7:1:71) :% Zf($.7)c( 1)(‘7:17 ey $j—17xj+17 QN ,$n),
j=1

(a(g)g)(”)(m,...,xn) =vn+ l/Ag(x)C("H)(a:,xl,...,xn),
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for all n € N and

C:(C(O)7<(1)77C(M)a07) UF<N LJ@L2 Ak
N=0 N=0 k=0

For n = 0, we set (a*(f)()(o) =0.
It is useful to illustrate the action of a*(f) and a(f) on product states of the basis
elements ¢y, p € A*. For ( = Sy(pp, © ¢p, @+ @ pp,) € LZ(A"), we have that

n+1

@) = 7y 1 Y Z D Ppy ® @ Pp;y ®0g O Py B - Ppy
oe6, j=1

=Vn+1841(pg® p, @+ ®yp,) € Lg(AnH) c Fent

and, similarly, that
a(pg)¢ = IZ PgrPp; )2 Sn1(0p1 @ . Pp;_ ®pp,_, ®---®pp) € LZ(A™ 1) ¢ F="71,

In words, a*(p,) creates a particle with momentum ¢ € A* and a(yp,) annihilates a
particle with momentum g € A*. As a consequence of the last formulae, it follows that

a*(pg)alpq)C = k¢,

where 0 < k£ < n denotes the number of the momenta p; in ¢ such that p; = ¢. Hence,

a*(pq)a(py) : L2(A™) — L2(A™) counts the number of particles with momentum ¢ € A*.

This connects the creation and annihilation operators to the number of excitations.
Basic properties of the creation and annihilation operators are

(@™ ()¢, &) = (¢, a(f)E)

for all ¢, ¢ € Uy— F=N so that, at least on a formal level, a*(f) is the adjoint of a(f).
Furthermore, they satisfy the so called canonical commutation relations

[alg), a*(f)] = (g, f)2, la(g),a(f)] =0 (3.17)

for all f,g € L?(A). We leave the verification of these properties as an exercise.

In the full Fock space F, wave functions can have an arbitrarily large particle number,
so it is clear that the creation and annihilation operators are unbounded operators in
F. Let us mention that they naturally extend to densely defined, closed and unbounded
operators in F. In these notes, however, we restrict our attention to the truncated
Fock spaces F=V and, more specifically, on the excitation Fock spaces .FEN — F=N,
Restricted to such truncated spaces, the creation and annihilation operators are bounded
and therefore we can ignore the unboundedness issues in the full Fock space F.

Creation and annihilation operators are convenient for computations in the bosonic
Fock space, because they implicitly keep track of combinatorial factors due to the sym-
metry of the wave functions. For computations it is particularly useful to represent basic
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observables on the Fock space in terms of the creation and annihilation operators. This
amounts essentially to nothing more than computing expectation values of observables
in a particular basis. Since we work with the standard Fourier basis, let’s abbreviate

ap = a(pp) and a;; = a*(pq)

for all p,q € A* = 2rZ3. A particularly important operator in this chapter is the number
of particles operator A/ which is defined in J%_, F=" through

WO =nc™, e F=N

It measures the average number of particles. Observe that ||z z<v) = N so, in F=V,

N is a bounded operator. Since A is a multiplication operator, N is self-adjoint in F=V,

for every N € N. By NV}, we denote its restriction to [J3_, _EN

Let’s express AV in terms of the creation and annihilation operators ay, ag. From our
earlier considerations, we may suspect that in 3 _, F <N we have that

N = Z .

peEA*

Indeed, to verify this, we can consider w.l.o.g. ¢ € L2(A") (why?) and find that

n

Ne=nC=3 0= 3 —= 3 Vallentenl), ¢ = 3 ajac.
j=1

peEA* j=1 pEA*

and similarly, we find that

. *
N+ = Z apap.

peA\{0}

The following two lemmas are simple, but they are frequently applied in estimating
the expectation values of operators in the Fock space.

Lemma 3.1. Let f € L?(A). Then we have for all ¢ € J_o F=V that

laHSIE < NFIINYZC, e (DI < 2 IOV + 12
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Proof. Pick w.l.o.g. ¢ € FSN. We apply Plancherel and Cauchy-Schwarz to obtain that

d .d k)
(¢, a’ Z/Ak z1 .. dog (RN (21, .., )
<3 f(zy) / dy F@)CO (g2, 25t Ty 1)
j=1 A
N 2
=)k dX dyf( )¢ (y, X)
> /A,H
N o~ =
=Sk [ ax| R [ et x| = X RRcaen)
k=0 qEN* p,qEA*
Z (’pr‘anH)(‘fq‘H%CH) < HfH% Z (¢ apapC) = HfH%<C7NC>
P,gEN peEA*

The second bound follows by noticing that a(f)a*(f) = a*(f)a(f)+||f3. by (.17).
Lemma 3.2. Let f € (*(A*) and define Ap. )(f), Apy(f) and Ay(f) by

A(* *) Z fpay p —p’ A(*,-)(f) = Z fpa;apa A(-,~)(f) = Z fpapa—p
pEA* peEA* peEA*

Then, Agss)(f); A, (f) and A y(f) extend to bounded operators in F=N and we have

1A G (F)CN 1A (DS TACH(HCIE < V2 fll2ll(V + 1)¢
for all ¢ € F=N. If, in addition f € £*(A*), then also A0(f), defined by
A(-,*)(f) = Z fpapa;
peEA*

extends to a bounded operator in F<N with HA(*’*)(f)CH < V2| fll2lN 4D+ 11 £ 1€
for all ¢ € F=N,

Proof. Consider first A, ,)(f). Then we have

HA(* * C”Q Z fpfq C?apa—paqa—qc>

p,gEA*

Z fpfq aZa* apa,p+4a aqlp,q +4)¢) < 2”f”%<Ca N+ 1)20

p,gEN*

by Cauchy-Schwarz. The bounds for A, .)(f), A(..)(f) are analogous. For the non-
normally ordered operator A ,(f ), we only notice that apay, = apap + 1, by (3.17)).
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The previous two lemmas illustrate that the creation and annihilation operators
are quite convenient for operator bounds as long as an upper bound in terms of A is
useful. Below, we also need the kinetic energy K, for certain estimates. The operator
K:Uy—oCe® @kazl H2(AF) — UT_o F=V is the self-adjoint operator defined through

n

(K)|N=n = Z(_Aﬂ%)

i=1
and with Kjyr—g = 0. We denote the restriction of K to (J¥_, ]-"_EN by K+ and we have
Ky = Z ]p\Qa;ap.
peA*\{0}

The verification of this identity is left as an exercise. Similarly, you can check that
K =3 en- IP[*apa, on a suitable dense domain.

Now, coming back to the Hamiltonian Hy defined in (3.14), we note that
L? (AN) — F<N_ We can also express Hy in terms of the ap, a, operators, yielding

1

2 % ~ * *

Hy = ( Z Ip|“aya, + 2N Z v(r)apﬂ,aqapaq”) . (3.18)
pEA* g rEA* W=nN

Indeed, for the potential energy, we have by symmetry

E /N dry...deyv(z; — xj)®(x1,...,28) ¥ (21, ..., 2N)
— A
1<i<j<N

N(N -1 _
= ()/ dX </ dxidzov(zy — xg)Q(xl,xz,X)\Il(ml,xg,X)>
2 AN—2 A2

for every ®, W € L2(AY) and we can expand this in Fourier space into
/ dXx dzydzov(z — 9) (11, 2, X)W (21, T2, X)
AN—2 A2

:N(N— 1)/ dX Z <(I)(""X)’(p5®‘Pt>L2(A2)<‘Pp®80q,¢(-,~,X)>L2(A2)
AN-2
p,q,8,tEA*
X/ dzrydxav(zy —;UQ)ei(p—S)anJrz‘(q—t)zQ
A2

= Z (s = p)dq,tts—p(®P, agaiapaqy) = Z (s — p)(¥, agaj apais—pt))
D,q,5,LEA* p,s,tEA*

= Z O(r)(®, ap ., ay0pag4r V),
p,q,TEA*

where, in the last step, we renamed the variables to r = s —p and ¢ = t.
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Problem 3.3 (Second quantization of operators). Let h be a symmetric operator on
L2(Q) and let () jen be an orthonormal basis in the domain D(h). Show that

oo N
B hei= Y W htbn)a Wm)aln)

N=1j=1 m,neN

in the sense of forms on |J¥_, @,ivzo ®§ym D(h). Similarly, assume that V' (real-valued)
is a multiplication operator in L*(Q x Q) with the property that V(x,y) = V(y,x) for
a.e. (x,y) € Q x Q. Show that

= 1
@ Z in,xj - 5 Z <¢m & wna pr & wq>a'* (wm)a* (wn)a(wp)a'(wq)
N=21<i<j<N m,n,p,qEN

Since we want to focus on the orthogonal excitations of low-energy states, motivated
by (3.16]), we need to compute the unitarily equivalent excitation Hamiltonian

Ly =UnHNUjy.
This is a simple exercise once we know how Ux acts on the a,, ag operators.

Problem 3.4. Check that Uy and its adjoint Uy are given by

@ =" < %ﬂw)

Up (€O,¢M ). c™y)

(3.19)
g(k)

-3

for all Yy € L2(AN) and ¢ = (¢, ¢M, ... ¢ e ffN. Here, we remind the reader
that ¢ = 1 — o) {wo| € L(L*(A)) (the details can be found in [/4), Section 4]).

Given p,q € A% = 2xZ?\ {0}, the fact that [a%a,, ao] = [a}aq, aj] = 0 now implies

UnapaUy = ayaq, UNNLUN = Z ayap = Ny
pEA:

As a consequence
UnajaoUs = UN(N — N Uk = Un(N = N)Uy = N — Ny (3.20)
Finally, for p € A%, we find with 3.19) for any ¢ = (¢, ¢, ... ,¢™) e F£V that

N-—1 k—
)N k (ag)N k—1

) _ ) R
< /(N —k)! NN UN,;O (N _k_ 1)
(VN =N; +1a50) " = UnUj(ai/N = N7 ©).

UNG CL(]UNC UNCL aoz

VIV =B

_UNZW
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This means that

UnanaoUy = apy/N — N4, UnajagUy = /N — Niaq (3.21)

for all p,q € A%. That is, what the map Uy effectively does is to replace any creation
or annihilation operator ag, af by (N — N, )2,

We can use the above results to express the property of complete BEC in the Fock
space setting. By Lemma E Eq. implies that complete BEC of a sequence
(UN)nens [Unll2 = 1, in L2(AY) into ¢p € L2(A) is equivalent to the condition that

1 - (0,7 po)2 = 1 - /AN1 dX /A2 dzdy () (, X ) (v, X) e (y)

N
—1- ;z_j [ X o X0 (o)l v XD gy 522

=1- NN, ajaotn)2 = N~ H{UNYN, NyUntn) = 0

as N — oo. That is, the expected number of excitations around the condensate is
negligible compared to the number of particles in the condensate, in the large N limit.

Finally, having computed the action of Uy on the creation and annihilation operators,
a tedious, but straightforward calculation shows that Lny = UnHyUjy; is given by the

sum Ly = EE\?) + Eg\?) + Eg\?;) + E%), where

O _ Mooy~ Loy + Mgy - Mg
Ly = 5 v(0) 21)(0) + 2NU(O) 2NU(0),
2 * ~ *
ﬁg\/) = Z [|p\2apap +v(p)ayap(l — N+/N)]
pGAi
1
+5 ) W(p) [GZ(l — N /N)Y2az (1= Ny /N2 + h-C-],
2 24 (3.23)
p€A+
3 1 - * *
£ S X ) [ap 1= Ny /N 2a* ag + h.c.},
D,qEA] :pF—q
4 1 SN K x
,CEV) = 5N Z V() ay 4, 0yapag 1y

rEA*, p,qgENY ip,gF~E—T

This follows by splitting the potential energy into a sum of different terms according to
their number of zero modes it contains (why is there no linear term in the ay,a;?).

Problem 3.5. Verify the identity (3.23]).

In the following, we write Vy = L’Sé) for the potential energy of the excited particles,
so that £ contains in particular the Fock space Hamiltonian Hy = K +Vy, measuring
the energy of the excitations in different sectors.
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3.2.2 Heuristics: Bogoliubov’s Method

So far, the introduction of the Fock space setting and the excitation Hamiltonian Ly is
only a translation of the usual L2(A") setting into a different language. Its advantage
is that the following heuristics, proposed in a more general setting by N. N. Bogoliubov
n [11], becomes particularly transparent.

Suppose we want not only to derive the leading order contribution %5(0) to the
ground state energy of Ly = UyHyUjy;, but also the next to leading order contribution
as well as an approximation of the higher eigenvalues of L. How can we proceed? First
of all, Bogoliubov assumed that any low-energy wave function vy exhibits complete
BEC into the constant wave function pg = 15 € L?(A). In accordance with (3-22), this
implies that the expected number of particles with momentum p € A%

<1/}N7 a;apr> = <UN1/}N7 a;apUN¢N> < N

is negligible compared to N, while (YN, ajaon) = N. As a first approximation, Bo-
goliubov therefore proposed that the operators ag, aj in Hy should be replaced by the
number N1/2. This step is called c-number substitution and it amounts to replace any
factor (N — N, )Y? in Ly simply by N'/2. The resulting Fock space Hamiltonian con-
sists in a sum of a constant plus several other terms which are either quadratic, cubic
or quartic in the creation and annihilation operators of excitations, similar to (3.23)).
Arguing again via BEC, the cubic and quartic terms should be negligible compared to
the remaining contributions, because they are of the order

1 R .
N1/2 Z u(p) [ap+qa,paq +he.| = (’)(/\/ji/Q/]\zl/2)7

P.gEANT ip£—q

1 - * *
o > B(r)ap. agapaqrr ~ ONG/N).
re€N*, p,qEAY ip.gF—T

If we simply drop these terms, assuming that N—% < N, what remains is the operator

Qn =%0(0) = 50(0) + > [Ip\%pap +0(p)ayap + 58(p) (apal, + “p“—p)}' (3.24)
peAi

Notice that Qx does not map from .F_EN to itself anymore, but nevertheless we may
hope that its spectrum is close to the spectrum of L.

Why is the approximation useful? The point is that Qn can be diagonalized
explicitly: the tool which we need for this purpose is given by what’s called a Bogoliubov
transformation. This is an operator exponential with exponent quadratic in the creation
and annihilation operators. Given (7p)peas € (2(A%), we define T, : F — F by

1 * ok
T, = exp [2 Z mp(apa*, —apa_p)| =: exp(A,). (3.25)
pEAi
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Let’s compute the action of T, on Qy without worrying about domain and conver-
gence issues (a more careful analysis follows in the next Section (3.2.3). A simple Taylor
expansion together with the canonical commutation relations (3.17]) implies

1 1
TrapTy = ap+ / ds (Dse™*A e’ (s) = ay +/ ds e~ [a,, A;)esA
0

=ap +pa’, / dsl/ dso 652‘4 ap7A ],A] —s24r (3.26)

= cosh(7p)ap + sinh(7p)a’,,.

The key of the argument is that a commutator of af, with a quadratic operator is again

linear in the creation and annihilation operators, by the commutation relations (3.17)).
Choosing 7, = 1 tanh ™! (3(p)/[p? + ?(p)]) and conjugating Qn with T, we find

N-—-1_ 1 ~ =
TFONT: = =5—5(0) = 5 Y |Ipl* +5(p) - VI + 2IpP00)]

2
pEA*
+ Z VPl +2[p[20(p) apa, =: Coy + Z €payp
pEA* PEAT

Hence, the resulting Fock space Hamiltonian is diagonal and we can read off its spectrum.
In fact, we have

N
UNTrONT Uy = Coy + Y _hy,
=1

where the one-body Hamiltonian h acts as a Fourier multiplier in L?(A), multipliying
the p-th Fourier component (for p € A*) by

pl* + 2[p|*0(p)-
The ground state energy of Uy T QnT*Up is given by Cg,, and, by Theorem the
eigenvalues of Uy, T} QNT Uy above the ground state energy are given by finite sums
Z np€p (ny € No and ny, # 0 for finitely many p € A¥).
peEA*

Physically, this means that the interacting Bose gas is (up to second order in the energy)
equivalent to a non-interacting Bose gas of quasi-particles, via the unitary transformation
T,Uy. Instead of the usual one particle kinetic energies |p|?,p € A%, the modified
excitations have energies

= VIp/* +2|p|?0(p), p € AL,

incorporating the mean field interaction v via its Fourier transform (ﬁ(p))p cAx
Let us mention that Bogoliubov’s heuristics can be found in many standard physics
textbooks on condensed matter (see for instance [47]). From a physical point of view, the
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important insight from [I1] has been to provide a microscopic justification of superfluidity
which is related to the specific form of the excitation energies ¢,.

On the other hand, turning the heuristics into a rigorous proof in specific scaling
regimes has been an active research field in mathematical physics in recent years, see
e.g. [70), 34, 44, [7, 8, B, 55, [I7] and the references therein.

3.2.3 Rigorous Derivation of the Excitation Spectrum

The goal of this section is to turn Bogoliubov’s heuristics in the mean field regime into
a rigorous proof. Only relatively recently, this has been achieved under quite general
assumptions, see in particular [70] B34 44, [41], 42} [62]. In this section, we follow [70].
Let us recall that we assume for simplicity v € C2°((—1/2,1/2)3) to be non-negative,
radially symmetric and such that v(p) > 0 for all p € A*. Our starting point is the
excitation Hamiltonian £y, defined in . To implement the first step of Bogoliubov’s

strategy, we need to show that the cubic and quartic contributions, EE\?;) and Egé), are
small on suitable subspaces of low energy vectors. As a first step in this direction, recall
that we have the following strong form of complete BEC.

Lemma 3.3. We have for all N € N that
Ly > + 3 Pala, - fv(()) N50) + Ky — So(0) (3.27)
T b 2 2
p

Let (YN)nen be a normalized sequence in D(Hy) and define (En)neny = (UNUN)NeN as
the corresponding excitation vectors in ]-"_EN. Assume there exists some ( > 0 s.1.

N

2

Then, by (3.27), there exists a constant C' = C(v,() > 0, independent of N € N, s.t.
(4m®) " MEn, Nién) < (v, Kién) < C (3.28)

In particular, (Wn)Nen exhibits complete BEC into @o € L*(A), by (3.22).

<§N7 £N§n> < (0) + C

Proof. The bound (3.27) follows by writing out 3_ AL o(p)| Z;V: L €PTi ‘2 > 0, implying

1 N 1
N Z v(w; —x5) > 5 (0) - 5”(0)
1<i<j<N
Conjugating Hy with Uy and using the previous lower bound implies (3.27]). O

The previous Lemma shows that the kinetic energy of excitation vectors associated
to approximate ground state wave functions of Hpy is bounded uniformly in N. To get
rid of the cubic and quartic terms in £y, we need, however, stronger a priori bounds.
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Proposition 3.4. Let (¢Yn)nen be a normalized sequence in D(Hy) such that for some
¢ > 0 we have Yy = X(_Oo;%a(o)+g](HN)¢N- Also, let (gN)NeN = (UN?,/)N)NEN- Then,
there exists a constant C' > 0, independent of N € N, s.t.

(ENNEKEN) < (C+ ()3 (3.29)

Proof. Let’s observe first of all that Ay leaves D(Ly) invariant. In fact, we have that
D(Ly) = D(Ky) = Caod,_, H2(A®) N L2 (A)®+* and the claim follows by noticing that
N, acts simply as multiplication by k in the k-particle sector of FEN, k=0,...,N. It
is clear that N} K, has the same domain and the operator bound @) implieﬂ that

NiKy =Ny + DLWV + DY < (Vo + DV2LN N+ 1D)V2 4+ CN +1)
= (N + DLy + Wy + DYWL + 1) Ly] + CNg +1),
(3.30)

where we defined N
Ly=Ly— 5 0(0).

Observe that pulling /:'N to the right in the last step has the advantage that we can

control it on low-energy states {N = X(—ooy(] (Ln). In fact, for such &y, we use Lemma
3.3l and bound

(En, (NG + DLENEN) < (En, (N + 1) (L + C)en) + Clén, (N4 + 1)En)
< (&n, W4 + DLy + O) T NG + DEnY 2w, LREn)2 + C
(En, Wy + 1) (Ln + O) TNy + DENV2(C + 0P+ (C+)

IN

where we chose a sufficiently large C > 0 ensuring Ly +C > K+ +1>1, by (3.27).
Next, we use the operator monotonicity of the resolventlE to conclude

(En, Np + DENEN) < (En, Ve + DK+ 1) Y NL + DENY2(C + O+ (C + )
< (En, Ny 4+ DENYZC + O+ (C +¢) < (C +¢)?
(3.31)

This bounds the expectation of the first term on the r.h.s. in (3.30)). Let’s consider next
the commutator term in (3.30)). To bound this term, it is convenient to use the identity

L _ 11 1
\/g_ﬂ'o ﬁt—l—s

13From now on we typically denote generic constants, which may depend on fixed parameters and
which may change from line to line, by the symbol C.
MFor 0 < A< B, we have 1 < A~Y2BA~1/2 and hence AY/2B 1 A'/? < 1 so that B~' < A~.
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for any s # 0. Using the continuous functional calculus, we write
1 [ 1 1
7)o VEt+Ng+1
1 [ 1 1
7)o VEt+Ng+1

1 o0 1 -
= W/O Vi TV £

~ 1

~ 1

(W + D)2 Ln] =

1

—dt
t+ Ny +1

To continue further, we need to have some information on the commutator [N, ZN]
Going back to , we notice that N commutes with all, but two contributions to
Ly, namely the non-diagonal quadratic contribution and the cubic contribution. Given
any £y = X(_OO;G(ENN), these can be estimated with Cauchy-Schwarz by

S Do) en [as(1 — Nu /N 20 (1 — Ny /N ¢ h.c.1sN>\

peAi
1/2
< Aolla (N + 1) 2] ( S (e anat (N + 1>1a_papr>>
pGAi
< lolla(ens (s + Dén)

as well as

1 -
W Z U(p) <§N, [a;—l-q(l — N+/N)1/2a*_paq + hC]§N>‘

P,qEA] :pF—q
1 1/2 S
< <N Z (én, a;‘,+qa’ipapap+q§N>> ( Z v(p)°{&n, a;aq&v))

P,qEAY :pF—q P.gEA] :pF—q
< lvll2(ény (N4 + 1)En)

In particular, the previous two bounds imply that

—C(WNs +1) <i[Np, Ly] < C(Ny +1)

1/2

for some C' > 0. It follows that the operator
A=Ky +1)"Y5HN LN (Ky +1) Y2 € £(FEN)
is bounded in norm by some constant C' > 0, and we conclude that
[(€ny (N3 + DYV + DY2, Lylén)|

= 2, (Ke + D2 (Kp +1)12
S/0 Vi +D) 5N’t+/\/++1“4t+/\/++1

En)| di
(3.32)

>Vt 1/2 1/2 1/2
gc/o T 0 + DV + DY 200 + 1) e

< (N, NL K &) + 071 C{Ew, (K + 1)én) < 0(En, NeKién) +671(C + Q)

113



for any § > 0. Putting (3.30)), (3.31)) and (3.32)) together, we have shown that
(€N, Ne K én) < 6(En NoKién) + 67 1(C +¢)?
Choosing 0 < ¢ < 1/2, this proves (3.29)). O

What Proposition [3.4] shows is that on spectral subspaces of low enough energy, the
expectation of any operator that is dominated by the product of the number of particles
N, and the kinetic energy K. is bounded uniformly in N. Let us now define for all
p € A% the modified creation and annihilation operators by, by € E(]—'EN) by

by = (1 —Ny/N)2a,, b5 =al(l—Ny/N)Y? (3.33)

We notice that U§b,Un = aja,/N'/? and UnbyUn = a;ao/Nl/Q, so that, on the level of
L2(AY), the modified creation and annihilation operators either excite a particle from
the condensate ¢ into an excited state ¢, or vice versa. One readily checks that,
up to errors of the order N, /N, which is small on low energy subspaces in view of
Proposition (and expected to be so in view of Bogoliubov theory), the modified
creation and annihilation operators satisfy the canonical commutation relations .
Using these modified fields and estimating the different contributions to £y similarly as
in the previous proof, we deduce the following corollary.

Corollary 3.1. Ly, defined in (3.23)), is given in form sense on Un(Dy) by
N —1_

~ * 1 ~ * 7 %
5—0(0) + > [P+ ()| bsby + 3 > Bp)[bpb*, + bpb_p] +Ecy  (3.34)
peEAY, peAl

Ly =

where the self-adjoint operator ¢, is such that for all £ € D(K) N f_fN, we have
—CN7V2E NLKLE) < (€ E0y8) < ONTV2{E NLKE)

for some constant C = C(v) > 0, which is independent of N € N. In particular, for
low-energy wavefunctions § = X(—oo;c](LN)E € ffN, we have that

—NTMAC+ Q)2 < (€, EyE) < NV +¢)?

We observe that Corollary is a rigorous version of the approximation , pre-
dicted by Bogoliubov theory, with explicit error estimates. The only difference between
the quadratic contribution in and the quadratic operator in is that the
usual creation and annihilation operators are replaced by the modified ones, defined in
. The strategy of how to proceed now should be clear from Section We want
to modify the Bogoliubov transformations in such a way as to obtain unitary
transformations on the excitation Fock space ]-"EN with which we can approximately
diagonalize the quadratic contribution to Ly, in (3.34]).
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Comparing with (3.25]), the natural guess to approximately diagonalize Ly is the
generalized Bogoliubov transformation

1 k7 %k
¢Br — exp [2 PR bpb_p)} (3.35)
pEAi

where (7,)peas € (2(A%) is defined by

T = —% tanh ™" (3(p)/(p* +0(p))) = —i log [1 + 26](9];)] (3.36)

To verify that is indeed a good approach, we proceed as follows. First of all,
we need to check that the conjugation of £¢, with eP yields an error term, similarly
as in Corollary Once this is checked, we can proceed to make a rigorous series
expansion of e~ Br bpeBT, in the spirit of , keeping track of the error terms. Using
the expansions of the conjugated modified creation and annihilation operators, we may
expand the quadratic contribution to £y to conclude the approximate diagonalization.

Before we start, let us remark that e®r leaves D(Ly) = D(Ky) invariant. This
follows from Lemma the identity

Z p2a;ap B, = Z p27'p(b;b*,p +bpb_p) + B~ Z an;ap
pEAY pEAY pEAj
and the fact that ZpeA:; P2 < |vll3 < oo
Lemma 3.4. There exists a constant C > 0 s.t. for all £ € D(K) and s € [0;1]
(€ e P (We + 1)%e*Pre) < O, (Na + 1)%),
(€ e P (N + 1)Ky +1)e¥Pre) < O, (Vg + 1)(Ky +1)8),
(& e (Ny + Dajap(Ny + 1)e*P7E) < O, (Vs + 1)ajap(Ns + 1)€)
+ Clrpl*{€, Wy +1)%).

(3.37)

Proof. We prove the second inequality in (3.37)), the proof of the other two estimates
being similar. For £ € D(K,), we consider

0:1] 35 fe(s) = (€, B (M} + 1)Ky + DePre)
and our goal is to apply Gronwall’s lemma. We compute
(Dsfe)(s) = (€, B [Ny, B, (K +1)e"B7€) + (¢, B (N + 1)[KCy., By]e*Pre)
Let us bound the second term on the r.h.s. of the last equation. We have

Ky, B = > p*r(bjb*, + byb )
peAi
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so that by Cauchy-Schwarz

}<£> e_SBT (N+ + 1) [IC+7 BT} €SBT£>|
<

23" lrllplo-p (N +2)2e e [lbp (N +2)! 2P|
peA:

< 2|03l (s + NG + 1)esP7g ) < Cfe (s).

Arguing analogously for the commutator term containing [N+,BT], we conclude that
(0sfe)(s) < Cfe(s). for some C' > 0. Notice that the constant C' = C(v) is independent
of the vector & € ]:_EN. Gronwall’s lemma implies

(€ e PNy + 1) (K4 + 1)e"PrE) = fem(s) < e fe(0) = e (&, W + 1)(Ky + 1)€),
which proves the second bound in . O

It follows from the previous lemma that the error operator £, in (3.34) is still of the
order O(N1), in the form sense, after conjugation with e®7. The next lemma expands
the bounded operator e =57 bpeBT into a norm-convergent operator series.

Lemma 3.5. For all p € A%, there exists a bounded operator d, € C(]:_EN) s.t.
e PrbyePm = cosh(r, )by + sinh(7,)b*, + d, (3.38)
and there exists a constant C > 0 such that for all £ € .F_EN, we have that

dpell < CNTH(I(N5 + Dapél + mll (Vs + 1)32¢])) (3.39)

Proof. Recall that B, = %ZpeAj Tp(bybZ,, — bpb—p) is bounded. We first compute

1 * 7 % * — * — * *
by, Br] = 3 > rlp Uibt ] = bt = NTINmbt, = N7 Y bt aka,.

qGAi uEAi

By Taylor expanding the function [0;1] 3 s + e~ P7b,eP | this implies
1 S1
e BrbePr = b, + b~ + dj(ol) + / dsl/ dsy e 525 [7pb*, Br ] es2Br
0 0
where the bounded operator dj(ol) is defined by

1
dj(ol) — _/ dsye 5157 [N1N+pr*p + N7t Z Tub*uaZap] 187,
0

u€Al
Using that |7,| < C for all p € A%, and applying Lemma and Lemma we obtain

l50€l < CNH(ING + Dag€ll + 7|V +1)%%¢])
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for any £ € ]-"_EN. Now, we iterate the above procedure. We arrive after k € N steps at

Lk/2] 27 [((k=1)/21  2j+1

e e’ = Z pb+ Z_% (2Z+1v*p+zdj

/ dSl/ dso / d3k+1 6—8k+1BT I:Tll;:bgprT]esk+1BT,

where (#,b) = (%,—) if k is odd and (#,b) = (-,+) if k is even. Moreover, the operators
dy’ are given by

1 S21-1
d;?l) = / d81 / dS 21 6_82lBT[ 1b N+ +N 1 Z Tu uaua—p] satBr
ueAl
cll(fl+1 2Z'H/ dsy / dsgiyq e S2+1Br [ _1./\/'+b*_p—i-]\7_1 Z Tub*_ua:;ap] es2+1Br
uEAT

Applying once again Lemma and Lemma we have for all £ € .F_EN

k
} Cck
ayle|| < Z T NIV + Dagg ]l + 7l (N + 1) 2¢]))

<.
—_

for some fixed C' > 0, independent of k and N. Similarly, it is simple to see that
1 1 Sk Ck;Nl/Q
dsy dsa ... dsp+1 € S’““BTH[ Bt BiletniBr| < = 50 (k— o).
0 0 0 P k!
Letting k — oo and defining d,, = Z]Oil dg ), this proves (3.38]) and (3.39). O

We are now ready to approximately diagonalize the Fock space Hamiltonian Ly, as
summarized in the following proposition.

Proposition 3.5. The excitation Hamiltonian Gy = e P LyeBr, with Ln defined in

(13.23) and B, defined in (3.35)), , is given in form sense on Un(Dy) by
N-—1_ 1 2~
Gn = 5 v(O)—§Z[p +0(p) —/p* + 2p%*0(p } Z\/p + 2p?0(p) apap +Egy

peAj_ peA*

(3.40)
where the self-adjoint operator Eg,, is such that for all § € D(Ky) N ]-'EN, we have

— ON"V2(E NLKL8) < (€, €6y €) < ONTV2(E NLKLE) (3.41)

for some constant C' = C(v) > 0, which is independent of N € N. In particular, for
low-energy wavefunctions § = X(—ooyc)(GN — NV(0)/2)§ € ]-'EN, we have that

~ NTVHC+ Q) < (6.8,8) < NTVAC+ (). (8.42)
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Proof. The proof follows from Corollary [3.1, Lemma [3.4)and Lemma[3.5 Let us indicate
the main steps by analyzing first the operator

Bf< > pr;;b,,> ebr.
pEAi

By truncating the sum over p € A% first, analyzing the resulting bounded operator via
the expansion and then removing the truncation using the Monotone Convergence
Theorem (recall that p®aa, > 0 for all p € A%), we find that

b ( Z p2b;bp> et = Z »’ ('Ypb; + opbp + d;) (vpbp + opb, + dp)

pEAi pEAi

= > p2[00pby + o2yl + 200 B, + b )| (343

peEAT
+ Z [ (pbp + opb*, +hc} Z pdidy,
pEA* pEA*

where we defined +, = cosh(7,) and 0, = sinh(7,). By normal ordering, we find

Z pQUgbpb; = Z pQU}%b*b + Z p’o 1 —~Ny/N)-N"! Z p2 2a0*a

pEAj pEAj pEA* pGA*
Using that ZpeAi pPop < Czpe/\* p°1) < Cllvll3, it is clear that
NS PRRENO +NT Y pable )] < ON MGG D8 (s
peAl peAL

for any £ € D(K,). Similarly, the two contributions in the last line of (3.43]), are error
terms. We have for instance for all £ € D(K )

> pAe [ (wby + b )+h.c.}£>' < C Y PPlldngll (wllBogll + opll (N + 1)1/%¢]))

pEAT pEAT

< ONT' Y PP (1N + Dagéll + 7l (Ve + 1)P2€0) (b€l + 7l (N + 1)V%¢])

pEA*

< CONTV2ENLKLE).

Similarly, we bound the remaining terms in . Proceeding in the same way for
the remaining quadratic contributions to £y proves after a tedious, but straight
forward calculation. The bounds (3.41]) and (3.42) are a direct consequence of Lemma
(applied to —B; instead of B, but it is clear that the proof of Lemma does not
change when we switch the roles of the operators B, by —B;). ]
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The following theorem and its corollary constitute the main results of this section -
a rigorous derivation of the excitation spectrum of the mean field Hamiltonian Hy and
a norm approximation for the ground state vector of Hy, valid up to errors that vanish
in the limit N — oo with explicit rates of convergence (cf. [70} [34]).

Theorem 3.3. Let Hy be as in (3.14)) and let En denote its ground state energy. Then

By = 2500~ 5 3 [P 4+50) - VAT 200)| + O (345)
peA]

Moreover, in the limit of large N, the eigenvalues of Hy — En below a given threshold
¢ > 0, are given by finite sums of the form

Z Np€p + O(N_1/2(1 + CQ)), ep = /Dt + 2p*0(p) (3.46)
pEA:
where 0 # nyp € N for finitely many p € A7

Remark 3.1. Theorem[3.3 can be extended to the inhomogeneous setting, analysing the
spectrum of H]t\}"ap as defined in (3.1) describing trapped particles, see [3]].

Proof. The proof follows from Proposition and the Min-Max Theorem Since
H is unitarily equivalent to Gy, defined in Proposition 3.5} it is enough to compare the
min-max values of Gy with those of the diagonal operator Qp, defined by

N —1_ 1 - — = "
On = =—0(0) = 5 3 [P +50) - Vi + 2700 + Y V' 2070) ajay.
pGAi pEAi

As already indicated in Section Qy is self-adjoint on D(K ;) with purely discrete
spectrum, given by finite sums of the form

N; 1@(0) —% Z [pz +0(p) — \/ZW} + Z NpEp-

pGAi pGAi

This follows from Theorem [2.2I] Note that a complete ONB of eigenvectors of Qp is
M
{ H (np!)_l(a;)”PQ :np € Ng with Z ny < N}
peA: pEAi

and that this set is also a complete set of eigenvectors of K. To prove the theorem,
we compare the min-max values of Gy with those of Qn. To this end, let’s denote by
(Ak)ken, the min-max values of Gy and by (pr)ken, the min-max values of Qp, counted
with multiplicity. The theorem follows if we can show that

Ak — ] < CNTV2(14¢?) (3.47)
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for some C' > 0, which is independent of N.
Let us start to prove that A\, > up — CN~Y/2(1 4 ¢2). First of all, it follows from

equations (3.40) and (3.42)) that
N—1_ 1 N — _ _
Ex == =5—00)=5 > [p*+0p)—V/p' +2070(p)| +O(N %) = o+ O(N~/2)

pGAi

Indeed, the upper bound can be obtained by testing Gy with the vacuum €2 € .FEN, and
the lower bound follows then directly from (3.42)). To bound the higher eigenvalues \j
from below by ug, k € N, we use that Ay < ¢ and (3.42)) to deduce

AL = ~inf sup (&, GNE)
dim(V)=k,  ¢ev|¢ll=1
V:X(foO;C](gN)(V)

> inf sup (&, OnE) — inf sup (&, &y &)
dim(V)=k ¢ev,||¢||=1 dim(V)=k, cev,€ll=1 N
V=X (=003 (GN) (V)

>~ ON“V2(1 4 )
where we defined §N =Gy — EN.
On the other hand, to prove that \; < u + CN~'/2(1 4 ¢2), we notice first that
the previous bound implies pp < ¢ + C for N sufficiently large. Then, since we have
NiKy < N(Qn — o) < (Qn — po)?, we easily deduce Ay < pgp + CN~Y2(1 + ¢?)

from (3.40) and (3.41)), by testing Gy on a suitable k-dimensional eigenspace of Qp
corresponding to its k-th eigenvalue pg. O

Corollary 3.2. Let Hy be as in (3.14) and denote by ¥y a normalized ground state
vectoﬁ of Hy, which is unique up to multiplication by a constant phase. Then, there
exists some w € [0,27) and a constant C > 0 s.1.

[ — e“UkeP Q|2 < CAIN~Y2 (3.48)
where A1 denotes the first eigenvalue of Hy — En above \g = 0.

Proof. We follow the proof of [?, Lemma 2]. We remark that the proof can be ex-
tended to eigenvectors to higher eigenvalues, see [34, ?]. We choose w € [0,27) s.t.
e (YN, UkeBrQ) = [(¢n, Uz eBrQ)|. Then (3.48) follows if we can show that

C
1— 02 < — N—1/2
[(En, )] <o

where &y = eBrUnyy € ffN. To prove the last bound, we simply observe that
CONTY2 > (¢n, (Qn — En)En) > (€n, [(Qn — En)IQNQ| + i (1 — [2)(Q])]én)
> M(€n, (1= [QDEN) = CNTYZ = M (1 = [(€n, Q)7) - ONTV2,
O

15 Assuming N to be sufficiently large, uniqueness of the ground state vector follows from Theorem
by noticing that the gap of Hy — En is positive.
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4 Basic Results in the Thermodynamic and GP Limits

The mean field regime considered in the previous section is characterized by very weak
interactions which enables us to obtain quite strong quantitative statements about BEC
and the ground state energy (assuming v to be sufficiently regular). The original paper
of Bogoliubov [I1], on the other hand, dealt more generally with the usual setting in
quantum statistical mechanics of N particles confined to a box Ay = [~L/2,L/2]® of
side length L. In the thermodynamic limit, one is interested in basic properties of the
gas in the limit where the particle density p = N/L? is fixed while the particle number
N and the volume V = L3 are both sent to N,V — oco. For sufficiently small density,
one can obtain e.g. the leading order approximation of the ground state energy in this
limit and this is partially discussed below. Proving BEC in this limit, on the other hand,
is a major open problem in mathematical physics. Instead of going into this direction
further, we therefore focus on deriving BEC in another scaling regime, called the Gross-
Pitaevskii (GP) limit. Here, one chooses L = N so that p = py = 1/N? — 0 as N — oo.
One can interpret the GP limit as the simplest simultaneous infinite volume and low-
density limit, where interactions have a non-trivial effecﬂ In this section, we describe
basic results in these two scaling limits: in the thermodynamic limit, we derive an upper
bound on the ground state energy (which turns out to be correct to leading order in p)
and in the Gross-Pitaevskii limit we derive a result on the ground state energy and BEC
that is comparable to Theorem in the mean field regime.

We start with some heuristics on the ground state energy of the Bose gas and discuss
afterwards the proof of the upper bound in the thermodynamic limit. We work in L? (Ag )
where A;, = [~L/2; L/2]? denotes the box of side length L > 0 and the Hamiltonian of
the system reads

N
Hy =) (-D)a+ > vlwi— 1)), (4.1)
i=1 1<i<j<N

To focus on the main ideas, we first ignore any regularity issues and assume for simplicity
as before that v € C2°(Bg,) C C°(R3) is non-negative and radial. Here, Ry > 0 is a
fixed parameter (in the thermodynamic limit, notice that L ~ N 1/3 > Ry for N large
enough). Our goal is to understand the leading order contribution to the ground state
energy En at low densities p. Following our experience with mean field systems, it may
seem tempting to conjecture that

1 1/2
_ ®N 20AN _ _ (P 2
Yy =y € Li(AL), for o= 733 = (N) € L*(Ar)

yields the right energy to leading order. We might therefore expect that

E 1
Jim =5 = (v, Hyow) = 3 p9(0) + ofp). (4.2)

16The mean field limit discussed in the previous section uses the additional simplification of approxi-
mating the relevant two-particle scattering length a by a = V(0) + O(1/N), see the discussion below on
the scattering length. This ensures a particularly simple proof of BEC that does not require a detailed

account for pair correlations among the particles.
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Here, 0(p) = [gs dze P v(x) denotes the Fourier transform of v. Whether surprising
or not, this naive mean field prediction turns out to be wrong: to obtain the right
energy, we need to replace the constant ©(0), describing the influence of the potential
v to leading order, by another quantity which is called the (s-wave) scattering length a
of the potential v. As the name suggests, the scattering length is an effective measure
that is used to describe how two slow particles scatter of each other if they interact
through the interaction v. Heuristically, scattering via the potential v produces pair
correlations among the particles which has the effect of lowering the energy. The next
theorem follows from [22], [52].

Theorem 4.1. The ground state energy En of Hy, defined in (4.1)), satisfies

E
lim WN =dnpa+E,

N—=00
for an error & = E(pa3) with the property that lim,q3_,o € = 0.

In the following two subsections, we introduce the scattering length a and the related
solution to the zero-energy scattering equation, collect some of its basic properties and
prove the upper bound in Theorem For the lower bound, we refer the interested
reader to [52] 50] and, for a recent alternative approach, to [I8, [32]. The last section of
this chapter discusses the lower bound and a proof of BEC in the Gross-Pitaevskii limit.

4.1 Heuristics: The Scattering Length

Suppose we consider two particles moving in R3 and interacting through v, the two-body
Hamiltonian acting in a suitable dense subspace of L2(R®) as

Hy = —Ay, — Ay, +v(x — 22).

To solve the Schrodinger equation, it is suitable to change to relative and center of mass
coordinates. The latter coordinates are defined by

1
R = i(xl +xz2), r=u1x1— 29

Problem 4.1. Let 1) € C?(R%) and let ® : RS — RS denote the diffeomorphism defined
by (z1,z2) — P(x1,22) = ((R(xl,xg), r(xl,:cg)). Verify that for all z1,xs € R3

((_Am - Am)(w © (I)))($17x2) = ( - %ARw - 2Arw> ((D(xla QUQ))

In other words, solving the two-body problem with interaction v is the same as
solving a one-body problem with external potential v (the center of mass dynamics is
trivial). So, let’s look at the Schrodinger equation for the one-body Hamiltonian

1
h:—A+§U,
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acting on a suitable domain in L?(R3). On a heuristic level, we would like to find a
complete set of eigenfunctions of h. Under our assumptions, this can only be understood
in a generalized sensdi] like in the free case, where v = 0. Indeed, in the latter case the
plane waves = +— &,(z) = e*™P% p € R3, solve the Schrédinger equation

for energies E = 472|p|?, and any v € L?(R3) can be expanded in the sense that
vw) = [ e 3) = [ dre ),
R3 R3

Although the (&,),cgs are not elements in L*(R?) (so that we can not speak of eigen-
functions in the usual sense) they are still eigenfunctions in the generalized sense that

(CAP)(p) = 4722 (p), Vp € RP.

Curiously, it turns out that there is an analogous (generalized) eigenfunction expan-
sion for L?(R3) functions in terms of a complete set of eigenfunctions of the one-body
Hamiltonian h with potential v. This is a topic in scattering theory, discussed in depth
in [65] (including the heuristic discussion of this subsection and its rigorous justifica-
tion). Physically, the intuition is that for a short range potential v, the state f, of the
interacting system with energy E = 472|p|? should look far in the past like a free state
(the so called incoming wave function) of the same energy, i.e.

—ith ~ JItA
e’ prel §p

for t & —oo. Equivalently, f, ~ lim;_,_ e“heitAfp =: Q%¢, and if we observe that
QT (—=A) = hQ", we obtain the physical prediction that

ot
—1 —it(— v 4 —1is —1is
fo(z) = e tA g—it(—A+ /g)fp(:n) + 2/0 dse P ye hfp(x)

—00

. 7 . A oA 2012
~ e2mipT + — lim dse isA—isdn?|p| +S€’Ufp(l‘)

2 E\O 0
. 1 _
A 27T 3 iI\I‘% (— A —4n?|p]?* —ie) ! v fp(x)
] 1 eQm'p(:L’—y)
~ 2mipxr T d .
e — = [y ) )
In particular, the scattering state f, behaves for large |z| > 1 like

fp(-’E) ~ e27rzpm _ ﬂ e27rzpr. (43)
x

"The discrete part of the spectrum of h is empty, see e.g. [37].
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Physically, this is interpreted as saying that a wave function of the interacting system
with energy E = 472|p|? consists of the sum of an incoming plane wave and an outgoing
spherical wave, the latter describing the scattering effect of the obstacle v (in physics
textbooks, is commonly the starting point for the discussion of elastic two-body
scattering processes, see for instance [45, Chapter XVII]).

How is this discussion useful for our many-body problem? Well, at low density, the
collision of two particles should be quite rare and it is therefore suggestive to think of the
ground state wave function of Hpy to consist to leading order of a product of correlation
functions describing the scattering of pairs of particles, that is

INESEC S | IS C )
1<i<j<N

The key question is then what correlation factor f we should use? Motivated by our
heuristic discussion above and the fact that we consider the ground state wave function
Y of Hy, we would like to use the solution f of the zero-energy scattering equation

(—2A +v)f=0 inR® with lim f(z)=1. (4.4)

T—r00

One can define f rigorously based on the theory of ODE, but here we follow the varia-
tional approach as in [50, Appendix C] (valid for a much larger class of potentials v as
discussed in these notes, see [50, Appendix C] for the details).

To state the main result on f, we fix some R > Ry. Then for ¢ € H'(Bg), we set

ené) = [ da(9o(a)? + 3l0(). (45)

Recall that by the trace theorem for Sobolev functions, we can assign L?(Sg)-boundary
values to any ¢ € H'(Bpg), where here and in the following Sp = 0Bpg.

Proposition 4.1. The functional (4.5) admits a unique non-negative minimizer in the
set HY(Bgr) N {¢ € H'(Bg) : P|sp = 1}. Denoting the minimizer by fr, then fr is a
radially symmetric function, 0 < fr < 1 and it satisfies in distributional sense

—Afr+ %’UfR = 0.
For |z| € (Ro; R], fr is given by
fate) = (1= 5)/(1- ) (4.6)

for a number a (= a(v)), the scattering length of v, which is independent of the choice of
R (> Ry). Furthermore, we have that

Er(fr) =4ma/(1 — a/R), and  v(0) = /R3 drv(x) > 8mra (if v #0). (4.7)



Proof. We use the direct methods of the calculus of variations. We start with a minimiz-
ing sequence (¢;)jen in H(Bg)N{¢ € H*(Bg) : P55 = 1}. By Prop. we can assume
that the ¢; are non-negative (if not, we can replace each ¢; by |¢;| which only lowers
the energy). Furthermore, by replacing ¢; if necessary by min(¢;,1p,) € H Y(Bg), we
can assume that ¢; <1 for all j € N, and noticing that 1,5, —¢; € H}(Bg), we can also
assume w.lLo.g. that 15, — ¢; € C°(Bg), by density of C2°(Bg) C H*(Bg). Finally,
using once again the convexity of the map p — [|V,/p[|3, we can assume that each ¢; is
radially symmetric, replacing it by the spherical average

1
Brazw | 5— dw ’¢j’2

if necessary. Next, we notice that the sequence (¢;) is bounded in H!(Bg) and has
a weakly convergent subsequence, denote its limit by fp € H'(Bg). By the compact
embedding H'(Bgr) — L*(Bg), we can also assume that ¢; converges to fr pointwise
almost surely so that in particular 0 < fg < 1. Furthermore, since 1,5, — ¢; € C2°(Br)
for all j € N, we must have that 1, — fr € H}(Bg), that is, (fr)|sy = 1. Now, the
functional £ is weakly sequentially lower semi-continuous (check this), so that

Er(fr) = inf Er().

 GeH (BR)N{@CH (Br):d)s, =1}

That is, fr is a minimizer of £g. The Euler-Lagrange equation follows as usual by
differentiating t — Er(fr + t§) at t = 0, for a given £ € C°(Bg). This implies that

1
—AfR + i’l)fR =0.

By elliptic regularity, fr is continuous and since vfr > 0, fg is subharmonic (for the
definition and basic properties, we refer to [46, Chapter 9]). Subharmonic functions
satisfy the maximum principle (see [46, Theorem 9.3]) which tells us that either fr <1
in Bg or fr = 1 in Bgr. Since we exclude the trivial case that v = 0, we must have
fr < 1in Bg. That fr > 0 follows as in the proof of Prop. and then, the uniqueness
of fr follows from the convexity inequality for gradients, Prop.

The specific form of fr can be seen as follows. In the annulus |x| € (Ro; R], fr
is a harmonic function, i.e. Afgr = 0 (in particular, fg is smooth in this annulus). The
only smooth, radial solutions in R? to this equation are of the form z + ¢; + co|z|™*
(why?), where one of the constants is fixed by the boundary condition on Sr. This
means fr can be written as in for some a, which may a priori depend on R.

Let’s check that a is independent of R. If not, we would find R < R and solutions
fr, [5 both having the form in the regions where |z| € (Ro; R] and |z| € (Ro; R],

respectively. Defining a new function gz € H YB 7) via

or(z) = {fg(R)me ifjof <R,
r fa(2) if R < |z| <R,
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we can only have that £5(g95) < E5(fg) (why?), so by the uniquness, we conclude that

g5 = fg which also implies that a(R) = a(R) = a.
An important observation implied by the previous argument is that the function

x> (1 —a/R)fr(x)

is independent of R > Ry. In particular, we can define the solution fo : R? — R of the
zero-energy scattering equation (4.4]) as the limit

fo(z) = lim (1 —a/R)fr(z).
R—oo
Then fj clearly solves (4.4]) and it equals
a
folz) =1——,
|z

for |z| > Ry so that lim,_,o fo(x) = 1, as desired.
Finally, let us explain (4.7)). The energy formula follows from

Entfn) = [ Vit [ do fula) (= Afnlo) + Go(@)ala)) = T2

while the bound on ¥(0) follows from v(0) = 2Eg(1|p,,) > 2Er(fR) for any R >0. O
Problem 4.2. Let fy denote the solution of (4.4). Prove that

8ma = /RS dxv(z) fo(z).

Problem 4.3. Show that the solution fo of (4.4)) is increasing in |z|. Moreover, show
that for all x € R3, we have that

fo(x) > max [1 - %,0}.

Hint: Use the mazimum principle for subharmonic functions.

Problem 4.4. Let v = )\XBRO(O) be a box potential of strength A > 0 and range Ry > 0.
Compute its scattering length a explicitly in terms of A and Ry.

Here is a useful interpretation of the scattering length. It follows from Prop.
that a < Ry, the range of v. On the other hand, if one considers a hard core potential

o0 if |l” < R(],
v =
he 0 else,
one can check that the solution of the scattering equation (4.4)) is given by
0 if ’.1“ < Ro,
fhc = he
1—ag¢/|z| else.

In particular, by continuity, we see that agc = Ry. The interpretation is then that if two
particles interact via some interaction potential v and if we want to ignore all fine details
of v, but replace it for simplicity with a (hard core) box potential, we should choose as
the range the scattering length a(v).
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4.2 Ground State Energy Upper Bound in Thermodynamic Limit

Following the heuristic discussion from the last section, we now switch to the proof of
the upper bound for Theorem following [50, Theorem 2.2]. We denote by a the
scattering length of v and consider Hy in (4.1]) with periodic boundary conditions.

Proposition 4.2. If the diluteness parameter Y = pa® is small enough, we have that
I <Ampa(l+ O(Y1/3)).
N S

Remark 4.1. The parameter p'/3a is a diluteness parameter for the gas: p~/3 is the
average distance between two particles and a can be interpreted as the effective range of
the interaction.

Proof. The proposition follows by constructing a suitable trial state. We will construct a
vector which is not symmetric under permutations of the particles. The reason why this
is no problem is that the positive ground state ¢n of Hy on all of LQ(Ag ) is unique, and
since Hy commutes with the symmetrization operator Sy, the symmetrization of ¢
must be equal to ¢y itself. Therefore, the ground state energy of Hy on all of L? (Ag )
is in fact the same as the ground state energy on the symmetric wave functions Lg(Ag ).
The construction of the trial state is based on an idea of F. Dyson [22]. We set

Y(w1,.. . o) = Fi(r) Fa(zy, 22) ... Fn(21,. .., 7N),
where F; = 1 and where F; for ¢ > 1 is of the form
E($1,...,xi) = f(tl'), t; :mln{|acz —xj| ] = 1,...,i— 1}

In words, F; is a function that only depends on the distance of x; to its nearest neighbor
of the previous particles x1,...,x;—1. Heuristically, one should have in mind to insert
the N particles one by one into the system. The function f is defined by

Fr) = {fo(lﬂfl)/fo(b) Jal=r<b,

1 Szl > b

for some b = p~ /3 (fy denotes the zero energy scattering solution).
We now need to estimate the kinetic and potential energies of our wave function. For
the following computations, it will be useful to introduce the notation

1 :for i =k,
eik(xy,...,zNn) =4 —1 :for t; = |z —
0 : else.

Furthermore, let us denote in the following by n; the unit vector

O N Bk )
Z ti i — 2j0) |




where j(i) € {1,...,i— 1} is chosen such that |z; — z;(;)| = t;. We then find

;VW— ! FVkHF —Fif (tk)ne + Z *VkF Zf&kmf( i);

Hz— ? =1 1= k+1

which implies after summing over k£ that

N N
¢—221vk¢12: > FTUF epena - ng f(4) £(5)

A7j7k71
= Z Fz ) + 2 Z F’i_le_lﬂké‘jkni . njf/(ti)f/(tj)
1<k<i<N 1<k<i<j<N
<y <1+}2f’(ti)2+ > P}Qs?kf’(ti)2>+2 Yo EUE el £t £(t)
1<i<N 1<k<i<N 1<k<i<j<N
<2 3R +2 Y FUF Meaeil £/ (0 (1))
1<i<N 1<k<i<j<N

The factor 2 for the ﬁrst sum comes from the observation that, for fixed ¢, we have
F2f(t)? = 1<hai i 2 f'(t;)?. The energy of the trial state is thus bounded by

(W, Hyo) o= 2 [92F 2 f (4 V2u(x; — x4)
R I P e e
j=1 1<i<j<N (4 8)
S P leaenl BT (0)F () '
+2 :
@g%gw EE

Next, we show that the first two contributions on the r.h.s. in can be combined
using the scattering equation, once we suitably isolate the dependence on x; and x; in
the integrands. After that, we show that the third term in is an error term.

To combine the first two terms, let us denote by Fj,;, for i < p, the value of F, if z;
was omitted as possible nearest neighbor, i.e.

Fpi(xi,zo,...,2p) = f(tpi), tpi :min{|azi71:j| 1j = 1,...,i71,i+1,...,p71}.

Then F),; is certainly independent of x; and we define analogously Fj,;;, for 7,5 < p,
removing the points z;,x; as possible nearest neighbors. We will use these functions
to get upper and lower bounds on the factors F; that appear in both numerator and
denominator in the terms in .

By the monotonicity of the scattering function f and since 0 < f < 1, we have that

F2,f2(|zp — a]) < (min(Epy, f(lzp — zi]))? < E2,,

Epiif*(lap — ail) S (12 — a5]) < (min(Fpig, f(lep — zil), fl2p = a51)” < By
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To isolate the dependence on the coordinates x;, z;, for i < j, we then bound

Fz—i—l F]2 1Fj+1 FN < F;Z—&-lz F Fj+1 ij * F]%[,’Lj (49)
as well as
52‘~'FZ%/>F2+1z EjQIZF]+IZ] FNZ]Hf2 (|zi — zr]) H f2 (Jws — i)
r<i 1<s<J
< [T 2025 = a) [T £ (2w — 2l £2 (0 — 251)
t<j u>j

:Fi%rl,i"'lezF]Jrlz] FN@] H f2 ‘xk—xl’ Hf2 ’xl_x]‘)

k#i.k#j I#j

Using for 0 < ¢; < 1 the elementary inequality

H(l—ei) Zl—Zei,

i i
which follows easily by induction (check it), we arrive at the lower bound

9 2 2 2
F?. . F% > Fz+1 i Fi i g Figg

X(l‘ 2 <1‘f2<'““i—ffkl>>>(1—Z<l—f2<|:cj—:cl|>>). (4.10)

k#i,k#j I#j

Now, let’s use (4.9) to control the numerator in the sum of the first two terms in (4.8))
from above. Together with

2 (=),

1<j

we get for fixed ¢ < j that

/ (2¢2Fj_2f/(|xi — aj)? + (i — l‘j))

< / (QfI(‘xz‘ - mj’)z +v(wi — fcj)fZ(’Ii - xj‘)2> /Fz%rlz e F]'Z—l,iF]'2+1,ij = 'F]%/',ijv
where the first factor on the right hand side is equal to

21 [ (|95() + 0(o)fE(a])?) = Smal?(1 = o)
b
The denominator |||, on the other hand, is bounded from below by
/%Z) > / i1, Fg‘2—1,iFj2+1,z‘j . F]%Mj

(1= Pl -a)) (1= X 0 Pl -,

I#5 k#i,kF#j
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Here we can ﬁrst integrate out the x; and x; variables and then remain with the factor

. F? . F? . which cancels the factor from the numerator. With
z+1 i —1,0" j+1,25 ° N,ij
/ dz; <1 = > (= (- wkl))) =L~ (N~ 2)/ dz (1 — f2(|xl))
Az ki ki Az

and the pointwise bound f(z) > max [0,1 — a|z|~!] from Problem we get

4T 4

T b
/Ade(l—fz(]x))gtb?’—i—élﬂ/a ar(r—a)? = B (- (1 aft))

Choosing b = ,0*1/ 3 and putting the previous bounds together, we conclude that

N 2 [?F} 2f(t;)? JPo(wi — x))
N(Z 411 Z [4]|? >

1<i<j<N

(4.11)

<L i -1 87a <dmpa(l+OY?).
SN 73 (1—ap1/3)(1*%(17(17%1/3)3))2 -

This controls the first two terms in (4.8]) as desired. To finish the proof, one can proceed
similarly for the third term in (4.8]), we follow the arguments from [69]. We bound

Z / Glene il FF (1) (1)
<Z/‘51k5]k|f () f'(t )f,(tj)dxidwj/Fsz---F Fj+1 ij F]%’L]

7—1 2
szZ(/A dasz-fux@-—xkr)f(xi—xkn) [P P Py
k=1 L

2
=2<z‘—1>( / dwf<rx\>f’<|:cr>) JRGIVINE; 2V AP, N
L

for every fixed i < j, where in the first step we used once more the upper bound (|4.9)).
The factor [ F? 1 "Fj2—1,iFj2+1,ij . FJ%M; will cancel with the same factor from the
denominator, which we bound exactly as in the first step of the proof. Thus, it only
remains to control the integral [ A, 4z f(|z]) f/(|z]). Using again ProblemE mtegramon
by parts and that f < 1, we find the simple upper bound

1 b
/ de f(|z])f'(Jz]) < 477(172 — / drr(l— a/r)2> < 12mwap~ /3.
Ag 2

a

Inserting this into the previous estimate, summing over ¢ and j and using the same
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bound for the denominator as in the first step, this yields altogether that

2 > [ V2 leimesel - Ff(6) £ (t5)

2
N 1<k<i<j<N 11 (4.12)

< c]zs (ap~3)% (1 + O(Y3)) = 4mpa O(Y/?) (1 + O(Y/?)).

Inserting (4.11) and (4.12)) into (4.8)), this concludes the upper bound. O

4.3 Ground State Energy and BEC in the GP Limit

In this final section, we determine the ground state energy and prove BEC for low energy
states in the Gross-Pitaevskii limit. This is a joint thermodynamic and low-density limit
with scaling p = py = 1/N2. The GP is mathematically quite interesting for at least
two reasons: using localization methods, one can prove the leading lower order bound
on the ground state energy of the dilute Bose gas that matches the upper bound in
Prop. This topic is not discussed further in this lecture and we refer the interested
reader to [52 [50]. Second, the GP regime admits a proof of BEC for low energy states
that yields a result comparable to Theorem in the mean field scaling: outlining the
main steps of how to do this in the setting of small interaction, using the methods first
introduced in [I5, [6], is the goal of this section.

To get started, we first note that by a simple scaling argument (ezercise), we can
consider w.l.o.g. N particles in A = [0;1]3 with energies described by

N

Hy=> (-Az)+r Y. NV(N(zi — ). (4.13)

i=1 1<i<j<N

As in previous sections, we consider periodic boundary conditions and assume for sim-
plicity that V € C2°(R?). The coupling constant k > 0 is chosen sufficiently small, but
independently of N. This assumption is technical and can be removed by generaliz-
ing the methods presented below [I] (see also [9, [35] for proofs that employ previously
obtained results [48] 49] that are based on localization arguments).

Let us start with some heuristic remarks. The rescaled Hamiltonian makes
obvious why the interactions between the particles still matter in the GP limit (i.e. in
a thermodynamic limit with density py = 1/N?): the potential is a mean-field type
interaction that is very singular (N3V(N.) is an approximation of the identity). The
previous section motivates that in this singular regime, in contrast to the mean field
setting, we have to take into account pair correlations: the solution fx of the zero
energy scattering equation

(=2A + N2V(N.))fy =0

is equal to fy = f(N.), where f denotes the zero energy scattering solution w.r.t. the
unscaled potential V. This implies that the scattering length of N2V (N.) is equal to
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a/N, where a denotes the scattering length of the unscaled potential V. In particular,
we expect the ground state energy of the system to be equal (ezxercise) to

En ~ 4n(a/N)pyN> 4 o(N) = 4wa N + o(N)

to leading order in N, where

47Ta:/Ad:cN3V(Nx)f(Nx):/Rgde(:p)f(a:)</ dz V(z).

RS

Recalling the map Uy defined in (?7), we get the following decomposition of Hp, trans-
ferred via Uy to the Fock space of excitations:
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