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Abstract

In these notes, we introduce basic mathematical tools needed for the rigorous
analysis of quantum systems and we present some applications in many body quan-
tum mechanics. The first part focuses on the spectral theorem for self-adjoint op-
erators and discusses several of its applications. In the second part we study low-
energy properties of bosonic many body systems consisting of N particles moving
in R3 and interacting through a two-body potential. Such systems may exhibit the
phenomenon of Bose-Einstein Condensation which is explained in detail in the so
called mean field regime. The notes conclude with basic results on the Bose gas in
the more challenging Gross-Pitaevskii and thermodynamic limits.
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1 Introduction

Consider a system of N identical, non-relativistic, spinless quantum particles moving
in a box ΛL ⊂ R3 of side length L. Such a system is mathematically described by a
normalized wave function ψN ∈ L2(ΛNL ) with the interpretation that

dµψN (x1, . . . , xN ) = |ψN (x1, . . . , xN )|2 dx1 . . . dxN

defines the probability of finding the N particles near (x1, . . . , xN ) ∈ ΛNL . In this course,
we restrict our attention to bosons which are particles that obey the so called Bose-
Einstein statistics. Bosons are described by wave functions ψN ∈ L2

s(Λ
N
L ) which are

symmetric under particle exchange, meaning that

ψN (x1, x2, . . . , xN ) = ψN
(
xσ(1), xσ(2), . . . , xσ(N)

)
for a.e. (x1, x2, . . . , xN ) ∈ ΛNL and for all permutations σ ∈ SN of N elements. In
particular, each of the N particles can occupy the same one particle wave function
ϕ ∈ L2(Λ) such that, for instance, ϕ⊗N ∈ L2

s(Λ
N
L ) is a bosonic wave function. Bosons

are of particular interest in physics, because at low temperature they undergo a phase
transition to form a Bose-Einstein condensate. The discovery of BEC goes back to N.
Bose and A. Einstein [10, 21, 22]. Its experimental verification for strongly dilute systems
[1, 20] was awarded in the late nineties with the Nobel prize in physics.

In a Bose-Einstein condensate, the majority of the N � 1 particles behaves like a
single one body wave function ϕ ∈ L2(ΛL), the condensate. Mathematically, this means
that ψN is close to a tensor product ϕ⊗N , in a suitable sense. This provides a very simple
description of the large many body system in terms of an effective one body system. In
particular, physical observables are essentially determined by the condensate state ϕ.

In quantum mechanics, physical observables are described by self-adjoint operators
A : D(A)→ L2(ΛNL ). Given such an observable, its expectation value with regards to the
state ψN ∈ L2

s(Λ
N
L ) equals the inner product 〈ψN , AψN 〉. For example, the multiplication

operator x̂i that multiplies ψN by xi ∈ ΛL measures the particle position of particle i
(and thus, by Bose-Einstein symmetry, the position of any one, fixed particle). With
the probabilistic interpretation of |ψN (x)|2 dx1 . . . dxN , notice that

〈ψN , x̂i ψN 〉 =

∫
λL

xi |ψN (x1, . . . , xN )|2 dx1 . . . dxN

corresponds to a probabilistic average. Analogously, 〈ψN , AψN 〉 for general self-adjoint
A : D(A) → L2(ΛNL ) has a probabilistic interpretation, based on the spectral theorem
for self-adjoint operators which tells us that A can be diagonalized in a suitable sense.

A particularly important observable in physics is the energy of the system. In case
of a non-interacting gas of N particles without the presence of external fields, the energy
is purely kinetic and HN takes the form

H free
N =

N∑
i=1

(−∆xi),
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where ∆xi denotes the Laplacian w.r.t. xi ∈ ΛL, describing the kinetic energy of the
i-th particle. For simplicity, let us impose periodic boundary conditions s.t. a complete
orthonormal set of eigenfunctions of HN is given by N -fold symmetric tensor products
of the plane waves ΛL 3 x 7→ ϕp(x) = |ΛL|−3/2eipx ∈ L2(ΛL), where p ∈ 2π

L Z
3. A plane

wave ϕp describes in quantum mechanics a particle with momentum p (the possible mo-
menta are discrete, in contrast to a classically mechanical description). The eigenvalues
of HN are consequently given by finite sums of the form∑

p∈ 2π
L
Z3

npp
2 with the restriction that

∑
p∈ 2π

L
Z3

np = N.

For this explicitly solvable system, notice that the ground state wave function ψN , the
eigenfunction corresponding to the lowest possible energy EN = 0, equals indeed the
tensor product ψN = ϕ⊗N0 : in the ground state, the non-interacting system of bosons
exhibits Bose-Einstein condensation into the constant wave function ϕ0.

Despite typical experiments analyzing strongly dilute gas samples, a realistic descrip-
tion should take into account interactions between the particles. Considering only pair
interactions for simplicity, this can be modeled through Hamiltonians of the form

HN =
N∑
i=1

(−∆xi) +
∑

1≤i<j≤N
v(xi − xj).

In this case, HN can not be diagonalized explicitly anymore. Can we still determine the
ground state energy and higher eigenvalues? Up to which degree of accuracy? And does
the ground state exhibit Bose-Einstein condensation in dilute regimes, for instance in
regimes of small number of particles density ρ = N/L3 � 1?

Motivated by the preceding discussion, the aim of these notes is twofold: first, we
introduce the functional analytic tools that are needed to describe and analyze quan-
tum mechanical systems. Most importantly, this includes a thorough discussion of the
spectral theorem for general self-adjoint operators in Hilbert spaces and several of its
applications. In the second part, we then study weakly interacting Bose gases and
understand whether they exhibit Bose-Einstein condensation. Here, we start with the
simplest, non-trivial interacting systems called mean field systems. In such a regime,
systems of N bosons trapped in a region of R3 are described by Hamiltonians

Hmf
N =

N∑
i=1

(
−∆xi + Vext(xi)

)
+

1

N

∑
1≤i<j≤N

v(xi − xj),

where the factor N−1 in front of the two-body interaction ensures that the kinetic and
potential energies are of the same order in N . Among other results, we will show that, in
the limit of large N , the ground state of the system exhibits Bose-Einstein condensation
into the minimizer of the non-linear Hartree energy functional

EH(ϕ) =

∫ (
|∇ϕ|2 + Vext|ϕ|2 +

1

2

(
v ∗ |ϕ|2

)
|ϕ|2

)
,
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which solves, for suitable ε ∈ R, the non-linear Hartree equation

−∆ϕ+ Vextϕ+
(
v ∗ |ϕ|2

)
ϕ = εϕ.

The mean field scaling describes a situation in which every particle interacts equally
strongly with all of the other particles so that, effectively, the potential that is experi-
enced by a fixed particle is given by an average field generated by the remaining particles.

After discussing mean field systems, the last part discusses basic results in the more
challenging Gross-Pitaevskii and thermodynamic limits, placing N particles in a box
[−L

2 ,
L
2 ]3 of sidelength L and studying the corresponding ground state energy in the

limit N,L→∞ such that the particle density ρ = N
L3 either tends to zero (ultra-dilute

scaling limits) or is fixed, but small. The so called Gross-Pitaevskii scaling corresponds
to the choice L = N and corresponds to the simplest, non-trivial ultra-dilute scaling
limit. The infinite number of particles and infinite volume limit in which the density ρ
remains fixed corresponds to the thermodynamic limit.
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2 Selected Topics in Functional Analysis

In this section we introduce several important tools for the rigorous analysis of quantum
systems. The presentation mostly follows [55, 56, 57, 58].

2.1 Hilbert Spaces

Systems in quantum mechanics are described with the help of complex Hilbert spaces:
let H be a vector space over C. Recall that 〈·, ·〉 : H × H → C is an inner or scalar
product if it satisfies

i) for all ψ ∈ H, the map H 3 ϕ 7→ 〈ψ,ϕ〉 ∈ C is linear,

ii) for all ψ,ϕ ∈ H, we have 〈ψ,ϕ〉 = 〈ϕ,ψ〉,

iii) for all ψ ∈ H, we have that 〈ψ,ψ〉 ≥ 0 with 〈ψ,ψ〉 = 0 if and only if ψ = 0 ∈ H.

An inner product induces a norm, defined via ‖ · ‖ =
√
〈·, ·〉. A complex Hilbert space is

a pair (H, 〈·, ·〉H) of a complex linear space with inner product 〈·, ·〉H s.t. H is complete
w.r.t. the norm induced by 〈·, ·〉H. Two vectors ψ,ϕ are called orthogonal if 〈ψ,ϕ〉 = 0.
Given a set M ⊂ H, its orthogonal complement M⊥ is defined as

M⊥ = {ψ ∈ H : 〈ψ,ϕ〉 = 0 ∀ϕ ∈M}.

It holds true that H = M⊕M⊥, s.t. M∩M⊥ = {0}, for any closed subspace M ⊂ H. An
orthonormal set is a set of normalized vectors in which each two non-equal elements are
orthogonal to each other. An orthonormal basis S ⊂ H is an orthonormal set for which
there does not exist another orthonormal set which contains S as a proper subset. Every
Hilbert space has an orthonormal basis. Unless stated otherwise, we work for simplicity
with separable Hilbert spaces, which are spaces that contain a countable, dense subset
and hence, by Gram-Schmidt, a countable orthonormal basis.

Problem 2.1. Prove that an orthonormal sequence (ψj)j∈N is an orthonormal basis in
H if and only if every vector ψ ∈ H has the representation ψ =

∑
j∈N〈ψj , ψ〉ψj.

Example 2.1 (L2-spaces). Let (Ω,A, µ) be a measure space. Then the set of equivalence
classes L2(Ω,A, µ) = {f : Ω → C measurable s.t.

∫
Ω |f |

2 dµ < ∞}, equipped with the
usual addition and scalar multiplication and the inner product

〈f, g〉2 =

∫
Ω
fg dµ

defines a complex Hilbert space.

Example 2.2 (Sobolev spaces). Let Ω ⊂ Rd be open, then

H1(Ω) =
{
ψ ∈ L2(Ω) = L2(Ω,Mλ∗d

, λd) : ∂iψ ∈ L2(Ω),∀i = 1, . . . , d
}
,
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is a Hilbert space when equipped with

〈ψ,ϕ〉H1 =

∫
Ω
dxψ(x)ϕ(x) +

∫
Ω
dx∇ϕ(x) · ∇ψ(x).

Here, ∂iψ denotes the i-th distributional derivative of ψ and ∇ = (∂1, . . . , ∂d).

In quantum mechanics, the space L2(Ω,Mλ∗d
, λd) = L2(Ω) (where Mλ∗d

denotes the
Lebesgue σ-algebra induced by the d-dimensional outer Lebesgue measure and λd denotes
the d-dimensional Lebesgue measure) is used to describe a particle in Ω ⊂ Rd. The state
of the system is described by a normalized vector, called wave function, ψ ∈ L2(Ω).
The interpretation is that dµψ(x1, . . . , xd) = |ψ(x1, . . . , xd)|2 dx1 . . . dxd measures the
probability for finding the particle in a particular region in Ω ⊂ Rd.

To describe many particle systems in quantum mechanics, one uses the tensor product
of Hilbert spaces. Given two Hilbert spaces H1,H2 and vectors ψ1 ∈ H1, ψ2 ∈ H2 we
denote by ψ1 ⊗ ψ2 : H1 ×H2 → C the conjugate bilinear form, defined by

(ψ1 ⊗ ψ2)(ϕ1, ϕ2) = 〈ϕ1, ψ1〉H1〈ϕ2, ψ2〉H2

For such forms, we define

〈ψ1 ⊗ ψ2, ξ1 ⊗ ξ2〉H1⊗H2 = 〈ψ1, ξ1〉H1〈ψ2, ξ2〉H2 .

By linearity we can extend this map to the linear space E of finite linear combinations
of the maps ψ1⊗ψ2 : H1×H2 → C, ψ1 ∈ H1, ψ2 ∈ H2, and this yields an inner product.

The tensor product Hilbert space H1⊗H2 of H1 and H2 is defined as the completion
of the the linear space E w.r.t. the norm induced by 〈·, ·〉H1⊗H2 .

Lemma 2.1. If (ψα)α∈N and (ϕβ)β∈N are orthonormal bases of H1 and H2, respectively,
then (ψα ⊗ ϕβ)(α,β)∈N×N is an orthonormal basis of H1 ⊗H2.

Proof. The sequence (ψα⊗ϕβ)(α,β)∈N×N is an orthonormal sequence and the claim follows

if we can prove that E is contained in S = span(ψα ⊗ ϕβ : α, β ∈ N) (why?). To this
end, it is enough to show that ζ ⊗ ξ ∈ S for every ζ ∈ H1, ξ ∈ H2. By assumption on
(ψα)α∈N and (ϕβ)β∈N, we can write

ζ =
∑
α∈N

cαψα, ξ =
∑
β∈N

dβϕβ

with
‖ζ‖2H1

=
∑
α∈N
|cα|2, ‖ξ‖2H2

=
∑
β∈N
|dβ|2.

This implies
∑

α,β∈N |cαdβ|2 < ∞ which means that
∑

α,β∈N cαdβϕα ⊗ ψβ ∈ S. Finally,
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approximating ζ ⊗ ξ by
∑

α,β∈N:α,β≤N cαdβϕα ⊗ ψβ, we find that

lim sup
N→∞

∥∥∥∥ζ ⊗ ξ − ∑
α,β∈N:α,β≤N

cαdβϕα ⊗ ψβ
∥∥∥∥
H1⊗H2

≤ lim sup
N→∞

∥∥∥∥ ∑
β∈N:β≤N

dβζ ⊗ ψβ −
∑

α,β∈N:α,β≤N
cαdβϕα ⊗ ψβ

∥∥∥∥
H1⊗H2

+ lim sup
N→∞

∥∥∥∥ζ ⊗ ξ − ∑
β∈N:β≤N

dβζ ⊗ ψβ
∥∥∥∥
H1⊗H2

≤ lim sup
N→∞

∥∥∥∥ζ − ∑
α∈N:α≤N

cαϕα

∥∥∥∥
H1

‖ξ‖H2 + ‖ζ‖H1

∥∥∥∥ξ − ∑
β∈N:β≤N

dβψβ

∥∥∥∥
H2

= 0.

Analogously to the product of two Hilbert spaces, we can define H1 ⊗ · · · ⊗ Hn, the
product of n Hilbert spaces H1, . . . ,Hn (the details are left to the reader).

Example 2.3. A system of two particles moving in Rd is described by the Hilbert space
L2(Rd)⊗ L2(Rd). The space L2(Rd)⊗ L2(Rd) is unitarily isomorphic to L2(R2d).

Proof. We first embed L2(Rd)⊗ L2(Rd) into L2(R2d) through the linear isometric map

L2(Rd)⊗ L2(Rd) 3 ϕ⊗ ψ ι7→
(

(x, y) 7→ ϕ(x)ψ(y)
)
∈ L2(R2d).

Considering the fact that ι is a linear isometry, the claim follows if we show that ι is onto.
To see this, denote by (ϕα)α∈N an orthonormal basis of L2(Rd) so that (ι(ϕα⊗ϕβ))α,β∈N
is an orthonormal basis of S = ι(L2(Rd)⊗ L2(Rd)). Now, suppose ζ ∈ L2(R2d) is s.t.∫

Rd×Rd
dxdy ϕα(x)ϕβ(y)ζ(x, y) = 0, ∀α, β ∈ N,

that is ζ ∈ S⊥. This implies that x 7→
∫
dy ϕβ(y)ζ(x, y) = 0 ∈ L2(Rd) (why?) so that

almost surely in x ∈ Rd, we have∫
Rd
dy ϕβ(y)ζ(x, y) = 0, ∀β ∈ N.

But this means that almost surely in x ∈ Rd, we have ζ(x, ·) = 0 ∈ L2(Rd) so that∫
Rd×Rd

dxdy |ζ(x, y)|2 =

∫
Rd
dx

(∫
Rd
dy |ζ(x, y)|2

)
= 0.

We conclude that S⊥ = {0} which is equivalent to S = L2(R2d).
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Example 2.4 (Fock spaces). Let H be a Hilbert space. The Fock space F(H) over H is

F(H) := C⊕
∞⊕
n=1

H⊗n =
{

(ψn)n∈N0 = (ψ0, ψ1, ψ2, . . . ) : |ψ0|2 +

∞∑
n=1

‖ψn‖2H⊗n <∞
}

It is a Hilbert space with the inner product 〈ψ,ϕ〉F(H) = ψ0ϕ0 +
∑∞

n=1〈ψn, ϕn〉H⊗n.

In many body quantum mechanics, particles moving in Ω ⊂ Rd (in the main part
of the course we mostly consider particles moving in R3) fall into two classes, they are
either fermions or bosons. To which symmetry class the particles belong to is related
to their spin, a property we will not discuss further in these notes. To describe in
particular systems of bosons properly, we need to introduce the notion of the n-fold
symmetric tensor product of a Hilbert space H. Let Sn denote the permutation group
of n ∈ N elements. We define Sn on the set of vectors ψ1 ⊗ ψ2 ⊗ · · · ⊗ ψn ∈ H⊗n,
ψi ∈ H, i = 1, . . . , n, by

Sn(ψ1 ⊗ ψ2 ⊗ · · · ⊗ ψn) =
1

n!

∑
σ∈Sn

ψσ(1) ⊗ ψσ(2) ⊗ · · · ⊗ ψσ(n).

We extend Sn to a linear map from the set of finite linear combinations of vectors of the
form ψ1 ⊗ ψ2 ⊗ · · · ⊗ ψn ∈ H⊗n to H⊗n and it is not hard to see that Sn is Lipschitz
continuous with Lipschitz constant L equal to L = 1 (in the words of section 2.3, it is a
bounded, linear operator on H⊗n). Since the set of finite linear combinations of product
wave functions is by definition dense in H⊗n, Sn extends uniquely to a continuous map
from H⊗n to itself. We define H⊗sn = Sn(H⊗n) which is called the n-fold symmetric
tensor product of H. H⊗ns is a Hilbert subspace of H⊗n.

Example 2.5. A system of N ∈ N (identical, spinless) bosons moving in Rd is described
by a wave function ψ ∈ L2

s(RdN ) = SN
(
L2(RdN )

)
. It is characterized by the property

that for every σ ∈ SN and for a.e. (x1, x2, . . . , xN ) ∈ RdN , it holds true that

ψ(x1, x2, . . . , xN ) = ψ
(
xσ(1), xσ(2), . . . , xσ(N)

)
Example 2.6 (Bosonic Fock spaces). Let H be a Hilbert space. The bosonic Fock space
Fs(H) over H is the Hilbert space defined by Fs(H) = C⊕

⊕∞
n=1H⊗sn ⊂ F(H).

2.2 Closed, Symmetric and Self-Adjoint Operators

In quantum mechanics, physically measurable quantities, called observables, are de-
scribed by self-adjoint operators. Loosely speaking, the idea is as follows: consider a
finite dimensional, complex Hilbert spaceH ' Cn and a Hermitean matrix A : Cn → Cn.
From linear algebra, we know that A is unitarily equivalent to a diagonal matrix and
that its n eigenvalues are real-valued. Denote by ϕ1, . . . , ϕn an orthonormal eigenbasis
of A corresponding to the eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn. If A is an observable, then
the eigenvalues of A are interpreted as the possible values of that observable and the
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postulates of quantum mechanics assign to each value a certain probability for finding
it: indeed, if the state of the quantum system is described by ψ ∈ Cn, ‖ψ‖Cn = 1,
the spectral measure µAψ associated to A and ψ ∈ Cn is defined on P(σ(A)) with
σ(A) = {λi, i = 1, . . . , n} by

µAψ (Ω) =
∑

i:λi∈Ω⊂σ(A)

|〈ψ,ϕi〉Cn |2

The expected value of A is given by 〈ψ,Aψ〉. Note that this is equal to E(ξA) where ξA
is the random variable λi 7→ ξA(λi) = λi on the probability space (σ(A),P(σ(A)), µAψ ).

In typical cases, the Hilbert space H describing the system is not finite dimensional.
Also, observables typically do not correspond to bounded linear operators (like matrices
on finite dimensional Hilbert spaces), but are in general unbounded (for instance, we need
differential operators to describe momentum and kinetic energy of a quantum particle).
In such a setting, the right class of operators to describe physically measurable quantities
consists of self-adjoint operators. In analogy to the above, for such operators it is possible
to construct appropriate Borel probability measures giving the probability for finding
the value of an observable in a measurable subset of R (see section 2.4).

A linear operator A : D(A)→ H is a linear map from a linear subspace D(A) ⊂ H,
called the domain of A, to H. A is densely defined if D(A) is dense in H. We always
consider densely defined operators unless stated explicitly otherwise. A linear operator
A : D(A)→ H is bounded if its operator norm is finite, that is

‖A‖L(H) = ‖A‖ = sup
ψ∈D(A),‖ψ‖H=1

‖Aψ‖H <∞

If A is bounded, it is in particular Lipschitz continuous and can be extended uniquely
to a bounded operator on H. A linear operator is called unbounded if it is not bounded.

Example 2.7. Consider L2(R) and let x̂ : C∞c (R)→ L2(R) denote the position operator,
defined by (x̂(ϕ))(x) = xϕ(x), x ∈ R. Then x̂ is densely defined and unbounded.

Proof. It is a standard fact that C∞c (R) is dense in L2(R). The fact that x̂ is unbounded
can be proved, for instance, by considering some 0 ≤ ϕ ∈ C∞c ((−1, 1)) with ‖ϕ‖2 = 1
and its translates ϕn = ϕ(· − n) ∈ C∞c ((n− 1, n+ 1). Then ‖ϕn‖2 = 1 for all n ∈ N and

‖x̂ϕn‖22 =

∫
(n−1,n+1)

dxx2|ϕn(x)|2 ≥ Cn2 →∞ as n→∞.

Problem 2.2. Show that i∇ : C∞c (Rd)→
(
L2(Rd)

)d
and −∆ = −

∑d
i=1 ∂

2
i : C∞c (Rd)→

L2(Rd) are unbounded.

Let A : D(A)→ H be a linear operator. The resolvent set ρ(A) of A is defined by

ρ(A) = {z ∈ C : (A− z) has a bounded inverse (A− z)−1 : H → D(A)} (2.1)
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If z ∈ ρ(A), we call Rz(A) = (A− z)−1 the resolvent of A at z ∈ C. The spectrum σ(A)
of A is defined by

σ(A) = C \ ρ(A) (2.2)

The discrete spectrum σd(A) ⊂ σ(A) of A is the set of isolated eigenvalues of A of finite
multiplicity. The essential spectrum σess(A) is defined by σess(A) = σ(A) \ σd(A).

Theorem 2.1. Let A : D(A) → H be a linear operator. Then ρ(A) ⊂ C is open,
σ(A) ⊂ C is closed and the function z 7→ Rz(A) is analytic in ρ(A). Moreover, the set
{Rz(A) : z ∈ ρ(A)} is a set of commuting operators and it holds true that

Rλ(A)−Rµ(A) = (λ− µ)Rλ(A)Rµ(A) (∀ µ, λ ∈ ρ(A))

Remark. Analyticity of z 7→ Rz(A) in Theorem 2.1 means that for any z0 ∈ ρ(A), the
operator-valued map z 7→ Rz(A) has a norm-convergent power series expansion in z−z0

for all z ∈ ρ(A) in some neighborhood around z0.

Proof. That [Rµ(A), Rλ(A)] = 0 follows from [(A− µ), (A− λ)] = 0, which implies that
Rµ(A)Rλ(A) is the inverse to (A−µ)(A−λ), i.e. equal to Rλ(A)Rµ(A). The remaining
claims follow from a geometric series argument and the useful identity

A− z = (A− z0)
(
1− (A− z0)−1(z − z0)

)
for suitable z, z0 ∈ ρ(A) . Indeed, if z0 ∈ ρ(A), then the previous identity shows that
Br(z0) ⊂ ρ(A) for r = ‖Rz0(A)‖, because for z ∈ Br(z0), we have(

1− (A− z0)−1(z − z0)
)−1

=
∑
k≥0

Rkz0(z − z0)k

Note that the r.h.s. in the previous equation is a norm-convergent series in z − z0. This
proves that ρ(A) is open, σ(A) is closed and that z 7→ Rz(A) is analytic in ρ(A). The
resolvent identity follows from

Rλ(A)−Rµ(A) = Rλ(A)
(
A− µ−A+ λ)Rµ(A) = (λ− µ)Rλ(A)Rµ(A).

As mentioned earlier, we will need to work with unbounded operators like differential
operators. Typically, we start with a domain like C∞c (Rd) on which we understand
the action of the operator very well - in order to be able to talk about self-adjoint
realizations of a given operator, though, we need in general to extend the operator onto
larger domains (and possibly add some boundary condition, see below for examples and
more details). For such extensions, we typically want to satisfy at least some minimal
requirement: we call an (not necessarily densely defined) operator A closed if its graph

Γ(A) =
{

(ψ,Aψ) : ψ ∈ D(A)
}

9



is closed as a subset of H×H. In other words, A is closed if and only if

ψn → ψ ∈ H and Aψn → φ ∈ H as n→∞

implies that
ψ ∈ D(A) and Aψ = φ.

Equivalently, D(A) equipped with ‖ · ‖D(A) = ‖ · ‖H + ‖A(·)‖H is a Banach space.

Problem 2.3. Find an explicit example of an operator which is not closed.

We call A2 an extension of A1 if Γ(A1) ⊂ Γ(A2), which means that D(A1) ⊂ D(A2)
and (A2)|D(A1) = A1. We say that an operator is closable if it has a closed extension.

Lemma 2.2. If A is closable, it has a smallest, closed extension A with Γ(A) = Γ(A).
Moreover, A is closable if and only if ψn → 0 and Aψn → φ as n→∞ implies φ = 0.

Proof. Let A be closable, then it has a closed extension B, by definition. This means
Γ(A) ⊂ Γ(B) and Γ(B) is a closed, linear subspace in H×H. Now, consider the closure
Γ(A) ⊂ Γ(B). Since Γ(B) is the graph of a linear operator, it has the property that

(0, φ) ∈ Γ(B) implies φ = 0.

As a subset of Γ(B), also Γ(A) has this property and it is also clear that Γ(A) (and thus
Γ(A)) is a linear subspace of H×H. Define A : D(A)→ H by

D(A) = π1(Γ(A)), Aψ = π2

(
{ψ} ×H ∩ Γ(A)

)
∀ψ ∈ D(A).

Due to the linearity of Γ(A), the domain D(A) is a linear space and due to the property
above, A is well-defined: if (ψ, φ), (ψ, φ′) ∈ Γ(A), then (0, φ − φ′) ∈ Γ(A) and thus
φ = φ′. In other words, for every ψ ∈ D(A), there is a unique φ(= Aψ) ∈ H such that
(ψ, φ) ∈ Γ(A). The linearity of A follows from this with the linearity of Γ(A).

In conclusion, A is a closed linear operator with Γ(A) = Γ(A), in particular it is a
closed extension of A. Any other closed extension B has the property that Γ(A) ⊂ Γ(B),
so A is the smallest closed linear extension of A.

For the second statement, notice that A is closable if and only if Γ(A) has the property
that (0, φ) ∈ Γ(A), then φ = 0. Both the if- and the only-if-statements follow from the
previous arguments.

Example 2.8. ([55, Problem 1]). Let {ϕn ∈ H : n ∈ N} be an orthonormal basis of
a separable, infinite dimensional Hilbert space H. Let ϕ∞ ∈ H be an element that is
not a finite linear combination of the basis elements {ϕn ∈ H : n ∈ N}. On the dense
subspace D(A) = span({ϕn ∈ H : n ∈ N} ∪ {ϕ∞}), we can define the linear operator
A : D(A)→ H by

A(λϕ∞ +

N∑
n=1

µnϕn) = λϕ∞

Then Γ(A) is not the graph of a linear operator, because (ϕ∞, ϕ∞), (ϕ∞, 0) ∈ Γ(A).
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Example 2.9. (Linear differential operators are closable). Consider a linear differential
operator A =

∑
|α|≤N λα∂

α on C∞c (Rd), where α = (α1, . . . , αd) ∈ Nd0 and

∂α = ∂α1
1 . . . ∂αdd .

Then A : C∞c (Rd) ⊂ L2(Rd)→ L2(Rd) is closable.

Proof. We show that ψn → 0 and Aψn → φ ∈ L2(Rd) as n → ∞ implies φ = 0. Let
ζ ∈ C∞c (Rd), then by integration by parts

〈ζ, φ〉2 = lim
n→∞

〈ζ,Aψn〉 = lim
n→∞

∫
Rd
dx

( ∑
|α|≤N

(−1)
∑d
i=1 αiλα∂αζ

)
ψn(x)

= lim
n→∞

〈( ∑
|α|≤N

(−1)
∑d
i=1 αiλα∂

αζ

)
, ψn〉2 = 0.

Hence, φ = 0 by density of C∞c (Rd) in L2(Rd), so that A is closable.

Next, we introduce the adjoint of a linear operator. Let A : D(A)→ H be a densely
defined operator on H and define D(A∗) by

D(A∗) =
{
ϕ ∈ H : ∃ η ∈ H with 〈ϕ,Aψ〉H = 〈η, ψ〉H ∀ψ ∈ D(A)

}
⊂ H

Given ϕ ∈ D(A∗) s.t. 〈ϕ,Aψ〉H = 〈η, ψ〉H for all ψ ∈ D(A) we set A∗ϕ = η. The operator
A∗ : D(A∗) → H is a well-defined (why?), linear operator and called the adjoint of A.
If A∗ is densely defined, we let A∗∗ = (A∗)∗. For the notion of self-adjointness, we need
to know whether A∗ is densely defined. In general, this need not to be the case.

Example 2.10. Suppose f is a bounded, measurable function, but such that f 6∈ L2(R).
Define D(A) = {ψ ∈ L2(R) :

∫
R dx f(x)ψ(x) ∈ C}. Then D(A) is dense in L2(R) (why?)

and on D(A) we set Aψ = (
∫
R dx f(x)ψ(x))ψ0, for some fixed 0 6= ψ0 ∈ L2(R). Let’s

consider the adjoint A∗ of A. If ϕ ∈ D(A∗), then

〈A∗ϕ,ψ〉2 = 〈ϕ,Aψ〉2 =
(∫

R
dx f(x)ψ(x)

)
〈ϕ,ψ0〉2 =

∫
R
dx
(
〈ϕ,ψ0〉2

)
f(x)ψ(x)

for all ψ ∈ D(A). This means that A∗ϕ = 〈ϕ,ψ0〉2f , but f 6∈ L2(R), so that we must
have 〈ϕ,ψ0〉2 = 0. In particular, D(A∗) is not dense, but consists of {ψ0}⊥.

Theorem 2.2. Let A : D(A) → H be a densely defined operator on a Hilbert space H.
Then the following holds true.

i) A∗ : D(A∗)→ H is a closed operator.

ii) A is closable if and only if D(A∗) is dense, and in this case A = A∗∗.

iii) If A is closable, then (A)∗ = A∗.
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Proof. i) Consider H×H as Hilbert space with the inner product

〈(ψ1, ψ2), (ϕ1, ϕ2)〉H×H = 〈ψ1, ϕ1〉H + 〈ψ2, ϕ2〉H (∀ψ1, ψ1, ϕ1, ϕ2 ∈ H)

Define V : H×H → H×H by

V (ψ,ϕ) = (−ϕ,ψ).

Then V is clearly unitary. As a consequence, V (E)⊥ = V (E⊥) for every subspace
E ⊂ H×H. Indeed, if 〈ξ, V η〉H×H = 〈V ∗ξ, η〉H×H = 0 for all η ∈ E, then ξ = V (V ∗ξ) ∈
V (E⊥). On the other hand, if ξ = V (ξ̃) ∈ V (E⊥), then 〈ξ, V η〉H×H = 〈V ξ̃, V η〉H×H =
〈ξ̃, η〉H×H = 0 for all η ∈ E, i.e. ξ ∈ V (E)⊥.

Now, denote by Γ(A) the graph of A. We claim that V (Γ(A))⊥ = Γ(A∗), showing
that Γ(A∗) is closed. Indeed, (ξ, ϕ) ∈ V (Γ(A))⊥ if and only if

0 = 〈(ξ, ϕ), (−Aψ,ψ)〉H×H = −〈ξ, Aψ〉H + 〈ϕ,ψ〉H, ∀ψ ∈ D(A),

which is the case if and only if 〈ξ, Aψ〉H = 〈ϕ,ψ〉H for all ψ ∈ D(A). The latter statement
holds true if and only if ξ ∈ D(A∗) and ϕ = A∗ξ, i.e. (ξ, ϕ) ∈ Γ(A∗).

ii) Assume that A∗ is densely defined. Since A is linear, Γ(A) is a linear subspace of
H×H. With V 2 = −1H and the proof of i), this implies

Γ(A) = (Γ(A)⊥)⊥ = ((V 2(Γ(A)))⊥)⊥ = (V ((V (Γ(A))⊥)))⊥ = (V (Γ(A∗))⊥ = Γ(A∗∗)

This shows that Γ(A) is the graph of A∗∗, so that A is closable with A = A∗∗.
If we assume on the other hand that D(A∗) is not dense, we may consider an element

0 6= ψ ∈ D(A∗)⊥. It then follows that (ψ, 0) ∈ Γ(A∗)⊥ which implies that V (Γ(A∗)⊥) =
(V (Γ(A∗)))⊥ can not be the graph of a linear operator, because (0, ψ) ∈ V (Γ(A∗)⊥).
But by the previous step, (V (Γ(A∗)))⊥ = Γ(A), so that A is not closable.

iii) If A is closable, D(A∗) is dense in H and A∗ is closed s.t.

A∗ = (A∗)
ii)
= (A∗)∗∗ = ((A∗)∗)∗ = (A∗∗)∗

ii)
= (A)∗

In contrast to the finite-dimensional case, in infinite dimensions there is an important
distinction between symmetric and self-adjoint operators. The spectral theorem men-
tioned earlier applies to self-adjoint operators, but not to symmetric operators which are
not self-adjoint. Having a self-adjoint realization of a given unbounded operator is often
intimately connected with choosing an appropriate domain. In fact, spectral properties
of unbounded operators are sensitive w.r.t. the choice of the domain.

Consider for example the operator A = i∂x which represents the momentum of a
quantum particle1. Since observables correspond to self-adjoint operators, it is important
to understand the self-adjoint realizations of A. We approach this question step by step,
illustrating some basic difficulties when trying to define A as a self-adjoint operator.

1More precisely, the momentum operator p̂ in quantum mechanics corresponds to the generator of
the unitary group of translations. It corresponds to the physical quantity that is preserved in closed
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Example 2.11. Consider A : H1([0, 1]) → L2([0, 1]) defined by Aψ = i∂xψ. Then
the spectrum of A is given by the whole plane σ(A) = C. Indeed, every z ∈ C is an
eigenvalue of A with a possible eigenfunction given by x 7→ e−izx ∈ H1([0, 1]). Notice
also that A is closed, because H1([0, 1]) with the graph norm is a Banach space.

At this point, let us recall that any ψ ∈ H1((0, 1)) admits an absolutely continuous
representative ψ̃ ∈ C([0, 1]), which satisfies

ψ̃(b) = ψ̃(a) +

∫ b

a
dsψ′(s)

for every a, b ∈ [0, 1]. In particular, this gives meaning to ψ(0) and ψ(1). In the following
we therefore identify implicitlyH1([0, 1]) withH1((0, 1)), including the boundary of (0, 1)
as a reminder of this fact.

Example 2.12. Consider A : D(A) → L2([0, 1]) defined by Aψ = i∂xψ, as in the
previous example, but on the modified domain

D(A) = {ψ ∈ H1([0, 1]) : ψ(0) = 0}.

The operator A : D(A)→ L2([0, 1]) has empty spectrum.

Proof. We will show that A − z is invertible for every z ∈ C, with bounded inverse.
Indeed, given ϕ ∈ L2([0, 1]), this amounts to solving the ODE

∂xψ = −izψ − iϕ with ψ(0) = 0.

Motivated by Duhamel’s formula, we analyze the operator Sz : L2([0, 1])→ D(A)

(Szϕ)(x) = −i
∫ x

0
ds e−iz(x−s)ϕ(s).

Then Sz is a bounded operator, because

‖Szϕ‖22 ≤ ‖Szϕ‖2∞ ≤
(

sup
x∈[0,1]

∫ 1

0
ds |e−iz(x−s)ϕ(s)|

)2

≤
(

sup
x∈[0,1]

∫ 1

0
ds |e−iz(x−s)|2

)
‖ϕ‖22 ≤ Cz‖ϕ‖22,

by Cauchy-Schwarz, where Cz > 0 is some finite constant. Moreover, we have

(A− z)Szϕ =

(
ϕ− (−i2z) i

∫ ·
0
ds e−iz(·−s)ϕ(s)

)
− zSzϕ = ϕ,

systems due to the homogeneity of Euclidean space. For suitable ϕ, we therefore have

(p̂ϕ)(x) = −i lim
y→0

1

y
(U(y)ϕ− ϕ)(x) = −i lim

y→0

1

y
(ϕ(x− y)− ϕ(x)) = (i∂xϕ)(x),

interpreting U(y) = e−ip̂y (see the section on the spectral theorem below for the rigorous definition of
the strongly-continuous unitary group (U(y))y∈R).
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that is (A− z)Sz = 1L2([0,1]), as well as

(
Sz(A− z)ϕ

)
(x) =

∫ x

0
ds e−iz(x−s)(∂xϕ− izϕ)(s)

= ϕ(x)− e−izxϕ(0) +

∫ x

0
ds e−iz(x−s)(izϕ− izϕ)(s) = ϕ(x)

for all ϕ ∈ D(A), by integration by parts. Thus, Sz(A − z) = 1|D(A). This means that
Sz = Rz = (A− z)−1 : L2([0, 1])→ D(A) is the resolvent of A at z ∈ C.

The previous two examples show that more care needs to be taken in order to define
Aψ = i∂xψ as a self-adjoint operator. It turns out that the previous examples do not
even provide symmetric versions of A. We say that a linear operator A : D(A) → H
is symmetric if A ⊂ A∗ which means that D(A) ⊂ D(A∗) and A∗|D(A) = A. This is
equivalent to the requirement that

〈ψ,Aϕ〉H = 〈Aψ,ϕ〉H

for all ψ,ϕ ∈ D(A). An operator is called self-adjoint if A = A∗ (i.e. if A ⊂ A∗ and
A∗ ⊂ A), that is, if A is symmetric and D(A) = D(A∗). If A : D(A)→ H is symmtric,
it is closable by Theorem 2.2 ii), because D(A∗) ⊃ D(A) is dense in H. In this case, the
closure of A is given by A = A∗∗. Since A∗ is also a closed extension of A, we deduce

A ⊂ A∗∗ ⊂ A∗

for any symmetric operator A : D(A)→ H. If A is also closed, we have

A = A∗∗ ⊂ A∗

and if A is self-adjoint, we have that A = A∗∗ = A∗.
We call a symmetric operator A : D(A)→ H essentially self-adjoint if its closure A :

D(A)→ H is self-adjoint and if A : D(A)→ H is closed, we call D ⊂ D(A) a core for A
if A|D = A. If A is essentially self-adjoint, it has a unique self-adjoint extension: indeed,
if B is some self-adjoint extension, we have A∗∗ ⊂ B and B = B∗ ⊂ (A∗∗)∗ = A∗∗ ⊂ B.
An operator A : D(A)→ H is essentially self-adjoint if and only if A ⊂ A∗∗ = A∗.

Problem 2.4. Check, more generally, that if A ⊂ B are both densely defined linear
operators and B extends A, then A∗ extends B∗, B∗ ⊂ A∗.

Example 2.13. Let’s consider again A = i∂x and let’s define it on D(A), where

D(A) = {ψ ∈ H1([0, 1]) : ψ(0) = 0 = ψ(1)}.

We might suspect that, the more boundary conditions we impose on A, the fewer restric-
tions we have on the domain of A∗. In fact, we have A ⊂ A∗ with D(A∗) = H1([0, 1]).
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Proof. To see that A is symmetric, let ϕ,ψ ∈ D(A), then integration by parts implies

〈ϕ,Aψ〉2 =

∫ 1

0
dxϕ(x)(i∂xψ)(x) = i ϕψ

∣∣∣1
0
− i
∫ 1

0
dx (∂xϕ)(x)ψ(x) = 〈Aϕ,ψ〉2.

Hence, A ⊂ A∗. To compute D(A∗), we notice that the same computation involving
integration by parts shows that H1([0, 1]) ⊂ D(A∗). On the other hand, suppose that
ψ ∈ D(A∗). By definition, this means that there exists η (= A∗ψ) ∈ L2([0, 1]) such that

〈ψ,Aϕ〉2 = i

∫ 1

0
ψ(x)(∂xϕ)(x) =

∫ 1

0
η(x)ϕ(x)

for all ϕ ∈ D(A). In particular, the last identity holds true for all ϕ ∈ C∞c ((0, 1)) and this
just means that the distributional derivative of ψ can be identified with −iη ∈ L2([0, 1]),
i.e. D(A∗) ⊂ H1([0, 1]). By the Sobolev embedding in R, we know additionally that ψ
has the absolutely continuous representative

[0, 1] 3 x 7→ ψ(x) = ψ(0)− i
∫ x

0
ds η(s) ∈ H1([0, 1]).

Example 2.14. This time we define A = i∂x on the domain

D(A) = {ψ ∈ H1([0, 1]) : ψ(0) = ψ(1)},

then A : D(A)→ L2([0, 1]) is self-adjoint, i.e. A = A∗.

Proof. Integration by parts shows as before that A ⊂ A∗. To show the other direction,
we argue as in the previous example to see that D(A∗) ⊂ H1([0, 1]) with A∗ψ = i∂xψ for
all ψ ∈ D(A∗), using that C∞c ((0, 1)) ⊂ D(A). But then, if ψ ∈ D(A∗), we can choose
ϕ = 1 ∈ D(A) and conclude

0 = 〈ψ,Aϕ〉2 = i

∫ 1

0
ds (∂xψ)(s) = i(ψ(1)− ψ(0)),

so that ψ ∈ D(A).

Problem 2.5. There are in fact uncountably many different self-adjoint extensions of
A = i∂x. Prove that A : D(A)→ L2([0, 1]) is self-adjoint if we consider it on

D(A) = {ψ ∈ H1([0, 1]) : ψ(0) = αψ(1)},

where α ∈ C is fixed and such that |α| = 1.

As a final remark with regards to the previous examples, we mention that the closed
symmetric extensions of a given closed symmetric operator, and the question whether or
not it admits self-adjoint extensions, can be characterized precisely by using the notion
of deficiency indices. We refer the interested reader to [56, Chapter X.1].
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Theorem 2.3. Let A : D(A) → H be a closed, symmetric operator on a Hilbert space
H. Then the following holds true.

i) We have that ran(z−A)⊥ = ker(z̄−A∗) and dim(ker(z−A∗)) is constant throughout
the open upper and lower half-planes in C.

ii) The spectrum of A is equal to one of the following subsets of C: the closed upper
half-plane, the closed lower half-plane, the entire plane or a subset of the real line.

iii) A is self-adjoint if and only if σ(A) ⊂ R.

Proof. Before we start with the proof of i), let z = ν+ iµ ∈ C s.t. µ 6= 0. For ϕ ∈ D(A),
we have by the symmetry of A and Cauchy-Schwarz

‖(z −A)ϕ‖2H = ν2‖ϕ‖2H + ‖Aϕ‖2H − 2ν〈ϕ,Aϕ〉H + µ2‖ϕ‖2H ≥ µ2‖ϕ‖2H (2.3)

We deduce from here and the closedness of A that ran(z−A) ⊂ H is closed, that (A−z)
is injective whenever Im(z) 6= 0 and that ‖Rz(A)‖op ≤ |Im(z)|−1 if z ∈ ρ(A).

i) The equality
ker(z −A∗) = ran(z −A)⊥ (2.4)

follows from 〈ψ, (z−A)ϕ〉H = 0 for all ϕ ∈ D(A) if and only if (z−A∗)ψ = (z−A)∗ψ = 0.
Given z = ν+ iµ ∈ C\R as above, we show that dim(ker(z−A∗)) is locally constant.

To this end, consider w ∈ C and let ψ ∈ ker((z + w) − A∗), ‖ψ‖H = 1. Now suppose
that ψ ∈ ker(z − A∗)⊥, that is, 〈ψ,ϕ〉H = 0 for all ϕ ∈ ker(z − A∗). By (2.4) and the
closedness of ran(z − A), this implies that ψ ∈ (ran(z − A)⊥)⊥ = ran(z − A). Hence,
there exists some ξ ∈ D(A) with (z −A)ξ = ψ so that, by (2.3),

0 = 〈(z + w −A∗)ψ, ξ〉H = ‖ψ‖2H + w〈ψ, ξ〉H ≥ 1− |w|‖ξ‖H ≥ 1− |µ|−1|w|

Obviously, the last inequality gives a contradiction if |w| < |µ| in which case therefore

ker((z + w)−A∗) ∩ ker(z −A∗)⊥ = {0}

But this implies

m = dim(ker((z + w)−A∗)) ≤ dim(ker(z −A∗)) = n.

Indeed, assume w.l.o.g. that m is finite. Denoting by P : ker((z + w) − A∗) → ker(z −
A∗) the orthogonal projection onto ker(z − A∗), restricted to ker((z + w) − A∗), the
rank theorem implies m = dim ker(P ) + dim ran(P ). By the above equation, however,
dim ker(P ) = {0}, because ker(P ) = ker((z + w)−A∗) ∩ ker(z −A∗)⊥ = {0}. But then
ran(P ) ⊂ ker(z −A∗) contains m linearly independent vectors so that m ≤ n.

Now, if we switch the roles of z and z + w and assume |w| < |µ|
2 , we also conclude

that dim(ker((z + w) − A∗)) ≥ dim(ker(z − A∗)). Indeed, switching the roles of z and
z + w implies as above

0 = 〈(z −A∗)ψ, ξ〉H ≥ 1− |µ+ Imw|−1|w| ≥ 1− 2|µ|−1|w|
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which is a contradiction if |w| < |µ|
2 . Thus dim(ker((z + w)− A∗)) ≥ dim(ker(z − A∗))

and hence dim(ker((z + w)−A∗)) = dim(ker(z −A∗)) for |w| ≤ |µ|2 .
ii) The bound (2.3) implies that (z−A) is injective for any z ∈ C\R and the inverse

(z −A)−1 : ran(z −A)→ D(A) is defined on all of H if and only if

dim(ker(z −A∗)) = 0 = dim ran(z −A)⊥.

In the latter case, z ∈ ρ(A) with ‖Rz(A)‖op ≤ |Im z|−1, by (2.3). By part i), we know
that dim(ker(z − A∗)) is locally constant around z ∈ C with Im z 6= 0. This implies
that the upper and lower half planes are both either entirely contained in ρ(A) (if e.g.
dim(ker(i− A∗)) = 0 for the upper half plane and dim(ker(−i− A∗)) = 0 for the lower
half plane) or they are contained in σ(A). Since σ(A) is closed, it can therefore either
be empty, equal to the closed upper half plane, to the closed lower half plane, to the
complex plane or a subset of the real line.

iii) Suppose A = A∗ and ker(i−A) 6= {0}, that is dim(ker(z −A∗)) 6= 0 for z = −i.
Then, there exists 0 6= ψ ∈ D(A) s.t.

i〈ψ,ψ〉H = 〈ψ,Aψ〉H = 〈Aψ,ψ〉H = −i〈ψ,ψ〉H

This implies ψ = 0, a contradiction. Arguing in the same way for ker(i+A), we conlude
from i), ii) and A = A∗ that σ(A) ⊂ R.

Conversely, if σ(A) ⊂ R, i) and ii) imply that ran(±i − A) = H. Let ψ ∈ D(A∗)
and choose ξ ∈ D(A) s.t. (i − A∗)ψ = (i − A)ξ. Since ξ ∈ D(A) ⊂ D(A∗), we have
(ψ − ξ) ∈ D(A∗) s.t.

(i−A∗)(ψ − ξ) = 0

This means that (ψ − ξ) ∈ ker(i−A∗) = ran(−i−A)⊥ = {0}, i.e. ξ = ψ ∈ D(A).

Corollary 2.1. Let A : D(A) → H be self-adjoint and s.t. 〈ϕ,Aϕ〉H ≥ 0 for all ϕ ∈
D(A). Then σ(A) ⊂ [0,∞).

Proof. For x ∈ (−∞, 0), the positivity implies that

‖(x−A)ϕ‖2H = ‖Aϕ‖2H − 2x〈ϕ,Aϕ〉H + x2‖ϕ‖2H ≥ x2‖ϕ‖2H

for all ϕ ∈ D(A). Arguing as in Theorem 2.3, we deduce that dim(ker((z − A∗)) is
constant for all z ∈ C\ [0,∞). Since A is self-adjoint, we conclude dim(ker((z−A∗)) = 0
for all z ∈ C \ [0,∞) such that σ(A) ⊂ [0,∞).

Corollary 2.2. Let A : D(A)→ H be symmetric. Then, the following is equivalent:

i) A is essentially self-adjoint.

ii) ker(A∗ ± i) = {0}.

iii) ran(A± i) is dense.
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Proof. We apply Theorem 2.3 and use that ran(A ± i) = ran(A± i). To prove this
last fact, recall that ϕ ∈ D(A) if and only if there exists a sequence (ϕn)n∈N such
that ϕn ∈ D(A) for all n ∈ N, limn→∞ ϕn = ϕ and limn→∞Aϕn exists. In particular, if
ψ ∈ ran(A±i), then ψ = (A±i)ϕ for some ϕ ∈ D(A) so that ψ ∈ ran(A± i). Conversely,
if ψ ∈ ran(A± i), we know that ψ = limn→∞(A±i)ϕn for suitable ϕn ∈ D(A). By (2.3),
(ϕn)n∈N converges to some ϕ ∈ H and thus ϕ ∈ D(A) so that ψ ∈ ran(A± i).

2.3 Examples of Self-Adjoint Operators and Self-Adjointness Criteria

In this section, we give several basic examples of self-adjoint operators that play an
important role in quantum mechanics.

Proposition 2.1 (Multiplication Operators). Let (Ω,A, µ) be a measure space and let
f : Ω → R be a real-valued, measurable function which is finite for a.e. x ∈ Ω. Define
Af : D(Af ) → L2(Ω,A, µ) as the multiplication operator Af (ϕ) = fϕ on the domain
D(Af ) = {ψ ∈ L2(Ω,A, µ) : fψ ∈ L2(Ω,A, µ)}. Then Af is self-adjoint.

Proof. Let ψ ∈ L2(Ω,A, µ). Using the Dominated Convergence Theorem, we see that
the sequence (ψχ{|f |≤n})n∈N with ψχ{|f |≤n} ∈ D(Af ) for all n ∈ N, satisfies

lim
n→∞

‖ψ − ψχ{|f |≤n}‖2 = 0

Hence, D(Af ) ⊂ L2(Ω,A, µ) is dense. Since f is real-valued, it is clear that Af is
symmetric. Af is also closed, since ϕn → ϕ ∈ L2(Ω,A, µ) and Af (ϕn)→ ψ ∈ L2(Ω,A, µ)
as n → ∞ imply ψ(x) = f(x)ϕ(x) for a.e. x ∈ Ω by choosing suitable pointwise a.e.
convergent subsequences. In particular, ϕ ∈ D(Af ) and ψ = Af (ϕ) = fϕ. Finally,
(f + i)−1 : L2(Ω,A, µ)→ D(Af ) and (f − i)−1 : L2(Ω,A, µ)→ D(Af ), defined pointwise
a.e. in Ω as multiplication operators, are well-defined and bounded which follows from

‖(f + i)−1‖∞ ≤ 1, ‖(f − i)−1‖∞ ≤ 1

Thus, {±i} ∈ ρ(Af ) s.t. σ(A) ⊂ R showing that Af is self-adjoint, by Theorem 2.3.

Example 2.15. The Laplace operator ∆ : H2(Rd) → L2(Rd) is self-adjoint. Denoting
by F : L2(Rd)→ L2(Rd) the L2(Rd)-Fourier transform, that is

(F(f))(p) = f̂(p) =

∫
Rd
dx e−2πip·xf(x), ∀ p ∈ Rd,

the Laplacian is in fact unitarily equivalent to the multiplication operator F∆F−1 :
F(H2(Rd))→ L2(Rd) defined by

(F∆F−1ψ̂)(p) = −4π2|p|2ψ̂(p), for a.e. p ∈ Rd

Moreover, ∆ is essentially self-adjoint on C∞c (Rd). To see this, let ϕ ∈ D
(
∆|C∞c

)
. By

definition of the closure, this implies that there exists a sequence (ϕn)n∈N in C∞c (Rd)
and ψ ∈ L2(Rd) such that

lim
n→∞

‖ϕ− ϕn‖2 = lim
n→∞

‖ψ −∆ϕn‖2 = 0
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We conclude from the Fourier characterization of H2(Rd) that (ϕn)n∈N is a Cauchy
sequence in H2(Rd). By the completeness of H2(Rd), this implies that ϕ ∈ H2(Rd)
and ψ = ∆ϕ, i.e. ∆|C∞c ⊂ ∆. Since C∞c (Rd) ⊂ H2(Rd) is dense, it is also clear that

∆ ⊂ ∆|C∞c , so that altogether ∆|C∞c = ∆.

Notice that in the last example we have used that self-adjointness is preserved under
unitary transformations: if A : D(A) → H is self-adjoint on the Hilbert space H and if
U : H → H̃ is a unitary map to the Hilbert space H̃, then UAU−1 : U(D(A)) → H̃ is
also self-adjoint. In fact, the spectrum σ(A) of a linear operator A is invariant under
unitary conjugation, because Rz(UAU

−1) = URz(A)U−1 for all z ∈ ρ(A).

Example 2.16. Consider the space L2([0, 1]d) for which {x 7→ e2πipx : p ∈ Zd} is a
complete orthonormal basis. The discrete Fourier transform Fd : L2([0, 1]d) → `2(Zd)
is a unitary map and we can define the Laplacian with periodic boundary conditions
∆ : D(∆)→ L2([0, 1]d) as the Fourier multiplier

(Fd ∆F−1
d f̂)p = −4π2|p|2f̂p, ∀p ∈ Zd,

with domain D(∆) = F−1
d

{
f̂ = (f̂p)p∈Zd ∈ `2(Zd) :

∑
p∈Zd |p|4|f̂p|2 < ∞

}
. We can

identify the operator with the Laplacian ∆ on L2(Td), where Td = Rd/Zd denotes the
d-dimensional unit torus.

In quantum mechanics, a special role is given to the Hamilton operator, or simply
Hamiltonian, which is a self-adjoint operator describing the energy of the system. For
many systems, it is essentially given by the sum of an operator describing the kinetic
energy of the particles and an operator describing the interaction energies among the
particles. The kinetic energy is described by (a self-adjoint realization of) the Laplace
operator while the interaction energy is described by a multiplication operator. To
ensure the sum of such operators to be self-adjoint, we present two basic results: the
Kato-Rellich Theorem and Kato’s inequality.

The Kato-Rellich Theorem shows that self-adjointness is stable under suitable per-
turbations, as defined as follows. Let A : D(A) → H and B : D(B) → H be densely
defined linear operators on some Hilbert space H. We say that B is A-bounded if

i) D(A) ⊂ D(B)

ii) ∃ a, b ∈ R s.t. ∀ ϕ ∈ D(A) : ‖Bϕ‖H ≤ a‖Aϕ‖H + b‖ϕ‖H
(2.5)

Notice that the assumption (2.5) i) is quite reasonable if B is supposed to be a pertur-
bation of A: if Aψ makes sense, Bψ should certainly make sense as well.

The infimum over all a ∈ R such that (2.5) ii) holds true is called the relative
bound of B with respect to A. If the relative bound is equal to zero, we say that B is
infinitesimally small with respect to A.

Theorem 2.4 (Kato-Rellich Theorem). Assume that A : D(A)→ H is self-adjoint, that
B : D(B)→ H is symmetric and that B is A-bounded with relative bound a0 < 1. Then
A+B is self-adjoint on D(A) and essentially self-adjoint on any core of A.
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Proof. A + B : D(A) → H is well-defined (D(A) ⊂ D(B)), it is clearly symmetric
and it is closed. For this last fact, note that if (ϕn)n∈N converges to ϕ ∈ H and if
((A+B)ϕn)n∈N converges, then also (Aϕn)n∈N converges, because

‖(A+B)ψ‖ ≥ ‖Aψ‖ − ‖Bψ‖ ≥ (1− a0)‖Aψ‖ − b‖ψ‖

for all ψ ∈ D(A). Since A is closed, this implies ϕ ∈ D(A) and limn→∞Aϕn = Aϕ.
Moreover, since B is A-bounded, we also find that limn→∞Bϕn = Bϕ. Combining this,
we conclude that ϕ ∈ D(A) and limn→∞(A+B)ϕn = (A+B)ϕ, that is, A+B is closed.

Now we can apply Theorem 2.3. To show that A+B is self-adjoint, it is enough to
prove that ran(A + B + iµ) = H for µ ∈ R with |µ| sufficiently large. To this end, the
perturbative idea is to rewrite

A+B + iµ =
(
1 +B(A+ iµ)−1

)
(A+ iµ) (2.6)

and to show that C = B(A+ iµ)−1 has operator norm less than one. As a consequence,
1 + C : H → H is invertible: its inverse can be computed using the Neumann series

(1 + C)−1 =
∞∑
k=0

(−1)kCk

and, since iµ ∈ ρ(A), we conclude that ran(A+B + iµ) = H.
So, let us prove that C has operator norm less than one if |µ| is sufficiently large.

First of all, we have for all ϕ ∈ D(A) that

‖(A+ iµ)ϕ‖2H = ‖Aϕ‖2H + µ2‖ϕ‖2H ≥ ‖Aϕ‖2H

This implies that ‖A(A + iµ)−1‖L(H) ≤ 1. From Theorem 2.3, we also know that
‖(A+ iµ)−1‖L(H) ≤ |µ|−1. Hence, from the A-boundedness of B we find for some a < 1

‖B(A+ iµ)−1ψ‖H ≤ a‖A(A+ iµ)−1ψ‖H + b‖(A+ iµ)−1ψ‖H ≤
(
a+ |µ|−1b)‖ψ‖H

for all ψ ∈ H. If we choose |µ| sufficiently large, we obtain that ‖C‖L(H) < 1.
The statement about the operator core can be proved in the same way. In this case,

we apply Corollary 2.2 (with ±i replaced by iµ for µ ∈ R and |µ| large enough). The
essential self-adjointness of (A+B)|D : D → H then follows if ran((A+ iµ)(1 +C∗)|D) is
dense inH which is the case if ran((A+iµ)|D) is dense, by invertibility of 1+C∗ : H → H.
But A|D : D → H is essentially self-adjoint (by assumption that D is a core for A) so that
applying the corollary to A implies that (A+B)|D : D → H is essentially self-adjoint.

Proposition 2.2. Let V ∈ L2(R3)+L∞(R3) be real-valued. Then −∆+V is essentially
self-adjoint on C∞c (R3) and self-adjoint on H2(R3).

Proof. We apply Theorem 2.4 and view the potential V as a perturbation of −∆. Write
V = V2 + V∞, where V2 ∈ L2(R3), V∞ ∈ L∞(R3), then for ϕ ∈ C∞c (R3), we bound

‖V ϕ‖2 ≤ ‖V2‖2‖ϕ‖∞ + ‖V∞‖∞‖ϕ‖2.
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Applying the inverse Fourier transform and Cauchy-Schwarz, we estimate

‖ϕ‖∞ ≤ ‖F−1(ϕ)‖1 ≤
∫
|p|≥ε−2

dp
1

|p|2
|p|2F−1(ϕ)(p) + Cε‖ϕ‖2

≤
(∫
|p|≥ε−2

dp
1

|p|4

)1/2(∫
R3

dp |p|4
∣∣F−1(ϕ)(p)

∣∣2)1/2

≤ Cε‖ −∆ϕ‖2 + Cε‖ϕ‖2

for some universal constant C > 0 and for all ε > 0. By density of C∞c (R3), the previous
inequality is also true on H2(R3) and the proposition follows from Theorem 2.4. The
statement about essential self-adjointness follows from the fact that −∆ is essentially
self-adjoint on C∞c (R3).

As a corollary, we conclude that −∆ − e2

|x| is essentially self-adjoint on C∞c (R3).

This Schrödinger operator describes (after a change of variables to center of mass and
relative coordinates) the hydrogen atom, consisting of one proton and one electron (−e is
interpreted as the charge of the electron). That the potential x 7→ |x|−1 is infinitesimally
small with respect to −∆ can alternatively be seen through Hardy’s inequality.

Lemma 2.3 (Hardy’s inequality). For all ϕ ∈ H1(Rd) and d ≥ 3, we have that∥∥|x|−1ϕ
∥∥

2
≤ 2

d− 2
‖∇ϕ‖2.

Proof. We follow [47, Prop. 10.3]. Denote by p̂ = i∇ and by x̂ multiplication by x in
Rd. It is an elementary computation to check the commutator identity

d|x|−2 = −i
[
|x|−1p̂ |x|−1, x̂

]
=:

d∑
j=1

[
|x|−1∂j |x|−1, xj

]
,

in C∞c (R3). Indeed, we obtain from ∂j |x|−1 = −|x|−3xj + |x|−1∂j that[
|x|−1∂j |x|−1, xj

]
= |x|−1

(
− |x|−3xj + |x|−1∂j

)
xj − xj |x|−1

(
− |x|−3xj + |x|−1∂j

)
= |x|−2.

This shows

d‖|x|−1ϕ‖22 = d〈ϕ, |x|−2ϕ〉2 =
〈
ϕ,−i

[
|x|−1p̂ |x|−1, x̂

]
ϕ
〉

2

=2 Im〈|x|−1p̂ |x|−1ϕ, x̂ϕ〉2
=2 Im〈 p̂ ϕ, x̂|x|−2ϕ〉2 + 2〈ϕ, |x|−2ϕ〉2,

so that for all ϕ ∈ C∞c (R3), we have that

(d− 2)‖|x|−1ϕ‖22 = −2 Im〈 p̂ ϕ, x̂ |x|−2ϕ〉2.

The claim now follows by applying Cauchy-Schwarz on the r.h.s. of the last equation
and by using the density of C∞c (Rd) in H1(Rd).
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Problem 2.6. Use Hardy’s inequality to prove that x 7→ |x|−1 is infinitesimally small
with respect to −∆ in R3.

Proposition 2.3. Let v ∈ L2(R3) + L∞(R3). Then the operator

HN =

N∑
i=1

(−∆xi) +
∑

1≤i<j≤N
v(xi − xj)

is essentially self-adjoint on C∞c (R3N ) and self-adjoint on H2(R3N ).

Remark. The Hamiltonian HN defined in Theorem 2.3 describes a system of N particles
that move in R3 and interact through the pair potential v ∈ L2(R3)+L∞(R3). By (−∆xi),
we denote the Laplacian w.r.t. the i-th coordinate xi ∈ R3, i = 1, . . . , N . It describes the
kinetic energy of the i-th particle.

Proof of Proposition 2.3. As before, we apply Theorem 2.4 by viewing the interaction
operator as a perturbation of the Laplacian. Choose w.l.o.g. i = 1, j = 2 and let
v = v1 + v2 where v1 ∈ L2(R3), v2 ∈ L∞(R3). For any ϕ ∈ H2(R3N ), we certainly have2

‖v2(x1 − x2)ϕ‖2 ≤ ‖v2‖∞‖ϕ‖2

Hence, let us focus on bounding v1 ∈ L2(R3) in terms of the Laplacian. Denoting by
XN−2 = (x3, x4, . . . , xN ), we proceed as above and use Fubini so that

‖v1(x1 − x2)ϕ‖22 ≤
∫
R3(N−1)

‖v1(.− x2)‖L2(R3)‖ϕ(·, x2, XN−2)‖2L∞(R3) dx2dXN−2

≤ ε
∫
R3N

|(−∆x1)ϕ(x1, x2, XN−2)|2 dx1dx2dXN−2

+ Cε

∫
R3N

|ϕ(x1, x2, XN−2)|2 dx1dx2dXN−2

≤ ε
∫
R3N

∣∣∣ N∑
i=1

(−∆xi)ϕ(x)
∣∣∣2 dx+ Cε‖ϕ‖22

Since ε > 0 can be chosen arbitrarily small, the claim follows from Theorem 2.4.

Hamiltonians as in Proposition 2.3 describe particles that move in all of R3 and
interact via some pair interaction. When we study the energy of a system of bosons,
we consider instead Hamiltonians which describe particles that are trapped in a finite
region in R3. This can be modelled by adding an external potential Vext ∈ L∞loc(R3) with
Vext(x) → ∞ as |x| → ∞. The growth of Vext at infinity prevents that particles escape
to infinity so that they are effectively trapped in a finite region in R3. To prove the
self-adjointness of Hamilton operators with growing potentials, we use Kato’s inequality

2For notational simplicity, we denote by v(xi − xj) the multiplication operator which is defined a.e.
in R3N as the multiplication by v(xi − xj) at x = (x1, . . . , xi, . . . , xj , . . . , xN ) ∈ R3N .
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which is a suitable bound interpreted in distributional sense. Before discussing this
result and its consequences, let us recall a few basics on distributions. For concreteness,
we describe a hands-on approach as discussed for example in [66, 40].

A large part of analysis is devoted to solving partial differential equations. Given a
PDE, one may ask for example if it admits a regular solution, but in general one can
not simply integrate a PDE. It is usually not even obvious if a solution exists and what
its optimal regularity might be. The question then arises where, i.e. in what kind of
function space, we should start to look for a solution - and with minimal assumptions,
we might want to look in a space of rather rough objects whose regularity properties
can then be analyzed once a solution is found. Distributions are a certain class of rough
objects and they generalize the concept of a classical function.

Let Ω be some open subset in Rd, then we denote by D(Ω) = D = C∞c (Ω) the set
of test functions (unless stated explicitly, the choice of base space Ω will be clear from
context). In D, we define the following notion of convergence: a sequence (ϕn)n∈N, such
that ϕn ∈ D for all n ∈ N, converges to ϕ ∈ D in D if and only

i) ∃ K ⊂ Ω compact such that supp(ϕn) ⊂ K ∀ n ∈ N,
ii) lim

n→∞
sup
x∈Ω
|∂α(ϕn − ϕ)| = lim

n→∞
‖∂α(ϕn − ϕ)‖∞ = 0 ∀α ∈ Nd0.

A distribution T is a linear functional T : D → C which is sequentially continuous in the
sense that limn→∞ T (ϕn) = T (ϕ) whenever limn→∞ ϕn = ϕ in D. It is straightforward
to check that the set of distributions with the usual addition and scalar multiplication
forms a vector space. This space is denoted in the sequel by3 D′(Ω). We say that a
sequence of distributions (Tn)n∈N, such that Tn ∈ D′ for all n ∈ N, converges weakly to
T ∈ D′ if and only if limn→∞ Tn(ϕ) = T (ϕ) for every ϕ ∈ D.

Example 2.17. Let f ∈ Lploc(Ω), then f determines the distribution

Tf (ϕ) =

∫
Ω
dx f(x)ϕ(x).

Recall that functions are uniquely determined by the associated distributions: if Tf (ϕ) =
Tg(ϕ) for all ϕ ∈ D, then f = g almost surely by standard measure theoretic arguments.

Example 2.18. Let µ be a Radon measure on Ω, then µ determines the distribution

Tµ(ϕ) =

∫
Ω
µ(dx)ϕ(x).

The previous example shows that distributions naturally generalize the concept of a
function: although some object may not correspond to a classical function, it may still
have a natural action on sufficiently nice test functions, like a Radon measure.

3This notation suggests that D′ is the topological dual space of D equipped with a suitable topology
that is consistent with the notion of sequential continuity defined above. This can in fact be made
precise; see below for a short discussion on this.
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A prominent example from physics, which models e.g. point masses or point charges,
is the Dirac δ distribution δx : D → C centered at x ∈ Ω, which is defined by

δx(ϕ) = ϕ(x).

Informally, one may write δx(ϕ) =
∫

Ω dx δx(y)ϕ(y) and think of δx to correspond to a
function which is infinite at x ∈ Ω and zero else. Although mathematically, a δx function
in this sense does not exist, the intuition it provides is nevertheless quite useful.

Problem 2.7. Show that there exists no function f ∈ L1
loc(Ω) such that Tf = δx.

Generalizing the concept of a function by duality (that is, f vs. Tf ), one can also
attempt to generalize basic properties of functions by duality, like e.g. differentiation. If
T : D → C is a distribution, its derivative ∂αT : D → C, for α ∈ Nd0, is the distribution
(exercise), defined by

∂αT (ϕ) = (−1)|α|T (∂αϕ) (∂α = ∂α1
1 . . . ∂αdd ).

This is consistent with the usual integration by parts formula for functions in D. Defined
in this weak sense, every distribution is smooth and has derivatives of all orders.

Example 2.19. Let h(x) = χ|[0,∞) denote the Heaviside function in R. Then

∂xTh(ϕ) = −
∫ ∞

0
∂xϕ(x)dx = ϕ(0) = δ(ϕ),

that is ∂xTh = δ = δ0 (compare this with the interpretation of δ as an infinite peak
centered at zero, mentioned above).

Problem 2.8. Suppose that f ∈ Ck(Ω). Show that ∂αTf = T∂αf for every α ∈ Nd0 with
|α| ≤ k so that in case of a regular function its distributional derivatives coincide with
its classical derivatives.

Using duality arguments as above, there are many further properties which can be
generalized naturally from classical to generalized functions, e.g. the concept of the con-
volution of a distribution with a test function ψ ∈ D (see [66, 40] for further properties).
For simplicity of notation, let us consider Ω = Rd for the remainder of this discussion.
We can interpret (T ∗ ψ) of T ∈ D′ with ψ ∈ D in two ways: setting

ψy(x) = ψ(x− y) and ψR(x) = ψ(−x) ∀ ψ ∈ C∞(Rd),

we can define (T ∗ψ) ∈ C∞(Rd) on the one hand as the smooth function x 7→ T ((ψR)x)
and, on the other hand, we can interpret (T ∗ ψ) ∈ D′ as the distribution defined by
(T ∗ψ)(ϕ) = T (ψR ∗ϕ). Note that we assume ψ ∈ D for both objects to be well-defined.
That the two notions coincide, in the sense of distributions, follows from the next lemma.
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Lemma 2.4. Let T ∈ D′ and ϕ ∈ D. Then, Rd 3 x 7→ T (ϕx) ∈ C∞(Rd) with

∂αxT (ϕx) = (−1)|α|T
(
(∂αϕ)x

)
= (∂αT )(ϕx).

Moreover, if ψ ∈ D we have that∫
Rd
dxT (ϕx)ψ(x) = T (ψ ∗ ϕ). (2.7)

Proof. Let us prove that x 7→ T (ϕx) ∈ C1(Rd); the smoothness follows with analogous
arguments and induction (exercise). Let us start with continuity. Suppose that hn → 0
as n→∞. Since ϕ ∈ D, we have for every α ∈ Nd0 and ε > 0 that there exists a constant
Cα > 0 such that for n ≥ Nε so that |hn| ≤ ε, we have that

sup
y∈Rd

|∂αϕx(y)− ∂αϕx+hn(y)| ≤ Cαε, ∀ n ≥ Nε.

Combining this with the fact that for a suitable compact set K ⊂ Rd, we have

supp(ϕx) ∪
⋃
n∈N

supp(ϕx+hn) ⊂ K,

we conclude that limn→∞ ϕx+hn = ϕx in D. Since T ∈ D′, we get that

lim
n→∞

T (ϕx+hn) = T (ϕx)

and since x ∈ Rd and (hn)n∈Nwere arbitrary, this shows that x 7→ T (ϕx) ∈ C(Rd).
To prove continuous differentiability, we argue very similarly, observing in this case

(with analogous notation as above) that we have

sup
y∈Rd

∣∣∣∂α(|hn|−1
(
ϕx+hn(y)− ϕx(y)

)
− (−1)(∇ϕ)x(y) · |hn|−1hn

)∣∣∣ ≤ Cαε, ∀ n ≥ Nε.

Arguing as above, this implies that

lim
h→0
|h|−1

∣∣∣∣T (ϕx+h)− T (ϕx)−
d∑
i=1

T (−(∂iϕ)x)hi

∣∣∣∣ = 0,

i.e. x 7→ T (ϕx) is differentiable with derivatives in C(Rd), given by

∂xiT (ϕx) = (∂iT )(ϕx).

In order to prove (2.7), we use an approximation argument. By the first part and
the fact that supp(ϕ) ⊂ Rd is compact, the integrand x 7→ T (ϕx)ψ(x) on the l.h.s. in
(2.7) is a C∞c (Rd) function. Hence, we can approximate it by a Riemann sum∫

Rd
dxT (ϕx)ψ(x) = lim

N→∞
∆N

N∑
j=1

T (ϕxj )ψ(xj) = lim
N→∞

T

(
∆N

N∑
j=1

ϕ(.− xj)ψ(xj)

)
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for suitable lattice points (xj)
N
j=1 with mesh size ∆N → 0 as N →∞. Similarly, we have

the uniform approximations

lim
N→∞

sup
x∈Rd

∣∣∣∣∂α( ∆N

N∑
j=1

ϕ(x− xj)ψ(xj)− (ψ ∗ ϕ)(x)

)∣∣∣∣ = 0

for every multi-index α ∈ Nd0. This implies that ψN = ∆N
∑N

j=1 ϕ(·−xj)ψ(xj) converges
to (ψ∗ϕ) in D, arguing similarly as before. Combining this with T ∈ D′, we get (2.7).

Problem 2.9. Extend (2.7) to ψ ∈ L1(Rd), assuming supp(ψ) ⊂ Rd to be compact.

Proposition 2.4 (Fundamental Theorem of Calculus for Distributions.). Assume that
T ∈ D′(Rd) = D′ and let ϕ ∈ D. Then we have that

T (ϕy)− T (ϕ) =

∫ 1

0
dt

d∑
j=1

yj(∂jT )(ϕty) =

∫ 1

0
dt y · (∇T )(ϕty). (2.8)

Proof. Let us denote the function defined through the r.h.s. in (2.8) by y 7→ G(y). By
Lemma 2.4, the map x 7→ (∇T )(ϕx) ∈ C∞(Rd) with ∂xj (∇T )(ϕx) = −(∇T )((∂jϕ)x).
Using the smoothness and the fact that we integrate over a compact interval, we compute
the derivative of G by interchanging integration with differentiation and obtain that

∂iG(y) = −
∫ 1

0
dt t(∇T )((∂iϕ)ty) · y +

∫ 1

0
dt (∂iT )(ϕty)

= −
∫ 1

0
dt

d∑
j=1

tyj(∂iT )((∂jϕ)ty) +

∫ 1

0
dt (∂iT )(ϕty)

=

∫ 1

0
dt t ∂t

(
(∂iT )(ϕty)

)
+

∫ 1

0
dt (∂iT )(ϕty) = (∂iT )(ϕy),

where the second to last step follows with similar arguments as above (exercise) and the
last step follows from integration by parts. Finally, the function

y 7→ G̃(y) = T (ϕy)− T (ϕ) ∈ C∞(Rd)

has the same derivatives as G and it follows with G(0) = G̃(0) = 0 that G = G̃.

Problem 2.10. Assume that f ∈W 1,1
loc (Rd). Prove that for every y ∈ Rd, we have

f(x+ y) = f(x) +

∫ 1

0
dt y · ∇f(x+ ty)

for almost every x ∈ Rd.

Recall from Problem 2.8 that the distributional derivatives of smooth functions cor-
respond to their classical derivatives. We can now also show that if a distribution has
continuous derivatives, it corresponds to a classical, continuously differentiable function.
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Lemma 2.5. Suppose that T ∈ D′ is such that gi = ∂iT ∈ D′ can be identified with
gi ∈ C(Rd) (in the usual distributional sense). Then T ∈ C1(Rd) and its classical
derivatives ∂iT are equal to ∂iT = gi.

Proof. Pick ϕ ∈ D. By Proposition 2.4 and Fubini, we know that

T (ϕy)− T (ϕ) =

∫ 1

0
dt

d∑
j=1

yj(∂jT )(ϕty)

=

∫ 1

0
dt

d∑
j=1

yj

(∫
Rd
dx gj(x)ϕ(x− ty)

)

=

∫
Rd
dx

(∫ 1

0
dt

d∑
j=1

yjgj(x+ ty)

)
ϕ(x).

Now, pick some ψ ∈ D with
∫
Rd dxψ(x) = 1, then the previous identity implies that

T (ϕ) =

∫
Rd
dy ψ(y)T (ϕy)−

∫
Rd
dyψ(y)

(∫
Rd
dx

(∫ 1

0
dt

d∑
j=1

yjgj(x+ ty)

)
ϕ(x)

)

= T (ψ ∗ ϕ)−
∫
Rd
dx

(∫
Rd
dy

∫ 1

0
dt ψ(y)

d∑
j=1

yjgj(x+ ty)

)
ϕ(x)

=

∫
Rd
dx

(
T (ψx)−

d∑
j=1

∫
Rd
dy ψ(y)

∫ 1

0
dt yjgj(x+ ty)

)
ϕ(x),

representing T as an explicit function denoted in the sequel by f ∈ C(Rd).
Now, recalling that ∂xiT (ψx) = (∂iT )(ψx) in classical sense and

∂jgi = (∂i∂jT ) = ∂igj

in distributional sense, we get

∂xi

d∑
j=1

∫ 1

0
dt yjgj(x+ ty) =

d∑
j=1

∫ 1

0
dt yj(∂igj)(x+ ty)

=

∫ 1

0
dt y · (∇gi)(x+ ty) = gi(x+ y)− gi(x)

and consequently (exercise) with ∂iT = gi that in the sense of distributions, we have

∂xi

(
T (ψx)−

d∑
j=1

∫
Rd
dy ψ(y)

∫ 1

0
dt yjgj(x+ ty)

)
= gi(x).
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Finally, using the local integrability of f and the weak derivatives gi, we may apply
Problem 2.10 that shows for every y ∈ Rd that

f(x+ y) = f(x) +

d∑
j=1

∫ 1

0
yjgj(x+ ty) = f(x) +

d∑
j=1

yjgj(x) + o(|y|)

almost surely in x ∈ Rd and hence, by continuity, for all x ∈ Rd. Here, we used in the
last step the continuity of the gi ∈ C(Rd). By definition of differentiability, this shows
that f ∈ C1(Rd) with (classical) partial derivatives ∂if = gi.

Problem 2.11. Let T ∈ D′ with ∂iT = 0 for all i = 1, . . . , N . Prove that

T (ϕ) = C

∫
Rd
dxϕ(x)

for some C ∈ R and for all ϕ ∈ D.

Finally, let us introduce the space of tempered distributions and their distributional
Fourier transforms. As before, we might in a first attempt define the Fourier transform
of T ∈ D′ by duality, i.e. T̂ (ϕ) = T (ϕ̂). However, here we encounter the problem that ϕ̂
need not be an element in D so that T̂ is ill-defined in D. To resolve this problem, we
may enlarge the space of test functions (i.e. we consider a smaller, more regular set of
distributions) to the well-known space (see e.g. [55]) of rapidly decaying functions S(Rd)
- the Schwartz functions - which is defined as the space

S(Rd) = S =
{
ϕ ∈ C∞(Rd) : |ϕ|α,β = sup

x∈Rd
|xα∂βϕ(x)| <∞ ∀ α, β ∈ Nd0

}
.

It is well-known from basic Fourier theory that ϕ̂ ∈ S whenever ϕ ∈ S, that the Fourier
inversion formula holds in S and that ‖ϕ‖2 = ‖ϕ̂‖2 for all ϕ ∈ S. We say that a sequence
(ϕn)n∈N, such that ϕn ∈ S for all n ∈ N, converges to ϕ ∈ S in S if and only if

lim
n→∞

|ϕ− ϕn|α,β = 0, ∀ α, β ∈ Nd0.

We denote by S ′(Rd) = S ′ the linear space of linear, sequentially continuous functionals
T : S → C so that limn→∞ T (ϕn) = T (ϕ) whenever limn→∞ ϕn = ϕ in S. An element
in S ′ is called a tempered distribution.

Problem 2.12. Show that D ⊂ S, that convergence in D implies convergence in S and
that S ′ ⊂ D′. Show that every ϕ ∈ S can be approximated (in S) by a sequence in D,
up to errors that vanish asymptotically. Find an example of a distribution T ∈ D′ which
does not admit a continuous extension to S, that is, a distribution which is not tempered.

In contrast to distributions in D′, a tempered distribution has a well-defined Fourier
transform, defined by duality. That is, we define T̂ ∈ S ′ by

T̂ (ϕ) := T (ϕ̂) ∀ ϕ ∈ S.
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Problem 2.13. Prove that ϕn → ϕ in S implies limn→∞ ‖ϕ− ϕn‖Lp(Rd) = 0, for every

p ≥ 2, and that ϕ̂n → ϕ̂ in S. Explain why T̂ ∈ S ′ if T ∈ S ′.

In analogy to classical Fourier properties, we have the following.

Problem 2.14. Let T ∈ S ′ and α ∈ Nd0. Prove that (∂αT ) ∈ S ′ and that

(̂∂αT ) = T ( ̂2πixα(·)) = (2πixα)T̂ .

Let us now conclude the discussion of distributions by stating some further interesting
theorems and commenting, through a sequence of problems, on the definition of S and
its dual S ′ as locally convex spaces (see [66, 40] and [55, 59] for further details).

Theorem 2.5. Let T ∈ S ′. Then, there exists some polynomially bounded, continuous
function g ∈ C(Rd) and some multi-index α ∈ Nd0 such that

T (ϕ) =

∫
Rd
dx (−1)|α|g(x)(∂αϕ)(x),

that is, every tempered distribution corresponds to some derivative of a mildly growing
continuous function.

For the proof of the previous theorem, see [55, Chapter 5]. The following theorem
illustrates that the theory of distributions turns out to be quite useful in order to find
solutions to partial differential equations.

Theorem 2.6. Every constant coefficient partial differential operator L =
∑
|α|≤m cα∂

α

on Rd admits a fundamental solution, that is, there exists T ∈ D′ such that L(T ) = δ.

Notice that given a fundamental solution, we have that

L(T ∗ ϕ) = (L(T )) ∗ ϕ = δ ∗ ϕ = ϕ.

We thus obtain a smooth solution of the PDE in distributional and hence in the classical
sense. The heuristic idea underlying the proof is to find the fundamental solution via

T =

∫
Rd
dp
e2πipx

P (p)
,

where P (p) =
∑
|α|≤m cα(2πip)α denotes the characteristic polynomial of L. Using some

tools from complex analysis, one can use the heuristics to construct the fundamental
solution T ∈ D′ rigorously. For the details, see e.g. [66, Chapter 3].

As indicated earlier, the space S ′ can be identified with the topological dual space
to S equipped with a suitable topology. We start with the following observation.

Problem 2.15. Show that |·|α,β : S(Rd)→ [0,∞) defines a seminorm, for all α, β ∈ Nd0.
Show that the family of seminorms (| · |α,β)α,β∈Nd0

separates points.
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Now, let τS denote the weakest topology such that the seminorms (| · |α,β)α,β∈Nd0
are

continuous and let us identify S = (S, τS) as the topological space with topology τS .

Problem 2.16. Show that an open neighborhood basis around 0 ∈ S is given by the sets

Nα1,β2,...,αn,βn,ε =
{
ϕ ∈ S : |ϕ|αi,βi < ε ∀ i = 1, . . . , n

}
for n ∈ N, αi, βi ∈ Nd0 ∀ i, ε > 0.

Show that Nα1,β2,...,αn,βn,ε is convex and that + : S×S → S, · : C×S → S are continuous.
Finally, prove that ϕn → ϕ in (S, τS) if and only if |ϕ−ϕn|α,β → 0, for every α, β ∈ Nd0.

Motivated by the previous problem, one calls S a locally convex topological vector
space. Since its topology is induced by a sequence of seminorms, we can also introduce
the concept of Cauchy sequences in S: (ϕn)n∈N is a Cauchy sequence if |ϕn−ϕm|α,β → 0
as n,m→∞, for every α, β ∈ Nd0.

Problem 2.17. Show that S is a metrizable space with a metric inducing the same
topology and yielding the same Cauchy sequences. Show that S is complete, i.e. every
Cauchy sequence has a limit in S.

A complete, metrizable locally convex topological vector space is called a Fréchet
space. Now set

S ′ =
{
T : S → C : T is linear and continuous

}
and denote by τS′ the usual weak-∗ topology induced by the maps ιϕ : S ′ → C, defined by
ιϕ(T ) = T (ϕ), for ϕ ∈ S. The space (S ′, τS′) is called the space of tempered distributions.

Problem 2.18. Prove that Tn → T in (S ′, τS′) if and only Tn(ϕ) → T (ϕ) for every
ϕ ∈ S. Prove that for every T ∈ S ′ there exists C > 0, n ∈ N and (αi, βi)

n
i=1 so that

|T (ϕ)| ≤ C
n∑
i=1

|ϕ|αi,βi ∀ ϕ ∈ S.

A thorough discussion on D(Ω) and its relation to D′(Ω) can be found in [59, Chapter
6] (see also [55, Chapter V]). Here, we just record the following basic facts and definitions.
Setting for compact K ⊂ Ω (with Ω ⊂ Rd open)

DK = {ϕ ∈ C∞(Ω) : supp(ϕ) ⊂ K},

we can equip DK with the topology τK generated by the semi-norms ‖∂α(·)‖∞ and it
turns out that DK becomes a Fréchet space. Now consider sets V ⊂ C∞c (Ω) which are
convex and balanced (|λ| = 1 and ϕ ∈ V implies λϕ ∈ V ) and which are such that
V ∩ DK ∈ τK for every compact K ⊂ Ω. Then, we say that a subset

U ⊂ D(Ω) = C∞c (Ω) =
⋃

K⊂Ω:Kcompact

DK

is open in D(Ω) if and only if it is of the form ϕ + V for some ϕ ∈ C∞c (Ω) and some
V ⊂ C∞c (Ω) as above. The collection τD of such open sets defines a topology with local
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base given by the sets V as above and (D(Ω), τD) defines a complete locally convex
topological vector space (which is, however, not metrizable). Moreover, τK is equal to
the subspace topology of τ restricted to DK , for every compact K ⊂ Ω, and convergence
in D(Ω) is equivalent to the convergence notion introduced earlier. D′(Ω) is defined by

D′(Ω) =
{
T : D(Ω)→ C : T is linear and continuous

}
and considered a topological space with the weak-∗ topology induced by the maps
D′(Ω) 3 T 7→ T (ϕ), for ϕ ∈ D(Ω). The elements in D′(Ω) are called distributions.

After this digression on the theory of distributions, let us explain Kato’s inequality.
We say that a distribution T ∈ D′(Ω) is non-negative if and only if T (ϕ) ≥ 0 for all
ϕ ∈ D with ϕ ≥ 0. Saying that T1 ≥ T2 for T1, T2 ∈ D′ means that T1 − T2 ≥ 0.

Theorem 2.7 (Kato inequality). Let u ∈ L1
loc(Rd) such that its distributional Laplacian

∆u is such that ∆u ∈ L1
loc(Rd). Let

(sgnu)(x) =

{
0 if u(x) = 0,

u(x)/|u(x)| if u(x) 6= 0

Then (sgnu)∆u ∈ L1
loc(Rd) is a distribution. If ∆|u| denotes the Laplacian of the distri-

bution |u| ∈ L1
loc(Rd), we have in distributional sense

∆|u| ≥ Re
[
(sgnu)∆u

]
(2.9)

Proof. The proof consists of two steps. In the first step, we verify (2.9) for smooth
functions u ∈ C∞(Rd). In the second step, we approximate a general u ∈ L1

loc(Rd) by
smooth functions to conclude (2.9) for the general case.

Assume first that u ∈ C∞(Rd). Define for ε > 0 the function uε ∈ C∞(Rd) pointwise
by uε(x) =

√
|u(x)|2 + ε2. If we differentiate u2

ε = |u|2 + ε2 at x ∈ Rd, we find

2uε(x)(∇uε)(x) = 2 Re
[
u(x)(∇u)(x)

]
This and |u| < |uε| imply |(∇uε)(x)| ≤ |(∇u)(x)|. Moreover, if we take the divergence
of the last equation, we find

uε(x)(∆uε)(x) + |(∇uε)(x)|2 = Re
[
u(x)(∆u)(x)

]
+ |(∇u)(x)|2

so that (first pointwise and therefore) in distributional sense

(∆uε) ≥ Re
[
(u/uε)∆u

]
=: Re

[
sgnε(u)∆u

]
Now, a basic application of the dominated convergence argument for ε→ 0 shows that

∆|u| ≥ Re
[

sgn(u)∆u
]

in D′, for every u ∈ C∞(Rd).
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Now let u ∈ L1
loc(Rd) as in the assumption and choose an approximate identity of

smooth functions (ϕn)n∈N in C∞c (Rd) so that ϕn = ndϕ(n.) for some fixed 0 ≤ ϕ ∈
C∞c (Rd) with

∫
Rd ϕ(x) dx = 1. Define un = u ∗ ϕn ∈ C∞(Rd). Then one verifies that

lim
n→∞

un = u, lim
n→∞

sgn(un)∆un = sgn(u)∆u

in L1
loc(Rd) and thus in D′, which concludes (2.9).

Proposition 2.5. Let V ∈ L2
loc(Rd) be such that V (x) ≥ 0 for a.e. x ∈ Rd. Then

−∆ + V : C∞c (Rd)→ L2(Rd) is essentially self-adjoint.

Proof. Recall from Theorem 2.2 that the closable symmetric operator−∆+V : C∞c (Rd)→
L2(Rd) and its closure have the same adjoint (−∆ + V )∗. Since moreover −∆ + V ≥ 0
(as an operator) implies that also its closure is non-negative as an operator, the claim
follows from Theorem 2.3 and the proof of its corollary if we show

dim(ker((−∆ + V + 1)∗)) = 0.

Indeed, this implies that (−∆ + V + 1)|C∞c = (−∆ + V + 1)∗. Hence, assume that

(−∆ + V + 1)∗u = 0 for u ∈ L2(Rd). Testing against elements from C∞c (Rd), we get

∆u = (V + 1)u ∈ L1
loc(Rd)

in distributional sense (it is here where we use V ∈ L2
loc(Rd)). Hence, Theorem 2.7 yields

∆|u| ≥ Re
[

sgn(u)∆u
]

= (V + 1)|u| ≥ 0.

But this implies u = 0 ∈ L2(Rd). In fact, if |u| ∈ D(∆) = H2(Rd), this would follow
directly from the fact that ∆ ≤ 0 as an operator, together with u ∈ L2(Rd). For a
general u ∈ L2(Rd), we define (|u|n)n∈N in H2(Rd) as |u|n = |u| ∗ ϕn with a sequence
(ϕn)n∈N as in the proof of Kato’s inequality. Since ϕn ≥ 0 pointwise, we get

0 ≤ lim
m→∞

〈∆|u|, ϕn ∗ (|u|nψm)〉 = 〈|u|n,∆|u|n〉 ≤ 0

for some 0 ≤ ψm ∈ C∞c (Bm(0)), ψm = 1 in Bm/2(0), so that |u|n = 0 ∈ L2(Rd) for all

n ∈ N. Since un → u in L2(Rd), we get u = 0.

Corollary 2.3. Let Vext ∈ L∞loc(R3) be such that Vext(x) → ∞ as |x| → ∞. Moreover,
let v ∈ L2(R3) + L∞(R3) with v ≥ 0 pointwise. Then

H trap
N =

N∑
i=1

(
−∆xi + Vext(xi)

)
+

∑
1≤i<j≤N

v(xi − xj)

is essentially self-adjoint on C∞c (R3N ).

The Hamiltonian Htrap
N describes N particles trapped in a finite region of R3 and

interacting through the pair potential v. We remark that the assumption v ≥ 0 in
the previous corollary can be dropped. The proof is, however, a bit more involved and
eventually we only consider repulsive interactions in the analysis of the Bose gas later
on. For a thorough discussion of self-adjointness criteria and its consequences, see [56].
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2.4 The Spectral Theorem

In this section, we discuss the Spectral Theorem for self-adjoint operators. We saw
already at the beginning of Section 2.3 a short motivation why self-adjoint operators are
suitable to describe physically measurable quantities. In the finite dimensional case, one
can use them to define spectral measures, associated to the state of the system, that
measure the probability of finding the values of an observable in a given interval (or,
more generally, in a given Borel subset of R). The spectral theorem shows that this can
be done for general self-adjoint operators A: it gives meaning to the operators χΩ(A),
Ω ⊂ B(R), where χΩ denotes the characteristic function on Ω. These operators can then
be used to measure the probability 〈ψ, χΩ(A)ψ〉H of finding the value of the observable
associated to A in the measurable set Ω if the system is in the state ψ ∈ H.

The spectral theorem tells us in fact much more. Put in the multiplication operator
form, it states that any self-adjoint operator is unitarily equivalent to a multiplication
operator as in Proposition 2.1.

Theorem 2.8 (Spectral Theorem, Multiplication Operator Form). Let A : D(A) → H
be a self-adjoint operator on the Hilbert space H. Then, there exists a measure space
(Ω,B(Ω), µ), where µ is a finite Borel measure, a unitary map U : H → L2(Ω,B(Ω), µ)
and a real-valued, Ω-a.e. finite µ-measurable function f : Ω→ R s.t.

i) ψ ∈ D(A) if and only if f(.)(Uψ)(.) ∈ L2(Ω,B(Ω), µ).

ii) If ϕ ∈ U(D(A)), then (UAU−1(ϕ))(x) = f(x)ϕ(x) for µ a.e. x ∈ Ω.

Clearly, this generalizes the finite dimensional case. In particular, once we have the
spectral theorem we can use it to define functions f(A) of A for a suitably large class
of functions f . This provides a so called functional calculus. We will see that {f(A)}
forms a C∗-algebra - an important observation in view of modern axiomatics of quantum
mechanics, see e.g. [67]. More important in view of the proof of Theorem 2.8 is that we
can turn this picture around - having first a suitable functional calculus, one can deduce
Theorem 2.8 by employing the Riesz Representation Theorem 2.25.

The proof of Theorem 2.8 consists of several main steps which are presented below,
following [55, Sections VII.1-VII.3; VIII.3].

2.4.1 Spectral Theorem for Bounded Self-Adjoint Operators

In the first step, we develop a functional calculus for bounded, self-adjoint operators.
That is, we want to find a reasonable definition for f(A) ∈ L(H) when f ∈ C(σ(A);C).
Since σ(A) ⊂ R is compact for any bounded, self-adjoint operator A ∈ L(H), we can
consider first polynomials of such operators and then use the Stone-Weierstrass The-
orem 2.A to extend our map uniquely to continuous functions f ∈ C(σ(A);C). As a
preparation we need two lemmas.

Lemma 2.6. Let B ∈ L(H) a bounded operator on H. Let P ∈ C[X] be a polynomial
in the variable X with complex coefficients such that P (X) =

∑N
n=0 anX

n, with an ∈ C
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for n = 1, . . . , N . We define P (A) =
∑N

n=0 anA
n ∈ L(H). Then

σ(P (A)) = {P (λ) : λ ∈ σ(A)}

Proof. Let λ ∈ C. Then λ is a root of the polynomial P − P (λ), which implies that
P (A) − P (λ) = (A − λ)Q(A) for another polynomial Q : C → C. Since Q(A) ∈ L(H),
we conclude that P (λ) ∈ ρ(P (A)) implies λ ∈ ρ(A), because in that case

1H = (A− λ)
(
Q(A)(P (A)− P (λ))−1

)
=
(
Q(A)(P (A)− P (λ))−1

)
(A− λ)

Thus, P (σ(A)) ⊂ σ(P (A)).
Next, assume that ν ∈ σ(P (A)) and write P (A)− ν = (A−λ1)(A−λ2) · · · (A−λN )

for complex roots λn ∈ C, n = 1, · · · , N . Since ν ∈ σ(P (A)), at least one root λn must
be contained in σ(A) (why?), denote it by λ. Thus P (λ)− ν = 0, i.e. ν ∈ P (σ(A)).

Lemma 2.7. Let A ∈ L(H) be a bounded normal operator, i.e. [A,A∗] = 0, and let
P ∈ C[X] denote a polynomial in X, as in the previous lemma. Then

‖P (A)‖L(H) = sup
λ∈σ(A)

|P (λ)|.

Proof. P (A) is normal if A is normal. Hence

‖P (A)‖L(H) = lim
n→∞

‖P (A)n‖1/nL(H) = rP (A) = sup
λ∈σ(P (A))

|λ| = sup
λ∈σ(A)

|P (λ)| (2.10)

Notice that we used the identity ‖Bn‖L(H) = ‖B‖nL(H) for any bounded, normal operator

B ∈ L(H), which can be proved by induction (exercise). The second and third steps are
well-known facts from basic functional analysis.

Note in particular that every bounded self-adjoint operator is normal. Equipped
with the two previous lemmas, we deduce the following theorem.

Theorem 2.9 (Continuous Functional Calculus). Let A ∈ L(H) be self-adjoint on H.
Then there exists a unique linear map Φ : C(σ(A);C)→ L(H) such that

a) Φ is an algebraic ∗-homomorphism. That is, for all f, g ∈ C(σ(A);C), λ ∈ C we have

Φ(fg) = Φ(f)Φ(g), Φ(λf) = λΦ(f), Φ(1) = 1H, Φ(f) = Φ(f)∗

b) Φ is bounded with ‖Φ(f)‖L(H) = ‖f‖∞ for all f ∈ C(σ(A);C).

c) Let f ∈ C(σ(A);C) be defined by f(x) = x. Then Φ(f) = A.

In addition, Φ satisfies the following properties.

d) If Aψ = λψ for some ψ ∈ H, λ ∈ R, then Φ(f)ψ = f(λ)ψ for all f ∈ C(σ(A);C).

e) If f ≥ 0, then Φ(f) ≥ 0.
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f) σ(Φ(f)) = {f(λ) : λ ∈ σ(A)} = ran(f) for all f ∈ C(σ(A);C).

Remarks:

1) Given f ∈ C(σ(A);C), we write f(A) = Φ(f).

2) Notice that the image of Φ in L(H) forms a norm-closed abelian algebra that is
closed under adjoints. This is called an abelian C∗-algebra. As indicated earlier,
C∗-algebras are the starting point for a modern description of physical systems. For
a short introduction to this viewpoint, see for instance [67, Chapters 1 and 2].

Proof. We apply Lemmas 2.6, 2.7 and the Stone-Weierstrass Theorem 2.24. We define

Φ(P ) = P (A)

for any polynomial P ∈ C[X]. The set of polynomials, viewed as functions from
σ(A) ⊂ R to C, is dense in C(σ(A);C) by Theorem 2.24 (why do the polynomials separate
points? ), and by Lemma 2.7 Φ can be extended to a linear isometry from C(σ(A);C)
to L(H). Using that A = A∗, properties a), b), c), d) are true for polynomials and carry
over to C(σ(A);C) by density. Also, a), b), c) and the linearity of Φ determine Φ on the
set of polynomials, because

Φ
(∑

j

αjX
j
)

=
∑
j

αjA
j

By a density argument, this shows that a), b), c) and linearity characterize Φ uniquely.
Notice indeed that it is enough to assume ‖Φ(f)‖L(H) ≤ ‖f‖∞ for all f ∈ C(σ(A);C) in
order to prove uniqueness of the continuous functional calculus.

To prove e), we write f = (
√
f)2 and use a) which implies

Φ(f) = Φ(
√
f)2 = Φ(

√
f)∗Φ(

√
f) ≥ 0.

To prove f), assume first z 66∈ ran(f). Then (f − z)−1 ∈ C(σ(A);C) exists with

‖(f − z)−1‖∞ ≤
1

dist(f(σ(A)), z)
<∞

and we have

1H = Φ((f − z)(f − z)−1) = (Φ(f)− z)Φ((f − z)−1) = Φ((f − z)−1)(Φ(f)− z),

so that z ∈ ρ(Φ(f)). This shows that σ(Φ(f)) ⊂ f(σ(A)).
On the other hand, assume that z ∈ σ(A), then for any polynomial P ∈ C[X], we

have P (z) ∈ σ(P (A)). That is, P (A)− P (z) does not have a bounded inverse. Writing

Φ(f)− f(z) = lim
n→∞

(Pn(A)− Pn(z)) ∈ L(H)

for a suitable sequence of polynomials (Pn)n∈N, we conclude that f(z) ∈ σ(Φ(f)), because
the set of operators with bounded inverse is open4 in L(H), so f(σ(A)) ⊂ σ(Φ(f)).

4Indeed, if A ∈ L(H) has inverse A−1 ∈ L(H), the inverse of B = A(1 + A−1(B − A)) exists if
‖B −A‖L(H) < ‖A−1‖−1

L(H) by a standard Neumann expansion.
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With the continuous functional calculus at hand, we can prove the analogue of Theo-
rem 2.8 for bounded self-adjoint operators. First of all, we need to relate A to a suitable
measure space. The crucial observation is that, given any ψ ∈ H, the map

C(σ(A);C) 3 f 7→ 〈ψ, f(A)ψ〉H ∈ C

is a positive, linear functional. By the Riesz Representation Theorem 2.25, there exists
a unique, positive Borel measure µAψ : B(R)→ [0,∞) s.t.

〈ψ, f(A)ψ〉H =

∫
σ(A)

f(x) dµAψ (x), ∀f ∈ C(σ(A);C). (2.11)

We call µAψ the spectral measure of A associated with the vector ψ ∈ H. The connection

to L2-spaces comes from noticing that 2.11 implies that for all f ∈ C(σ(A);C) we have

‖f(A)ψ‖H = 〈ψ, f(A)f(A)ψ〉H = 〈ψ, |f(A)|2ψ〉H =

∫
σ(A)
|f(x)|2 dµAψ (x) (2.12)

If we knew that H = {f(A)ψ : f ∈ C(σ(A);C)} (= span{f(A)ψ : f ∈ C(σ(A);C)} ) for
some fixed vector5 ψ ∈ H, equation (2.12) would immediately imply Theorem 2.8 for
bounded self-adjoint operators, with the self-adjoint operator A being unitarily equiva-
lent to multiplication by the function σ(A) 3 x 7→ fA(x) = x. Notice in particular that
C(σ(A);C) is dense in L2(σ(A),B(σ(A)), µAψ ), whose proof uses that the measure µAψ is
regular (indeed, one may approximate first a characteristic function of some Borel set
B by a characterstic function of some open set O ⊃ B and some compact set K ⊂ B,
by regularity of µAψ . Then we can find a continuous function which is equal to one on K
and shrinks to zero when we approach the complement of B). However, in general

{f(A)ψ : f ∈ C(σ(A);C)}  H.

Lemma 2.8. Let A ∈ L(H) be self-adjoint on the separable Hilbert space H. Then,
there exists a direct sum decomposition H =

⊕N
n Hn with N ∈ N or N = ∞ such that

for each n ∈ N, there exists some ϕn ∈ H s.t. Hn = {f(A)ϕn : f ∈ C(σ(A);C)}.

Proof. We proceed inductively. Choose an ONB {ϕi : i ∈ N} ⊂ H of H and define

H1 = {f(A)ψ1 : f ∈ C(σ(A);C)}

for ψ1 = ϕ1. We decompose H into the direct sum H = H1 ⊕ H⊥1 and denote by
P⊥1 ∈ L(H) the orthogonal projection onto H⊥1 . If H = H1, we are done. If not,
pick the smallest i1 ∈ N \ {1} such that ϕi1 6∈ H1. Now, we repeat the first step with
ψ2 = P⊥1 ϕi2/‖P⊥1 ϕi2‖H. Notice that ψ2 ∈ H⊥1 and that H⊥1 is invariant under the action
of g(A), for every g ∈ C(σ(A);C). Indeed, if ψ ∈ H⊥1 , then for every g ∈ C(σ(A);C)
and f ∈ C(σ(A);C), we have that

〈f(A)ϕ1, g(A)ψ〉 = 〈(fg)(A)ϕ1, ψ〉 = 0.

5A vector ψ ∈ H with the property that H = span{Anψ : n ∈ N0} is called cyclic for A.
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Picking ψ2 = P⊥1 ϕi2/‖P⊥1 ϕi2‖H as above, we thus obtain a direct sum decomposition

H = H1 ⊕H2 ⊕
(
H1 ⊕H2

)⊥
, Hj = {f(A)ψj : f ∈ C(σ(A);C)} (j = 1, 2),

with {ϕ1, . . . , ϕi1} ⊂ H1 ⊕H2.
Iterating this procedure, we obtain a possibly finite sequence (ψn)n∈N of normalized

vectors in H with associated orthogonal subspaces (Hn)n∈N so that ψn is cyclic for HN
and which are A-invariant. By construction, we have that

ψ ∈
( N⊕

n

Hn
)⊥

=⇒ ψ ∈
{
ϕi : i ∈ N

}⊥
= {0},

so that H =
⊕N

n Hn.

Theorem 2.10. Let A ∈ L(H) be self-adjoint on the Hilbert space H. Then, there exist
finite, positive Borel measures (µAn )1≤n≤N where N ∈ N or N =∞, and a unitary map
U : H →

⊕N
n=1 L

2
(
σ(A),B(σ(A)), µAn

)
such that

(UAU−1g)n(x) = xgn(x), for µ a.e. x ∈ σ(A),∀ 1 ≤ n ≤ N (2.13)

for all g = (gn)1≤n≤N ∈
⊕N

n=1 L
2
(
σ(A),B(σ(A)), µAn

)
.

Proof. We decompose H =
⊕N

n Hn with Hn = {f(A)ϕn : f ∈ C(σ(A);C)} as in Lemma
2.8. The map U is defined componentwise on each Hn. For ψn = f(A)ϕn ∈ Hn
with f ∈ C(σ(A);C), we define Uψn = f ∈ C(σ(A);C). By (2.12), U extends to a
linear isometry from HN to L2

(
σ(A),B(σ(A)), µAn

)
where µAn is the spectral measure

of A w.r.t. ϕn ∈ Hn. Notice here that we use the fact that C(σ(A);C) is dense in
L2
(
σ(A),B(σ(A)), µAn

)
. Since σ(A) 3 x 7→ x continuous, we conclude (2.13).

The following corollary shows that every self-adjoint, bounded operator is unitarily
equivalent to a multiplication operator of the same form as in Proposition 2.1.

Corollary 2.4. Let A ∈ L(H) be self-adjoint on the Hilbert space H. Then, there
exists a finite measure space (M,B(M), µ) with µ a Borel measure, a unitary map
U : H → L2(M,B(M), µ) and a bounded, measurable function f : M → R such that
for all ψ ∈ L2(M,B(M), µ)

(UAU−1ψ)(x) = f(x)ψ(x), for µ a.e. x ∈M (2.14)

Proof. With the same notation as in the proof of Theorem 2.10, we choose the cyclic
vectors ϕi ∈ Hi s.t. ‖ϕi‖H = 2−i. We then define M as the disjoint union

M =
N∐
i=1

σ(A) =
{

(i, x) : i ∈ {1, . . . , N}, x ∈ σ(A)
}
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with its Borel σ-algebra (the smallest σ-algebra generated by the open sets in M). Recall
that M is equipped with the finest topology such that the injections Φi : σ(A) → M ,
for i = 1, . . . , N (the index referring to the i-th copy of the spectrum σ(A)), defined by

Φi(x) = (i, x) ∈M,

are continuous. More precisely, a set U =
∐N
i=1 Ui ⊂M is open if and only if Φ−1

i (U) =
Ui ⊂ σ(A) is open, for all i = 1, . . . , N . Given M , we then define µ through

µ
( N∐
i=1

Oi

)
=

N∑
i=1

µAi (Oi),

so that µ(M) =
∑N

i=1 µ
A
i (σ(A)) =

∑N
i=1 2−2i <∞. The previous identity means that∫

M
dµχ∐N

i=1Oi
=

N∑
i=1

∫
σ(A)

dµAi χOi

for measurable sets Oi ∈ B(σ(A)), i = 1, . . . , N . Hence, writing ψ ∈ L2(M,B(M), µ) as

ψ =
N∑
i=1

ψiχ∅
∐
...

∐
σ(A)

∐
...

∐
∅

for ψi = ψ|(i,·) : σ(A) → C denoting the restriction of ψ to the i-th copy of σ(A), and
using the orthogonality of the different summands in L2(M,B(M), µ), we conclude that∫

M
µ(dω) |ψ(ω)|2 =

N∑
i=1

∫
σ(A)

µAi (dx)|ψi(x)|2.

In other words, the map

L2(M,B(M), µ) 3 ψ 7→ (ψ1, . . . , ψN ) ∈
N⊕
i=1

L2
(
σ(A),B(σ(A)), µAi

)
,

is a unitary map and it is straightforward to check that A acts in L2(M,B(M), µ) as
(UAU−1ψ)(i, x) = f(i, x)ψ(i, x) = xψi(x) for each i = 1, . . . , N and x ∈ σ(A).

2.4.2 Spectral Theorem for Bounded Normal Operators

In this section, we explain the main ideas on how to extend the spectral theorem from
bounded, self-adjoint operators to bounded, normal operators. This extension enables us
to prove the spectral theorem for unbounded operators. The strategy one should have in
mind is that, given an unbounded self-adjoint operator, its resolvent is a bounded, normal
operator. If we knew that such operators are equivalent to multiplication operators, we
would deduce that also the original operator is unitarily equivalent to a multiplication
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operator. An important question is then: why can we expect the spectral theorem for
normal, bounded operators to hold? The key is that a normal operator is the sum of two
commuting self-adjoint operators and we can develop a functional calculus for such a
pair of operators. Some details of the arguments are skipped and we refer the interested
reader to [51, Chapter 5] and [55, Chapter VII, Problems 4,5].

Before we explain the spectral theorem for bounded, normal operators, let’s observe
that we can extend the continuous functional calculus from Theorem 2.9 to the set of
bounded, Borel measurable functions on R, denoted byM(R). Indeed, with the notation
from Corollary 2.4, we may define f(A) ∈ L(H) for a given f ∈M(R) via6

(Uf(A)U−1ψ)(x) = (f ◦ g)(x)ψ(x), for µ a.e. x ∈M,

if A corresponds to multiplication by g in L2(M,dµ). With this definition, we derive
similarly to Theorem 2.9 the following measurable functional calculus.

Theorem 2.11 (Measurable Functional Calculus). Let A ∈ L(H) be self-adjoint on H.
Then there exists a unique linear map Φ̂ :M(R)→ L(H) such that

a) Φ̂ is an algebraic ∗-homomorphism.

b) Φ̂ is bounded with ‖Φ̂(f)‖L(H) ≤ ‖f‖∞ for all f ∈M(R).

c) Let (fn)n∈N be a sequence in M(R) s.t. |fn(x)| ≤ |x| for all n ∈ N, x ∈ R and
limn→∞ fn(x) = x for all x ∈ R. Then (Φ̂(fn))n∈N converges strongly to A.

d) Let f ∈ M(R) and let (fn)n∈N be a bounded sequence in M(R). Assume that fn
converges to f pointwise in R, then Φ̂(fn) converges strongly to Φ̂(f).

In addition, Φ̂ satisfies the following properties.

e) If Aψ = λψ for some ψ ∈ H, λ ∈ R, then Φ̂(f)ψ = f(λ)ψ for all f ∈M(R).

f) If f ≥ 0, then Φ̂(f) ≥ 0.

g) If [A,B] = 0 for some B ∈ L(H), then [Φ̂(f), B] = 0 for all f ∈M(R).

Proof. By Corollary 2.4, we can assume w.l.o.g. that A corresponds to multiplication by
some measurable function g : M → R on L2(M,B(M), µ) =: L2(dµ). Then we define
Φ̂(f) (= f(A)) through multiplication by f ◦ g ∈ M(R), for f ∈ M(R). The properties
a) to d) are straightforward to verify (notice that the inequality in b) may be strict -
exercise). For example, for part d), the dominated convergence theorem implies

‖(f(A)− fn(A))ψ‖22 =

∫
M
dµ(x) |f ◦ g(x)− fn ◦ g(x)|2|ψ(x)|2 → 0

6Notice that for bounded operators A ∈ L(H), our definition makes sense for a larger class of functions,
including those which need not be bounded in R. In view of the functional calculus for general (possibly
unbounded) self-adjoint operators, we formulate the functional calculus nevertheless in terms of M(R).
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as n → ∞, for every ψ ∈ L2(dµ), if limn→∞ fn(x) = f(x) for all x ∈ M for a bounded
sequence (fn)n∈N in M(R).

For part e), notice that if Aψ = λψ, then ψ is supported in g−1({λ}) ⊂M and thus(
f(A)ψ

)
(x) = f(λ)ψ(x) for a.e. x ∈M . Similarly, we argue for part f).

To prove g), we first argue that [χ(a,b)(A), B] = 0 for all −∞ ≤ a ≤ b ≤ ∞. Here,
we use that, by the Stone-Weierstrass Theorem 2.24, the closed ∗-subalgebra of

C∞(R) =
{
f ∈ C(R;C) : lim

|x|→∞
f(x) = 0

} (
⊂M(R)

)
generated by x 7→ (x− i)−1, x 7→ (x+ i)−1 is dense in C∞(R) (w.r.t. ‖ · ‖∞). In fact, this
subalgebra separates points (why? ) and is closed under complex conjugation in{

f ∈ C(X) : f(±∞) = 0
}
,

where X = R ∪ {±∞} denotes the extended real numbers (as a compactification of R).
Observe here that C∞(R) is isometrically isomorphic to C(X).

Since [A,B] = 0 = [1H, B], it follows that

(A+ i)[(A+ i)−1, B] = 0 = [(A+ i)−1, B](A+ i),

which implies that [(A+ i)−1, B] = 0, because (A+ i) : H → H is invertible. Similarly,
[(A − i)−1, B] = 0 so that by part d), we conclude [f(A), B] = 0 for every f ∈ C∞(R).
Then, another application of d) shows that [χ(a,b)(A), B] = 0 for all −∞ ≤ a ≤ b ≤ ∞.

To conclude g), consider now the set A =
{
S ⊂ R : [χS(A), B] = 0

}
. Our previous

arguments imply that A contains every open set (why? ) and we also observe that A is
a σ-algebra. In fact, using that

χSc(A) = χR(A)− χS(A) = 1− χS(A), χS1∩S2(A) = χS1(A)χS2(A),

χ∪∞j=1Sj
(A) =

∞∑
j=1

χSj (A) (if Si ∩ Sj = δij),

we conclude that A is a Dynkin system stable under intersections. Since it contains
the open sets, B(R) ⊂ A. Finally, every f ∈ M(R) can be approximated pointwise
(everywhere) by a sequence of simple functions s.t. [f(A), B] = 0 for all f ∈M(R).

Let’s switch to the uniqueness of the functional calculus. Suppose that Φ̂ and Ψ̂ both
satisfy properties a) to g). Using parts a), c) and d), we first deduce that

1H = Φ̂
(
x 7→ (x± i)−1

)
(A± i) = (A+ i)Φ̂

(
x 7→ (x± i)−1

)
,

so that Φ̂
(
x 7→ (x± i)−1

)
= (A± i)−1 = Ψ̂

(
x 7→ (x± i)−1

)
(arguing analogously for Ψ̂).

As in the proof of g), this implies that Φ̂(f) = Ψ̂(f) for all f ∈ C∞(R). Applying d) once
more, we deduce that Φ̂(χS) = Ψ̂(χS) for all S ∈ B(R) and then Φ̂ = Ψ̂ in M(R).

Now, let’s explain how to use the measurable functional calculus to prove the spectral
theorem for bounded, normal operators. Let A ∈ L(H) be normal, i.e. [A,A∗] = 0.
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Then we can define two bounded, self-adjoint operators B = 1
2(A + A∗) ∈ L(H) and

C = 1
2i(A−A

∗) ∈ L(H) that satisfy

A = B + i C, B = B∗, C = C∗, [B,C] = 0

We have already a functional calculus for B and C, separately, but what we need now is
a joint functional calculus for B and C. To this end, we proceed in the following steps:

1) Denote by Y the product space Y = Y1×Y2 = σ(B)×σ(C). Let f ∈M(Y ) be a finite
linear combination of characteristic functions of the form χ = χΩ1 ⊗χΩ2 ∈M(Y ) for
measurable subsets Ωi ∈ B(Yi), i = 1, 2. We define χ(B,C) = χΩ1(B)χΩ2(C) ∈ L(H)
and then f(B,C) ∈ L(H) by linearity. For such f ∈M(Y ), we have

‖f(B,C)‖L(H) ≤ sup
y∈Y
|f(y)|. (2.15)

If f = χΩ1 ⊗ χΩ2 ⊂ M(Y ), this follows in fact from Theorem 2.11 b), χ∅(B) =
χ∅(C) = 0 and supy∈Y |χΩ1 ⊗ χΩ2 | = supy1∈Y1 |χΩ1(y1)| supy2∈Y2 |χΩ2(y2)|. If

(Ω
(i)
1 × Ω

(i)
2 ) ∩ (Ω

(j)
1 × Ω

(j)
2 ) = ∅

(
= (Ω

(i)
1 ∩ Ω

(j)
1 )× (Ω

(i)
2 ∩ Ω

(j)
2 )
)
,

we therefore have that χ
Ω

(i)
1 ∩Ω

(j)
1

⊗ χ
Ω

(i)
2 ∩Ω

(j)
2

(B,C) = 0.

Now, if f is a linear combination of characteristic functions, we may write

f =

n∑
i=1

λiχΩ
(i)
1

⊗ χ
Ω

(i)
2

, (Ω
(i)
1 × Ω

(i)
2 ) ∩ (Ω

(j)
1 × Ω

(j)
2 ) = ∅ for i 6= j.

By Theorem 2.11 g), we have [χΩ1(B), χΩ2(C)] = 0. Therefore, we find that

〈χ
Ω

(i)
1

⊗ χ
Ω

(i)
2

(B,C)ψ, χ
Ω

(j)
1

⊗ χ
Ω

(j)
2

(B,C)ψ〉H

=
〈(
χ

Ω
(i)
1

χ
Ω

(j)
1

)
(B)ψ,

(
χ

Ω
(i)
2

χ
Ω

(j)
2

)
(C)ψ

〉
H

= 〈χ
Ω

(i)
1 ∩Ω

(j)
1

(B)ψ, χ
Ω

(i)
2 ∩Ω

(j)
2

(C)ψ〉H

= 〈ψ, χ
Ω

(i)
1 ∩Ω

(j)
1

⊗ χ
Ω

(i)
2 ∩Ω

(j)
2

(B,C)ψ〉H = 0

for every ψ ∈ H and i 6= j so that

‖f(B,C)ψ‖2H ≤
n∑
i=1

|λi|2〈ψ, χΩ
(i)
1

⊗ χ
Ω

(i)
2

(B,C)ψ〉H ≤ sup
i=1,...,N

|λi|2‖ψ‖2H.

2) Given f ∈ C(Y ;C), we approximate it uniformly in Y by a sequence of simple
functions as in Step 1). Then we construct a continuous functional calculus as in
Theorem 2.9. More precisely, we define a map Σ : C(Y ;C)→ L(H) satisfying

a) Σ is an algebraic ∗-homomorphism.
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b) Σ is bounded with ‖Σ(f)‖L(H) ≤ ‖f‖∞ for all f ∈ C(Y ;C).

c) Let f ∈ C(Y ;C) be defined by f(y1, y2) = y1 + iy2. Then Σ(f) = B + iC = A.

d) If f ∈ C(Y ;C) satisfies f ≥ 0, then Σ(f) ≥ 0.

We write Σ(f) = f(B,C). Note that restricting Σ to C(σ(B);C) ↪→ C(Y ;C) or to
C(σ(C);C) ↪→ C(Y ;C) yields a continuous functional calculus forB and, respectively,
C. Therefore, the identity Σ(f) = B + iC = A in c) follows by uniqueness of the
continuous functional calculus (for B and, respectively, C) and by linearity.

3) We observe that for f, g ∈ M(Y ), ψ ∈ H and A = B + iC, we find some finite,
positive Borel measure µψ such that

〈f(B,C)ψ,Ag(B,C)ψ〉H =

∫
Y
µψ(dy1dy2)f(y1, y2)(y1 + iy2)g(y1, y2).

Thus, A is represented on L2(dµψ) as the multiplication operator that multiplies with
(y1, y2) 7→ y1 + iy2. We then proceed as in Section 2.4.1 and prove the following.

Theorem 2.12. Let A ∈ L(H) be normal on the Hilbert space H. Then, there
exists a finite measure space (M,B(M), µ) with µ a Borel measure, a unitary map
U : H → L2(M,B(M), µ) and a bounded, measurable function f : M → C such that
for all ψ ∈ L2(M,B(M), µ)

(UAU−1ψ)(x) = f(x)ψ(x), for µ a.e. x ∈M (2.16)

Moreover, A is self-adjoint if and only if the function f : M → C is real-valued.

Problem 2.19. Give a detailed proof of Theorem 2.12.

2.4.3 Spectral Theorem for Unbounded Self-Adjoint Operators

We are now ready to prove the spectral theorem in the general, unbounded case.

Proof of Theorem 2.8. Let A : D(A)→ H be self-adjoint. The resolvents (A− i)−1 and
(A + i)−1 ∈ L(H) commute and they are normal, because

(
(A − i)−1

)∗
= (A + i)−1.

Moreover, we have that D(A) = ran(A − i)−1 = ran(A + i)−1. By Theorem 2.12,
there exists a finite measure space (Ω,B(Ω), µ) with µ a Borel measure, a unitary map
U : H → L2(Ω,B(Ω), µ) and a function g : Ω→ C such that for all ϕ ∈ L2(Ω,B(Ω), µ)

(U(A+ i)−1U−1ϕ)(x) = g(x)ϕ(x), for µ a.e. x ∈ Ω, ∀ϕ ∈ L2(Ω,B(Ω), µ) (2.17)

Since ker(A + i)−1 = {0}, we must have g(x) 6= 0 for a.e. x ∈ Ω, because otherwise
0 6= U−1χg−1({0}) ∈ ker(A+ i)−1. Therefore, the measurable function f defined by

f(x) = g(x)−1 − i
(
⇔ g(x) = (f(x) + i)−1

)
is finite for µ a.e. x ∈ Ω.
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Now, let ψ ∈ D(A). Then ψ = (A+ i)−1ϕ for some ϕ ∈ H. Hence, we have that

U(ψ) =
(
U(A+ i)−1U−1

)
U(ϕ) = g U(ϕ) ∈ L2(Ω,B(Ω), µ)

and thus
fUψ = (fg)U(ϕ) = (1− ig)U(ϕ) ∈ L2(Ω,B(Ω), µ).

Conversely, if f U(ψ) = (g−1−i)U(ψ) ∈ L2(Ω,B(Ω), µ), then g−1U(ψ) ∈ L2(Ω,B(Ω), µ),
because U(ψ) ∈ L2(Ω,B(Ω), µ). Writing

g−1U(ψ) = U(U−1g−1U(ψ)) = U(ϕ) for ϕ = U−1g−1U(ψ) ∈ H,

this implies U(ψ) = g U(ϕ) = U(A+ i)−1ϕ so that ψ = (A+ i)−1ϕ ∈ D(A).
For b), let ψ = (A+ i)−1ϕ ∈ D(A). With Aψ = ϕ− iψ and U(ϕ) = g−1U(ψ), we get

(UAU−1)(U(ψ)) = U(ϕ)− iU(ψ) = (g−1 − i)U(ψ) = f U(ψ).

Thus, A is unitarily equivalent to multiplication by f . It remains to show that f is
real-valued. Since A is self-adjoint, multiplication by f is self-adjoint. If Im(f) 6= 0
µ-a.s., we find a compact set S ⊂ C+ with 0 < µ

(
f−1(S)

)
< ∞. For the characteristic

function χf−1(S) associated to this set, this implies fχf−1(S) ∈ L2(Ω,B(Ω), µ). Hence,
Im〈χf−1(S), fχf−1(S)〉 > 0. But this is a contradiction, because multiplication by f is
self-adjoint. We conclude that f is µ-a.e. real-valued.

As in the bounded case, Theorem 2.8 enables us to define a measurable functional
calculus for bounded, measurable functions g ∈ M(R). Given a self-adjoint operator
A : D(A) → H on a Hilbert space H and g ∈ M(R), we define g(A) ∈ L(H) as the
multiplication operator that multiplies on L2(Ω,B(Ω), µ) by the function

Ug(A)U−1 = g ◦ f

where we used the notation of Theorem 2.8. We deduce the following theorem.

Theorem 2.13 (Measurable Functional Calculus, unbounded case). Let A : D(A)→ H
be self-adjoint. Then there exists a unique linear map Ψ :M(R)→ L(H) such that

a) Ψ is an algebraic ∗-homomorphism.

b) Ψ is bounded with ‖Ψ(g)‖L(H) ≤ ‖g‖∞ for all g ∈M(R).

c) Let (gn)n∈N a bounded sequence in M(R) s.t. |gn(x)| ≤ |x| for all n ∈ N, x ∈ R and
limn→∞ gn(x) = x for all x ∈ R. Then (Ψ(gn))n∈N converges strongly to A.

d) Let g ∈ M(R) and let (gn)n∈N be a bounded sequence in M(R). Assume that gn
converges to g pointwise in R, then Ψ(gn) converges strongly to Ψ(g).

e) If Aψ = λψ for some ψ ∈ D(A), λ ∈ R, then Ψ(g)ψ = f(λ)ψ for all g ∈M(R).

f) If g ∈M(R) satisfies g ≥ 0, then Ψ(g) ≥ 0.
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Proof. The existence was explained above and follows from Theorem 2.8. The reader is
invited to check properties a) to f).

We close this section with a remark on the spectral theorem in the so called pro-
jection valued measure form. By Theorem 2.13, we have a reasonable definition for
the orthogonal projections χΩ(A) where Ω ⊂ B(R) (here, χΩ denotes the characteristic
function on the set Ω). Given a vector ψ ∈ H, the map

B(R) 3 Ω 7→ 〈ψ, χΩ(A)ψ〉 ∈ [0,∞)

defines a positive Borel measure and is interpreted as measuring the probability to
find a value of the observable associated to A in the set Ω. The family of operators
{χΩ(A) : Ω ∈ B(R)} has the properties that each χΩ(A) is an orthogonal projection,
χ∅(A) = 0, χR = 1H, χΩ is the strong limit of

(∑n
i=1 χΩi(A)

)
n∈N for a disjoint union

Ω = ∪∞i=1Ωi and finally that χΩ1(A)χΩ2(A) = χΩ1∩Ω2(A). Such a family of operators is
called a projection valued measure. Such families of operators are in fact in one-to-one
correspondence with self-adjoint operators. This is the content of the spectral theorem
in its projection valued measure form which is equivalent to the multiplication operator
form discussed above and which gives precise meaning to the formula

A =

∫
R
λχdλ, (2.18)

in close analogy to the finite dimensional spectral theorem. We refer the reader to [55,
Theorem VIII.6] as well as the discussion preceeding it for more details on this.

Problem 2.20. Given a projection valued measure {χΩ : Ω ∈ B(R)}, explain how to
define a densely defined, linear operator A : D(A)→ H through (2.18) and show that the
resulting operator is self-adjoint. Conversely, given a self-adjoint operator A : D(A) →
H, show that it is equal to (2.18) for the projection valued measure {χΩ(A) : Ω ∈ B(R)}
defined through the (unique) measurable functional calculus of A.

2.5 Applications of the Spectral Theorem

In this section we discuss several applications of the spectral theorem. The main results
are the existence of the time evolution of quantum systems, the characterization of the
discrete eigenvalues below the essential spectrum of a given self-adjoint operator and
the existence and uniqueness of ground state vectors of Schrödinger operators. We also
discuss basic results relating self-adjoint operators with symmetric quadratic forms.

2.5.1 Existence of Quantum Dynamics

In quantum mechanics, the time evolution of the system is determined by the time-
dependent Schrödinger equation. More precisely, given a self-adjoint Hamilton operator

44



A : D(A) → H, a function t 7→ ψ(t) ∈ C(R;D(A)) ∩ C1(R;H) solves the Schrödinger
equation with initial data ψ0 ∈ D(A) if{

i∂tψ = Aψ,

ψ(0) = ψ0.
(2.19)

The next proposition ensures guarantees the existence of quantum dynamics.

Proposition 2.6. Let A : D(A)→ H be self-adjoint and define U(t) = e−itA for t ∈ R.
Then the following holds true.

a) (U(t))t∈R is a strongly continuous one-parameter unitary group. That is, t 7→ U(t) is
strongly continuous, U(t) is unitary and U(t+ s) = U(t)U(s) for all t, s ∈ R.

b) If ψ ∈ D(A), then limt→0
1
t (U(t)ψ − ψ) = −iAψ. Conversely, if the limit

limt→0
1
t (U(t)ψ − ψ) exists for some ψ ∈ H, then ψ ∈ D(A).

c) For all t ∈ R, U(t) leaves D(A) invariant and commutes with A on D(A).

Proof. The proof follows directly from Theorem 2.13 and the corresponding properties
of the family of maps x 7→ e−itx ∈ M(R), t ∈ R. Indeed, let us assume w.l.o.g. that A
corresponds to multiplication by f with canonical domain (by the spectral theorem) so
that U(t) = e−itf . Then i) follows directly and for ii), we use on the one hand that

1

t
(e−itx − 1) = −ix

∫ 1

0
ds e−itxs,

so that |1t (e
−itx − 1)| ≤ |x|. Combining this with dominated convergence, we conclude

that limt→0
1
t (U(t)ψ − ψ) = −iAψ if ψ ∈ D(A). Conversely, if for some ϕ ∈ L2(dµ)

lim
t→0
‖t−1(e−itf − 1)ψ − ϕ‖2 = 0,

then one has pointwise almost sure convergence on a subsequence so that ϕ = −ifψ ∈
L2(dµ), that is ψ ∈ D(A). Finally, iii) follows from the fact that U(t) = eitf commutes
with f and fϕ ∈ L2(dµ) if and only if eitffϕ ∈ L2(dµ), for each t ∈ R.

Proposition 2.6 shows that that the map t 7→ U(t)ψ0 ∈ C(R;D(A))∩C1(R;H) solves
the Schrödinger equation (2.19). It is not hard to see that this is the only continuously
differentiable solution ψ ∈ C(R;D(A)) ∩ C1(R;H) of the initial value problem (2.19).
Indeed, suppose ψ ∈ C(R;D(A))∩C1(R;H) is another solution of (2.19). Then, we can
consider t 7→ φ(t) = U(−t)ψ(t) ∈ C(R;D(A)) ∩ C1(R;H) with

lim
h→0

1

h

(
U(−t− h)ψ(t+ h)− U(−t)ψ(t)

)
= lim

h→0

1

h

(
U(−t− h)− U(−t)

)
ψ(t)

+ lim
h→0

U(−t− h)
1

h

(
ψ(t+ h)− ψ(t)

)
= −AU(−t)ψ(t) + U(−t)(Aψ(t)) = 0,
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that is, ∂tφ = 0 in H. This implies φ(t) = ψ0 so that ψ(t) = U(t)ψ0 for all t ∈ R.
The following fundamental structural result shows that every strongly continuous

one-parameter unitary group is generated by a self-adjoint operator.

Theorem 2.14 (Stone’s Theorem). Let (U(t))t∈R be a strongly continuous one-parameter
unitary group on a Hilbert space H. Then, there exists a self-adjoint operator
A : D(A)→ H such that U(t) = e−itA for all t ∈ R.

Proof. Before defining our candidate for A, we first need to find a suitable dense domain
on which we can differentiate t 7→ U(t)(·). Using that, heuristically, φ ≈ e−itAφ for small
t (assuming we knew the existence of A already), it is useful to consider for f ∈ C∞c (R)
and φ ∈ H the vector space generated by vectors of the form

φf =

∫
R
dt f(t)U(t)φ ∈ H.

Here, the integral on the r.h.s. can be defined as a vector-valued Riemann integral (and
coincides with the usual Bochner integral). Set

D = span(φf : f ∈ C∞c (R), φ ∈ H).

Then D ⊂ H is dense, because for a standard approximation of the identity (fn)n∈N in
C∞c (R), we have that

‖φfn − φ‖H =

∥∥∥∥∫
R
dt fn(t)(U(t)φ− φ)

∥∥∥∥
H
≤ sup

t∈ supp(fn)
‖U(t)φ− φ‖H → 0

as n→∞ (we can choose
∫
R fn = 1, 0 ≤ fn ≤ 1, supp(fn) ⊂ (−1/n; 1/n) ∀n ∈ N).

Next, we want to define A (initially on D) through the derivative of t 7→ U(t). Given
φf ∈ D, we compute

lim
t→0

1

t
(U(t)φf − φf ) = lim

t→0

1

t

∫
R
ds f(s)(U(t+ s)− U(s))φ

= lim
t→0

1

t

∫
R
ds (f(s− t)− f(s))U(s)φ

= −
∫
R
f ′(s)U(s)φ = −φf ′ ,

where in the last step we applied the dominated convergence theorem. This suggests to
define the operator A : D → D through

Aφf = i lim
t→0

1

t
(U(t)φf − φf ) = −iφf ′ .

By definition of the functions φf ∈ D, let us observe that U(t) : D → D for each t ∈ R
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(U(t)φf = φf(.−t)), A : D → D and [U(t), A] = 0 in D. A is also symmetric, because

〈Aφf , ψg〉H = 〈−iφf ′ , ψg〉H

= i

∫
R2

dsdt f ′(t)U(−t+ s)g(s)〈φ, ψ〉

= i

∫
R2

dsdt f ′(t)U(s)g(s+ t)〈φ, ψ〉

= −i
∫
R2

dsdt f(t)U(s)g′(s+ t)〈φ, ψ〉

= 〈φf , Aψg〉H.

To finish the proof, we show that A is essentially self-adjoint and that the exponential
of its (self-adjoint) closure is equal to U(t). For the first part, suppose that ψ ∈ D(A∗)
with A∗ψ = iψ. Then, for each φ ∈ D, we compute

∂t〈U(t)φ, ψ〉H = 〈−iAU(t)φ, ψ〉H = −〈U(t)φ, ψ〉H.

Solving the ODE, this means that 〈U(t)φ, ψ〉H = 〈φ, ψ〉He−t, which implies that 〈φ, ψ〉H =
0, because e−t → ∞ as t → −∞ while |〈−U(t)φ, ψ〉H| ≤ ‖φ‖H‖ψ‖H. Since φ ∈ D was
arbitrary and D = H, this implies that ψ = 0. Repeating an analogous argument for
the case A∗ψ = −iψ, we deduce that A : D → D is essentially self-adjoint.

Finally, denote by A : D(A)→ H the self-adjoint closure of A and set V (t) = e−itA.
Given φ ∈ D, we compute that

∂t
(
U(t)φ− V (t)φ) = −iAU(t)φ− iAV (t)φ = −iA(U(t)− V (t))φ,

which implies

∂t‖U(t)φ− V (t)φ‖2H = 2 Im
〈
A(U(t)φ− V (t)φ), U(t)φ− V (t)φ

〉
H = 0.

Thus, U(t)φ = V (t)φ for all t ∈ R and φ ∈ D, so that U(t) = V (t), using D = H.

Example 2.20. Consider the translation group (U(y))y∈R acting on L2(R) as

(U(y)ψ
)
(x) = ψ(x+ y) for a.e. x ∈ R,

for ψ ∈ L2(R). Clearly, (U(y))y∈R is a strongly continuous unitary group and by Prop.
2.6, ψ ∈ H is in the domain D(A) of its generator if and only if

lim
y→0

1

y
(U(y)− 1)ψ

exists. In this case, the limit equals −iAψ. Comparing this with standard results on
Sobolev spaces, we conclude that D(A) = H1(R) and U(y) = e−iy(i∂x). As mentioned
before, the observable corresponding to translation of the wave function is momentum.
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To view the gradient i∇ as the generator of translations in Rd, analogously to the
previous example, we record the following generalization of Stone’s Theorem and we
refer to [55, Theorem VIII.12] for its proof.

Theorem 2.15. Let Rd 3 y 7→ U(y) be a strongly continuous map of Rd into the set of
unitary operators on some separable Hilbert space H and such that

U(y + z) = U(y)U(z) ∀ y, z ∈ Rd

Set D = span
( ∫
Rd dy f(y)U(y)φ : f ∈ C∞c (Rd), φ ∈ H

)
. Then D is a domain of

self-adjointness for each of the generators Aj corresponding to the strongly continuous
unitary groups yj 7→ U(0, . . . , 0, yj , 0, . . . , 0), Aj : D → D and [Aj , Ak] = 0 in D. We

write in this case U(y) = eiyA = ei
∑d
j=1 yjAj .

2.5.2 Weyl’s Criterion and the Min-Max Principle

The Spectral Theorem 2.8 gives us precise information on how general self-adjoint oper-
ators look like. In this section, we use this information to characterize the essential and
(part of) the discrete spectrum of a general self-adjoint operator. The essential spectrum
is described by Weyl’s criterion. To describe the part of the discrete spectrum that lies
below the essential spectrum, the min-max principle is useful.

Before we start and prove Weyl’s criterion, we need the following preparation.

Lemma 2.9. Let Af : D(Af ) → L2(Ω,B(Ω), µ) be the self-adjoint multiplication op-
erator on L2(Ω,B(Ω), µ) that multiplies with the measurable function f : Ω → R on
D(Af ) = {ψ ∈ L2(Ω,B(Ω), µ) : fψ ∈ L2(Ω,B(Ω), µ)}. Then

σ(Af ) =
{
λ ∈ R : ∀ε > 0 we have µ(f−1

(
(λ− ε;λ+ ε)

)
> 0)

}
= ess-ran(f)

Proof. We show that ρ(Af ) ∩ R = R \ ess-ran(f). Indeed, λ ∈ R \ ess-ran(f) if and
only if there exists some ε0 > 0 such that µ(f−1

(
(λ − ε0;λ + ε0)

)
= 0. But this means

that the measurable function x 7→ gλ(x) = (f(x)− λ)−1 is bounded by |gλ(x)| ≤ ε−1
0 for

µ a.e. x ∈ Ω. Hence, the multiplication operator that multiplies by gλ defines a bounded
operator on L2(Ω,B(Ω), µ) that inverts Af − λ, that is λ ∈ ρ(Af ).

Conversely, if λ ∈ ρ(Af ) ∩ R, then the resolvent (Af − λ)−1 exists and is bounded.
By definition of Af , the resolvent is equal to multiplication by gλ. But then, there must
exist some ε0 > 0 such that µ(f−1

(
(λ−ε0;λ+ε0)

)
= 0: otherwise, we get a contradiction

to the boundedness of gλ by evaluating the norm of gλψε for

ψε =
χ(f−1

(
(λ− ε;λ+ ε))

µ(f−1
(
(λ− ε;λ+ ε)

) ∈ L2(Ω,B(Ω), µ).

Indeed, we have that ‖gλψε‖2 ≥ ε−1‖ψε‖2 = ε−1, for each ε > 0.

Let A : D(A)→ H be self-adjoint on the Hilbert space H. We call (ψn)n∈N in D(A) a
Weyl sequence for A and λ ∈ R if ‖ψn‖H = 1 for all n ∈ N and limn→∞ ‖(A−λ)ψn‖H = 0.
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Theorem 2.16 (Weyl’s Criterion). Let A : D(A) → H be self-adjoint. Then λ ∈ σ(A)
if and only if there exists a Weyl sequence for A and λ. Moreover, λ ∈ σess(A) if and
only if there exists a Weyl sequence for A and λ that converges weakly to zero.

Proof. Without loss of generality we can consider a multiplication operator Af on the
Hilbert space H = L2(Ω,B(Ω), µ), as in Lemma 2.9.

Assume first that λ ∈ σ(Af ). If ker(Af − λ) 6= {0}, we can choose ψn = ψ ∈
ker(Af − λ) for all n ∈ N and a fixed, normalized ψ ∈ ker(Af − λ) to obtain a Weyl
sequence for A and λ. If we assume in addition to ker(Af − λ) 6= {0} that λ ∈ σess(Af ),
we have either dim ker(Af − λ) = ∞ or that λ is not isolated in σ(Af ). In the first
case we can find an orthonormal Weyl sequence of eigenvectors of Af , which converges
weakly to zero. In the second case, we can construct a monotonically decreasing and
positive sequence (εn)n∈N with limn→∞ εn = 0 as follows. Defining

Ωn = f−1
(
(λ− εn, λ+ εn)

)
such that Ωn+1 ⊂ Ωn, we choose (εn)n∈N s.t. µ(Ωn \ Ωn+1) > 0. Indeed, if for some
fixed n0, µ(Ωn0 \ Ωn0+1) = 0 for every choice of εn0+1 > 0, this would imply that
µ(f−1

(
(λ − εn0 , λ + εn0) \ {λ}

)
= 0 by monotonicity of µ. This, in turn, would imply

that λ is isolated in σ(A): for every ν ∈ (λ − εn0 , λ + εn0) \ {λ}, we can find δ > 0
so that (ν − δ, ν + δ) ⊂ (λ − εn0 , λ + εn0) \ {λ} so that µ(f−1(ν − δ, ν + δ)) = 0 and
thus σ(Af ) ∩ ((λ− εn0 , λ+ εn0) \ {λ}) = ∅. But we excluded in the beginning that λ is
isolated. Hence, let us choose (εn)n∈N as claimed, then the sequence (ψn)n∈N defined by

ψn = ‖χΩn\Ωn+1
‖−1

2 χΩn\Ωn+1
∈ D(Af )

is an orthonormal Weyl sequence due to ‖(A−λ)ψn‖ ≤ εn → 0 as n→∞. Since it is an
orthonormal sequence, it also converges weakly to zero. Next, assume that λ ∈ σ(Af )
and ker(Af − λ) = {0} so that λ ∈ σess(Af ). Note that λ is not isolated in this case
(why? ). Thus, we can repeat the previous argument and choose Ωn and ψn, n ∈ N to
find a Weyl sequence that converges weakly to zero.

In summary, we have proved that λ ∈ σ(Af ) implies that there exists a Weyl sequence
for Af and λ and that the sequence converges weakly to zero if λ ∈ σess(Af ).

Conversely, assume that (ψn)n∈N is a Weyl sequence for Af and λ. Then, we claim
that λ can not lie in ρ(Af ). In fact, if we assume that λ ∈ ρ(Af ), then
(A− λ)−1 : H → D(Af ) is bounded. But this yields a contradiction, because

1 = ‖ψn‖2 ≤ ‖Rλ(Af )‖L(H)‖(Af − λ)ψn‖2 → 0 (n→∞).

Finally, if the Weyl sequence converges weakly to zero, we claim that λ 6∈ σd(Af ).
Indeed, assuming that λ ∈ σd(Af ), let us denote by Pλ the orthogonal projection onto
the finite dimensional subspace ker(Af − λ). Notice that Pλ is equal to the operator
that multiplies by χf−1({λ}) (this is true for all eigenvalues λ of A, independently of their
multiplicity): if Afψ = fψ = λψ, ψ must have support in f−1({λ}), so that

ker(Af − λ) =
{
χf−1({λ})ψ : ψ ∈ D(Af )

}
.
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Now let P⊥λ = 1 − Pλ, then the previous observation and the assumption that λ is
an isolated point in the spectrum imply that

(P⊥λ ψ)(x) = χR\f−1({λ})(x)ψ(x) = χR\f−1((λ−δ;λ+δ))(x)ψ(x) (2.20)

µ− a.s. for some δ > 0. Indeed, for ε > 0 small enough, we know that

σ(Af ) ∩ (λ− ε;λ+ ε) \ {λ} = ∅.

Using the characterization σ(Af ) = ess-ran(f), a standard compactness argument and
the subadditivity of µ, this shows that

µ
(
f−1

(
[λ− δ′, λ− ε′] ∪ [λ+ ε′, λ+ δ′]

))
= 0

for suitable δ′ > 0 fixed and for every ε′ > 0 sufficiently small. By continuity of µ, this
yields µ(f−1 ([λ− δ′, λ+ δ′] \ {λ})) = 0 and thus (2.20).

From (2.20), we conclude that for all n ∈ N, we have that

‖(Af − λ)P⊥λ ψn‖2 ≥ δ‖P⊥λ ψn‖

and therefore

lim
n→∞

‖P⊥λ ψn‖ ≤ δ−1 lim
n→∞

‖(Af − λ)P⊥λ ψn‖2 ≤ δ−1 lim
n→∞

‖(Af − λ)ψn‖2 = 0.

Now, Pλ projects onto a finite dimensional space and (Pλψn)n∈N is a bounded sequence,
‖Pλψn‖ ≤ 1 for all n ∈ N: it has in particular a strongly convergent subsequence.
Since (P⊥λ ψn)n∈N converges strongly to zero, this means that (ψn)n∈N has a strongly
convergent subsequence and its limit must be zero, since (ψn)n∈N converges weakly to
zero, by assumption. But ‖ψn‖2 = 1 for all n ∈ N, a contradiction. Given a Weyl
sequence weakly converging to zero, we must therefore have λ ∈ σess(Af ).

Remark. Observe that the proof implies that for λ ∈ σess(A), we find an orthonormal,
and consequently weakly convergent, Weyl sequence for A and λ.

Problem 2.21. Consider the self-adjoint operators −∆ : H2(Rd)→ L2(R2) and |X|2 =
Af : D(Af ) → L2(Rd) for f(x) = |x|2. Prove that σ(−∆) = σess(−∆) and σ(|X|2) =
σess(|X|2). Determine in both cases the spectrum explicitly.

Weyl’s criterion characterizes the essential spectrum of a self-adjoint operator. This
part of the spectrum is closely related to the concept of asymptotic completeness in
scattering theory; see [57] for a thorough discussion. In the many-body examples dis-
cussed in these notes, on the other hand, we are primarily interested in situations where
the Hamiltonian has purely discrete spectrum and a fundamental task in quantum me-
chanics is then to determine the different energy levels, that is the eigenvalues of the
Hamiltonian. Since an exact calculation of the spectrum is in general out of reach,
one needs methods to approximate the eigenvalues. A particularly useful criterion to
estimate eigenvalues is the Min-Max Principle.
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Theorem 2.17 (Min-Max Principle). Let A : D(A) → H be self-adjoint and such that
〈ψ,Aψ〉H ≥ C‖ψ‖2H for all ψ ∈ D(A) and some C ∈ R . Define λk ∈ R, k ∈ N, by

λk = inf
V⊂D(A),
dim(V )=k

max
ψ∈V,
‖ψ‖H=1

〈ψ,Aψ〉

such that (λk)k∈N is a monotonically increasing sequence and bounded below by C. Then

i) The following holds true for every k ∈ N: we have that λk ∈ σ(A) and if there
exists some j ≥ k such that λj < λj+1, then λ1, . . . , λk are discrete eigenvalues of
A, counted with multiplicity.

ii) We have that E0 = inf σess(A) = limk→∞ λk and the spectrum below E0 is given
by σ(A) ∩ (−∞;E0) = {λk : k ∈ N} ∩ (−∞;E0). In particular, if E0 = ∞, then
σ(A) = σd(A) = {λk : k ∈ N} and σess(A) = ∅.

Remarks:

1) In the context of quantum mechanics, the first min-max value
λ1 = infψ∈D(A),‖ψ‖H=1〈ψ,Aψ〉 is called the ground state energy of the Hamiltonian
A. It describes the lowest possible energy the system can have.

2) Let A : D → H and B : D → H be self-adjoint and suppose that A ≤ B. Denote by
(λk)k∈N the min-max values of A and by (µj)j∈N those of B. Then λk ≤ µk for all
k ∈ N.

Corollary 2.5. If λk → ∞ as k → ∞, then there exists an orthonormal eigenbasis of
A and (A− C + 1)−1 : H → D(A) ⊂ H is a compact operator.

Proof. By the spectral theorem and the min-max theorem, we have a spectral decom-
position of A into the countable sum

A =

∞∑
k=1

λk|ϕk〉〈ϕk| (2.21)

for an orthonormal sequence (ϕk)k∈N of eigenvectors of A. Indeed, by the spectral
theorem, we can assume that A corresponds to multiplication by some f : Ω → R on
a measure space (Ω,B(Ω), µ). The spectrum σ(A) of A is the essential range of f and
by assumption, it is purely discrete, σ(A) = σd(A). By definition of the essential range,
one can verify with a simple covering argument that µ(f−1(R \ σd(A))) = 0 so that

f(x) =
∑

λ∈σd(A)

f(x)χf−1({λ}(x) =
∑

λ∈σd(A)

λχf−1({λ}(x) for µ− a.e. x ∈ Ω.

Since the eigenspace Eig(λk) of A for λk is finite dimensional and equal to

Eig(λk) =
{
ψ ∈ L2(dµ) : ψ = ψχf−1({λk} µ− a.s.

}
,
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we obtain the representation (2.21). Analogously, for any ψ ∈ L2(dµ), we have that

ψ(x) =
∑

λ∈σd(A)

ψ(x)χf−1({λ}(x) for µ− a.e. x ∈ Ω,

so that the (ϕk)k∈N form an orthonormal basis, that is H = span(ϕk : k ∈ N).
For the compactness of (A− C + 1)−1, we use the spectral decomposition

(A− C + 1)−1 =
∞∑
k=1

(λk − C + 1)−1|ϕk〉〈ϕk|.

If (ψn)n∈N is a sequence in H such that ‖ψn‖H ≤ 1 for all n ∈ N, then for some
subsequence ψnj ⇀ ψ ∈ H as j → ∞ for some weak limit ψ ∈ H. In particular, we
obtain that |〈ψnj , ϕk〉H|2 → |〈ψ,ϕk〉H|2 for every fixed k ∈ N. But then

∥∥ 1

A− C + 1
(ψnj − ψ)

∥∥2

H ≤
∑
k≥k0

|〈ψnj − ψ,ϕk〉H|2

(λk0 − C + 1)2
+
∑
k<k0

|〈ψnj − ψ,ϕk〉H|2

(λk − C + 1)2

≤ 4

(λk0 − C + 1)2
+
∑
k<k0

|〈ψnj − ψ,ϕk〉H|2

(λk − C + 1)2
→ 4

(λk0 − C + 1)2

as j →∞. Since λk0 →∞ as k0 →∞, this implies the compactness of (A−C+1)−1.

Proof of Theorem 2.17. i) We proceed by induction and start with the case k = 1. We
claim that λ1 = inf σ(A) ∈ σ(A). Indeed, A is bounded from below by λ1 and therefore
σ(A) ⊂ [λ1,∞). On the other hand, λ1 ∈ σ(A): if A corresponds to multiplication by f
in L2(dµ), via the spectral theorem, then λ1 must be in the essential range of f , because
otherwise µ(f−1(λ1 − ε, λ1 + ε)) = 0 for some ε > 0 which would imply A ≥ λ1 + ε (a
contradiction to the definition of λ1).

Now, assume λ1 ∈ σess(A). Then we can find an orthonormal Weyl sequence (ψn)n∈N
for λ1, as in the proof of Weyl’s criterion. Choosing a suitable subsequence, we find for
every j ≥ 1 and δ > 0 a (j + 1)-dimensional subspace

V = span(ψnl : l = 1, . . . , j + 1)

on which
〈ψ,Aψ〉H ≤ λ1 + δ

for every ψ ∈ V with ‖ψ‖H = 1. Indeed, given δ > 0, we choose the nl so large s.t.

‖(A− λ1)ψnl‖ <
δ√
j + 1

.

For a normalized vector ψ =
∑j+1

l=1 αlψnl with 1 = ‖ψ‖2 =
∑j+1

l=1 |αl|
2, this implies

|〈ψ,Aψ〉H − λ1| ≤ max
s=1,...,j+1

‖(A− λ1)ψns‖
j+1∑
l=1

|αl| < δ.
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The existence of such a subspace implies that

λ1 ≤ λj+1 ≤ sup
ψ∈V :‖ψ‖H=1

〈ψ,Aψ〉H ≤ λ1 + δ.

Since δ > 0 was arbitrary, we conclude that λ1 = λj+1 for every j ≤ 1. By contraposition,
if there exists j ≥ 1 such that λ1 < λj+1, we must have λ1 ∈ σd(A).

Consider now the inductive step. If λk+1 = λk, then λk+1 ∈ σ(A). If λk < λk+1,
then λ1, . . . , λk are discrete eigenvalues of A counted with multiplicity, by the inductive
assumption. Similarly, if we assume λj < λj+1 for some j ≥ k + 1, the inductive
assumption implies that λ1, . . . , λk are eigenvalues of A counted with multiplicity. In
each of the two cases, this means that we find Vk = span(ϕ1, . . . , ϕk) a k-dimensional
subspace in D(A) spanned by orthonormal eigenvectors corresponding to the first k
min-max values λ1, . . . , λk. We then define the operator

A(k) = (A)|D(A)∩V ⊥k
: D(A) ∩ V ⊥k → H∩ V ⊥k

and check as an exercise that A(k) is self-adjoint as an operator acting on a dense domain
in H ∩ V ⊥k (the key observation is that A leaves Vk and V ⊥k invariant). Now, we claim
that the min-max values (νi)i∈N of A(k) satisfy νi = λk+i for every i ∈ N.

We verify this for ν1 - the general case is left as an exercise. To show that ν1 = λk+1

let us first exclude that ν1 < λk+1. For if ν1 < λk+1, just pick some normalized vector
ϕk+1 ∈ V ⊥k with 〈ϕ,Aϕ〉H < λk+1. If λk < λk+1, this yields a contradiction to the
definition of λk+1 by controlling A in form sense on the (k + 1)-dimensional subspace
span(Vk ∪ {ϕ}) ⊂ H. Recall here that for a vector

∑k
j=1 αjψj + βϕk+1, we have

〈∑
j=1

αjψj + βϕk+1, A

(∑
j=1

αjψj + βϕk+1

)〉
=

k∑
j=1

λj |αj |2 + β2〈ϕk+1, Aϕk+1〉,

by orthonormality. Thus, we have ν1 ≥ λk+1 and we can also exclude that ν1 > λk+1.
For if the latter was true, there must exist some normalized ϕ ∈ V ⊥k with 〈ϕ,Aϕ〉H < ν1,
contradicting the definition of ν1. The existence of such a ϕ follows by observing that
ν1 > λk+1 implies that we find a (k + 1)-dimensional subspace Wk+1 on which

〈ψ,Aψ〉H ≤ λk+1 + δ < ν1

for normalized ψ ∈ Wk+1 and small δ > 0, by definition of λk+1. If Pk : Wk+1 → Vk
denotes the orthogonal projection into Vk, then k+1 = dim ker(Pk)+dim ran(Pk), where
dim ran(Pk) ≤ k and where ker(Pk) ⊂ V ⊥k , hence the claim.

In conclusion, ν1 = λk+1 ∈ σ(A(k)), by the inductive assumption. Hence, by the
characterization of σ(A) through Weyl sequences and by definition of A(k), we conclude
λk+1 ∈ σ(A). If in addition λj < λj+1 for some j ≥ k + 1, then this means that
νj < νj+1 for some j ≥ 1 (by λk+i = νi), and the inductive assumption implies that ν1

is an eigenvalue of A(k) so that λk+1 is an eigenvalue of A and we find an eigenfunction
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in V ⊥k . This means that λ1, . . . , λk+1 are eigenvalues of A counted with multiplicity and
it concludes the inductive step. This proves i).

ii) Let’s start to prove that λk ≤ E0 for all k ∈ N. We may assume that E0 < ∞,
otherwise there is nothing to prove. Since σd(A) consists of isolated eigenvalues of A,
σess(A) is closed (exercise) and hence E0 ∈ σess(A). From the proof of Theorem 2.16,
we find an orthonormal Weyl-sequence (ψn)n∈N with ‖ψn‖2 = 1 for all n ∈ N s.t.

lim
n→∞

|〈ψn, (A− E0)ψn〉| ≤ lim
n→∞

‖(A− E0)ψn‖2 = 0.

Choosing for small δ > 0, as in the proof of i), a suitable finite subsequence (ψn)n0≤n≤N0

for sufficiently large n0, N0 ∈ N, we conclude

λk ≤ E0 + max
ψ∈span({ψn:n0≤n≤N0}),

N0−n0≥k,‖ψ‖2=1

〈ψ, (A− E0)ψ〉 ≤ E0 + δ

Hence, λk ≤ E0 for all k ∈ N. Note that trivially λk ∈ σd(A) if λk < E0.
Now let us prove that λ∞ = limk→∞ λk = E0. If λ∞ < E0, then λ∞ ∈ σd(A)

(note that λ∞ ∈ σ(A) by closedness of the spectrum). In particular, λ∞ is isolated
so that (λk)k∈N must be constant, up to finitely many terms. Assume w.l.o.g. that
λk = λ∞ for all k ∈ N. As in i), we restrict A to U = Eig(λ∞)⊥ and conclude that
ν1 = λdim(Eig(λ∞))+1 = λ∞ ∈ σ(A|U ). Now, λ∞ 6∈ σess(A|U ) ⊂ σess(A), but this means
we find an eigenvector of A in the orthogonal complement of Eig(λ∞), a contradiction.

Finally, let’s prove that {λk : k ∈ N} ∩ (−∞, E0) = σ(A) ∩ (−∞, E0). Part i) and
the arguments from above show that {λk : k ∈ N} ⊂ σ(A) ∩ (−∞, E0]. Conversely,
let µ ∈ σ(A) ∩ (−∞, E0). This means by definition of E0 that µ ∈ σd(A). What we
need to show is that µ ∈ σd(A) implies that µ is equal to some λk < E0. We certainly
have µ ≥ λ1 and µ ≤ λk0 for some k0 ∈ N, because µ < limk→∞ λk = E0. Then either
µ ∈ {λ1, . . . , λk0} or there are min-max values λl < µ < λl+1. But the latter contradicts
the definition of λl+1 by evaluating A in form sense in the (l + 1)-dimensional space
formed by the orthonormal eigenvectors related to the eigenvalues λ1, . . . , λl and µ.

Problem 2.22. Prove that A(k) is self-adjoint and that νi = λk+i, ∀ i ∈ N.

The Weyl criterion and the Min-Max Principle are quite useful tools for studying the
spectrum of a self-adjoint operator. One consequence is the discreteness of the spectrum
of Hamiltonians with trapping potentials. The picture is that a potential that grows to
infinity as |x| → ∞ makes it impossible for the particles to escape to infinity, that is,
they are effectively trapped in some finite region Ω ⊂ Rd.

Corollary 2.6. Let H = −∆ +V : D(H)→ L2(Rd) be self-adjoint, where V ∈ L∞loc(Rd)
is a locally bounded potential satisfying V (x) → ∞ as |x| → ∞. Then, the min-max
values λk(H) of H satisfy λk(H)→∞ as k →∞ and σess(H) = ∅.

Remark 2.1. Recall from Proposition 2.5 that H|C∞c (Rd) is self-adjoint.

Remark 2.2. The corollary implies σ(−∆+ |X|2) = σd(−∆+ |X|2) (cf. Problem 2.21).

54



Proof. Assume w.l.o.g. that V ≥ 0 and denote by (λk)k∈N the min-max values of H. We
assume by contradiction that limk→∞ λk = λ∞ = inf σess(−∆ + V ) < ∞. By Theorem
2.16, there exists a Weyl sequence (ψn)n∈N for H and λ∞ that converges weakly to zero.
In particular, we have that

lim
n→∞

[ ∫
Rd
dx
[
|∇ψn(x)|2 + V (x)|ψn(x)|2

]
− λ∞

]
= 0.

This implies that (ψn)n∈N is bounded in H1(Rd). Now fix some R > 0 and denote by
ϕR ∈ C∞c (BR(0)) ⊂ C∞c (Rd) a smooth, compactly supported and non-negative function
which is bounded by one and which is s.t. ϕR(x) = 0 for all |x| > 2R and ϕR(x) =
1 if |x| ≤ R/2. We consider (ψnϕR)n∈N in H1(Rd) and conclude from the Rellich-
Kondrashov compactness theorem (see e.g. [40, Theorem 8.9]) that (ψnϕR)n∈N has a
strongly convergent subsequence in L2(Rd), denoted again by (ψnϕR)n∈N. Since the
weak limit of (ψn)n∈N in L2(Rd) is zero, we must have limn→∞ ψnϕR = 0 in L2(Rd).
But we also have that∫

Rd
dx (1− ϕR)|ψn(x)|2 ≤

∫
Rd dx V (x)|ψn(x)|2

inf |x|≥R/2 V (x)
≤ C

inf |x|≥R/2 V (x)

for some constant C > 0 which is independent of n ∈ N. Choosing first R > 0 and then
n ∈ N sufficiently large, shows that 1 = ‖ψn‖2 → 0 as n → ∞: a contradiction. As a
consequence, we conclude that inf σess(−∆ + V ) =∞, that is σess(−∆ + V ) = ∅.

2.5.3 Existence and Uniqueness of Ground States

We have seen in Corollary 2.6 that Hamiltonians with trapping potentials have purely
discrete spectrum. In this section, we use the functional calculus to show that the ground
state energy of such Hamiltonians is non-degenerate and that the ground state vector
can be chosen to be strictly positive. The result is sometimes also useful for proving the
uniqueness of minimizers of nonlinear functionals as illustrated in the next chapter.

Throughout this section, we work in the Hilbert space H = L2(Rd). We begin with
an abstract result which provides a strategy to prove the uniqueness and positivity of
eigenfunctions of Schrödinger operators. Sometimes this is referred to as the Perron-
Frobenius principle, in analogy to the well-known result from linear algebra. To state
and prove the theorem, we need to introduce some notation: f ∈ L2(Rd) is called positive
if f(x) > 0 for a.e. x ∈ Rd (it is called non-negative if f(x) ≥ 0 for a.e. x ∈ Rd). If
f is positive (non-negative), we write f > 0 (f ≥ 0). A bounded operator A ∈ L(H)
is called positivity preserving if Af ≥ 0 with Af 6≡ 0 whenever f ≥ 0 with f 6≡ 0 and
it is called positivity improving if f ≥ 0 with f 6≡ 0 implies that Af > 0 is positive.
Finally, A ∈ L(H) is called real if it maps real functions to real functions. Notice that
a positivity improving operator is real: if ψ = ψ+ − ψ− is real and split into its positive
and negative parts, then Aψ = Aψ+ − Aψ− and both Aψ+, Aψ− ≥ 0. In particular,
they are real valued, so Aψ is real.
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Proposition 2.7. Let A ∈ L(H) be a self-adjoint and positivity improving operator.
Then, if λ = ‖A‖L(H) is an eigenvalue of A, it is simple and the corresponding normalized
eigenvector can be chosen to be positive.

Proof. Let ψ ∈ H denote a normalized eigenvector of A s.t. Aψ = λψ. Since A maps
real functions to real functions, the real and imaginary parts of ψ are also eigenvectors
of A with eigenvalue λ. Therefore, assume w.l.o.g. that ψ is real-valued and normalized.
We can decompose ψ into the sum of its positive and negative parts, ψ = ψ+ − ψ−
where ψ+ = max(ψ, 0) and ψ− = max(−ψ, 0). We claim that 〈ψ,Aψ〉H = 〈|ψ|, A|ψ|〉H.
Indeed, this follows from

λ = 〈ψ,Aψ〉H ≤ 〈|ψ|, |Aψ|〉H = 〈|ψ|, |Aψ+ −Aψ−|〉H ≤ 〈|ψ|, A|ψ|〉H ≤ ‖A‖L(H) = λ

where we used that |ψ| = ψ+ + ψ−. Thus 〈ψ,Aψ〉H = 〈|ψ|, A|ψ|〉H and we find that

〈ψ+, Aψ−〉H =
1

4
〈(|ψ|+ ψ), A(|ψ| − ψ)〉H =

1

4
〈|ψ|, A|ψ|〉H −

1

4
〈ψ,Aψ〉H = 0.

Since A is positivity improving and the inner product of a non-negative, not identically
vanishing function with a positive function is positive, we conclude that either ψ = ψ+

or ψ = ψ−. Let’s assume for definiteness that ψ = ψ+ and ψ− = 0. Then, this
implies ψ = ‖A‖−1

L(H)Aψ > 0. Hence, every real eigenfunction of A with eigenvalue λ is
positive, up to multiplication by a constant. If we assume that there are two different
real eigenfunctions ψ1, ψ2 with eigenvalue λ, we may assume w.l.o.g. that they are
orthogonal, but two positive functions in L2(Rd) are never orthogonal. We conclude
that λ is simple and we can choose the eigenvector to be positive.

Proposition 2.7 is a statement about bounded self-adjoint operators. Of course, the
operators that we typically analyze are not bounded. However, as already used in the
proof of the spectral theorem, we can also obtain information about the ground state
vector of a self-adjoint operator by considering its resolvent.

Proposition 2.8. Let A : D(A)→ H be self-adjoint operator so that λ = inf σ(A) ∈ R
is an eigenvalue of A (in particular A ≥ λ is semi-bounded). Assume moreover that{

e−tA : t ∈ [0,∞)
}
⊂ L(H)

is a family of positivity improving operators. Then, λ0 is a simple eigenvalue of A and
the corresponding eigenvector is positive, after multiplication by a constant phase.

Proof. Let µ < λ. An application of the spectral theorem 2.8 proves the useful formula

〈ψ, (A− µ)−1ϕ〉H =

∫ ∞
0
〈ψ, e−(A−µ)tϕ〉H dt =

∫ ∞
0

eµt〈ψ, e−Atϕ〉H dt (2.22)

for all ψ,ϕ ∈ H. Fixing ϕ ≥ 0, the assumption on
{
e−tA : t ∈ [0,∞)

}
⊂ L(H) and (2.22)

show that (A − µ)−1 ∈ L(H) is positivity improving, because ψ ≥ 0 is arbitrary. Now,
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if ψ is an eigenvector of A with eigenvalue λ, then ψ is also an eigenvector of (A− µ)−1

with eigenvalue (λ− µ)−1. But we have for any ϕ ∈ H that

0 ≤ 〈ϕ, (A− µ)−2ϕ〉H ≤ (λ0 − µ)−1〈ϕ, (A− µ)−1)ϕ〉H ≤ (λ− µ)−2‖ϕ‖2H

Hence, ‖(A− µ)−1)‖L(H) = (λ− µ)−1 so that Proposition 2.7 implies the claim.

The crucial assumption of Proposition 2.8 is that the semigroup{
e−tA : t ∈ [0,∞)

}
⊂ L(H)

is positivity improving. The basic example of such a family is given by the one induced
by the Schrödinger operator of non-interacting particles.

Example 2.21. Consider −∆ : H2(Rd)→ L2(Rd). Then {e−t(−∆) : t ∈ [0,∞)} ⊂ L(H)
is a family of positivity improving operators. In fact, using that the inverse Fourier
transform of a Gaussian is again a Gaussian, we find for all ϕ ∈ H2(Rd) that

e−t(−∆)ϕ(·) =
1

(4πt)d/2

∫
Rd
e−| ·−y|

2/4tϕ(y) dy = (2πt)−d/2(e−| · |
2/(2t) ∗ ϕ)

Hence, e−t(−∆) acts as a convolution with a positive function and is positivity improving.
Notice that [0,∞) 3 t 7→ ψt = e−t(−∆)ϕ solves the heat equation:{

∂tψt = ∆ψt,

(ψt)|t=0 = ϕ.

From the fact that a typical Hamiltonian has the form H = −∆ + V with a mul-
tiplication operator V , and the fact that the operators

{
e−t(−∆) : t ∈ [0,∞)

}
⊂ L(H)

are positivity improving, one may expect that also e−tH is positivity improving under
suitable assumptions on V . To show this, we use the Trotter product formula, which
enables us to compute the exponential of H = −∆ + V in terms of e−t(−∆) and e−V .

Theorem 2.18 (Trotter-Product Formula). Let A : D(A)→ H, B : D(B)→ H be self-
adjoint operators on a Hilbert space H. Assume that A,B are bounded from below and
that A+B is self-adjoint on D = D(A) ∩D(B). Then it holds true that

e−(A+B)tψ = lim
n→∞

(e−At/ne−Bt/n)nψ

for every ψ ∈ D and t ∈ [0,∞).

Proof. Suppose w.l.o.g. that A,B ≥ 0, such that the norms of the operators e−As ∈ L(H),
e−Bs ∈ L(H) and e−(A+B)s ∈ L(H) are all bounded by one, uniformly in s ∈ [0,∞).

For ψ ∈ D and t ∈ [0,∞), we write[
(e−At/ne−Bt/n)n − (e−(A+B)t/n)n

]
ψ

=

n−1∑
k=0

[
e−At/ne−Bt/n

]k[
e−At/ne−Bt/n − e−(A+B)t/n

][
e−(A+B)t/n

]n−1−k
ψ.

(2.23)
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Note that e−As, e−Bs and e−(A+B)s, leave D invariant (e.g. by the spectral theorem), for
every s ∈ [0,∞). We thus conclude that∥∥[(e−At/ne−Bt/n)n − (e−(A+B)t/n)n

]
ψ
∥∥
H

≤ |t| sup
s∈[0,t]

∥∥(t/n)−1
[
e−At/ne−Bt/n − e−(A+B)t/n

]
e−(A+B)sψ

∥∥
H

(2.24)

Now, for every ϕ ∈ D = D(A) ∩D(B) = D(A+B), we have that

t−1(e−Ate−Bt − e−(A+B)t)ϕ

=
(1

t
(e−tA − 1)ϕ+ (e−tA − 1)

1

t
(e−Bt − 1)ϕ− 1

t
(e−(A+B)t − 1)ϕ

)
=

∫ 1

0
dx e−AtxAϕ+ (e−tA − 1)

∫ 1

0
dx e−BtxBϕ−

∫ 1

0
dx e−(A+B)tx(A+B)ϕ.

This implies for every ϕ,ψ ∈ D and every s ∈ [0,∞) that

lim
t→0

t−1
[
e−Ate−Bt − e−(A+B)t

]
e−(A+B)sψ = 0.

On the other hand, an application of the uniform boundedness principle implies that

sup
t≥0
‖t−1(e−Ate−Bt − e−(A+B)t)ψ‖ ≤ C‖ψ‖D

for ‖ψ‖D = ‖ψ‖H+‖(A+B)ψ‖H. For fixed t ≥ 0 and ψ ∈ D,
{
e−(A+B)sψ : s ∈ [0, t]

}
⊂ D

is compact in D equipped with ‖ψ‖D (recall that D then becomes a Banach space by
closedness of A+B): it is the image of the compact set [0, t] under the continuous map
R 3 τ 7→ e−(A+B)τψ ∈ (D, ‖ · ‖D). Combining a simple covering argument with the two
previous observations thus implies the uniform convergence

lim
t→0

sup
s∈[0,t]

∥∥(t/n)−1
[
e−At/ne−Bt/n − e−(A+B)t/n

]
e−(A+B)sψ

∥∥
H

= 0.

The next corollary shows that trapping Hamiltonians have unique ground states.

Corollary 2.7. Let H = −∆ + V : D(H) → L2(Rd) be self-adjoint, let V ∈ L∞loc(Rd)
bounded from below and assume that C∞c (Rd) is a core for H. Suppose, moreover, that
λ = inf σ(H) ∈ R is an eigenvalue of H. Then, inf σ(H) is a simple eigenvalue and the
corresponding eigenvector is positive after multiplication by a constant phase.

Proof. Assume w.l.o.g. V ≥ 0. By Proposition 2.8, the claim follows if{
e−Ht : t ∈ [0,∞)

}
⊂ L(H)

is a family of positivity improving maps. To apply the Trotter-Product Formula 2.18,
we first approximate H by Hn = −∆ + Vn where Vn = V χ

(
V −1([0, n])

)
∈ L∞(Rd).
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Then Hn : H2(Rd) → L2(Rd) is self-adjoint and essentially self-adjoint on C∞c (Rd) for
all n ∈ N by Theorem 2.4. Moreover, the Trotte product formula 2.18 and Example 2.21
imply that e−Hnt is positivity improving for every n ∈ N and t ∈ [0;∞). Indeed, for
ψ ∈ H2(Rd) such that ψ ≥ 0, ψ 6≡ 0, we have that(

(e−(−∆)t/me−Vnt/m)mψ
)
(x) ≥ e−nt

(
e−(−∆)tψ

)
(x) > 0 (for a.e. x ∈ Rd),

uniformly in m ∈ N, which follows from Example 2.21 and the fact that |Vn| ≤ n .
We would like to use this to show that e−Ht ∈ L(H) is positivity improving, too. To

this end, let’s first show that e−Hnt converges strongly to e−Ht. Applying the monotone
convergence theorem, we find limn→∞ ‖(H −Hn)ψ‖H = 0 for any ψ ∈ C∞c (Rd). Thus

0 ≤ lim
n→∞

‖(H − z)−1ψ − (Hn − z)−1ψ‖H ≤ | Im z|−1 lim
n→∞

‖(H −Hn)(H − z)−1ψ‖H = 0

for any z ∈ C with Im z 6= 0 and any ψ ∈ (H − z)(C∞c (Rd)). Here, we used that
‖(Hn−z)−1‖L(H) ≤ | Im z|−1, uniformly in n ∈ N. Notice also that (H−z)(C∞c (Rd)) ⊂ H
is dense (for Im(z) 6= 0), because C∞c (Rd) is a core for H. As a consequence

lim
n→∞

‖(H − z)−1ψ − (Hn − z)−1ψ‖H = 0

for all ψ ∈ H. From the strong convergence of the resolvents, we obtain the strong
convergence of the operator exponentials as follows: recall that the Stone-Weierstrass
theorem 2.24 implies that the C∗-subalgebra of C∞(R) = {f ∈ C(R) : lim|x|→∞ f(x) =
0} that is generated by x 7→ (x−i)−1 and x 7→ (x+i)−1 is dense in C∞(R), equipped with
the sup-norm. Indeed, we observed already in the chapter about the spectral theorem
that this subalgebra separates points and is closed under conjugation in

{f ∈ C(X) : f(±∞) = 0} ' C∞(R),

where X = R ∪ {±∞} = R denotes the extended reals (as a compactification of R).
Now, we know that Hn ≥ Vn ≥ 0 by assumption on V and that H ≥ 0. A basic

application of the spectral theorem thus implies that

e−Ht = f(H)e−Ht and e−Hnt = f(Hn + n)e−Hnt

for every f ∈ C(R) which is such that f|[0,∞) = 1 and f|(−∞;−1) = 0. Since the map

R 3 x 7→ f(x)e−xt ∈ C∞(R), we can thus approximate e−Ht and e−Hnt strongly by
polynomials in (H − i)−1, (H + i)−1 and (Hn − i)−1, (Hn + i)−1, respectively, so that

lim
n→∞

‖e−Htψ − e−Hntψ‖H = 0 (2.25)

for every ψ ∈ H and t ∈ [0,∞). Since zero can not be an eigenvalue of e−Ht (exercise),
this shows that e−Ht is positivity preserving for every t ∈ [0,∞).

What remains is to show is the stronger statement that e−Ht is in fact positivity
improving. Here, we argue as follows. Let ψ ≥ 0, ψ 6≡ 0, and suppose ϕ ≥ 0 is such that
〈ϕ, e−Htψ〉 = 0 for all t ≥ 0. Then, as a function in L2(Rd), we have that

ϕe−Htψ = 0 ∈ L2(Rd).
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Hence, also (eVntϕ) e−Htψ = 0 for all n ∈ N and all t ≥ 0. Invoking the Trotter-Product
Formula, Theorem 2.18, again, we deduce that

〈e−(H−Vn)tϕ, e−Htψ〉H = lim
k→∞

〈(
e−Ht/keVnt/k

)k
ϕ, e−Htψ

〉
H = 0

and, arguing as in the previous step (exercise), this implies that

〈e∆tϕ, e−Htψ〉H = 0

for every t ≥ 0. If ϕ 6≡ 0, then e∆tϕ(x) > 0 for a.e. x ∈ Rd, so 〈e∆tϕ, e−Htψ〉H > 0 (e−Ht

is positivity preserving). Hence, we must have ϕ = 0.
In conclusion, we have proved for ψ ≥ 0, ψ 6≡ 0 that

ϕ ≥ 0 ∧ 〈ϕ, e−Htψ〉 = 0 ∀ t ≥ 0 =⇒ ϕ = 0.

Choosing ϕ = χ{x∈Rd: e−Htψ(x)≤0} (= χ{x∈Rd: e−Htψ(x)=0} a.s.), we get e−Htψ > 0.

We conclude this section with an interesting corollary, which is related to the path
integral formulation of quantum mechanics - the Feynman-Kac formula. Our short
discussion of this result is a digression and we refer to [56, Chapter X.II] and [8] for
further details. Let us denote by µx the Wiener measure for one-dimensional Brownian
motion starting at x ∈ R. Wiener measure µx is a Gaussian probability measure and can
be defined on the space Ω = C([0;T ];R) ∩ {f ∈ C([0;T ];R) : f(0) = x} of continuous
functions7 starting at x ∈ R. As a Gaussian measure, it is characterized by its mean∫

Ω dµx ω(t) = x and its covariance, which is equal to

C(s, t) =

∫
Ω
dµx(ω)(ω(t)− x)(ω(s)− x) = min(s, t).

In other words, the random variables Ω 3 ω 7→ ω(t) ∈ R, defined on the probability
space (Ω,B(Ω), µx), are Gaussian with mean x and variance t. Moreover, given times
0 ≤ t0 < t1 < · · · < tn, the increments ω(t1)− ω(t0), ω(t2)− ω(t1), . . . , ω(tn)− ω(tn−1)
are independent. The stochastic process (ω(t))t∈[0;T ] is called Brownian motion.

Referring for the more technical aspects to basic courses on stochastic processes,
the measure µx can be constructed essentially as follows. Pick an orthonormal basis
(ϕk)k∈N of L2([0;T ]) and a sequence of independent standard Gaussian random variables
(Xk)k∈N, defined on some probability space (Ω,F ,P). For f ∈ L2([0;T ]) such that

f =
∑
k∈N

αkϕk with
∑
k∈N
|αk|2 = ‖f‖22,

the random variable
G(f) =

∑
k∈N

αkϕk

7This means that the push-forward measure `∗(µx) is a Gaussian measure on R, for any ` ∈ Ω∗.
Notice, for instance, that the Dirac-δ centered at t ∈ [0;T ] lies in δt ∈ Ω∗ for any t ∈ [0;T ].
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is a centered Gaussian random variable with variance

EG(f)2 = ‖f‖22.

Now, define (Bt)t∈[0;T ] by Bt = x+G(χ[0;t]), then it is straightforward to check that

• B0 = x P a.s.,

• finite linear combinations of the (Bt− x) are centered Gaussian random variables,

• E(Bt − x)(Bs − x) = min(s, t) for all s, t ∈ [0;T ].

One says the stochastic process (Bt)t∈[0;T ] defines a Gaussian process (the map G is an
isometry from L2 to a Gaussian space) and it is called pre-Brownian motion. It satisfies
all properties of Brownian motion mentioned earlier, except that the sample paths

[0;T ] 3 t 7→ Bt(λ) ∈ R

need not be continuous for P-a.e. λ ∈ Ω. With regards to the remaining properties,
notice for example that for s ≤ t < u, one has

E(Bu −Bt)Bs = min(u, s)−min(t, s) = 0,

which implies that Bu−Bt is independent of σ(Bs : s ≤ t) by basic properties of Gaussian
processes. In courses on stochastic processes, one then learns how to modify (Bt)t∈[0;T ]

to another process (ω(t))t∈[0;T ] such that

t 7→ ωt(λ) is continuous for every λ ∈ Ω and P({Bt = ωt}) = 1∀t ∈ [0;T ].

Wiener measure µx is then defined as the law (the push-forward measure) of the random
variable (Ω,F ,P) ∈ ω 7→

(
[0;T ] 3 t 7→ ωt ∈ C([0;T ];R)). For a detailed introductory

discussion of Brownian motion and their properties, see for example [33].
Assuming the existence of µx and (ω(t))t∈[0;T ] as above, we see that∫

Ω
dµx(ω)f(ω(t)) =

∫
R

e−(y−x)2/2t

√
2πt

f(y) dy

for every f ∈ L2(R). At the same time, we recognize that for a.e. x ∈ R, we have that∫
R

e−(y−x)2/2t

√
2πt

f(y) dy =
(
e−t(−∆/2)f

)
(x),

which relates Brownian motion to the free heat semigroup
{
e−t(−∆/2) : t ≥ 0

}
. The

Feynman-Kac formula tells us similarly how to compute
(
e−t(−∆/2+V )f

)
(x) for suitable

potentials V in terms of a path integral over the Wiener measure.

Corollary 2.8 (Feynman-Kac Formula). Let V ∈ Cc(R), then for all f ∈ L2(R)

(
e−t(−∆/2+V )f

)
(x) =

∫
Ω
dµx(ω)f(ω(t)) exp

(
−
∫ t

0
V (ω(s)) ds

)
.
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Proof. The proof follows from the Trotter-product formula (it is left as an exercise to
check that we may apply the formula). Indeed, we claim that((
e−(−∆/2)t/ne−V t/n

)n
f
)

(x) =

∫
R

∫
R
· · ·
∫
R
p(x;xn; t/n)p(xn;xn−1; t/n) . . . p(x2;x1; t/n)

× exp

(
− t

n

n∑
j=1

V (xj)

)
f(x1) dx1dx2 . . . dxn

=

∫
Ω

exp

(
− t

n

n∑
j=1

V (ω(jt/n))

)
f(ω(t)) dµx(ω),

(2.26)

where p denotes the heat kernel, i.e.

p(x; y; t) =
e−(x−y)2/2t

√
2πt

(
= p(x− y; 0; t) = p(0;x− y; t)

)
.

While the first equality follows simply by iteration (exercise), for the second equality

we use the fact that
(
ω((j + 1)t/n)−ω(jt/n)

)n−1

j=1
are i.i.d. Gaussian under µx with the

increment ω((j + 1)t/n)− ω(jt/n) having variance t/n for all j = 1, . . . , n. Indeed, let’s
verify the second step for n = 2 and leave the general case as an exercise. We compute∫

Ω
exp

(
− t

2
V (ω(t/2))− t

2
V (ω(t))

)
f(ω(t)) dµx(ω)

=

∫
Ω

exp

(
− t

2
V (ω(t/2))− t

2
V
(
(ω(t)− ω(t/2)) + ω(t/2)

))
f(ω(t)) dµx(ω)

=

∫
R

∫
R
p(y1;x; t/2)p(y2; 0; t/2) exp

(
− t

2
V (y1)− t

2
V (y2 + y1)

)
f(y2 + y1) dy1dy2

=

∫
R

∫
R
p(x;x2; t/2)p(x1;x2; t) exp

(
− t

2
V (x1)− t

2
V (x2)

)
f(x1) dx1dx2.

Generalizing the above computation to arbitrary n ∈ N, we conclude (2.26). Finally,
taking the limit n→∞ for a suitable subsequence on the l.h.s. by the Trotter formula
(to obtain the a.e. equality in L2(R)) and applying the dominated convergence theorem
on the r.h.s., using that V ∈ Cc(R) as well as

lim
n→∞

t

n

n∑
j=1

V (ω(jt/n)) =

∫ t

0
V (ω(s)) ds

for each path ω ∈ Ω, we conclude the theorem.

Remark. The Feynman-Kac formula is also valid in higher dimensions and with much
weaker assumptions on the potential, see e.g. [56, Theorem X.68]. For the sake of sim-
plicity, in Corollary 2.8, we focus on dimension one and potentials V ∈ Cc(R). For
interesting applications of the Feynman-Kac formula, see for instance [64].
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2.5.4 Quadratic Forms and Self-Adjoint Operators

In this section, we discuss basic results about quadratic forms. We show that every
closed, semibounded form corresponds to a unique self-adjoint operator. As a basic ap-
plication, we introduce the Laplacian with Dirichlet and Neumann boundary conditions.

Given a dense linear space of a Hilbert space H, we call a map q : Q(q)×Q(q)→ C
a quadratic form with form domain Q(q) if ϕ 7→ q(ϕ,ψ) is anti-linear and ψ 7→ q(ϕ,ψ)
is linear, for every ψ,ϕ ∈ Q(q). We say that q is non-negative if q(ψ,ψ) ≥ 0 for all
ψ ∈ Q(q) and, more generally, we call q semibounded if q(ψ,ψ) ≥ c‖ψ‖2H for some c ∈ R.

Finally, we say that q is symmetric if q(ψ,ϕ) = q(ϕ,ψ) for all ϕ,ψ ∈ Q(q).
In the setting of complex Hilbert spaces H, notice that a form is symmetric if it is

semibounded. Indeed, semiboundedness implies that q(ζ, ζ) ∈ R so that by polarization

4 q(ϕ,ψ) = q(ϕ+ ψ,ϕ+ ψ)− q(ϕ− ψ,ϕ− ψ)− iq(ϕ+ iψ, ϕ+ iψ) + iq(ϕ− iψ, ϕ− iψ)

= q(ψ + ϕ,ψ + ϕ)− q(ψ − ϕ,ψ − ϕ)− iq(ψ − iϕ, ψ − iϕ) + iq(ψ + iϕ, ψ + iϕ)

= 4 q(ψ,ϕ).

We call a semibounded quadratic form q : Q(q)×Q(q)→ C s.t. q(ϕ,ϕ) ≥ −M‖ϕ‖2H
closed if the form domain Q(q) is a Hilbert space when equipped with

〈ψ,ϕ〉+1 = q(ψ,ϕ) + (M + 1)〈ψ,ϕ〉H.

If q is closed and D ⊂ Q(q) is dense with respect to the induced norm ‖ · ‖+1, we call D
a form core for q. We say that q is closable if it has a closed extension. If q is closable
and has a smallest closed extension, we call the latter its closure.

Lemma 2.10. Let q : Q(q) × Q(q) → C be a semibounded quadratic form. Then q
is closed if and only if whenever (ψn)n∈N is a sequence in Q(q) that converges to ψ
in H and is such that q(ψn − ψm, ψn − ψm) → 0 as n,m → ∞, then ψ ∈ Q(q) and
limn→∞ q(ψn − ψ,ψn − ψ) = 0.

Proof. Suppose that q is closed and suppose (ψn)n∈N in Q(q) converges to ψ in H and is
such that q(ψn − ψm, ψn − ψm)→ 0 as n,m→∞. This clearly implies that (ψn)n∈N is
Cauchy with respect to the induced norm ‖ · ‖+1. By completeness, (ψn)n∈N has a limit
in H+1 =

(
Q(q), 〈·, ·〉+1

)
, call it ϕ. Since ‖ψn − ϕ‖H ≤ ‖ψn − ϕ‖+1 → 0 as n → ∞, we

conclude that ϕ = ψ ∈ Q(q) and hence limn→∞ q(ψn − ψ,ψn − ψ) = 0.
On the other hand, suppose q is a form with the property that whenever (ψn)n∈N is

a sequence in Q(q) that converges to ψ in H and is such that q(ψn − ψm, ψn − ψm)→ 0
as n,m → ∞, then ψ ∈ Q(q) and limn→∞ q(ψn − ψ,ψn − ψ) → 0. Then suppose that
(ϕn)n∈N is a Cauchy sequence in H+1. Again, by ‖ · ‖H ≤ ‖ · ‖+1, we find that (ϕn)n∈N
has a limit ϕ in H and, moreover, q(ϕn − ϕm, ϕn − ϕm) → 0. Thus, ϕ ∈ Q(q) and
limn→∞ ϕn = ϕ in H+1, so q is closed.

Example 2.22. Suppose that A : D(A)→ H is a self-adjoint operator. By the spectral
theorem, suppose w.l.o.g. that H = L2(Ω,B(Ω), µ) and that A = Af corresponds to
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multiplication by f : Ω→ R on D(A) = {ψ ∈ L2(dµ) : f ψ ∈ L2(dµ)}. Define

Q(A) =
{
ψ ∈ L2(dµ) :

∫
Ω
dµ(x)|f(x)||ψ(x)|2 <∞

}(
= D(|A|1/2)

)
and q : Q(A)×Q(A)→ C by

q(ψ,ϕ) =

∫
Ω
dµ(x)f(x)ψ(x)ϕ(x).

Then q is called the quadratic form associated to A and Q(A) is called the form domain
of the operator A. By slight abuse of notation, we sometimes write q(ψ,ϕ) = 〈ψ,Aϕ〉H
although Aϕ need not make sense for all ϕ ∈ Q(A).

Suppose A is semibounded such that q is a semibounded form. Then q is closed.
Indeed, assume w.l.o.g. that A ≥ 0 so that f(x) ≥ 0 for µ-a.e. x ∈ Ω. Let (ψn)n∈N be a
sequence in Q(A) that converges to ψ in H and that is such that∫

Ω
dµ(x)f(x)|(ψn − ψm)(x)|2 → 0 as n,m→∞.

By completeness of L2(µ), we see that (f1/2ψn)n→∞ converges in L2(µ) to some ϕ ∈
L2(dµ). Choosing suitable pointwise almost surely converging subsequences, we must
have that ϕ = f1/2ψ µ a.s. so that f1/2ψ ∈ L2(dµ), i.e. ψ ∈ Q(A), and∫

Ω
dµ(x)f(x)|(ψn − ψ)(x)|2 → 0 as n→∞.

Problem 2.23. Let q : Q(A)×Q(A)→ C be the form w.r.t. a semibounded self-adjoint
operator A : D(A)→ H. Prove that any operator core of A is a form core for q.

Our first main result about quadratic forms is the following.

Theorem 2.19. Let q : Q(q) × Q(q) → C be a semibounded, closed quadratic form.
Then, there exists a unique self-adjoint operator A : D(A) → H such that q is the
quadratic form associated to A, that is, q(ψ,ϕ) = 〈ψ,Aϕ〉H as in Example 2.22.

Proof. We assume without loss of generality that q is non-negative. As above, we denote
by H+1 the Hilbert space (Q(q), 〈·, ·〉+1). We then denote by H−1 the space of bounded
conjugate linear functionals on H+1. Analogously to the usual Riesz representation
theorem, every ` ∈ H−1 is uniquely represented by some ψ` ∈ H+1. More precisely, the
canonical linear isomorphism that sends ψ ∈ H+1 to Φ(ψ) ∈ H−1, defined by

Φ(ψ)(ϕ) = 〈ϕ,ψ〉+1 = q(ϕ,ψ) + 〈ϕ,ψ〉H,

is an isometric isomorphism of H+1 into H−1. Finally, we denote by i : H+1 → H the
canonical embedding of H+1 into H and by j : H → H−1 the embedding of H into H−1

that is defined by j(ψ) = 〈·, ψ〉H. Notice that

|j(ψ)(ϕ)| ≤ ‖ψ‖H‖ϕ‖H ≤ ‖ψ‖H‖ϕ‖+1
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so that j(ψ) ∈ H−1 with ‖j(ψ)‖H−1 ≤ ‖ψ‖H. With i and j as above, we have that

H+1
i
↪→ H

j
↪→ H−1.

To prove the theorem, we find a self-adjoint operator B : D(B)→ H such that

〈ϕ,Bψ〉H = q(ϕ,ψ) + 〈ϕ,ψ〉H = 〈ϕ,ψ〉H+1 = Φ(ψ)(ϕ) (2.27)

for a suitable dense domain D(B). Once we find such an operator, it will be simple to
conclude that the quadratic form q is the form associated to A = B − 1H.

To find the right operator B, eq. (2.27) motivates to define

D(B) ={ψ ∈ H+1 ⊂ H : Φ(ψ) ∈ Ran(j)} = Φ−1
(
Ran(j)

)
,

B =(j−1)|Ran(j)Φ : D(B)→ H,

Indeed, this implies for ψ ∈ D(B) that

〈ϕ,Bψ〉H = j(Bψ)(ϕ) = Φ(ψ)(ϕ).

B is certainly a symmetric operator, because for all ψ,ϕ ∈ D(B), we have

〈ϕ,Bψ〉H = Φ(ψ)(ϕ) = q(ϕ,ψ) + 〈ϕ,ψ〉H = q(ψ,ϕ) + 〈ψ,ϕ〉H = 〈Bϕ,ψ〉H.

Let us show next that D(B) ⊂ H is dense. To this end, we first argue that Ran(j) is
dense in H−1. For if not, we find some 0 6= ζ ∈ H∗−1 that vanishes on Ran(j). By duality
(more precisely, using that H+1 is isometrically isomorphic to H∗−1), ζ corresponds to
some 0 6= ϕζ ∈ H+1 ⊂ H so that in particular

ζ(j(ψ)) = j(ψ)(ϕζ)

for all ψ ∈ H. This means that 0 = j(ψ)(ϕζ) = 〈ϕζ , ψ〉H for every ψ ∈ H. But this is
not possible, because ϕζ 6= 0. Thus, Ran(j) is dense in H−1 and since Φ is an isometric
isomorphism, D(B) = Φ−1(Ran(j)) is dense in H+1. Since, moreover, ‖ · ‖ ≤ ‖ · ‖+1, we
conclude that D(B) is dense in H.

Finally, we argue that B is self-adjoint. To this end, consider the linear operator
C : Φ−1j : H → H+1 ⊂ H: it is clearly injective and it is symmetric, because its inverse
B is symmetric. Since it is defined on all of H, it is self-adjoint. By the spectral theorem,
its inverse B = C−1 : ran(C)→ H is self-adjoint as well (exercise).

Finally, to conclude that A is the unique self-adjoint operator whose form corresponds
to q, suppose that q is also the form associated to a self-adjoint operator Ã : D(Ã)→ H
and suppose w.l.o.g. that A, Ã ≥ 1 so that 0 ∈ ρ(A) ∩ ρ(Ã). Then, Q(A) = D(A1/2),
Q(Ã) = D(Ã1/2) (viewing both A1/2, Ã1/2 as self-adjoint operators in their canonical
form) and in particular A−1/2ψ ∈ Q(A) = Q(Ã) = Q(q) for every ψ ∈ H. But then

〈ψ,ϕ〉H = 〈A1/2A−1/2ψ,A1/2A−1/2ϕ〉H = q(A−1/2ψ,A−1/2ϕ)

= 〈Ã1/2A−1/2ψ, Ã1/2A−1/2ϕ〉H

for all ψ,ϕ ∈ H, which implies that U = Ã1/2A−1/2 is unitary. This means that UU∗ =
1H = Ã1/2A−1Ã1/2 s.t. Ã−1 = A−1 and therefore D(A) = D(Ã) and A = Ã.

65



Example 2.23. In L2(R), set Q(q) = C∞c (R) and define q : Q(q)×Q(q)→ C through

q(f, g) = f(0)g(0).

Clearly, q is a non-negative quadratic form. Does it correspond to a self-adjoint op-
erator? We might suspect that this is not the case, because otherwise q would cor-
respond to multiplication by a Dirac δ-function. In fact, q does not correspond to a
self-adjoint operator, otherwise it would be closed. But choosing a sequence of func-
tions (ϕn)n∈N in Q(q) such that 0 ≤ ϕn ≤ 1 with supp(ϕn) ⊂ B1/n(0) and such that
(ϕn)|B1/4n(0) = 1 while (ϕn)|R\B1/2n(0) = 0, we see that limn→∞ ϕn = 0 in L2(R) as well as

limm,n→∞ q(ϕn−ϕm, ϕn−ϕm) = 0, but q(ϕn, ϕn) = 1 6= q(0, 0). Hence, q is not closed.
The argument also shows that q does not have a closed extension with form core C∞c (R).

Our second main result with regards to quadratic forms introduces the Friedrich’s
extension. In general, one might start out with a semibounded, symmetric operator
A : D(A)→ H and it is a priori not clear how many self-adjoint extensions the operator
has and which one to pick. The Friedrich’s extension is a particular self-adjoint extension
with a number of desirable properties, most importantly that the domain of the original
symmetric operator is a form core for the form associated to the Friedrich’s extension.
This implies, for instance, that the ground state energy of the extension can already be
computed (via Theorem 2.17) based on knowing the domain D(A).

Theorem 2.20 (Friedrich’s Extension). Let A : D(A) → H be a non-negative and
symmetric operator. Define the quadratic form q on D(A)×D(A) through

q(ψ,ϕ) = 〈ψ,Aϕ〉H.

Then q is a closable quadratic form and its closure q̂ is the quadratic form of a unique
self-adjoint operator Â : D(Â) → H, the Friedrich’s extension. Â is a non-negative
extension of A and D(A) is a form core for q̂. Furthermore, Â is the only self-adjoint
extension of A with its domain being a subset D(Â) ⊂ Q(q̂ ) of the form domain of q̂.

Proof. As before, we set 〈ψ,ϕ〉+1 = q(ψ,ϕ) + 〈ψ,ϕ〉H. Since A is non-negative, 〈·, ·〉+1

defines an inner product on D(A) and we can consider its completion H+1. What we
would like to show is that H+1 ↪→ H can be identified with a subset of H. If that’s
the case, it follows that q is closable and we obtain its semibounded closure q̂ with form
domain H+1 ⊂ H. Notice also that D(A) is then a form core for q̂, by construction.

Let’s denote by i : D(A) → H the identity map. Since ‖ · ‖H ≤ ‖ · ‖+1, i is
bounded from the dense set D(A) ⊂ H+1 into H. In particular, i has a bounded
extension î : H+1 → H. We claim that î is injective, showing that H+1 ↪→ H. To
see that î is injective, suppose that î(ϕ) = 0. By definition of î, this means there
exists a sequence (ϕn)n∈N in D(A) such that limn→∞ ‖ϕ − ϕn‖+1 = 0 and such that
limn→∞ ‖i(ϕn)‖H = limn→∞ ‖ϕn‖H = 0. This implies that

‖ϕ‖2+1 = lim
m→∞

lim
n→∞

〈ϕn, ϕm〉+1 = lim
m→∞

lim
n→∞

(
〈ϕn, Aϕm〉H + 〈ϕn, ϕm〉H

)
= 0,
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hence ϕ = 0 ∈ H+1. Observe that the non-negativity of A is used to define î while the
fact that q is defined through A implies that î is injective.

We conclude from the previous argument that H+1 ↪→ H so that q has a closure q̂.
As a semibounded, closed form, q̂ corresponds to a unique self-adjoint operator Â, by
Theorem 2.19. More precisely, q̂ is the form associated to Â and D(Â) ⊂ Q(q̂) is a form
core. Moreover, Â extends A. For if ϕ ∈ D(A) and ψ ∈ D(Â) ⊂ Q(q̂), then

〈Aϕ,ψ〉H = q̂(ϕ,ψ) = 〈ϕ, Âψ〉H,

so that ϕ ∈ D(Â∗) = D(Â) with Â∗ϕ = Âϕ = Aϕ, that is A ⊂ Â. If Ã is any other
symmetric extension of A with D(Ã) ⊂ Q(q̂ ), then the same argument shows that Â
extends Ã; in particular, if Ã is self-adjoint, then Ã = Â.

Example 2.24. In L2(I) for I = (0, 1), consider A = −∂2
x on C∞c (I). Then

‖ψ‖2+1 = ‖∂xψ‖2H + ‖ψ‖2H

corresponds to the H1(I)-norm. In particular, if limn→∞ ψn = ψ in H+1, then ψ ∈ H1(I)
extends to an absolutely continuous function in [0, 1] and we have that

lim
n→∞

ψn(x) = ψ(x)

for every x ∈ [0, 1] so that ψ(0) = ψ(1) = 0. This means that the Friedrich’s exten-
sion Â of A is the self-adjoint extension of −∂2

x with Dirichlet boundary conditions.
The spectrum of this operator is explicitly given by σ(Â) = {(nπ)2 : n ∈ N} and the
eigenfunctions are given by

{
x 7→ sin(nπx) ∈ C∞([0, 1]) : n ∈ N

}
(exercise).

Using Â, this implies the so called Wirtinger’s inequality∫ 1

0
dx |ϕ′(x)|2 ≥ π2

∫ 1

0
dx |ϕ(x)|2,

valid for all ϕ ∈ C∞c ((0, 1)), which follows from the lower bound on Â. Notice that this
lower bound is also true for the form induced by A.

Notice here that, in general, a self-adjoint extension of A need not satisfy the same
lower bound like the form induced by A. For instance, another self-adjoint extension
of A is the Laplacian −∆N : D(−∆N ) → L2(R) with Neumann boundary conditions,
defined by D(−∆N ) =

{
ϕ ∈ H2([0, 1]) : ϕ′(0) = ϕ′(1) = 0

}
. In this case, the lowest

eigenvalue λ
(N)
1 of −∆N corresponds to λ

(N)
1 = 0, with constant eigenfunction.

The previous example mentions the Dirichlet and Neumann Laplacians, encountered
in many PDE problems. We finish this section with their definition for general domains
Ω ⊂ Rn and with their characterization when Ω is a box. We refer to the monograph
[61] for more details on self-adjoint realizations of the Laplacian on general domains.

Assume that Ω ⊂ Rn is open. The Dirichlet Laplacian −∆Ω
D is defined as the

Friedrich’s extension of the non-negative, symmetric operator −∆ : C∞c (Ω)→ L2(Ω, dx).
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In other words, −∆Ω
D is the unique self-adjoint operator whose form corresponds to the

closure of the form

(ψ,ϕ) 7→
∫

Ω
dx∇ψ(x) · ∇ϕ(x)

on C∞c (Ω). On the other hand, the Neumann Laplacian −∆Ω
N is the unique self-adjoint

operator whose assocated form is equal to

(ψ,ϕ) 7→
∫

Ω
dx∇ψ(x) · ∇ϕ(x)

on the domain H1(Ω). Note in particular that this form is closed in H1(Ω).

Proposition 2.9. Suppose that Ω = (−1, 1)n ⊂ Rn is a cube and denote by −∆D and
−∆N the Dirchlet and, respectively, Neumann Laplacian for this domain. Then:

a) DD = {f ∈ C∞(Ω) : f|∂Ω = 0} is an operator core for −∆D and for such f ∈ DD,
we have that

−∆Df = −
n∑
i=1

∂2
i f.

b) DN = {f ∈ C∞(Ω) : (∂f/∂n̂)|∂Ω = (∇f · n̂)|∂Ω = 0} is an operator core for −∆N ,
where n̂ denotes the outward pointing unit normal to Ω. For f ∈ DN , we have that

−∆Nf = −
n∑
i=1

∂2
i f.

Proof. The proofs of a) and b) are similar. We focus on b) and leave a) as an exercise.
Before we start, let us mention why DN is a natural domain to consider: if the form

(f, g) 7→ 〈∇f,∇g〉 =

∫
Ω
dx∇f(x) · ∇g(x) = 〈f,−∆Ng〉

corresponds to a suitable self-adjoint operator −∆N that acts like the usual Laplacian
on f, g ∈ C∞(Ω), then by Stokes theorem we have that

〈f,−∆Ng〉 = 〈∇f,∇g〉 −
∫
∂Ω
dS f ∂g

∂n̂
.

But this is only possible if (∂f/∂n̂)|∂Ω = (∂g/∂n̂)|∂Ω = 0 whenever f, g ∈ C∞(Ω) are in
the domain of −∆N and this motivates the definition of DN .

Now, let A = −
∑n

i=1 ∂
2
i : DN → L2(Ω). Our goal is to show that A is essentially

self-adjoint and that A = −∆N . The essential self-adjointness can be seen as follows.
Consider the orthonormal sequence (ψk)k∈N0 , defined by

ψ0(x) =
1√
2
, ψ2k−1(x) = sin

((
k − 1/2

)
πx
)
, ψ2k(x) = cos(kπx)
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for x ∈ (−1, 1). Then, a basic fact is that (ψk)k∈N0 lies in C∞([−1; 1]) and forms an
orthonormal basis of L2((−1, 1)). Morerover, each ψ′k(1) = ψ′k(−1) = 0 satisfies the
Neumann boundary conditions in one dimension. As a consequence, the family{

ψj1,...,jn = ψj1 ⊗ ψj2 ⊗ · · · ⊗ ψjn : j1, . . . , jn ∈ N0

}
⊂ DN ⊂ L2(Ω)

is an orthonormal basis of L2(Ω) and this set is in fact a subset of DN (exercise).
Enumerating the functions by (ψj)j∈Nn0 , we obtain an orthonormal eigenbasis of A with

Aψj = λ2
jψj =:

π2

4

n∑
i=1

j2
i ψj.

With this notation, we claim that ϕ ∈ D(A) if and only if∑
j∈Nn0

λ4
j |〈ψj, ϕ〉|2 <∞. (2.28)

Indeed, suppose that (2.28) holds true. Then
(∑

|j|≤N 〈ψj, ϕ〉ψj

)
N∈N has the property

that
(
A
∑
|j|≤N 〈ψj, ϕ〉ψj

)
N∈N =

(∑
|j|≤N λ

2
j 〈ψj, ϕ〉ψj

)
N∈N is Cauchy and we have that

lim
N→∞

∥∥∥ϕ− ∑
|j|≤N

〈ψj, ϕ〉ψj

∥∥∥ = 0,

that is, ϕ ∈ D(A). On the other hand, if ϕ ∈ D(A) and ζ ∈ C∞c (Ω) (⊂ DN ), we have

〈ζ, Aϕ〉 = 〈Aζ, ϕ〉 = lim
N→∞

〈
ζ,
∑
|j|≤N

λ2
j 〈ψj, ϕ〉ψj

〉
.

By density of C∞c (Ω) ⊂ L2(Ω), this means that
∑
|j|≤N λ

2
j 〈ψj, ϕ〉ϕj ⇀ Aϕ weakly in

L2(Ω) as N →∞. Thus, (2.28) holds true and by the previous argument, this implies

Aϕ =
∑
j∈Nn0

λ2
j 〈ψj, ϕ〉ψj

for every ϕ ∈ D(A). In other words, A is equivalent to a multiplication operator with
canonical domain (in the (ψj)j∈Nn0 basis) and hence, A is self-adjoint.

In order to show that A = −∆N , we need to analyze the form q associated to A.
Here, we first recall that for f, g ∈ D(A), we have by integration by parts that

q(f, g) =

∫
Ω
dx∇f(x) · ∇g(x)−

∫
∂Ω
dS f ∂g

∂n̂
=

∫
Ω
dx∇f(x) · ∇g(x).

If we denote by qN the form associated to −∆N , this shows that (qN )|D(A) = q|D(A).

Since D(A) ⊂ H1(Ω) is an operator core for A, it is a form core for q and this implies
that Q(A) ⊂ H1(Ω), recalling that Q(A) = D(A), the closure being taken with regards
to the norm induced by 〈·, ·〉+1 = q(·, ·) + 〈·, ·〉

(
= 〈·, ·〉H1(Ω) on D(A)

)
.

69



What remains to be shown is that H1(Ω) ⊂ Q(A). So, suppose that f ∈ H1(Ω),
then f ∈ Q(A) follows if we show that∑

j∈Nn0

(1 + λ2
j )|〈ψj, f〉|2 ≤ C‖f‖2H1(Ω).

To prove the latter, suppose that g ∈ C1(Ω) is such that g(±1, x2, . . . , xn) = 0. Then

〈∂1f, g〉 = −〈f, ∂1g〉+

∫
∂Ω
dS fg ê1 · n̂ = −〈f, ∂1g〉. (2.29)

Here, the integration by parts formula is justified, because f ∈ H1(Ω) admits a trace
f|∂Ω ∈ L2(∂Ω), by standard properties of Sobolev functions in the box Ω.

The reason why (2.29) is helpful, is because the functions{
ξj = ψ̃j1 ⊗ ψj2 ⊗ · · · ⊗ ψjn : j1, . . . , jn ∈ N

}
⊂ C∞(Ω)

for ψ̃2k−1(x) = cos((k−1/2)πx), ψ̃2k(x) = sin(kπx) are still orthonormal (exercise) with

∂1ξj = ±π
2
j1ψj.

Therefore, by Bessel’s inequality for orthonormal sequences, we get∑
j∈Nn

j2
1 |〈ψj, f〉|2 =

4

π2

∑
j∈Nn
|〈f, ∂1ξj〉|2 =

4

π2

∑
j∈Nn
|〈∂1f, ξj〉|2 ≤

4

π2
‖f‖2H1(Ω)

and repeating the argument for each coordinate, we conclude that∑
j∈Nn0

(
1 +

π2

4

n∑
i=1

j2
i

)
|〈ψj, f〉|2 =

∑
j∈Nn0

(1 + λ2
j )|〈ψj, f〉|2 ≤ C‖f‖2H1(Ω).

Problem 2.24. Carry out the proof of part a) of Proposition 2.9.

Problem 2.25. For Ω = (−1, 1)n, consider the Laplacian ∆P with periodic boundary
conditions, defined analogously as in Example 2.16. Show that ∆P = ∆|DP , where DP

denotes the space of smooth, periodic functions in Rn, that is DP = {f ∈ C∞(Rn) :
f(·) = f(·+ p)∀ p ∈ Zn}

(
= C∞(Tn)

)
.

2.5.5 Tensor Products of Operators

We finish the chapter about applications of the spectral theorem by collecting some basic
properties of tensor products of operators. Throughout this section we assume that A
and B are densely defined operators on the Hilbert spaces H1 and H2. Let’s denote their
domains by D(A) ⊂ H1 and D(B) ⊂ H2, respectively. We define the space

D(A)⊗D(B) = span{ϕ⊗ ψ ∈ H1 ⊗H2 : ϕ ∈ D(A), ψ ∈ D(B)}

such that D(A)⊗D(B) = H1 ⊗H2. We define A⊗B : D(A)⊗D(B)→ H1 ⊗H2 by

(A⊗B)(ϕ⊗ ψ) = Aϕ⊗Bψ.
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Lemma 2.11. A ⊗ B : D(A) ⊗ D(B) → H1 ⊗ H2 is well-defined, and it is closable
whenever A : D(A)→ H1 and B : D(B)→ H2 are.

Proof. Let f =
∑

i∈N λiϕi ⊗ ψi =
∑

j∈N µjϕ̃j ⊗ ψ̃j ∈ D(A) ⊗ D(B), with coefficients
λi, µj ∈ C. By the Gram-Schmidt orthogonalization we can find orthonormal bases
of the closures of the spaces span{ϕi ∈ D(A) : i ∈ N} ∪ {ϕ̃i ∈ D(A) : i ∈ N} and
span{ψj ∈ D(B) : i ∈ N}∪{ψ̃j ∈ D(B) : i ∈ N}. Let’s denote them by {ξi ∈ H1 : i ∈ N}
and {θj ∈ H2 : j ∈ N}, respectively. Then, for all i, j ∈ N, we have

ϕi ⊗ ψi =
∑
k,l∈N
〈ξk ⊗ θl, ϕi ⊗ ψi〉H1⊗H2ξk ⊗ θl =:

∑
k,l∈N

αiklξk ⊗ θl

ϕ̃j ⊗ ψ̃j =
∑
k,l∈N
〈ξk ⊗ θl, ϕ̃j ⊗ ψ̃j〉H1⊗H2ξk ⊗ θl =:

∑
k,l∈N

α̃jklξk ⊗ θl

so that, by assumption on f ,
∑

i∈N λiα
i
kl =

∑
j∈N µjα̃

j
kl . This shows that∑

i∈N
λiAϕi ⊗Bψi =

∑
i,k,l∈N

λiα
i
klAξk ⊗Bθl =

∑
j,k,l∈N

µjα̃
j
klAξk ⊗Bθl =

∑
j∈N

µjAϕ̃i ⊗Bψ̃i

so that A ⊗ Bf is well-defined. To show that A ⊗ B is closable, we only need to show
that D((A⊗B)∗) is dense in H1 ⊗H2, by Theorem 2.2. To this end, we notice that

〈A∗ ⊗B∗g, f〉H1⊗H2 = 〈g,A⊗Bf〉H1⊗H2

whenever g ∈ D(A∗) ⊗ D(B∗) and f ∈ D(A) ⊗ D(B). We conclude that
D(A∗)⊗D(B∗) ⊂ D((A⊗B)∗) s.t. D((A⊗B)∗) is dense.

We define the tensor product of two closable operators A : D(A)→ H1, B : D(B)→
H2, as the closure of A ⊗ B : D(A) ⊗ D(B) → H1 ⊗ H2, and we denote the resulting
operator again by A ⊗ B. Of course, the above generalizes to finitely many tensor
products of densely defined operators Ai : D(Ai)→ Hi, i = 1, . . . , n ∈ N. The following
result characterizes the spectrum of tensor products of operators.

Theorem 2.21. Let Ak : D(Ak) → Hk, k = 1, . . . , n ∈ N, be self-adjoint operators
and let R[X1, . . . , Xn] 3 P =

∑
j∈Nn0

λjX
j1
1 . . . Xjn

n denote a polynomial in n variables
with real coefficients and assume that P has degree lk in the k-th variable. Suppose that
Dk, k = 1, . . . , n, is a domain of essential self-adjointness for Alkk . Then

i) P (A1, . . . , Ak) =
∑

j∈Nn0
λjA

j1
1 ⊗A

j2
2 ⊗. . .⊗A

jn
n is essentially self-adjoint on

⊗n
k=1Dk.

ii) The spectrum of P (A1, . . . , Ak) is given by

σ
(
P (A1, . . . , An)

)
= P (σ(A1), . . . , σ(An))
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Proof. We leave i) as an exercise (alternatively, see [55, Sections VII.3 and VIII.10]) and
focus on ii). By the spectral theorem 2.8, we may assume that each Ak is a multipli-
cation operator that multiplies by a measurable function fk on an appropriate domain
in L2(Ωk,B(Ωk), µk). It is then straightforward - and part of the proof of i) - to check
(exercise) that P (A1, . . . , Ak) is unitarily equivalent to multiplication by

Ω1×· · ·×Ωn 3 (x1, . . . , xn) 7→ P (f1, . . . , fk)(x1, . . . , xn) =
∑
j∈Nn0

λjf
j1
1 (x1) . . . f jnn (xn) ∈ R

on

D
(
P (A1, . . . , An)

)
=
{
ϕ ∈ L2(Ω1 × . . .× Ωn) : P (f1, . . . , fk)ϕ ∈ L2(Ω1 × · · · × Ωn)

}
where L2(Ω1 × · · · × Ωn) = L2(Ω1 × . . . × Ωn,⊗nk=1B(Ωk), µ = ⊗nk=1µk). The spectrum

of P (A1, . . . , Ak) is given by the essential range of P (f1, . . . , fk), by Lemma 2.9.
Now, suppose that λ ∈ P (σ(A1), . . . , σ(An)). If I ⊂ R is an open interval containing

λ, then P−1(I) contains a product I1 × · · · × In ⊂ Rn of open intervals Ik ⊂ R with
Ik ∩ σ(Ak) 6= ∅. Since σ(Ak) = ess-ran(fk), we have µk(f

−1
k (Ik)) > 0 such that

µ
(
P (f1, . . . , fn)−1(I)

)
≥ µ

(
f−1

1 (I1)× · · · × f−1
n (In)

)
≥

n∏
k=1

µk(f
−1
k (Ik)) > 0.

Since I was arbitrary, this implies that P (σ(A1), . . . , σ(An)) ⊂ σ
(
P (A1, . . . , An)

)
and

thus, by closedness of the spectrum, that P (σ(A1), . . . , σ(An)) ⊂ σ
(
P (A1, . . . , An)

)
. On

the other hand, if λ 6∈ P (σ(A1), . . . , σ(An)), then (P (f1, . . . , fn) − λ)−1 is a bounded,
measurable function so that λ ∈ ρ

(
P (A1, . . . , An)

)
.

Problem 2.26. Let A : D(A)→ H be self-adjoint and let P (A), for some real polynomial
P [X] of degree d ∈ N, as a self-adjoint operator on its canonical domain. Show that every
core D of Ad is a core for P (A). Generalize the proof to conclude Theorem 2.21 i).

Problem 2.27. Consider Ω = (−1
2 ,

1
2)n and let ∆D,∆N and ∆P denote the Dirichlet-,

Neumann- and, respectively, periodic Laplacian, defined on suitable domains in L2(Ω).
For each case, determine the spectrum of the many-body kinetic energy operator

N∑
i=1

(−∆xi).

Here, ∆xi = 1⊗ . . .⊗∆⊗ . . .1 and ∆ acts on the i-th factor in L2(ΩN ) =
⊗N

i=1 L
2(Ω).

2.6 Selected Tools for Complete BEC

In this section we introduce some additional tools that are directly related to the concept
of Bose-Einstein condensation. We introduce the trace and the Hilbert Schmidt classes
and summarize some of their basic properties. Equipped with these basics on trace class
operators, we introduce the notion of complete Bose-Einstein condensation.
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2.6.1 Trace Class and Hilbert-Schmidt Operators

The trace class and Hilbert-Schmidt are subspaces of the (Banach) space of compact
operators on a Hilbert space H. Recall that every compact operator admits a represen-
tation in terms of its singular values: defining the absolute value of A by

|A| =
√
A∗A ∈ L(H),

and denoting by (λn)n∈N its eigenvalues, one finds orthonormal sequences (ϕn)n∈N, (ψn)n∈N
such that

A =
∑
n∈N

λn|ϕn〉〈ψn|,

where we recall that |ϕ〉〈ψ| denotes the rank-one operator defined by |ϕ〉〈ψ|ζ = 〈ψ, ζ〉ϕ.

Problem 2.28. Let A ∈ L(H) and suppose A ≥ 0. Prove that its square-root
√
A is

unique, that is, there exists a unique B ∈ L(H), B ≥ 0, such that B2 = A.

Problem 2.29. Let A ∈ L(H) be compact. Show that |A| is compact as well.

The trace class and Hilbert-Schmidt operators are those compact operators whose
sequence of singular values lies in `1 and `2, respectively. To study some of the basic
properties of these classes, we start with a useful lemma: similar to the decomposition
z = |z|ei arg(z) for any complex number z ∈ C, we can decompose bounded operators.

Lemma 2.12 (Polar Decomposition). Let A ∈ L(H). Then, there exists a partial
isometry U ∈ L(H) s.t. A = U |A| and U is uniquely determined by ker(U) = ker(A).

Proof. Define the map U : ran(|A|)→ ran(A) by setting U(|A|ψ) = Aψ. We have

‖|A|ψ‖2H = 〈ψ,A∗Aψ〉H = ‖Aψ‖2H = ‖U |A|ψ‖2H

so that U : ran(|A|)→ ran(A) is well-defined and an isometry. Due to the last fact, we

can extend it to U : ran(|A|)→ ran(A). We then set U equal to zero in ran(|A|)⊥. Notice

that ran(|A|)⊥ = ker(|A|) = ker(A), since |A| is self-adjoint. Thus, ker(U) = ker(A).
Finally, given another partial isometry Ũ s.t. A = Ũ |A| and ker(Ũ) = ker(A), we have

Ũ − U = 0 on ran(|A|) and on ker(A) = ran(|A|)⊥, i.e. Ũ = U .

Problem 2.30. Generalize Lemma 2.12 to the case where A : D(A) → H is a densely
defined, closed operator. In this case, the difficulty is to construct |A| =

√
A∗A, because

a priori it is not even clear that A∗A is densely defined. Use a quadratic form argument
to show that A∗A is indeed densely defined and self-adjoint (it suffices to show that A∗A
is a symmetric extension of a suitable self-adjoint operator).

The polar decomposition turns out to be useful when studying some properties of
the trace class and Hilbert-Schmidt operators with which we start now. As mentioned
earlier, the trace class is a subclass of the compact operators s.t. their sequence of singular
values lies in `1. To make this more precise, we introduce first the trace of a positive
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operator. Given any A ∈ L(H) s.t. A ≥ 0 and an orthonormal basis {ϕn ∈ H : n ∈ N}
of the Hilbert space H, we define the trace of A by

trA =
∑
n∈N
〈ϕn, Aϕn〉H ∈ [0,∞].

The following proposition shows in particular that the trace is well-defined.

Lemma 2.13. Let A,B ∈ L(H) be non-negative, let λ, µ ∈ C and suppose that U ∈ L(H)
is unitary. Then the following holds true.

i) trA is independent of the chosen basis {ϕn ∈ H : n ∈ N}.

ii) tr(λA+ µB) = λ trA+ µ trB.

iii) trUAU−1 = trA.

Proof. Denote by {ϕn ∈ H : n ∈ N}, {ψn ∈ H : n ∈ N} any two bases of H. Then∑
k∈N
〈ϕk, Aϕk〉H =

∑
k∈N

(∑
l∈N
|〈ψl, A1/2ϕk〉H|2

)
=
∑
k∈N

(∑
l∈N
|〈A1/2ψl, ϕk〉H|2

)
=
∑
l∈N
〈ψl, Aψl〉H

This proves that trA is independent of the basis. Linearity of the trace is a simple
exercise and part iii) follows due to the fact that {U−1ϕn ∈ H : n ∈ N} is a basis of H
whenever {ϕn ∈ H : n ∈ N} is if U ∈ L(H) is unitary.

We define the trace class J1 as the set

J1 = {A ∈ L(H) : tr |A| <∞}.

Below J1 turns out to be a Banach space when equipped with a suitable norm.

Proposition 2.10. J1 is a ∗-ideal in L(H), meaning that

i) J1 is a vector space.

ii) If A ∈ J1 and B ∈ L(H), then AB ∈ J1 and BA ∈ J1.

iii) If A ∈ J1, then A∗ ∈ J1.

Proof. i) It is clear that J1 is closed under scalar multiplication, since |λA| = |λ||A| for
any λ ∈ C, A ∈ L(H). To prove that A+ B ∈ J1 whenever A,B ∈ J1, we make use of
Lemma 2.12. Suppose that A + B = U |A + B|, A = V |A| and B = W |B| for partial
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isometries U, V,W ∈ L(H) and let {ϕn ∈ H : n ∈ N} be an orthonormal basis of H.
Then, by Cauchy-Schwarz,

tr |A+B| =
∞∑
n=1

〈ϕn, U∗V |A|ϕn〉H +

∞∑
n=1

〈ϕn, U∗W |B|ϕn〉H

≤(tr |A|)1/2

( ∞∑
n=1

〈ϕn, U∗V |A|V ∗Uϕn〉H
)1/2

+ (tr |B|)1/2

( ∞∑
n=1

〈ϕn, U∗W |B|W ∗Uϕn〉H
)1/2

Now, U, V,W are partial isometries and, by Lemma 2.13, taking traces is independent
of the chosen basis. Therefore, we deduce

tr |A+B| ≤ tr |A|+ tr |B|

which concludes the proof that J1 is a vector space.
ii) Suppose first that U ∈ L(H) is a unitary operator. Then |UA| =

√
A∗U∗UA =

|A| and |AU | = U∗|A|U (recall here that the square root is unique by Problem 2.28).
Therefore, UA ∈ J1 and AU ∈ J1, whenever A ∈ J1.

Now, let B ∈ L(H). Such operators can be written as a linear combination of four
unitary operators, which proves ii) by applying i). To prove that B can be written as
such a linear combination, we note first that B can be written as a linear combination
of two self-adjoint operators. More precisely, we have

B =
1

2
(B +B∗) +

i

2
(iB∗ − iB)

If 0 6= C ∈ L(H) is self-adjoint, on the other hand, it is equal to C = C̃‖C‖L(H) where

C̃ =
1

2

[
C̃ + i(1− C̃2)1/2

]
+

1

2

[
C̃ − i(1− C̃2)1/2

]
is the linear combination of two unitary operators.

iii) We write A = U |A| for a partial isometry U ∈ L(H), by Lemma 2.12. If A ∈ J1,
then clearly |A| ∈ J1. But then also A∗ = |A|U∗ ∈ J1, by ii).

Remark 2.3. One might be tempted to use |A + B| ≤ |A| + |B| in order to show that
tr |A+B| ≤ tr |A|+ tr |B|. However, the first inquality is in general not true. Consider
the following example due to E. Nelson (see Problem 16 in [55, Chapter VI]). Define

A =

(
2 0
0 0

)
, B =

(
−1 1

1 −1

)
Then

|A|+ |B| =
(

3 −1
−1 1

)
, |A+B| =

(√
2 0

0
√

2

)
so that 〈ϕ, |A+B|ϕ〉C2 > 〈ϕ, (|A|+ |B|)ϕ〉C2 for ϕ = (0 1) ∈ C2.
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Theorem 2.22. Define ‖A‖J1 = tr |A| for A ∈ J1. Then (J1, ‖ · ‖J1) is a Banach space
and ‖A‖L(H) ≤ ‖A‖J1 for all A ∈ J1. Moreover, any A ∈ J1 is compact and a compact
operator lies in J1 if and only if the sequence of its singular values lies in `1.

Proof. The proof of Proposition 2.10 has shown that ‖ · ‖J1 defines a norm on J1. That
‖A‖L(H) ≤ ‖A‖J1 for all A ∈ J1 follows from the fact that ‖A‖L(H) = ‖|A|‖L(H) and

‖|A|‖L(H) = sup
ϕ∈H,‖ϕ‖H=1

〈ϕ, |A|ϕ〉 ≤ tr |A|

where we used that |A| ∈ L(H) is self-adjoint. Now, assume that (An)n∈N is Cauchy in
J1. Since the J1-norm dominates the L(H)-norm, (An)n∈N converges in particular to
some A ∈ L(H). Writing A = U |A| and An = Un|An| for partial isometries U,Un, n ∈ N,
by Lemma 2.12, we have for any orthonormal basis {ϕn ∈ H : n ∈ N} and N ∈ N that

N∑
n=1

〈ϕn, |A|ϕn〉H = lim
k→∞

N∑
n=1

〈ϕn, U∗Uk|Ak|ϕn〉H ≤ sup
k∈N

tr |Ak| = sup
k∈N
‖Ak‖J1 <∞

Letting N →∞, this proves that A ∈ J1. Arguing similarly for
∑N

n=1〈ϕn, |A−Ak|ϕn〉H
shows that limk→∞ ‖A−Ak‖J1 = 0. Hence, (J1, ‖ · ‖J1) is a Banach space.

To show that J1 is a subset of the set of compact operators, we show that any
A ∈ J1 is the norm limit of a finite rank operator. To this end, let A ∈ J1. By
Proposition 2.10 ii), also |A|2 ∈ J1 so that tr |A|2 < ∞. Now, given an orthonormal
basis {ϕn ∈ H : n ∈ N} and a state ψ ∈ {ϕ1, . . . , ϕN}⊥ with ‖ψ‖ ≤ 1, we conclude that

‖Aψ‖2H =
∑
k,l>N

〈ψ,ϕk〉H〈ϕk, |A|2ϕl〉H〈ϕl, ψ〉H

≤ tr |A|2 −
N∑
n=1

〈ϕn, |A|2ϕn〉H → 0

as N →∞, uniformly over ‖ψ‖ ≤ 1. This implies that

0 = lim
N→∞

sup
ψ∈{ϕ1,...,ϕN}⊥,
‖ψ‖H≤1

‖Aψ‖H = lim
N→∞

sup
ξ∈H,
‖ξ‖H≤1

∥∥A(ξ − N∑
n=1

|ϕn〉〈ϕn|
)
ξ
∥∥
H

= lim
N→∞

sup
ξ∈H,
‖ξ‖H≤1

∥∥(A− N∑
n=1

|Aϕn〉〈ϕn|
)
ξ
∥∥
H,

from which we conclude that A ∈ J1 is compact.
Finally, notice that A ∈ J1 if and only if |A| ∈ J1 and that the singular values of

A are the eigenvalues of |A|, which is self-adjoint. Since compact, self-adjoint operators
admit an eigenbasis which is a complete orthonormal basis ofH, it follows that a compact
operator A ∈ L(H) lies in J1 if and only if its sequence of singular values lies in `1.
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In analogy to the properties of the Lebesgue-integrable functions, we can now define
the trace of a trace class operator (so far, it was only defined for positive operators).

Proposition 2.11. Let A ∈ J1 and assume that {ϕn ∈ H : n ∈ N} is an orthonormal
basis of H. Then, the sum

∑∞
n=1〈ϕn, Aϕn〉H converges absolutely and is independent of

the chosen basis {ϕn ∈ H : n ∈ N}.

Remark 2.4. We call tr : J1 → C where trA =
∑∞

n=1〈ϕn, Aϕn〉H, the trace.

Proof. We write A = U |A| = U |A|1/2|A|1/2. The absolute convergence follows from

∞∑
n=1

|〈ϕn, Aϕn〉H| ≤
( ∞∑
n=1

‖|A|1/2U∗ϕn‖2H
)1/2( ∞∑

n=1

‖|A|1/2ϕn‖2H
)1/2

≤ tr |A|.

The independence of the basis follows similarly as in the proof of Lemma 2.13.

Problem 2.31. In Proposition 2.10, we have seen that J1 is an ideal, meaning that
AB ∈ J1 and BA ∈ J1 if A ∈ J1 and B ∈ L(H). Prove that

tr |BA| = tr |AB| ≤ ‖B‖L(H)tr |A|.

Hint: Prove first that A ≥ B implies
√
A ≥

√
B using the functional calculus.

Problem 2.32. Suppose that ϕ ∈ L2(Rd), ‖ϕ‖ = 1, and v ∈ L∞(Rd) such that
0 ≤ v̂ ∈ L1(Rd) (here, v̂ denotes the distributional Fourier transform of v, viewed as a
tempered distribution). Show that the operator K, defined by its integral kernel

K(x, y) = ϕ(x)v(x− y)ϕ(y),

is a non-negative trace class operator K ∈ J1 and find its trace.

Problem 2.33. Show that A ∈ J1 if and only if
∑∞

n=1 |〈ϕn, Aϕn〉| < ∞ for every
orthonormal basis (ϕn)n∈N. Find an example of an operator B 6∈ J1 and an ONB
(ψn)n∈N such that

∑∞
n=1 |〈ψn, Bψn〉| <∞.

Proposition 2.12. Denote by C(H) the set of compact operators on H, which is a closed
subset of L(H). Then the following holds true.

i) The map J1 3 A 7→ tr(A ·) ∈ C(H)∗ is an isometric isomorphism s.t. C(H)∗ ' J1.

ii) The map L(H) 3 B 7→ tr(B ·) ∈ J ∗1 is an isometric isomorphism s.t. J ∗1 ' L(H).

Proof. We focus i) and leave ii) as an exercise. Let f ∈ C(H)∗, ϕ,ψ ∈ H and define the
compact rank-one operator lψ,ϕ ∈ C(H) by

lψ,ϕ = |ϕ〉〈ψ|.
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The key step is to express f(|ϕ〉〈ψ|) as a trace of |ϕ〉〈ψ| against some trace class operator.
Here, we use Riesz’ lemma: the map ψ 7→ lψ,ϕ ∈ C(H) is conjugate linear so that the
map jϕ : H → C, defined by

ψ 7→ jϕ(ψ) = f(lψ,ϕ)

is a bounded, linear map jϕ ∈ H∗. Indeed, we have that ‖jϕ‖H∗ ≤ ‖f‖C(H)∗‖ϕ‖H. By
Riesz’ lemma, there exists a unique ζϕ ∈ H such that

jϕ = 〈ζϕ, ·〉H

with ‖ζϕ‖H = ‖jϕ‖H∗ . Using ζϕ, we define a linear operator B : H → H by

Bϕ = ζϕ

such that we have for all ψ,ϕ ∈ H

tr
(
|ϕ〉〈ψ|B

)
= 〈ψ,Bϕ〉H = 〈ψ, ζϕ〉H = f(lψ,ϕ) = f

(
|ϕ〉〈ψ|

)
.

It is simple to check that B is indeed linear and from ‖ζϕ‖H = ‖jϕ‖H∗ ≤ ‖f‖C(H)∗‖ϕ‖H,
we get ‖B‖L(H) ≤ ‖f‖C(H)∗ . Writing B = U |B|, by Lemma 2.12, we observe that

N∑
n=1

〈ϕn, |B|ϕn〉H =
N∑
n=1

〈Uϕn, Bϕn〉H = f

( N∑
n=1

|ϕn〉〈Uϕn|
)

for every ONB {ϕk : k ∈ N} of H. Using that U is a partial isometry, we get

∥∥∥ N∑
n=1

〈Uϕn, ·〉H ϕn
∥∥∥2

L(H)
= sup

ξ∈H,‖ξ‖H=1

〈 N∑
n=1

〈Uϕn, ξ〉H ϕn,
N∑
m=1

〈Uϕm, ξ〉H ϕm
〉
H
≤ 1

and hence B ∈ J1 with ‖B‖J1 ≤ ‖f‖C(H)∗ . Moreover, we find that

f(T ) = tr(BT )

for all T ∈ C(H) using that f(|ϕ〉〈ψ|) = 〈ψ,Bϕ〉H = tr(B|ϕ〉〈ψ|) and density of the finite
rank operators in the space of compact operators. This shows that

‖B‖J1 ≤ ‖f‖C(H)∗ = sup
T∈C(H),‖T‖L(H)=1

| tr(BT )| ≤ ‖B‖J1

and it implies that J1 3 A 7→ tr(A ·) ∈ C(H)∗ is an isometric isomorphism.

Before closing this section, we briefly introduce another important operator class, the
Hilbert-Schmidt class. While J1 is the operator class analogue of `1, the Hilbert-Schmidt
class is the analogue of `2: we call A ∈ L(H) a Hilbert-Schmidt operator if

trA∗A <∞ ⇐⇒ |A|2 ∈ J1.
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Theorem 2.23. Let J2 = {A ∈ L(H) : trA∗A <∞} denote the set of Hilbert-Schmidt
operators. Then the following holds true.

i) J2 is a ∗-ideal.

ii) Defining 〈A,B〉J2 =
∑∞

n=1〈ϕn, A∗B,ϕn〉H for every A,B ∈ J2, then 〈A,B〉J2 is
absolutely summable and independent of the chosen basis.

iii) (J2, 〈·, ·〉J2) is a Hilbert space and ‖A‖L(H) ≤ ‖A‖J2 ≤ ‖A‖J1 for every A ∈ L(H).

iv) Every A ∈ J2 is compact and a compact operator lies in J2 if and only if its sequence
of singular values lies in `2.

Proof. The proof uses very similar arguments as in the proofs of Proposition 2.10 and
Theorem 2.22. We leave it as an exercise.

Since we typically work in the L2 setting, it is useful to observe that Hilbert-Schmidt
operators have a concrete realization in this case.

Proposition 2.13. Consider the Hilbert space H = L2(Ω,A, µ). Then A ∈ J2 if and
only if there exists an element K ∈ L2(Ω× Ω,A⊗A, µ⊗ µ) such that A is equal to the
integral operator acting on f ∈ L2(Ω,A, µ) by

(Af)(x) =

∫
Ω
K(x; y)f(y) dµ(y) for µ a.e. x ∈ Ω.

Moreover, in this case we have ‖A‖2J2 =
∫

Ω×Ω |K(x; y)|2 dµ(x)dµ(y).

Proof. Denote by AK the integral operator associated with K ∈ L2(Ω×Ω,A⊗A, µ⊗µ).
For any f ∈ L2(Ω,A, µ), a simple application of Cauchy-Schwarz and Fubini implies∫

Ω

(∫
Ω
K(x; y)f(y) dµ(y)

)(∫
Ω
K(x; z)f(z) dµ(z)

)
dµ(x)

≤
∫

Ω×Ω×Ω
|K(x; y)||f(z)||K(x; z)||f(y)| dµ(x)dµ(y)dµ(z) ≤ ‖K‖2L2(Ω×Ω)‖f‖

2
L2(Ω)

Hence, AK is a bounded operator in L2(Ω,A, µ) with ‖AK‖L(H) ≤ ‖K‖L2(Ω×Ω). Now
let {ϕn ∈ H : n ∈ N} be an orthonormal basis of L2(Ω,A, µ). Then {ϕm⊗ϕn ∈ H⊗H :
m,n ∈ N} is a basis of L2(Ω× Ω,A⊗A, µ⊗ µ) so that

K =
∞∑

n,m=1

Kmn ϕm ⊗ ϕn, Kmn = 〈ϕm ⊗ ϕn,K〉L2(Ω×Ω (∀ m,n ∈ N)

Define KN ∈ L2(Ω × Ω,A ⊗ A, µ ⊗ µ) by KN =
∑N

m,n=1Kmnϕm ⊗ ϕn. Then KN is

the operator kernel of AKN ∈ L(H), defined by AKN =
∑N

m,n=1Kmn|ϕm〉〈ϕn|. Since
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limN→∞ ‖K−KN‖L2(Ω×Ω) = 0, the first step implies that limN→∞ ‖AK−AKN ‖L(H) = 0.
This implies that AK is compact and we find furthermore that

trA∗KAK =
∞∑
n=1

‖AKϕn‖22 =
∞∑

m,n=1

|〈ϕm, AKϕn〉2|2 =
∞∑

m,n=1

|〈ϕm ⊗ ϕn,K〉L2(Ω×Ω)|2

= ‖K‖2L2(Ω×Ω) <∞

This implies that the map Φ : L2(Ω× Ω,A⊗A, µ⊗ µ)→ J2, given by K 7→ AK , is an
isometry. In particular, it has a closed range. Moreover, any finite rank operator can be
represented as an integral operator with kernel in L2(Ω× Ω,A⊗A, µ⊗ µ), so that the
range of Φ contains the finite rank operators. These operators are dense in J2, which
follows for instance by approximating A ∈ J2 by the sequence (AN )N∈N

AN =
N∑

n,m=1

〈ϕm, Aϕn〉|ϕn〉〈ϕm|.

2.6.2 Complete Bose-Einstein Condensation

In this section, we define the notion of (asymptotically) complete Bose-Einstein conden-
sation. There are different notions of Bose-Einstein condensation in the literature, but
the one introduced here is the one with which we work in the following sections.

As motivated in Section 1, we consider N bosons moving in some region Ω ⊂ R3.
The system is described by a wave function ψN ∈ L2

s(Ω
N ,B(ΩN ),⊗Nj=1µ) = L2

s(Ω
N ) =

H⊗sN , where H = L2
s(Ω). We saw in Section 1 that Bose-Einstein condensation can

be understood as the property that, in the limit of large N , a macroscopic fraction of
particles occupies the same one particle wave function. However, typical wave functions
of interest, like the ground state wave function of a many body Schrödinger operator
with non-vanishing interaction potential, are not equal to pure tensor products. So,
we need to specify what we actually mean if we say that a macroscopic fraction of the
particles of the many body wave function occupies the same one-particle wave function.
The appropriate object that gives precise meaning to the latter idea, is the so called
one-particle reduced density matrix. Given a normalized wave function ψN ∈ L2

s(Ω
N ),

the associated one-particle reduced density matrix γ
(1)
N ∈ J1 is the positive trace class

operator with integral kernel

γ
(1)
N (x, y) =

∫
ΩN−1

ψN (x, x2, . . . , xN )ψN (y, x2, . . . , xN ) dx2 . . . dxN

It is clear that 〈ϕ, γ(1)
N ϕ〉2 ≥ 0 and, applying Plancherel and Fubini, we also see that

tr γ
(1)
N =

∞∑
n=1

∫
ΩN−1

|〈ϕn, ψN (· , X)〉2|2 dX =

∫
ΩN−1

‖ψN (· , X)‖22 dX = ‖ψN‖22 = 1
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where we introduced the abbreviation X = (x2, . . . , xN ) ∈ ΩN−1.
The one-particle reduced density matrix contains all information of the wave function

that is needed to compute the expectation of observables that measure one-particle
properties. That is, if A⊗ 1⊗ · · · ⊗ 1 ∈ L(L2(ΩN )), then a simple exercise shows that

〈ψN , A⊗ 1⊗ · · · ⊗ 1ψN 〉L2(ΩN ) = tr
(
Aγ

(1)
N

)
.

If we look for a suitable notion of condensation, then at least (a suitable subclass of)
the one-particle observables should be determined by the one-particle wave function
that describes the condensate. The notion we consider in this lecture, goes back to
a definition proposed by Penrose and Onsager in [52]. Consider a sequence (ψN )N∈N
of normalized wave functions in L2

s(Ω
N ) with associated one-particle reduced density

matrices (γ
(1)
N )N∈N and let ϕ ∈ L2(Ω) be normalized. We say that (ψN )N∈N exhibits

complete Bose-Einstein condensation into the wave function ϕ ∈ L2(Ω) if

lim
N→∞

∥∥γ(1)
N − |ϕ〉〈ϕ|

∥∥
J1 = lim

N→∞
tr
∣∣γ(1)
N − |ϕ〉〈ϕ|

∣∣ = 0 (2.30)

This definition is a comparatively strong and an asymptotic notion of condensation. It
is an asymptotic definition, because it is a statement about the behaviour of the one-
particle reduced densities in the limit N → ∞. It is a strong definition, because it
specifies the condensate wave function as well as the asymptotic fraction of particles

occupying the condensate. This fraction is given by 〈ϕ, γ(1)
N ϕ〉2 and (2.30) implies that

1− 〈ϕ, γ(1)
N ϕ〉2 = tr

[
|ϕ〉〈ϕ|

(
|ϕ〉〈ϕ| − γ(1)

N

)]
≤ tr

∣∣γ(1)
N − |ϕ〉〈ϕ|

∣∣→ 0 (N →∞).

More generally, for every bounded observable A ∈ L(H), we have that∣∣trAγ(1)
N − 〈ϕ,Aϕ〉

∣∣ ≤ ‖A‖ tr
∣∣γ(1)
N − |ϕ〉〈ϕ|

∣∣→ 0 (N →∞).

That is, all one-body observables are completely determined by the condensate state ϕ.
An important observation is the following equivalent characterization of complete BEC.

Lemma 2.14. Consider a sequence (ψN )N∈N of normalized wave functions in L2
s(Ω

N )

with associated one-particle reduced density matrices (γ
(1)
N )N∈N and let ϕ ∈ L2(Ω) be

normalized. Then (ψN )N∈N exhibits complete BEC into ϕ if and only if

lim
N→∞

(
1− 〈ϕ, γ(1)

N ϕ〉2
)

= 0 (2.31)

Proof. We claim, first of all, that the compact, self-adjoint operator γ
(1)
N − |ϕ〉〈ϕ| ∈ J1

contains at most one negative eigenvalue8. Assume by contradiction that γ
(1)
N − |ϕ〉〈ϕ|

has two negative eigenvalues λ1, λ2 < 0 with corresponding orthonormal eigenvectors

8This argument goes back to R. Seiringer.
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ξ1, ξ2 ∈ L2(Ω). Then we can find a linear combination 0 6= ξ = c1ξ1 + c2ξ2, c1, c2 ∈ C,
s.t. c1ξ1 + c2ξ2 is orthogonal to ϕ. This, however, implies that

0 ≤ 〈ξ, γ(1)
N ξ〉2 = 〈c1ξ1 + c2ξ2, (γ

(1)
N − |ϕ〉〈ϕ|)(c1ξ1 + c2ξ2)〉2 = |c1|2λ1 + |c2|2λ2 < 0

Hence, γ
(1)
N − |ϕ〉〈ϕ| contains at most one negative eigenvalue. Let’s denote the eigen-

values of γ
(1)
N − |ϕ〉〈ϕ| by (µn)n∈N. Since tr(γ

(1)
N − |ϕ〉〈ϕ|) =

∑∞
n=1 µn = 0, either

γ
(1)
N − |ϕ〉〈ϕ| = 0 or we may assume w.l.o.g. that µ1 < 0 is the only negative eigenvalue

of γ
(1)
N − |ϕ〉〈ϕ|. Since ‖γ(1)

N − |ϕ〉〈ϕ|‖L(H) = |µ1|, this shows that

tr
∣∣γ(1)
N − |ϕ〉〈ϕ|

∣∣ = |µ1|+
∞∑
n=2

µn = 2
∥∥γ(1)

N − |ϕ〉〈ϕ|
∥∥
L(H)

≤ 2
∥∥γ(1)

N − |ϕ〉〈ϕ|
∥∥
J2 ≤ 23/2

(
1− 〈ϕ, γ(1)

N ϕ〉2
)1/2 (2.32)

where we used that ‖γ(1)
N ‖J2 ≤ ‖γ

(1)
N ‖J1 = 1.

For practical computations, the criterion (2.31) turns out to be quite useful. In the
next chapter, we obtain an equivalent formulation of (2.31) in a Fock space setting which
underlines very clearly the physical interpretation of the convergence (2.31).

We close this section with a few further remarks on the definition (2.30). As just
mentioned, the definition (2.30) implies that, asymptotically, all particles occupy the
same one-particle state. Weaker definitions of the concept of Bose-Einstein condensation
can be obtained by saying that asymptotically only a finite fraction of size λ ∈ (0, 1]
occupies a particular one-particle wave function. An even weaker notion of condensation

is the statement that lim infN→∞ ‖γ(1)
N ‖L(H) > 0. The original proposal in [52] defines

BEC indeed as the property that the largest eigenvalue of the one-particle reduced
density operator remains asymptotically of order one.

Finally, we remark that, analogously to the one-particle reduced density matrix, one
can define the so called k-particle reduced density matrices, k = 2, . . . , N . Given a

normalized state ψN ∈ L2
s(Ω

N ), the k-particle reduced density matrix γ
(k)
N ∈ J1(L2

s(Ω
k))

is the positive trace class operator with integral kernel

γ
(k)
N (Xk, Yk) =

∫
ΩN−k

ψN (Xk, xk+1, . . . , xN )ψN (Yk, xk+1, . . . , xN ) dxk+1 . . . dxN ,

where we abbreviate Xk = (x1, . . . , xk), Yk = (y1, . . . , yk) ∈ Ωk. One can prove that
complete BEC in the sense of (2.30) implies also the convergence

lim
N→∞

tr
∣∣γ(k)
N − |ϕ

⊗k〉〈ϕ⊗k|
∣∣ = 0

for every fixed k ∈ N. We refer the interested reader to [32] for a detailed proof.
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2.A The Stone-Weierstrass Theorem

To define the continuous functional calculus, we make use of the complex version of the
Stone-Weierstrass Theorem as stated and proved in [55, Section IV.3].

Theorem 2.24. Let X be a compact Hausdorff space and let B be a subalgebra of
C(X;C) which is closed under complex conjugation. If B is closed and separates points,
meaning that for all x, y ∈ X there exists some f ∈ B with f(x) 6= f(y), then B =
C(X;C) or for some x0 ∈ X, we have B = {f ∈ C(X;C) : f(x0) = 0}. If B separates
points and if 1 ∈ B, B = C(X;C).

2.B The Riesz Representation Theorem

We use the following form of the Riesz Representation Theorem characterizing positive
linear functionals on C(X;C), the space of continuous, complex-valued functions on a
compact metric space X. A careful proof can be found in [66, Section 1.7] (for real-valued
continuous functions, but this implies the complex version as well).

Theorem 2.25. Let X be a compact metric space and let φ : C(X;C)→ C be a positive
linear functional such that φ(f) ≥ 0 whenever f ≥ 0 pointwise. Then, there exists a
unique finite positive Borel measure µφ : B(X)→ [0,∞) s.t. for all f ∈ C(X;C) we have

φ(f) =

∫
X
f(x) dµφ(x) (2.33)

In particular, µφ inner and outer regular (as it is finite).

Remark 2.5. It is enough to prove the theorem for real valued continuous functions;
this implies the complex valued case as well by splitting a general f ∈ C(X;C) into its
real and imaginary parts. With a little more work (see [66, Chapter 1, Section 7.2]),
Theorem 2.25 can be used to show that

(
C(X;R)

)∗
is isometrically isomorphic to the

space of finite signed Borel measures, equipped with the total variation norm. Related to
this, notice that a positive linear functional φ : C(X;C)→ R is bounded, because

φ(‖f‖∞ ± (f)) ≥ 0 =⇒ |φ(f)| ≤ φ(1)‖f‖∞.

Remark 2.6. The assumption that X is a compact metric space can be relaxed. Another
variant of the theorem only assumes e.g. that X is a locally compact Hausdorff space.
The version in Theorem 2.25 is sufficient for all applications in these notes.

Proof. We follow [66, Chapter 1, Section 7.1] and prove the theorem in the setting of real-
valued functions. So, let φ be a positive linear functional on C(X;R). We first construct a
suitable outer measure µ∗ on P(X) with the property that µ∗(E1∪E2) = µ∗(E1)+µ∗(E2)
if dist(E1, E2) > 0. This yields a regular Borel measure µφ by Caratheory’s construction,
see e.g. [65, Chapter 6]. Afterwards we verify the identity (2.33) for µφ.

To start with the outer measure, we need to relate the measure of a set with the
functional φ. Heuristically, we would like to define µ∗(E) ≈ φ(χE) where E denotes the
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characteristic function on E ⊂ X. Of course, characteristic functions are not in C(X;R),
but we can make this idea rigorous through a limiting procedure. We first define

ρ(U) = sup
{
φ(f) : supp(f) ⊂ U, 0 ≤ f ≤ 1

}
≥ 0

for ∅ 6= U ⊂ X open and ρ(∅) = 0. We then set

µ∗(E) = inf
{
ρ(U) : E ⊂ U, U ⊂ X open

}
≥ 0.

It is clear that µ∗(∅) = 0 (recall that ρ(∅) = 0) and that µ∗(E1) ≤ µ∗(E2) if E1 ⊂ E2,
by definition of µ∗. The sub-additivity of µ∗ follows from standard arguments if we
prove it first for open sets on which we have µ∗ = ρ. So, consider a sequence (Uk)k∈N
of open sets Uk ⊂ X and set U = ∪∞k=1Uk. Then, if 0 ≤ f ≤ 1 and supp(f) ⊂ U , then
by compactness, we have supp(f) ⊂ ∪Nk=1Uk for some N ∈ N. Associated to (Uk)

N
k=1,

denote by (ψk)
N
k=1 a standard partition of unity, so that in particular f =

∑N
k=1 fψk

with fψk ∈ C(X;R), supp(fψk) ⊂ Uk and 0 ≤ fψk ≤ 1 for each k = 1, . . . , N . Then

φ(f) =

N∑
k=1

φ(fψk) ≤
N∑
k=1

ρ(Uk) ≤
∞∑
k=1

µ∗(Uk).

Taking the supremum over all such f , we conclude that µ∗(U) ≤
∑∞

k=1 µ∗(Uk) as desired.
For the general case of sets (Ek)k∈N, pick ε > 0 and choose (Uk)k∈N so that

µ∗(Uk) ≤ µ∗(Ek) +
ε

2k

so that by monotonicity and the previous step

µ∗

( ⋃
k∈N

Ek

)
≤
∑
k∈N

µ∗(Uk) ≤
∑
k∈N

µ∗(Ek) + ε
∑
k∈N

2−k.

Letting ε > 0 tend to zero, we conclude that µ∗ is an outer measure.
To see that Caratheodory’s construction yields a regular Borel measure, it is enough

to prove that
µ∗(E1 ∪ E2) = µ∗(E1) + µ∗(E2)

whenever dist(E1, E2) > 0. Notice that for E1, E2 open, this statement is true, by the
definition of ρ and the fact that supp(f) ⊂ U1 ∪ U2 with dist(U1, U2) > 0 if and only if
f = f1 + f2 with supp(f1) ⊂ U1, supp(f2) ⊂ U2. For the general case, we can choose
U1, U2 open such that E1 ⊂ U1, E2 ⊂ U2 and dist(U1, U2) > 0. Then, if E1 ∪E2 ⊂ U for
some U ⊂ X open, we have that

µ∗(U) ≥ µ∗
(
(U ∩ U1) ∪ (U ∩ U2)

)
= µ∗(U ∩ U1) + µ∗(U ∩ U2) ≥ µ∗(E1) + µ∗(E2),

which implies that µ∗(E1 ∪E2) ≥ µ∗(E1) + µ∗(E2) by taking the infimum over all open
U ⊂ X open such that E1 ∪ E2 ⊂ U .
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Let us denote from now on by µφ the finite measure obtained through Caratheodory’s
construction. It remains to prove the formula (2.33) and to this end, suppose that
f ∈ C(X;R) with 0 ≤ f ≤ 1: the general case can be reduced to this by splitting
g ∈ C(X;R) into the difference of its positive and negative parts and by rescaling. To
relate φ(f) to µφ, we split f into N ∈ N continuous pieces according to the open sets

Un = {x ∈ X : f(x) > (n− 1)/N} ⊂ X.

One has Un+1 ⊂ Un for each n and one can check that f =
∑N

n=1 fn, where

fn(x) =


1/N : if x ∈ Un+1

f(x)− (n− 1)/N : if x ∈ Un ∩ U cn+1

0 : else.

Note that fn ∈ C(X;R) with 0 ≤ fn ≤ 1/N , supp(fn) ⊂ Un ⊂ Un−1. This implies that

µ(Un+1) = ρ(Un+1) ≤ φ(Nfn) = Nφ(fn) ≤ Nρ(Un−1) = µ(Un−1),

where the first inequality follows from the fact that (Nfn)|Un+1
= 1 and the positivity

of the functional φ. By linearity, we obtain that

1

N

N∑
n=1

µ(Un+1) ≤ φ(f) ≤ 1

N

N∑
n=1

µ(Un−1).

Similarly, we have that

µ(Un+1) =

∫
Un+1

dµφ ≤ N
∫
X
fn(x)µφ(dx) ≤ µ(Un−1),

again by the properties of fn (and monotonicity of the integral). Thus, we find that

1

N

N∑
n=1

µ(Un+1) ≤
∫
X
f(x)µφ(dx) ≤ 1

N

N∑
n=1

µ(Un−1)

and therefore (recalling Un+1 ⊂ Un−1)∣∣∣∣φ(f)−
∫
X
f(x)µφ(dx)

∣∣∣∣ ≤ lim
N→∞

1

N

N∑
n=1

µ(Un−1 ∩ U cn+1) ≤ 2µ(X)

N
= 0.

Finally, uniqueness follows by approximating µφ(U) for U ⊂ X open through

µφ(U) = lim
n→∞

φ(fn)

for a suitable sequence (fn)n∈N in C(X;R) with 0 ≤ fn ≤ 1, supp(fn) ⊂ U and
limn→∞ fn(x) = χU (x) for all x ∈ X, applying dominated convergence. This implies
that φ determines µφ uniquely on open and thus (e.g. by regularity) on Borel sets.
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3 The Bose Gas in the Mean Field Regime

In this section we consider interacting Bose gases in the so called mean field regime.
In this regime particles interact through a weak potential which is proportional to the
inverse of the number of particles. With such a weak interaction, one expects that the
total potential a fixed particle experiences is given by an average or mean field interaction
due to the remaining particles. We either consider the particles moving in R3, trapped
in a region of order one by an external potential, or moving in T3 = R3/Z3, the three
dimensional flat unit torus (that is, the particles are trapped in a box of volume one
and we assume periodic boundary conditions). We start our analysis by determining
the ground state energy of the interacting Bose gas up to leading order in the limit
N →∞. Moreover, we show that any approximate ground state of the system exhibits
complete Bose-Einstein condensation into the minimizer of the non-linear Hartree energy
functional. We then go one step further and determine the next to leading order ground
state energy as well as the excitation energies, up to errors vanishing in the limit N →∞.
This rigorously establishes the predictions of Bogoliubov theory in the mean field regime.

The study of mean field quantum systems has a long history. There exists a
considerable amount of important and interesting literature on the topic. Here, we
present only a few selected and simplified results based on the articles [63, 30, 36]. We
refer to the lecture notes [54] for a detailed overview of recent developments on the
general derivation of Hartree’s theory from mean field (and other) systems and for a
thorough list of references.

3.1 Ground State Energy and Complete BEC in the Mean Field Regime

In this section we consider N bosons moving in R3. The Hilbert space describing the
system is L2

s(R3N ) and the Hamiltonian Htrap
N reads

Htrap
N =

N∑
i=1

(−∆xi + Vext(xi)) +
1

N

∑
1≤i<j≤N

v(xi − xj) (3.1)

We assume Vext ∈ L∞loc(R3) and s.t. Vext(x) → ∞ as |x| → ∞. To ignore any regularity
issues related to the interaction, we assume for simplicity that v ∈ S(R3) is a Schwartz
function. Moreover, we assume that v is radial and that v has non-negative Fourier trans-
form v̂ ≥ 0. Under these assumptions Htrap

N is essentially self-adjoint on9 SN (C∞c (R3N )),

by Prop. 2.3. Moreover, by Remark 2.5 and Corollary 2.6, σ(Htrap
N ) = σd(Htrap

N ).
The scaling factor N−1 in front of the two-body interaction in (3.1) characterizes the

mean field regime. On the one hand, this choice makes the interaction quite weak. In
fact, when N → ∞, its strength tends to zero. On the other hand, with such a choice
the kinetic and interaction energies can be expected to be of the same order O(N). This
means that, although the interaction is quite weak, it can not be neglected, but must
have a significant effect on the spectrum and the dynamics of the system.

9Here, SN denotes the symmetrization operator as defined in Section 2.1. Notice that
SN ∈ L(L2(R3N )) is a bounded orthogonal projection and leaves the Hamiltonian HN invariant.
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In the non-interacting case v = 0, in the ground state all particles are condensated
into the ground state of the one body operator −∆ + Vext. In particular, all particles
are distributed in space independently from one another. If we assume that a weak
interaction does not change this picture dramatically, we may hope that the leading order
contribution to the ground state energy can still be obtained by minimizing Htrap

N over
tensor product wave functions. Physically, this means that we expect correlation effects
among the particles to be negligible, at least in the context of computing the leading
order contribution to the energy. Assuming this for now, we arrive at the prediction
that the ground state energy EN of Htrap

N should approximately be equal to

EN ≈ N inf
‖ϕ‖2=1

∫
dx
(
|∇ϕ|2 + Vext|ϕ|2 +

1

2

(
v ∗ |ϕ|2

)
|ϕ|2

)
.

Before making this statement precise, we first analyze the Hartree energy functional
Etrap
H : DH → R, defined on DH = H1(R3) ∩ L2(R3;Vext(x) dx) by

Etrap
H (ϕ) =

∫
dx
(
|∇ϕ|2 + Vext|ϕ|2 +

1

2

(
v ∗ |ϕ|2

)
|ϕ|2

)
. (3.2)

In Theorem 3.1 below we prove the existence and uniqueness of minimizers of EH . In
order to prove the uniqueness statement, we need two technical preparations. We start
with the convexity inequality for gradients (see [40, Theorem 7.8]).

Proposition 3.1 (Convexity Inequality for Gradients). Let f, g ∈ H1(Rd;R). Then∫ ∣∣∇√f2 + g2
∣∣2(x) dx ≤

∫ [
|∇f |2(x) + |∇g|2(x)

]
dx (3.3)

If moreover g > 0 in the sense that for all compact K ⊂ Rd there exists an ε > 0 s.t.∣∣{x ∈ K : g(x) < ε}
∣∣ = 0,

then equality holds true in (3.3) if and only if f = cg for some constant c ∈ R.

Proof. First of all,
√
f2 + g2 ∈ H1(Rd) (see [40, Theorem 6.17]) with

(
∇
√
f2 + g2

)
(x) =


f∇f+g∇g√

f2+g2
(x) if (f2 + g2)(x) 6= 0,

0 else

(3.3) is now a direct consequence of the observation that, for (f2 + g2)(x) 6= 0, we have

|∇f |2(x) + |∇g|2(x)−
∣∣∇√f2 + g2

∣∣2(x)

= |∇f |2(x) + |∇g|2(x)− (f2 + g2)−1(f2|∇f |2 + g2|∇g|2 + 2fg∇f · ∇g)(x)

= (f2 + g2)−1(g2|∇f |2 + f2|∇g|2 − 2fg∇f · ∇g)(x) = (f2 + g2)−1|g∇f − f∇g|2(x) ≥ 0

Now consider the case of equality in (3.3). From the last identity, we see that this implies
(g∇f)(x) = (f∇g)(x) for a.e. x ∈ Rd. We will use this fact to show that f/g ∈ L1

loc(Rd)
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has vanishing distributional derivative which implies f = cg. To this end, consider an
arbitrary ϕ ∈ C∞c (Rd), then ϕ/g ∈ H1(Rd) with

∇(ϕ/g) = ∇ϕ/g − ϕ∇g/g2.

This implies∫
(f/g)∇ϕ =

∫
f∇(ϕ/g) +

∫
fϕ∇g/g2 = −

∫
(ϕ/g)∇f +

∫
(ϕ/g2)g∇f = 0

by integration by parts in H1(Rd). We conclude that ∇(f/g) = 0 in D′(Rd).

When proving the uniqueness of the minimizer for the Hartree function EH , we need
to apply the statement about equality in (3.3). To be able to apply it, we need in addi-
tion the following result which provides a lower bound on eigenfunctions of Schrödinger
operators. The following proposition is adapted from [40, Theorems 9.9 and 9.10].

Proposition 3.2. Let Ω ⊂ Rd be open and connected, let f ∈ C(Ω, [0,∞)) be non-
negative and let W ∈ L∞loc(Ω). Assume that f satisfies in distributional sense

−∆f +Wf ≥ 0. (3.4)

Then, for each compact set K ⊂ Ω, there exists a constant C > 0, which is independent
of f , such that

f(x) ≥ C
∫
K
f(y) dy, ∀x ∈ K (3.5)

Proof. Let K be compact, R > 0 and assume that N ∈ N balls Bi = BR(xi), where
xi ∈ K for i = 1, . . . , N , cover K. We define Fi =

∫
Bi
f(y) dy and since∫

K
f(x) dx ≤

N∑
i=1

∫
Bi

f(y) dy ≤ N max
i=1,...,N

Fi

we may assume w.l.o.g. that F1 ≥ N−1
∫
K f(y) dy. We then claim that there exists

some 0 < δ < 1 s.t. for each i = 1, . . . , N , we have

f(w) ≥ δFi = δ

∫
Bi

f(y) dy, ∀w ∈ Bi (3.6)

Assuming this for the moment, let x ∈ K and let γ ∈ C([0, 1],Rd) be a continuous
curve that connects x with x1 ∈ B1. We can cover its trace by finitely many balls
Bj1 , Bj2 , . . . , BjM , M ≤ N , with the property that Bjk ∩Bjk+1

6= ∅. (3.6) implies

Fjk+1
≥
∫
Bjk∩Bjk+1

f(y) dy ≥ δ
∣∣Bjk ∩Bjk+1

∣∣Fjk .
Defining α = min

(
1/2,min

{∣∣Bi ∩Bj∣∣ : Bi ∩Bj 6= ∅
})

, we conclude

Fjk+1
≥ δαFjk
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Using again (3.6) and iterating the previous bound until we arrive at F1 3 x1, we
conclude that we have

f(x) ≥ δ(δα)M−1F1 ≥ N−1δ(δα)M−1

∫
K
f(y) dy

Since x ∈ K was arbitrary, this proves the claim with C = N−1δ(δα)N−1. Notice that
C depends on K, but it is independent of f .

It remains to prove (3.6). To this end, let Ω′ ⊂⊂ Ω ⊂ Rd be open and such that

N⋃
i=1

B3R(xi) ⊂ Ω′.

Moreover, let µ > 0 be s.t. W|Ω′ ≤ µ2. As a consequence, the restriction of f to Ω′, that
is g = f|Ω′ ∈ C(Ω′, [0,∞)), satisfies in distributional sense

(−∆ + µ2)g ≥ 0. (3.7)

The lower bound on g is based on a comparison argument between g and the positive,
radially symmetric solution J ∈ C∞(Rd, (0;∞)) of

(−∆ + µ2)J = 0

with initial condition J(0) = 1. Such solutions exist and they can be expressed explicitly
in terms of Bessel functions. We use this here as a fact and refer the interested reader
to [40, Theorem 9.9] for more details about this. In the special case Ω = R3, which is
the only relevant case for us in these notes, one has

J(x) =
sinh(µ|x|)
µ|x|

for all x ∈ R3. Below, we denote by J(r) for r > 0 the value J(x) for some (and hence,
by radial symmetry, for all) x ∈ Rd with |x| = r.

Now, let us prove (3.6). Assume first that g ∈ C∞(Rd). In this case (3.7) holds
pointwise. Let z ∈ Rd be arbitrary and define Jz ∈ C∞(Rd, (0,∞)) as the translation

Jz(x) = J(x− z).

Then, by (3.7), the radial symmetry of J and integration by parts, we get

0 ≥ 1

|Sr(0)|

∫
Br(z)

[
Jz(∆g)− g(∆Jz)

]
(x) dx =

1

|Sr(0)|

∫
Br(z)

∇ · (Jz∇g − g∇Jz)(x) dx

=
1

|Sr(0)|

∫
Sr(z)

(Jz∇g − g∇Jz) · dS = J(r)∂r[g]z,r(r)− [g]z,r(r)(∂rJ)(r)

for all r > 0. Here, [g]z,r denotes the spherical average of g over Sr(z), recalling that∫
Sr(z)

(∇f) · dS =

∫
Sr(0)

(∇f)(ω + z) · ω
|ω|

dS(ω) = rd−1

∫
S1(0)

∂rf(rω + z) dS(ω).

89



The above arguments show that

∂r
[g]z,·
J

=
J(∂r[g]z,·)− (∂rJ)[g]z,·

J2
≤ 0,

so that the map r 7→ [g]z,r/J(r) is decreasing. By continuity of g, J(0) = 1 and

lim
r→0

[g]z,r = lim
r→0

1

|S1(0)|

∫
S1(z)

dS(ω) g(z + rω) = g(z),

we arrive at

g(z) ≥ [g]z,r
J(r)

for all r > 0 and z ∈ Ω. Integrating the last bound implies for all w ∈ Bi
(

= BR(xi)
)

g(w) ≥ 1

|B2R(0)|

∫ 2R

0
dr rd−1 |S1(0)|[g]w,r

J(r)

≥ C2R

∫
B2R(w)

g(y) dy ≥ C2R

∫
BR(xi)

g(y) dy = C2R

∫
Bi

f(y) dy

(3.8)

for C2R =
(
|B2R(0)| supy∈B2R(0) J(y)

)−1
. Choosing δ = min(1/2, C2R) ∈ (0, 1) proves

(3.6) for g ∈ C∞(Ω′), recalling that g = f|Ω′ . Finally, for a general g ∈ C(Ω′), we use
a mollifying sequence and prove the pointwise lower bound (3.8) first for a.e. w ∈ Bi.
Since g is continuous and the lower bound on the right hand side in (3.8) is independent
of w ∈ Bi, (3.8) holds true for all w ∈ BR(z).

Theorem 3.1. The Hartree energy functional (3.2) admits a pointwise positive mini-
mizer ϕH ∈ DH ∩ {ψ ∈ L2(R3) : ‖ψ‖2 = 1} which is unique up to a constant phase and
which satisfies the Euler-Lagrange equation(

−∆ + Vext + v ∗ |ϕH |2
)
ϕH = ε0 ϕH (3.9)

in D′, where

ε0 = Etrap
H (ϕH) +

1

2

〈
ϕH ,

(
v ∗ |ϕH |2)ϕH

〉
= eH +

1

2

〈
ϕH ,

(
v ∗ |ϕH |2)ϕH

〉
. (3.10)

Moreover, ϕH decays exponentially at infinity and ϕH ∈ C1(R3).

Proof. The existence of a minimizer follows from the direct methods of the calculus of
variations. For the remaining claims, we argue as in [45, Appendix A].

We start with a minimizing sequence (ϕj)j∈N in DH , ‖ϕj‖2 = 1∀ j ∈ N, and observe
that supj∈N ‖φj‖H1 ≤ C for some C > 0. Here, we make use of the fact that Vext

is bounded from below which follows from our assumptions. Hence, we find a weakly
converging subsequence in H1(R3), denoted for simplicity again by (ϕj)j∈N. Denote by
ϕ ∈ H1(R3) the weak limit. Since the sequence is minimizing for Etrap

H , we may assume

sup
j∈N

∫
Vext|ϕj |2 <∞.
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Using the last bound and that Vext(x)→∞ as |x| → ∞, we find for suitable R,R′ > 0

sup
j∈N

∫
BR(0)C

|ϕj(x)|2 dx ≤ 1

R′
sup
j∈N

∫
Vext≥R′

Vext(x)|ϕj(x)|2 dx→ 0 (R→∞)

Using the compactness of H1(BR(0)) ↪→ L2(BR(0)), we may assume w.l.o.g. that the
sequence ((ϕj)|BR(0))j∈N converges strongly in L2(BR(0)) to ϕ|BR(0). Choosing R large
enough, this implies that ‖ϕ‖2 ≥ 1 − ε, for a given ε > 0. Since the L2-norm is
weakly sequentially lower semi-continuous, we also have that ‖ϕ‖2 ≤ 1 so that ‖ϕ‖2 =
1. Choosing another subsequence if necessary, we may therefore assume that (ϕj)j∈N
converges to ϕ in L2(R3) and for a.e. x ∈ R3 (here, we use the fact that in Hilbert spaces
weak convergence and convergence of the norm implies norm convergence).

If VextχR3\BR(0) ≥ 0 and |Vext|χBR(0) ≤ C, the L2-convergence, the pointwise conver-
gence and Fatou’s lemma imply

lim inf
j→∞

∫
dx
(
Vext|ϕj |2 +

1

2

(
v ∗ |ϕj |2

)
|ϕj |2

)
≥
∫
R3\BR(0)

dxVext|ϕ|2 + lim
j→∞

∫
BR(0)

dxVext|ϕj |2 +
1

2

∫
dx
(
v ∗ |ϕ|2

)
|ϕ|2

=

∫
dx
(
Vext|ϕ|2 +

1

2

(
v ∗ |ϕ|2

)
|ϕ|2

)
.

Since the H1-norm is also weakly sequentially lower semicontinuous (and ‖ϕj‖2 = 1 for
every j ∈ N), we conclude that ϕ ∈ DH is a normalized minimizer of Etrap

H , because

inf
ψ∈DH ,‖ψ‖2=1

Etrap
H (ψ) = lim inf

j→∞
Etrap
H (ϕj) ≥ Etrap

H (ϕ).

The fact that ϕ satisfies the Euler-Lagrange equation (3.9) follows from differentiating
the continuously differentiable map t 7→ Etrap

H (ϕψ,t), where ϕψ,t = ϕ+tψ
‖ϕ+tψ‖2 and where

ψ ∈ C∞c (R3), at its minimum t = 0.
Next, let us prove that the minimizer is unique, up to multiplication by a constant.

Using Corollary 2.7 and Proposition 3.1, we first show that any minimizer is pointwise
positive after multiplication by a constant phase. In fact, the inequality∫ ∣∣∇|ϕ(x)|

∣∣2 dx ≤ ∫ |∇ϕ(x)|2 dx

implies that Etrap
H (|ϕ|) ≤ Etrap

H (ϕ). Hence, if ϕ is a minimizer, also |ϕ| is a minimizer
and therefore satisfies the Euler-Lagrange equation (3.9). But this implies that |ϕ|
must be equal to the unique, positive ground state wave function of −∆ + W where
W = Vext + v ∗ |ϕ|2 ∈ L∞loc(R3). If it was not the ground state wave function, |ϕ| would
be an eigenfunction10 orthogonal to the positive ground state of −∆ + W . But |ϕ| is

10Notice that D(−∆+W ) = D(−∆+Vext), because v∗|ϕ|2 is a bounded perturbation. Since −∆+Vext

is essentially self-adjoint on D, the Euler-Lagrange equation (3.9) implies that |ϕ| ∈ D(−∆ +W ).
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non-negative and normalized, so it can not be orthogonal to a strictly positive function.
Since ϕ also satisfies the Euler-Lagrange equation (3.9), it follows that ϕ must also be a
ground state wave function of −∆ + W . Hence, by Corollary 2.7, ϕ is equal to |ϕ|, up
to mulitplication by a constant of modulus one.

Let us remark that |ϕ| is in fact positive in the sense of Proposition 3.1. For elliptic
regularity and the Euler-Lagrange equation (3.9) imply that |ϕ| has a continuous rep-
resentative (see [40, Theorem 10.2]). Thus, we can apply Proposition 3.2 which shows
that |ϕ| is positive in the sense of Proposition 3.1.

Now, to prove the uniqueness of the minimizer, let’s assume we are given two
pointwise positive minimizers

√
ρ1,
√
ρ2 ∈ DH with ‖√ρ

i
‖2 = 1 for i = 1, 2. Then

also Φ1/2 =
(

1
2ρ1 + 1

2ρ2

)1/2 ∈ DH with ‖Φ1/2‖2 = 1. If we can show that the map

ρ 7→ Etrap
H (
√
ρ) is strictly convex for positive ρ > 0 with ‖ρ‖1 = 1, we deduce from

inf
ψ∈DH ,‖ψ‖2=1

Etrap
H (ψ) ≤ Etrap

H (Φ1/2) ≤ 1

2
Etrap
H (ρ1) +

1

2
Etrap
H (ρ2) = inf

ψ∈DH ,‖ψ‖2=1
Etrap
H (ψ),

that
√
ρ1 =

√
ρ2, that is, uniqueness of the minimizer of Etrap

H . To prove the convexity,

define for t ∈ (0, 1) the function Φt by Φt =
(
tρ1 + (1− t)ρ2

)1/2
. We then have trivially∫

Vext(x)Φ2
t (x) dx = t

∫
Vext(x)ρ1(x) dx+ (1− t)

∫
Vextρ2(x) dx.

By v̂ ≥ 0 and the convexity of y 7→ y2, we also find〈
Φ2
t , v ∗ Φ2

t

〉
=
〈
v,Φ2

t (−.) ∗ Φ2
t

〉
=
〈
v̂, |(̂Φ2

t )|2
〉

≤ t
〈
v̂, |ρ̂1|2

〉
+ (1− t)

〈
v̂, |ρ̂2|2

〉
= t
〈
ρ1, v ∗ ρ1

〉
+ (1− t)

〈
ρ2, v ∗ ρ2

〉
for smooth compactly supported functions ρ1, ρ2. By density of C∞c (R3) in L1(R3),
we conclude the convexity of the interaction term on all of L1(R3). Finally, the map
ρ 7→

∫
|∇√ρ|2 is convex by Proposition 3.1 which implies that∫

|∇
√
tρ1 + (1− t)ρ2|2 ≤ t

∫
|∇√ρ1|2 + (1− t)

∫
|∇√ρ2|2.

On the set of strictly positive ρ > 0 with ‖ρ‖1 = 1, it is strictly convex, because in this
set equality in Proposition 3.1 holds true if and only if ρ1 = cρ2 for some c > 0. The
normalization ‖ρ1‖1 = ‖ρ2‖1 = 1 implies c = 1 so that ρ1 = ρ2, proving uniqueness.

From now on, we denote by ϕH the unique, positive and normalized minimizer of
Etrap
H in DH . It remains to show that ϕH has exponential decay at infinity. Once this is

proved, the Euler-Lagrange equation (3.9) implies that ∆ϕH ∈ L∞loc(R3), which in turn
implies ϕH ∈ C1(R3) (see [40, Theorem 10.2]).

To prove the exponential decay, fix some t > 0 so that

(−∆ + t2)ϕH = −(W − ε0 − t2)ϕH
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where W = Vext + (v ∗ |ϕ|2) ∈ L∞loc(R3). This equality holds true in D′. Recalling that
W (x)→∞ as |x| → ∞, it follows that in D′ we have

(−∆ + t2)ϕH ≤ −χBR(0)(W − ε0 − t2)ϕH

for some sufficiently large R > 0 and, by continuity, this inequality remains true in S ′.
Now, for t > 0, the operator (−∆ + t2) has a bounded inverse whose integral kernel

is given by the Yukawa-potential Yt (see [40, Theorem 6.23]), defined pointwise by

Yt(x) = (4π|x|)−1 exp(−t|x|)

for x ∈ R3. Moreover, (−∆ + t2) and its inverse leave S invariant (why? ) which implies

0 < ϕH(x) ≤ −
∫
BR(0)

Yt(x− y)(W (y)− ε0 − t2)ϕH(y) dy

for a.e. x ∈ R3. The r.h.s. of the last equation can be estimated by

sup
x∈R3

[
− exp(|x|t)

∫
BR(0)

Yt(x− y)(W (y)− ε0 − t2)ϕH(y) dy
]

= sup
x∈R3

[
−
∫
BR(0)

exp((|x| − |x− y|)t)
4π|x− y|

(W (y)− ε0 − t2)ϕH(y) dy
]

≤ CR,t,ε0 sup
x∈R3

[ ∫
BR(0)

exp(2Rt)

4π|x− y|2
dy

]1/2[ ∫
BR(0)

ϕ2
H(y) dy

]1/2

≤ C <∞

for some constant C > 0, which is independent of x ∈ R3. In the last step, we have used
that W ∈ L∞loc(R3). Hence, 0 < ϕH(x) ≤ C exp(−|x|t) for a.e. x ∈ R3.

Problem 3.1. Show that (−∆ + t2)−1 acts as convolution with Yt, defined by

x 7→ Yt(x) = (4π|x|)−1 exp(−t|x|).

Problem 3.2. Let Ω ⊂ Rn, n ≥ 3, be open and bounded with ∂Ω of class C1. Let p > 2
and assume that f ∈ L2(Ω). Show that, in the sense of distributions, there exists a
solution u ∈ H1

0 (Ω) to the boundary value problem{
−∆u+ |u|p−2u = f in Ω,

u|∂Ω = 0.

Having established the existence and uniqueness of the minimizer of Etrap
H , the rest of

this section is devoted to the proof of the following theorem about mean field systems.

Theorem 3.2 (Ground State Energy and BEC). Let (ψN )N∈N, ‖ψN‖2 = 1 ∀ N ∈ N,
be a sequence of wave functions in the domain of Htrap

N defined in (3.1), such that there
exists a constant ζ > 0 so that for all N ∈ N

〈ψN , Htrap
N ψN 〉 ≤ NeH + ζ.
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Then (ψN )N∈N exhibits complete BEC into the minimizer ϕH ∈ DH of Etrap
H .

More precisely, denoting by (γ
(1)
N )N∈N the one-particle reduced density matrices of

(ψN )N∈N, there exists a constant C > 0, independent of N ∈ N and ζ > 0, such that

1− 〈ϕH , γ(1)
N ϕH〉 ≤ C(1 + ζ)N−1. (3.11)

Moreover, the ground state EN of Htrap
N satisfies

EN = NeH +O(1). (3.12)

Remarks:

1) Equation (3.12) of Theorem 3.2 implies in particular that every ground state of Htrap
N

exhibits complete BEC into the minimizer ϕH of the Hartree functional Etrap
H .

2) In view of the ground state energy asymptotics (3.12), we call a sequence (ψN )N∈N
of normalized wave functions with the property that 〈ψN , Htrap

N ψN 〉 ≤ NeH + ζ a
sequence of approximate ground state wave functions.

3) It is clear that the threshold ζ > 0 on the energy may depend on N ∈ N, that is,
ζ = ζ(N). As long as ζ(N) = o(N), the bound (3.11) implies complete BEC.

4) The rate of the condensate depletion of order O(N−1) in (3.11) is optimal. This can
be proved, for example, with the methods explained in the next Section 3.2.

5) The validity of Hartree’s approximation EN = NeH + o(N) is valid under much
less restrictive assumptions, compared to those of this section. In particular, the
assumption v̂ ≥ 0 is not needed. We refer the interested reader to [34, 35, 54].

Proof. The proof follows [63, 30]. Using the positive definiteness of the interaction v,
we give a lower bound on the many body interaction in terms of the Hartree interaction
energy. The lower bound implies complete BEC into ϕH and that EN ≥ NeH + O(1).
The upper bound on EN follows by using a simple trial state (a product wave function).

Before we bound the many body interaction from below, let us notice that the Min-
Max Principle 2.17 and its Corollary 2.6 imply that the one body operator

h = −∆ + Vext + (v ∗ ϕ2
H)

has purely discrete spectrum σ(h) = {εj ∈ R : j ∈ N} = σd(h) with the ground state
energy ε0 defined in (3.10). We may order the eigenvalues s.t. ε0 < ε1 ≤ ε2 ≤ . . . where
the strict inequality ε0 < ε1 follows from the uniqueness of the ground state ϕH of h. In
the following let’s denote by

{
ϕj ∈ L2(R3) : j ∈ N

}
, ϕ0 = ϕH , a complete orthonormal

eigenbasis of h such that hϕj = εjϕj for all j ∈ N.
With these preliminary observations, we start to prove the lower bound on EN . To

get the right lower bound, it is natural to try to compare Htrap
N with a non-interacting
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Hamiltonian whose ground state vector is ϕ⊗N0 and whose ground state energy is given
to leading order by NeH . Such an efffective Hamiltonian is given by

Heff
N =

N∑
j=1

(
hxj −

1

2

〈
ϕH ,

(
v ∗ |ϕH |2)ϕH

〉)
= NeH +

N∑
j=1

(
hxj − ε0

)
,

recalling the Euler-Lagrange equation solved by ϕ0. Now notice that the potential energy
can be written as

1

N

∑
1≤xi<xj≤N

v(xi − xj) ≈
1

2N

∫
dxdy v(x− y)

( N∑
i=1

δ(x− xi)
)( N∑

j=1

δ(y − xj)
)

and, similarly, that the mean field interaction contribution to Heff
N can be written as

N∑
j=1

(v ∗ ϕ2
0)(xj) =

∫
dxdy

( N∑
j=1

δ(x− xj)
)
v(x− y)ϕ2

0(y).

To connect the two expressions, we can use the positive definiteness of v and complete
the square to obtain a lower bound on the total potential energy:

0 ≤
∫ (

ϕ2
0(x)− 1

N

N∑
i=1

δ(x− xi)
)
v(x− y)

(
ϕ2

0(y)− 1

N

N∑
j=1

δ(y − xi)
)
dxdy

= 〈ϕ2
0, v ∗ ϕ2

0〉 −
2

N

N∑
i=1

(v ∗ ϕ2
0)(xi) +

2

N2

∑
1≤i<j≤N

v(xi − xj) +
1

N
v(0).

This implies

1

N

∑
1≤i<j≤N

v(xi − xj) ≥
N∑
i=1

(v ∗ ϕ2
0)(xi)−

N

2
〈ϕ2

0, v ∗ ϕ2
0〉 −

1

2
v(0)

≥
N∑
i=1

(v ∗ ϕ2
0)(xi)−

N

2
〈ϕ2

0, v ∗ ϕ2
0〉+O(1).

(3.13)

To make the argument rigorous, we replace the δ-functions by smooth (fε)ε>0, fε(x) =
ε−3f(x/ε) ∀x ∈ R3, for some radial 0 ≤ f ∈ C∞c (R3) with

∫
R3 f(x) dx = 1 and use that

0 ≤ lim
ε→0

∫ (
ϕ2

0(x)− 1

N

N∑
i=1

fε(x− xi)
)
v(x− y)

(
ϕ2

0(y)− 1

N

N∑
j=1

fε(y − xi)
)
dxdy

=

∫ (
ϕ2

0(x)− 1

N

N∑
i=1

δ(x− xi)
)
v(x− y)

(
ϕ2

0(y)− 1

N

N∑
j=1

δ(y − xi)
)
dxdy.
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The lower bound (3.13) implies

Htrap
N ≥ NeH +

N∑
i=1

(hxi − ε0) +O(1) = Heff
N +O(1).

Now, notice that in L2(R3) we have the operator inequalities

h− ε0 =

∞∑
j=0

εj |ϕj〉〈ϕj | − ε0 =

∞∑
j=1

(εj − ε0)|ϕj〉〈ϕj | ≥ (ε1 − ε0)
(
1− |ϕ0〉〈ϕ0|

)
≥ 0.

Hence, we have for any normalized ψN ∈ D(Htrap
N ) the lower bound

〈ψNHtrap
N ψN 〉 ≥ NeH +N(ε1 − ε0)

(
1− 〈ϕ0, γ

(1)
N ϕ0〉

)
+O(1).

If we assume to have an approximate ground state, that is 〈ψN , Htrap
N ψN 〉 ≤ NeH + ζ,

we obtain (3.11). To prove (3.12), we use that 1− |ϕH〉〈ϕH | ≥ 0 and obtain

NeH +O(1) ≤ EN = inf
ψN∈D(Htrap

N ),
‖ψN‖2=1

〈ψN , Htrap
N ψN 〉 ≤ 〈ϕ⊗N0 , Htrap

N ϕ⊗N0 〉 = NeH .

This shows that EN = NeH +O(1).

3.2 Excitation Spectrum of Bose Gases in the Mean Field Regime

In the previous section, we saw that the leading order term of the ground state energy
of a mean field Hamiltonian of the form (3.1) is given by the minimum of the Hartree
functional, defined in (3.2): Theorem 3.2 shows that

EN = NeH +O(1)

and that any approximate ground state exhibits complete BEC into the minimizer ϕH

of the Hartree energy functional. A more ambitious question is to ask whether we can
find an explicit expression for the contribution O(1) in Theorem 3.2, valid up to errors
that vanish in the limit N → ∞. Moreover, we may also ask for an approximation of
the eigenvalues lying above EN (the excitation spectrum) and, moreover, for an approx-
imation of the ground state wave function in L2

s(R3N ) (and not only in the trace class
sense). The rigorous derivation of these approximations is the goal of this section.

We work in this section in L2
s(Λ

N ), where Λ = T3 = R3/Z3 denotes the three
dimensional unit torus. The Hamiltonian HN of the system is given by

HN =

N∑
i=1

(−∆xi) +
1

N

∑
1≤i<j≤N

v(xi − xj). (3.14)

We assume that v ∈ C∞c
(
(−1

2 ,
1
2)3
)

is radially symmetric and such that v̂(p) ≥ 0 for all
p ∈ Λ∗ = 2πZ3. Note that, by slight abuse of notation, we identify v in the following
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with its periodic extension to a function in C∞(T3) (similarly, in (3.14) the difference
xi − xj denotes the distance on the unit torus).

Observe that HN is self-adjoint in H2
s (ΛN ), which follows from Theorem 2.4 and

Theorem 2.21. Notice, moreover, that the spectrum of HN equals σ(HN ) = σd(HN ) by
the Min-Max Theorem 2.17 and the fact that HN ≥

∑N
i=1(−∆xi). On the domain

DH =
{
ϕ ∈ L2(Λ) :

∑
p∈Λ∗

|p|2|ϕ̂p|2 <∞
}

(= H1(Λ)),

we define EH : DH → R by

EH(ϕ) =
∑
p∈Λ∗

(
|p|2|ϕ̂p|2 +

1

2
v̂(p)

∣∣(|̂ϕ| ∗ |̂ϕ|)p∣∣2). (3.15)

The analogue of Theorem 3.1 reads in the translation invariant setting as follows.

Proposition 3.3. The Hartree functional EH admits, up to multiplication by a constant
phase, a unique, normalized minimizer in DH . The unique positive minimizer ϕH ∈ DH

is given by the constant wave function ϕH = 1|Λ.

Proof. We may assume without loss of generality that v̂(0) > 0, otherwise there is

nothing to prove. Let ϕ ∈ DH . Since |ϕ| is real-valued, we have |̂ϕ|p |̂ϕ|−p =
∣∣|̂ϕ|p∣∣2 s.t.

EH(ϕ) ≥ inf
p∈Λ∗

(|p|2|ϕ̂p|2) +
1

2
v̂(0)

∣∣(|̂ϕ| ∗ |̂ϕ|)0

∣∣2
= inf
p∈Λ∗

(|p|2|ϕ̂p|2) +
1

2
v̂(0)

( ∑
q∈Λ∗

|̂ϕ|q |̂ϕ|−q
)2

≥ 1

2
v̂(0) = EH(ϕH),

where ϕH = 1Λ. Hence, ϕH is a normalized minimizer of EH in DH . Moreover, the
bound is strict unless ϕ̂p = 0 for all p ∈ Λ∗ \ {0}, that is unless ϕ = ϕ̂0ϕH is constant.
In that case we have |ϕ̂0| = 1, by normalization, which proves the claim.

The last proposition shows that, in the translation invariant setting, the role of the
condensate is played by the constant wave function ϕH = 1|Λ ∈ L2(Λ). Before we
determine the excitation spectrum of HN , we first introduce a Fock space setting which
enables us to focus efficiently on the orthogonal excitations around the condensate.

3.2.1 Fock Space and Excitations around the Condensate

Recall from Example 2.1 that the bosonic Fock space F = Fs
(
L2(Λ)

)
is defined by

F = C⊕
∞⊕
k=1

L2
s(Λ

k).

Given a wave function ψN ∈ L2
s(Λ

N ) that exhibits complete BEC into some normalized
condensate wave function ϕ0 ∈ L2(Λ), we know that in the sense of the trace class
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topology, we have ψN ≈ ϕ⊗N0 . Instead of considering the part of the wave function ψN
that describes the condensated particles, we would now like to find a precise description
of the fluctuations or excitations around the condensate. Here, we follow the approach
introduced in [36] (see, in particular, [36, Section 2.3]) which yields a natural description
of the fluctuations of ψN around ϕ⊗N0 as a Fock space vector.

Suppose ψk ∈ L2
s(Λ

k) and ψl ∈ L2
s(Λ

l). Then we define ψk ⊗s ψl ∈ L2
s(Λ

k+l)

ψk ⊗s ψl(x1, . . . , xk+l)

=
1√

k!l!(k + l)!

∑
σ∈Sk+l

ψk
(
xσ(1), . . . , xσ(k)

)
ψl
(
xσ(k+1), . . . , xσ(k+l)

)
for a.e. (x1, . . . , xk+l) ∈ Λk+l. Now, let {ϕj : j ∈ N0} be a complete orthonormal basis of
L2
s(Λ

N ) and denote by L2
⊥ϕ0

(Λ) = span{ϕ0}⊥ the orthogonal complement of the space

spanned by ϕ0 ∈ L2(Λ), as well as by F⊥ϕ0 = Fs(L2
⊥ϕ0

(Λ)). Then, given ψN ∈ L2
s(Λ

N ),
we can find a unique decomposition

ψN = ξ(0)ϕ⊗N0 + ϕ⊗N−1
0 ⊗s ξ(1) + ϕ⊗N−2

0 ⊗s ξ(2) + . . .+ ϕ⊗0 ⊗s ξN−1 + ξ(N) (3.16)

where ξ(k) ∈ L2
⊥ϕ0

(Λ)⊗sk for k = 1, . . . , N and ξ0 ∈ C. Indeed, following [32, Section

3.3], let us denote by p = p(ϕ0) = |ϕ0〉〈ϕ0| ∈ L(L2
s(Λ)) the orthogonal projection onto

ϕ0 and denote by q = q(ϕ0) = 1− p(ϕ0) ∈ L(L2
s(Λ)) the projection onto its orthogonal

complement. Using these projections, we define the operators pk, qk ∈ L(L2(ΛN )) by

pk(ϕi1 ⊗ . . .⊗ ϕik ⊗ . . .⊗ ϕiN ) = ϕi1 ⊗ . . .⊗
(
pkϕik

)
⊗ . . .⊗ ϕiN

and qk = 1− pk, for k = 1, . . . , N . Given any ψN ∈ L2
s(Λ

N ), we then have

ψN =

( N⊗
k=1

(pk + qk)

)
ψN =

∑
τ∈{0,1}N

N⊗
k=1

p1−τk
k qτkk ψN

=
N∑
j=0

∑
τ1+···+τN=j

N⊗
k=1

p1−τk
k qτkk ψN =:

N∑
j=0

ψ
(j)
N

By the definition of p and q, we certainly have that 〈ψ(i)
N , ψ

(j)
N 〉 = 0 for all i 6= j. Then,

defining ξ(j) ∈
(
L2
⊥ϕ0

(Λ)
)⊗sj by

ξ(j)(x1, . . . , xj) =

√
N !√

j!(N − j)!
〈
ϕ⊗N−j0 , ψ

(j)
N (x1, . . . , xj , ·)

〉
L2
s(Λ

N−j)

for a.e. (x1, . . . , xj) ∈ Λj , we conclude that

ψN =

N∑
j=0

ψ
(j)
N =

N∑
j=0

1

j!(N − j)!
∑
σ∈SN

σ
(
q1q2 . . . qjpj+1pj+2 . . . pNψN

)
=

N∑
j=0

1√
j!(N − j)!N !

∑
σ∈SN

σ
(
ϕ⊗N−j0 ⊗ ξ(j)

)
=

N∑
j=0

ϕ⊗N−j0 ⊗s ξ(j)

98



where σ ∈ SN acts on wave functions in L2(ΛN ) as defined in Section 2.1. This proves
(3.16). The representation (3.16) enables us to study the excitation vector

(ξ1, . . . , ξN ) ∈ F≤N⊥ϕ0
↪→ F⊥ϕ0 ,

describing the fluctations of ψN around the pure condensate ϕ⊗N0 . Here, we introduced

the notation F≤N⊥ϕ0
for the subspace of F⊥ϕ0 in which each element ζ = (ζ(0), ζ(1), . . . )

has components ζ(k) = 0 for all k > N . We notice that

〈ϕ⊗N−j0 ⊗s ξ(j), ϕ⊗N−k0 ⊗s ξ(k)〉 =
δj,k

j!(N − j)!N !

∑
σ,τ∈SN

〈σ
(
ϕ⊗N−j0 ⊗ ξ(j)

)
, τ
(
ϕ⊗N−j0 ⊗ ξ(j)

)
〉

=
δj,k
N !

∑
σ∈SN

‖ξ(j)‖2 = δj,k‖ξ(j)‖2.

In particular, (3.16) enables us to define the unitary map UN (ϕ0) : L2
s(Λ

N )→ F≤N⊥ϕ0

UN (ϕ0)ψN =
(
ξ(0), ξ(1), . . . , ξ(N)

)
∈ F≤N⊥ϕ0

In view of Proposition 3.3 and the fact that we consider the translation invariant case,
we choose for the rest of the section the basis{

ϕp : p ∈ 2πZ3, ϕp(x) = eipx ∀x ∈ Λ
}

so that ϕ0 = 1|Λ plays the role of the condensate wave function. We also abbreviate

UN = UN (ϕ0) and F⊥ϕ0 = F+, F≤N⊥ϕ0
= F≤N+ (the + indicates that we consider particles

with strictly positive kinetic energy).
When working in the Fock space, where the particle number is not necessarily fixed,

it is convenient to introduce the bosonic creation and annihilation operators. For f, g ∈
L2(Λ), we define the creation operator a∗(f) and the annihilation operator a(g) by

(
a∗(f)ζ

)(n)
(x1, . . . , xn) =

1√
n

n∑
j=1

f(xj)ζ
(n−1)(x1, . . . , xj−1, xj+1, . . . , xn),

(
a(g)ζ

)(n)
(x1, . . . , xn) =

√
n+ 1

∫
Λ
g(x)ζ(n+1)(x, x1, . . . , xn),

for all n ∈ N and

ζ = (ζ(0), ζ(1), . . . , ζ(M), 0, . . . ) ∈
∞⋃
N=0

F≤N =
∞⋃
N=0

N⊕
k=0

L2
s(Λ

k) ⊂ F .

For n = 0, we set
(
a∗(f)ζ

)(0)
= 0.
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It is useful to illustrate the action of a∗(f) and a(f) on product states of the basis
elements ϕp, p ∈ Λ∗. For ζ = Sn(ϕp1 ⊗ ϕp2 ⊗ · · · ⊗ ϕpn) ∈ L2

s(Λ
n), we have that

a∗(ϕq)ζ =

√
n+ 1

(n+ 1)!

∑
σ∈Sn

n+1∑
j=1

ϕpσ(1) ⊗ · · · ⊗ ϕpσ(j−1)
⊗ ϕq ⊗ ϕpσ(j) ⊗ . . . ϕpσ(N)

=
√
n+ 1 Sn+1(ϕq ⊗ ϕp1 ⊗ · · · ⊗ ϕpn) ∈ L2

s(Λ
n+1) ⊂ F≤n+1

and, similarly, that

a(ϕq)ζ =
1√
n

n∑
j=1

〈ϕq, ϕpj 〉2 Sn−1

(
ϕp1⊗. . . ϕpj−1⊗ϕpj−1⊗· · ·⊗ϕn

)
∈ L2

s(Λ
n−1) ⊂ F≤n−1.

In words, a∗(ϕq) creates a particle with momentum q ∈ Λ∗ and a(ϕq) annihilates a
particle with momentum q ∈ Λ∗. As a consequence of the last formulae, it follows that

a∗(ϕq)a(ϕq)ζ = kζ,

where 0 ≤ k ≤ n denotes the number of the momenta pj in ζ such that pj = q. Hence,
a∗(ϕq)a(ϕq) : L2

s(Λ
n)→ L2

s(Λ
n) counts the number of particles with momentum q ∈ Λ∗.

This connects the creation and annihilation operators to the number of excitations.
Basic properties of the creation and annihilation operators are

〈a∗(f)ζ, ξ〉 = 〈ζ, a(f)ξ〉

for all ζ, ξ ∈
⋃∞
N=0F≤N so that, at least on a formal level, a∗(f) is the adjoint of a(f).

Furthermore, they satisfy the so called canonical commutation relations[
a(g), a∗(f)

]
= 〈g, f〉2,

[
a(g), a(f)

]
= 0 (3.17)

for all f, g ∈ L2(Λ). We leave the verification of these properties as an exercise.
In the full Fock space F , wave functions can have an arbitrarily large particle number,

so it is clear that the creation and annihilation operators are unbounded operators in
F . Let us mention that they naturally extend to densely defined, closed and unbounded
operators in F . In these notes, however, we restrict our attention to the truncated
Fock spaces F≤N and, more specifically, on the excitation Fock spaces F≤N+ ↪→ F≤N .
Restricted to such truncated spaces, the creation and annihilation operators are bounded
and therefore we can ignore the unboundedness issues in the full Fock space F .

Creation and annihilation operators are convenient for computations in the bosonic
Fock space, because they implicitly keep track of combinatorial factors due to the sym-
metry of the wave functions. For computations it is particularly useful to represent basic
observables on the Fock space in terms of the creation and annihilation operators. This
amounts essentially to nothing more than computing expectation values of observables
in a particular basis. Since we work with the standard Fourier basis, let’s abbreviate

ap = a(ϕp) and a∗q = a∗(ϕq)
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for all p, q ∈ Λ∗ = 2πZ3. A particularly important operator in this chapter is the number
of particles operator N which is defined in

⋃∞
N=0F≤N through

(N ζ)(n) = n ζ(n), ∀ζ ∈ F≤N

It measures the average number of particles. Observe that ‖N‖L(F≤N ) = N so, in F≤N ,

N is a bounded operator. Since N is a multiplication operator, N is self-adjoint in F≤N ,
for every N ∈ N. By N+, we denote its restriction to

⋃∞
N=0F

≤N
+ .

Let’s express N in terms of the creation and annihilation operators ap, a
∗
q . From our

earlier considerations, we may suspect that in
⋃∞
N=0F≤N , we have that

N =
∑
p∈Λ∗

a∗pap.

Indeed, to verify this, we can consider w.l.o.g. ζ ∈ L2
s(Λ

n) (why?) and find that

N ζ = nζ =

n∑
j=1

1xjζ =
∑
p∈Λ∗

1√
n

n∑
j=1

√
n
(
|ϕp〉〈ϕp|

)
xj
ζ =

∑
p∈Λ∗

a∗papζ.

and similarly, we find that

N+ =
∑

p∈Λ∗p\{0}

a∗pap.

The following two lemmas are simple, but they are frequently applied in estimating
the expectation values of operators in the Fock space.

Lemma 3.1. Let f ∈ L2(Λ). Then we have for all ζ ∈
⋃∞
N=0F≤N that

‖a(f)ζ‖ ≤ ‖f‖2‖N 1/2ζ‖, ‖a∗(f)ζ‖ ≤ ‖f‖2‖(N + 1)1/2ζ‖.

Proof. Pick w.l.o.g. ζ ∈ F≤N . We apply Plancherel and Cauchy-Schwarz to obtain that

〈ζ, a∗(f)a(f)ζ〉 =
N∑
k=0

∫
Λk
dx1 . . . dxk ζ(k)(x1, . . . , xk)

×
k∑
j=1

f(xj)

∫
Λ
dy f(y)ζ(k)(y, x1, . . . , xj−1, xj+1, . . . , xk)

sym.
=

N∑
k=0

k

∫
Λk−1

dX

∣∣∣∣ ∫
Λ
dy f(y)ζ(k)(y,X)

∣∣∣∣2

=
N∑
k=0

k

∫
Λk−1

dX

∣∣∣∣ ∑
q∈Λ∗

f̂p

∫
Λ
dy ϕp(y)ζ(k)(y,X)

∣∣∣∣2 =
∑
p,q∈Λ∗

f̂pf̂q〈ζ, a∗paqζ〉

≤
∑
p,q∈Λ∗

(
|f̂p|‖aqζ‖

)(
|f̂q|‖apζ‖

)
≤ ‖f‖22

∑
p∈Λ∗

〈ζ, a∗papζ〉 = ‖f‖22〈ζ,N ζ〉.

The second bound follows by noticing that a(f)a∗(f) = a∗(f)a(f) +‖f‖22, by (3.17).
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Lemma 3.2. Let f ∈ `2(Λ∗) and define A(∗,∗)(f), A(∗,·)(f) and A(·,·)(f) by

A(∗,∗)(f) =
∑
p∈Λ∗

fpa
∗
pa
∗
−p, A(∗,·)(f) =

∑
p∈Λ∗

fpa
∗
pap, A(·,·)(f) =

∑
p∈Λ∗

fpapa−p

Then, A(∗,∗)(f), A(∗,·)(f) and A(·,·)(f) extend to bounded operators in F≤N and we have

‖A(∗,∗)(f)ζ‖, ‖A(∗,·)(f)ζ‖, ‖A(·,·)(f)ζ‖ ≤
√

2‖f‖2‖(N + 1)ζ‖

for all ζ ∈ F≤N . If, in addition f ∈ `1(Λ∗), then also A(·,∗)(f), defined by

A(·,∗)(f) =
∑
p∈Λ∗

fpapa
∗
p

extends to a bounded operator in F≤N with ‖A(∗,∗)(f)ζ‖ ≤
√

2‖f‖2‖(N +1)ζ‖+‖f‖1‖ζ‖
for all ζ ∈ F≤N .

Proof. Consider first A(∗,∗)(f). Then we have

‖A(∗,∗)(f)ζ‖2 =
∑
p,q∈Λ∗

fpfq〈ζ, apa−pa∗qa∗−qζ〉

≤
∑
p,q∈Λ∗

fpfq〈ζ, (a∗qa∗−qapa−p + 4a∗paqδp,q + 4)ζ〉 ≤ 2‖f‖22〈ζ, (N + 1)2ζ〉

by Cauchy-Schwarz. The bounds for A(∗,·)(f), A(·,·)(f) are analogous. For the non-
normally ordered operator A(·,∗)(f), we only notice that apa

∗
p = a∗pap + 1, by (3.17).

The previous two lemmas illustrate that the creation and annihilation operators
are quite convenient for operator bounds as long as an upper bound in terms of N is
useful. Below, we also need the kinetic energy K+ for certain estimates. The operator
K :

⋃∞
N=0C⊕

⊕N
k=1H

2
s (Λk)→

⋃∞
N=0F≤N is the self-adjoint operator defined through

(K)|N=n =

n∑
i=1

(−∆xi)

and with K|N=0 = 0. We denote the restriction of K to
⋃∞
N=0F

≤N
+ by K+ and we have

K+ =
∑

p∈Λ∗\{0}

|p|2a∗pap.

The verification of this identity is left as an exercise. Similarly, you can check that
K =

∑
p∈Λ∗ |p|2a∗pap on a suitable dense domain.

Now, coming back to the Hamiltonian HN defined in (3.14), we note that
L2
s(Λ

N ) ↪→ F≤N . We can also express HN in terms of the ap, a
∗
q operators, yielding

HN =

( ∑
p∈Λ∗

|p|2a∗pap +
1

2N

∑
p,q,r∈Λ∗

v̂(r)a∗p+ra
∗
qapaq+r

)
|N=N

. (3.18)

102



Indeed, for the potential energy, we have by symmetry∑
1≤i<j≤N

∫
ΛN

dx1 . . . dxN v(xi − xj)Φ(x1, . . . , xN )Ψ(x1, . . . , xN )

=
N(N − 1)

2

∫
ΛN−2

dX

(∫
Λ2

dx1dx2v(x1 − x2)Φ(x1, x2, X)Ψ(x1, x2, X)

)

for every Φ,Ψ ∈ L2
s(Λ

N ) and we can expand this in Fourier space into

N(N − 1)

2

∫
ΛN−2

dX

∫
Λ2

dx1dx2v(x1 − x2)Φ(x1, x2, X)Ψ(x1, x2, X)

= N(N − 1)

∫
ΛN−2

dX
∑

p,q,s,t∈Λ∗

〈Φ(·, ·, X), ϕs ⊗ ϕt〉L2(Λ2)〈ϕp ⊗ ϕq, ψ(·, ·, X)〉L2(Λ2)

×
∫

Λ2

dx1dx2v(x1 − x2)ei(p−s)x1+i(q−t)x2

=
∑

p,q,s,t∈Λ∗

v̂(s− p)δq,t+s−p〈Φ, a∗sa∗tapaqψ〉 =
∑

p,s,t∈Λ∗

v̂(s− p)〈Ψ, a∗sa∗tapat+s−pψ〉

=
∑

p,q,r∈Λ∗

v̂(r)〈Φ, a∗p+ra∗qapaq+rΨ〉,

where, in the last step, we renamed the variables to r = s− p and q = t.

Problem 3.3 (Second quantization of operators). Let h be a symmetric operator on
L2(Ω) and let (ψj)j∈N be an orthonormal basis in the domain D(h). Show that

∞⊕
N=1

N∑
j=1

hxj =
∑
m,n∈N

〈ψm,hψn〉a∗(ψm)a(ψn)

in the sense of forms on
⋃∞
N=0

⊕N
k=0

⊗k
symD(h). Similarly, assume that V (real-valued)

is a multiplication operator in L2(Ω × Ω) with the property that V (x, y) = V (y, x) for
a.e. (x, y) ∈ Ω× Ω. Show that

∞⊕
N=2

∑
1≤i<j≤N

Vxi,xj =
1

2

∑
m,n,p,q∈N

〈ψm ⊗ ψn, V ψp ⊗ ψq〉a∗(ψm)a∗(ψn)a(ψp)a(ψq).

Since we want to focus on the orthogonal excitations of low-energy states, motivated
by (3.16), we need to compute the unitarily equivalent excitation Hamiltonian

LN = UNHNU
∗
N .

This is a simple exercise once we know how UN acts on the ap, a
∗
q operators.
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Problem 3.4. Check that UN and its adjoint U∗N are given by

UN (ψN ) =
N⊕
k=0

q⊗k
(

aN−k0√
(N − k)!

ψN

)
,

U∗N
(
(ζ(0), ζ(1), . . . , ζ(N))

)
=

N∑
k=0

(a∗0)N−k√
(N − k)!

ζ(k)

(3.19)

for all ψN ∈ L2
s(Λ

N ) and ζ = (ζ(0), ζ(1), . . . , ζ(N)) ∈ F≤N+ . Here, we remind the reader
that q = 1− |ϕ0〉〈ϕ0| ∈ L(L2(Λ)) (the details can be found in [36, Section 4]).

Given p, q ∈ Λ∗+ = 2πZ3 \ {0}, the fact that [a∗paq, a0] = [a∗paq, a
∗
0] = 0 now implies

UNa
∗
paqU

∗
N = a∗paq, UNN+U

∗
N =

∑
p∈Λ∗+

a∗pap = N+.

As a consequence

UNa
∗
0a0U

∗
N = UN (N −N+)U∗N = UN (N −N+)U∗N = N −N+. (3.20)

Finally, for p ∈ Λ∗+, we find with (3.19) for any ζ = (ζ(0), ζ(1), . . . , ζ(N)) ∈ F≤N+ that

UNa
∗
pa0U

∗
Nζ = UNa

∗
pa0

N∑
k=0

(a∗0)N−k√
(N − k)!

ζ(k) = UN

N−1∑
k=0

(a∗0)N−k−1√
(N − k − 1)!

√
(N − k)a∗pζ

(k)

= UN

N∑
k=1

(a∗0)N−k√
(N − k)!

(√
N −N+ + 1 a∗p ζ

)(k)
= UNU

∗
N (a∗p

√
N −N+ ζ).

This means that

UNa
∗
pa0U

∗
N = a∗p

√
N −N+, UNa

∗
0aqU

∗
N =

√
N −N+aq (3.21)

for all p, q ∈ Λ∗+. That is, what the map UN effectively does is to replace any creation
or annihilation operator a0, a

∗
0 by (N −N+)1/2.

We can use the above results to express the property of complete BEC in the Fock
space setting. By Lemma 2.14, Eq. (3.20) implies that complete BEC of a sequence
(ψN )N∈N, ‖ψN‖2 = 1, in L2

s(Λ
N ) into ϕ0 ∈ L2(Λ) is equivalent to the condition that

1− 〈ϕ0, γ
(1)
N ϕ0〉2 = 1−

∫
ΛN−1

dX

∫
Λ2

dxdy ϕ0(x)ψN (x,X)ψN (y,X)ϕ(y)

= 1− 1

N

N∑
j=1

∫
ΛN−1

dX 〈ψN (·, X), (|ϕ0〉〈ϕ0|)xjψN (·, X)〉L2(Λ)

= 1−N−1〈ψN , a∗0a0ψN 〉2 = N−1〈UNψN ,N+UNψN 〉 → 0

(3.22)

as N → ∞. That is, the expected number of excitations around the condensate is
negligible compared to the number of particles in the condensate, in the large N limit.
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Finally, having computed the action of UN on the creation and annihilation operators,
a tedious, but straightforward calculation shows that LN = UNHNU

∗
N is given by the

sum LN = L(0)
N + L(2)

N + L(3)
N + L(4)

N , where

L(0)
N =

N

2
v̂(0)− 1

2
v̂(0) +

N+

2N
v̂(0)−

N 2
+

2N
v̂(0),

L(2)
N =

∑
p∈Λ∗+

[
|p|2a∗pap + v̂(p)a∗pap(1−N+/N)

]
+

1

2

∑
p∈Λ∗+

v̂(p)
[
a∗p(1−N+/N)1/2a∗−p(1−N+/N)1/2 + h.c.

]
,

L(3)
N =

1

N1/2

∑
p,q∈Λ∗+:p 6=−q

v̂(p)
[
a∗p+q(1−N+/N)1/2a∗−paq + h.c.

]
,

L(4)
N =

1

2N

∑
r∈Λ∗, p,q∈Λ∗+:p,q 6=−r

v̂(r)a∗p+ra
∗
qapaq+r.

(3.23)

This follows by splitting the potential energy into a sum of different terms according to
their number of zero modes it contains (why is there no linear term in the ap, a

∗
q? ).

Problem 3.5. Verify the identity (3.23).

In the following, we write VN = L(4)
N for the potential energy of the excited particles,

so that LN contains in particular the Fock space Hamiltonian HN = K++VN , measuring
the energy of the excitations in different sectors.

3.2.2 Heuristics: Bogoliubov’s Method

So far, the introduction of the Fock space setting and the excitation Hamiltonian LN is
only a translation of the usual L2

s(Λ
N ) setting into a different language. Its advantage

is that the following heuristics, proposed in a more general setting by N. N. Bogoliubov
in [9], becomes particularly transparent.

Suppose we want not only to derive the leading order contribution N
2 v̂(0) to the

ground state energy of LN = UNHNU
∗
N , but also the next to leading order contribution

as well as an approximation of the higher eigenvalues of LN . How can we proceed? First
of all, Bogoliubov assumed that any low-energy wave function ψN exhibits complete
BEC into the constant wave function ϕ0 = 1|Λ ∈ L2(Λ). In accordance with (3.22), this
implies that the expected number of particles with momentum p ∈ Λ∗+

〈ψN , a∗papψN 〉 = 〈UNψN , a∗papUNψN 〉 � N

is negligible compared to N , while 〈ψN , a∗0a0ψN 〉 ≈ N . As a first approximation, Bo-
goliubov therefore proposed that the operators a0, a

∗
0 in HN should be replaced by the

number N1/2. This step is called c-number substitution and it amounts to replace any
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factor (N −N+)1/2 in LN simply by N1/2. The resulting Fock space Hamiltonian con-
sists of a sum of a constant plus several other terms which are either quadratic, cubic
or quartic in the creation and annihilation operators of excitations, similar to (3.23).
Arguing again via BEC, the cubic and quartic terms should be negligible compared to
the remaining contributions, because they are of the order

1

N1/2

∑
p,q∈Λ∗+:p 6=−q

v̂(p)
[
a∗p+qa

∗
−paq + h.c.

]
≈ O(N 3/2

+ /N1/2),

1

2N

∑
r∈Λ∗, p,q∈Λ∗+:p,q 6=−r

v̂(r)a∗p+ra
∗
qapaq+r ≈ O(N 2

+/N).

If we simply drop these terms, assuming e.g. that N 2
+ � N , what remains is the operator

QN =
N

2
v̂(0)− 1

2
v̂(0) +

∑
p∈Λ∗+

[
|p|2a∗pap + v̂(p)a∗pap +

1

2
v̂(p)

(
a∗pa
∗
−p + apa−p

)]
. (3.24)

Notice that QN does not map from F≤N+ to itself anymore, but nevertheless we may
hope that its spectrum is close to the spectrum of LN .

Why is the approximation (3.24) useful? The point is that QN can be diagonalized
explicitly: the tool which we need is called a Bogoliubov transformation. This is an
operator exponential with exponent quadratic in the creation and annihilation operators.
Given (τp)p∈Λ∗+

∈ `2(Λ∗+), we define Tτ : F+ → F+ by

Tτ = exp

[
1

2

∑
p∈Λ∗+

τp
(
a∗pa
∗
−p − apa−p

)]
= exp(Aτ ). (3.25)

Let’s compute the action of Tτ on QN without worrying about domain and conver-
gence issues (a more careful analysis follows in the next Section 3.2.3). A simple Taylor
expansion together with the canonical commutation relations (3.17) implies

T ∗τ apTτ = ap +

∫ 1

0
ds (∂se

−sAτape
sAτ )(s) = ap +

∫ 1

0
ds e−sAτ [ap, Aτ ]esAτ

= ap + τpa
∗
−p +

∫ 1

0
ds1

∫ s2

0
ds2 e

s2Aτ
[
[ap, Aτ ], Aτ

]
e−s2Aτ

= cosh(τp)ap + sinh(τp)a
∗
−p.

(3.26)

The key of the argument is that a commutator of a]p with a quadratic operator is again
linear in the creation and annihilation operators, by the commutation relations (3.17).

Choosing τp = 1
2 tanh−1

(
v̂(p)/[p2 + v̂(p)]

)
and conjugating QN with Tτ , we find

T ∗τQNTτ =
N

2
v̂(0)− 1

2
v̂(0)− 1

2

∑
p∈Λ∗+

[
|p|2 + v̂(p)−

√
|p|4 + 2|p|2v̂(p)

]
+
∑
p∈Λ∗+

√
|p|4 + 2|p|2v̂(p) a∗pap = CQN +

∑
p∈Λ∗+

εpa
∗
pap.
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Hence, the resulting Fock space Hamiltonian is diagonal and we can read off its spectrum.
Indeed, we have that

U∗NT
∗
τQNTτUN = CQN +

N∑
i=1

hxi ,

where the one body Hamiltonian h acts as a Fourier multiplier in L2(Λ), multipliying
the p-th Fourier component (for p ∈ Λ∗) by

εp =
√
|p|4 + 2|p|2v̂(p).

The ground state energy of U∗NTτQNT ∗τ UN is given by CQN and, by Theorem 2.21, the
eigenvalues of U∗NT

∗
τQNTτUN above the ground state energy are given by finite sums∑

p∈Λ∗

npεp (np ∈ N0 and np 6= 0 for finitely many p ∈ Λ∗).

Physically, this means that the interacting Bose gas is (up to second order in the energy)
equivalent to a non-interacting Bose gas of quasi-particles, via the unitary transformation
TτUN . For this reason, one calls the system quasi-free. Instead of the usual one particle
kinetic energies |p|2, p ∈ Λ∗+, the modified excitations have energies

εp =
√
|p|4 + 2|p|2v̂(p), p ∈ Λ∗+.

This incorporates the mean field interaction v through its Fourier transform
(
v̂(p)

)
p∈Λ∗

.
Let us mention that Bogoliubov’s heuristics can be found in many standard physics

textbooks on condensed matter (see for instance [41]). From a physical point of view,
the important insight from [9] was to provide a microscopic justification of superfluidity
which is related to the specific form of the excitation energies εp.

On the other hand, turning the heuristics into a rigorous proof in specific scaling
limits has been an active research field in mathematical physics in recent years, see for
instance [63, 30, 36, 5, 6, 12, 50, 15].

3.2.3 Rigorous Derivation of the Excitation Spectrum

The goal of this section is to turn Bogoliubov’s heuristics in the mean field regime into
a rigorous proof. We follow essentially [63], which provided the first rigorous proof of
Bogoliubov’s effective theory for mean field bosons, and combine the proof with a few
useful arguments from [5, 6].

Let’s recall that we assume for simplicity v ∈ C∞c
(
(−1

2 ,
1
2)3
)

to be radially symmetric
and such that v̂(p) ≥ 0 for all p ∈ Λ∗. Our starting point is the excitation Hamiltonian
LN , defined in (3.23). To implement the first step of Bogoliubov’s strategy, we need

to show that the cubic and quartic contributions, L(3)
N and L(4)

N , are small on suitable
subspaces of low energy vectors. As a first step in this direction, recall that we have the
following strong form of complete BEC.
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Lemma 3.3. We have for all N ∈ N that

LN ≥
N

2
v̂(0) +

∑
p∈Λ∗+

p2a∗pap −
1

2
v(0) =

N

2
v̂(0) +K+ −

1

2
v(0) (3.27)

Let (ψN )N∈N be a normalized sequence in D(HN ) and define (ξN )N∈N = (UNψN )N∈N as
the corresponding excitation vectors in F≤N+ . Assume there exists some ζ > 0 s.t.

〈ξN ,LNξn〉 ≤
N

2
v̂(0) + ζ

Then, by (3.27), there exists a constant C = C(v, ζ) > 0, independent of N ∈ N, s.t.

(4π2)−1〈ξN ,N+ξN 〉 ≤ 〈ξN ,K+ξN 〉 ≤ C (3.28)

In particular, (ψN )N∈N exhibits complete BEC into ϕ0 ∈ L2(Λ), by (3.22).

Proof. The bound (3.27) follows by writing out
∑

p∈Λ∗+
v̂(p)

∣∣∑N
j=1 e

ipxj
∣∣2 ≥ 0, implying

1

N

∑
1≤i<j≤N

v(xi − xj) ≥
N

2
v̂(0)− 1

2
v(0)

Conjugating HN with UN and using the previous lower bound implies (3.27).

The previous lemma shows that the kinetic energy of excitation vectors associated
to approximate ground state wave functions of HN is bounded uniformly in N . To get
rid of the cubic and quartic terms in LN , we need, however, stronger a priori bounds.

Proposition 3.4. Let (ψN )N∈N be a normalized sequence in D(HN ) such that for some
ζ > 0 we have ψN = χ(−∞;N

2
v̂(0)+ζ](HN )ψN . Also, let (ξN )N∈N = (UNψN )N∈N. Then,

there exists a constant C > 0, independent of N ∈ N, s.t.

〈ξN ,N+K+ξN 〉 ≤ (C + ζ)2 (3.29)

Proof. Let’s observe first of all that N+ leaves D(LN ) invariant. In fact, we have that
D(LN ) = D(K+) = C⊕

⊕N
k=1H

2
s (Λk)∩L2

+(Λ)⊗sk and the claim follows by noticing that

N+ acts simply as multiplication by k in the k-particle sector of F≤N+ , k = 0, . . . , N . It
is clear that N+K+ has the same domain and the operator bound (3.27) implies11 that

N+K+ = (N+ + 1)1/2K+(N+ + 1)1/2 ≤ (N+ + 1)1/2L̃N (N+ + 1)1/2 + C(N+ + 1)

= (N+ + 1)L̃N + (N+ + 1)1/2[(N+ + 1)1/2, L̃N ] + C(N+ + 1),

(3.30)

where we defined

L̃N = LN −
N

2
v̂(0).

11From now on we typically denote generic constants, which may depend on fixed parameters and
which may change from line to line, by the symbol C.
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Observe that pulling L̃N to the right in the last step has the advantage that we can
control it on low-energy states ξN = χ(−∞;ζ](L̃N ). In fact, for such ξN , we use Lemma
3.3 and bound

〈ξN , (N+ + 1)L̃NξN 〉 ≤ 〈ξN , (N+ + 1)(L̃N + C)ξN 〉+ C〈ξN , (N+ + 1)ξN 〉

≤ 〈ξN , (N+ + 1)(L̃N + C)−1(N+ + 1)ξN 〉1/2〈ξN , L̃3
NξN 〉1/2 + C

≤ 〈ξN , (N+ + 1)(L̃N + C)−1(N+ + 1)ξN 〉1/2(C + ζ)3/2 + (C + ζ)

where we chose a sufficiently large C > 0 ensuring L̃N + C ≥ K+ + 1 ≥ 1, by (3.27).
Next, we use the operator monotonicity of the resolvent12 to conclude

〈ξN , (N+ + 1)L̃NξN 〉 ≤ 〈ξN , (N+ + 1)(K + 1)−1(N+ + 1)ξN 〉1/2(C + ζ)3/2 + (C + ζ)

≤ 〈ξN , (N+ + 1)ξN 〉1/2(C + ζ)3/2 + (C + ζ) ≤ (C + ζ)2

(3.31)

This bounds the expectation of the first term on the r.h.s. in (3.30). Let’s consider next
the commutator term in (3.30). To bound this term, it is convenient to use the identity

1√
s

=
1

π

∫ ∞
0

1√
t

1

t+ s
dt

for any s 6= 0. Using the continuous functional calculus, we write

[(N+ + 1)1/2, L̃N ] =
1

π

∫ ∞
0

1√
t

1

t+N+ + 1
(N+ + 1)L̃N (t+N+ + 1)

1

t+N+ + 1
dt

− 1

π

∫ ∞
0

1√
t

1

t+N+ + 1
(t+N+ + 1)L̃N (N+ + 1)

1

t+N+ + 1
dt

=
1

π

∫ ∞
0

√
t

1

t+N+ + 1
[N+, L̃N ]

1

t+N+ + 1
dt

To continue further, we need to have some information on the commutator [N+, L̃N ].
Going back to (3.23), we notice that N+ commutes with all, but two contributions to
L̃N , namely the non-diagonal quadratic contribution and the cubic contribution. Given
ξN = χ(−∞;ζ](L̃N ), these can be estimated with Cauchy-Schwarz by∣∣∣∣ ∑

p∈Λ∗+

v̂(p)〈ξN , [a∗p(1−N+/N)1/2a∗−p(1−N+/N)1/2 + h.c.]ξN 〉
∣∣∣∣

≤ 2‖v‖2‖(N+ + 1)1/2ξN‖
( ∑
p∈Λ∗+

〈ξN , a∗pa∗−p(N+ + 1)−1a−papξN 〉
)1/2

≤ ‖v‖2〈ξN , (N+ + 1)ξN 〉
12For 0 < A ≤ B, we have 1 ≤ A−1/2BA−1/2 and hence A1/2B−1A1/2 ≤ 1 so that B−1 ≤ A−1.
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as well as∣∣∣∣ 1

N1/2

∑
p,q∈Λ∗+:p 6=−q

v̂(p)〈ξN , [a∗p+q(1−N+/N)1/2a∗−paq + h.c.]ξN 〉
∣∣∣∣

≤
(

1

N

∑
p,q∈Λ∗+:p 6=−q

〈ξN , a∗p+qa∗−pa−pap+qξN 〉
)1/2( ∑

p,q∈Λ∗+:p 6=−q
v̂(p)2〈ξN , a∗qaqξN 〉

)1/2

≤ ‖v‖2〈ξN , (N+ + 1)ξN 〉.

In particular, the previous two bounds imply that

−C(N+ + 1) ≤ i[N+, L̃N ] ≤ C(N+ + 1)

for some C > 0. It follows that the operator

A = (K+ + 1)−1/2i[N+, L̃N ](K+ + 1)−1/2 ∈ L(F≤N+ )

is bounded in norm by some constant C > 0, and we conclude that

|〈ξN , (N+ + 1)1/2[(N+ + 1)1/2, L̃N ]ξN 〉|

≤
∫ ∞

0

√
t
∣∣〈(N+ + 1)1/2ξN ,

(K+ + 1)1/2

t+N+ + 1
A(K+ + 1)1/2

t+N+ + 1
ξN 〉
∣∣ dt

≤ C
∫ ∞

0

√
t

(t+ 1)2
‖(K+ + 1)1/2(N+ + 1)1/2ξN‖‖(K+ + 1)1/2ξN‖

≤ δ〈ξN ,N+K+ξN 〉+ δ−1C〈ξN , (K + 1)ξN 〉 ≤ δ〈ξN ,N+K+ξN 〉+ δ−1(C + ζ)

(3.32)

for any δ > 0. Putting (3.30), (3.31) and (3.32) together, we have shown that

〈ξN ,N+K+ξN 〉 ≤ δ〈ξN ,N+K+ξN 〉+ δ−1(C + ζ)2

Choosing 0 < δ < 1/2, this proves (3.29).

What Proposition 3.4 shows is that on spectral subspaces of low enough energy, the
expectation of any operator that is dominated by the product of the number of particles
N+ and the kinetic energy K+ is bounded uniformly in N . Let us now define for all
p ∈ Λ∗+ the modified creation and annihilation operators bp, b

∗
p ∈ L(F≤N+ ) by

bp = (1−N+/N)1/2ap, b∗p = a∗p(1−N+/N)1/2 (3.33)

We notice that U∗NbpUN = a∗0ap/N
1/2 and U∗Nb

∗
pUN = a∗pa0/N

1/2, so that, on the level of

L2
s(Λ

N ), the modified creation and annihilation operators either excite a particle from
the condensate ϕ0 into an excited state ϕp or vice versa. One readily checks that,
up to errors of the order N+/N , which is small on low energy subspaces in view of
Proposition 3.4 (and expected to be so in view of Bogoliubov theory), the modified
creation and annihilation operators satisfy the canonical commutation relations (3.17).
Using these modified fields and estimating the different contributions to LN similarly as
in the previous proof, we deduce the following corollary.
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Corollary 3.1. LN , defined in (3.23), is given in form sense on UN (DN ) by

LN =
N − 1

2
v̂(0) +

∑
p∈Λ∗+

[
p2 + v̂(p)

]
b∗pbp +

1

2

∑
p∈Λ∗+

v̂(p)
[
b∗pb
∗
−p + bpb−p

]
+ ELN (3.34)

where the self-adjoint operator ELN is such that for all ξ ∈ D(K) ∩ F≤N+ , we have

−CN−1/2〈ξ,N+K+ξ〉 ≤ 〈ξ, ELN ξ〉 ≤ CN
−1/2〈ξ,N+Kξ〉

for some constant C = C(v) > 0, which is independent of N ∈ N. In particular, for
low-energy wavefunctions ξ = χ(−∞;ζ](L̃N )ξ ∈ F≤N+ , we have that

−N−1/2(C + ζ)2 ≤ 〈ξ, ELN ξ〉 ≤ N
−1/2(C + ζ)2

We observe that Corollary 3.1 is a rigorous version of the approximation (3.24), pre-
dicted by Bogoliubov theory, with explicit error estimates. The only difference between
the quadratic contribution in (3.24) and the quadratic operator in (3.34) is that the
usual creation and annihilation operators are replaced by the modified ones, defined in
(3.33). The strategy of how to proceed now should be clear from Section 3.2.2. We want
to modify the Bogoliubov transformations (3.25) in such a way as to obtain unitary
transformations on the excitation Fock space F≤N+ with which we can approximately
diagonalize the quadratic contribution to LN , in (3.34).

Comparing with (3.25), the natural guess to approximately diagonalize LN is the
generalized Bogoliubov transformation

eBτ = exp

[
1

2

∑
p∈Λ∗+

τp(b
∗
pb
∗
−p − bpb−p)

]
(3.35)

where (τp)p∈Λ∗+
∈ `2(Λ∗+) is defined by

τp = −1

2
tanh−1

(
v̂(p)/(p2 + v̂(p))

)
= −1

4
log

[
1 + 2

v̂(p)

p2

]
. (3.36)

To verify that (3.35) is indeed a good approach, we proceed as follows. First of all,
we need to check that the conjugation of ELN with eBτ yields an error term, similarly
as in Corollary 3.1. Once this is checked, we can proceed to make a rigorous series
expansion of e−Bτ bpe

Bτ , in the spirit of (3.26), keeping track of the error terms. Using
the expansions of the conjugated modified creation and annihilation operators, we may
expand the quadratic contribution to LN to conclude the approximate diagonalization.

Before we start, let us remark that eBτ leaves D(LN ) = D(K+) invariant. This
follows from Lemma 3.2, the identity∑

p∈Λ∗+

p2a∗papBτ =
∑
p∈Λ∗+

p2τp(b
∗
pb
∗
−p + bpb−p) +Bτ

∑
p∈Λ∗+

p2a∗pap

and the fact that
∑

p∈Λ∗+
p4|τp|2 ≤ ‖v‖22 <∞.
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Lemma 3.4. For every l ∈ N, there exists C > 0 s.t. for all ξ ∈ D(K+) and s ∈ [−1, 1]

〈ξ, e−sBτ (N+ + 1)lesBτ ξ〉 ≤ C〈ξ, (N+ + 1)lξ〉,
〈ξ, e−sBτ (N+ + 1)(K+ + 1)esBτ ξ〉 ≤ C〈ξ, (N+ + 1)(K+ + 1)ξ〉,

〈ξ, e−sBτ (N+ + 1)a∗pap(N+ + 1)esBτ ξ〉 ≤ C〈ξ, (N+ + 1)a∗pap(N+ + 1)ξ〉
+ C|τp|2〈ξ, (N+ + 1)3ξ〉.

(3.37)

Proof. We prove the second inequality in (3.37), the proof of the other two estimates
being similar. For ξ ∈ D(K+), we consider

[0; 1] 3 s 7→ fξ(s) = 〈ξ, e−sBτ (N+ + 1)(K+ + 1)esBτ ξ〉

and our goal is to apply Gronwall’s lemma. We compute

(∂sfξ)(s) = 〈ξ, e−sBτ
[
N+, Bτ

]
(K+ + 1)esBτ ξ〉+ 〈ξ, e−sBτ (N+ + 1)

[
K+, Bτ

]
esBτ ξ〉

Let us bound the second term on the r.h.s. of the last equation. We have[
K+, Bτ

]
=
∑
p∈Λ∗+

p2τp(b
∗
pb
∗
−p + bpb−p)

so that by Cauchy-Schwarz∣∣〈ξ, e−sBτ (N+ + 1)
[
K+, Bτ

]
esBτ ξ〉

∣∣
≤ 2

∑
p∈Λ∗+

|p|τp‖|p|b−p(N+ + 2)1/2esBτ ξ‖‖b∗p(N+ + 2)1/2esBτ ξ‖

≤ 2‖v‖22‖(K+ + 1)(N+ + 1)esBτ ξ‖2 ≤ Cfξ,(s).

Arguing analogously for the commutator term containing
[
N+, Bτ

]
, we conclude that

(∂sfξ)(s) ≤ Cfξ(s). for some C > 0. Notice that the constant C = C(v) is independent

of the vector ξ ∈ F≤N+ . Gronwall’s lemma implies

〈ξ, e−sBτ (N+ + 1)(K+ + 1)esBτ ξ〉 = fξ,m(s) ≤ eCfξ(0) = eC〈ξ, (N+ + 1)(K+ + 1)ξ〉,

which proves the second bound in (3.37).

It follows from the previous lemma that the error operator ELN in (3.34) is still of the
order O(N−1), in the form sense, after conjugation with eBτ . The next lemma expands
the bounded operator e−Bτ bpe

Bτ into a norm-convergent operator series.

Lemma 3.5. For all p ∈ Λ∗+, there exists a bounded operator dp ∈ L(F≤N+ ) s.t.

e−Bτ bpe
Bτ = cosh(τp)bp + sinh(τp)b

∗
−p + dp (3.38)

and there exists a constant C > 0 such that for all ξ ∈ F≤N+ , we have that

‖dpξ‖ ≤ CN−1
(
‖(N+ + 1)apξ‖+ τp‖(N+ + 1)3/2ξ‖

)
. (3.39)
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Proof. Recall that Bτ = 1
2

∑
p∈Λ∗+

τp(b
∗
pb
∗
−p − bpb−p) is bounded. We first compute

[bp, Bτ ] =
1

2

∑
q∈Λ∗+

τq[bp, b
∗
qb
∗
−q] = τpb

∗
−p −N−1N+τpb

∗
−p −N−1

∑
u∈Λ∗+

τub
∗
−ua

∗
uap.

By Taylor expanding the function [0, 1] 3 s 7→ e−sBτ bpe
sBτ , this implies

e−Bτ bpe
Bτ = bp + τpb

∗
−p + d(1)

p +

∫ 1

0
ds1

∫ s1

0
ds2 e

−s2Bτ [τpb∗−p, Bτ ]es2Bτ ,
where the bounded operator d

(1)
p is defined by

d(1)
p = −

∫ 1

0
ds1e

−s1Bτ
[
N−1N+τpb

∗
−p +N−1

∑
u∈Λ∗+

τub
∗
−ua

∗
uap

]
es1Bτ .

Using that |τp| ≤ C for all p ∈ Λ∗+, and applying Lemma 3.2 and Lemma 3.4, we obtain

‖d(1)
p ξ‖ ≤ CN−1

(
‖(N+ + 1)apξ‖+ τp‖(N+ + 1)3/2ξ‖

)
for any ξ ∈ F≤N+ . Now, we iterate the above procedure. We arrive after k ∈ N steps at

e−Bτ bpe
Bτ =

bk/2c∑
j=0

τ2j
p

2j!
bp +

d(k−1)/2e∑
j=0

τ2j+1
p

(2j + 1)!
b∗−p +

k∑
j=1

d(j)
p

+

∫ 1

0
ds1

∫ s1

0
ds2 . . .

∫ sk

0
dsk+1 e

−sk+1Bτ [τkp b
]
[p, Bτ ]esk+1Bτ ,

where (], [) = (∗,−) if k is odd and (], [) = (·,+) if k is even. Moreover, the operators

d
(j)
p are given by

d(2l)
p =− τ2l

p

∫ 1

0
ds1 . . .

∫ s2l−1

0
ds2l e

−s2lBτ
[

1

N
bpN+ +

1

N

∑
u∈Λ∗+

τub−uaua
∗
−p

]
es2lBτ ,

d(2l+1)
p =− τ2l+1

p

∫ 1

0
ds1 . . .

∫ s2l

0
ds2l+1 e

−s2l+1Bτ

[
1

N
N+b

∗
−p +

1

N

∑
u∈Λ∗+

τub
∗
−ua

∗
uap

]
es2l+1Bτ .

Applying once again Lemma 3.2 and Lemma 3.4, we have for all ξ ∈ F≤N+

k∑
j=1

‖d(j)
p ξ‖ ≤

k∑
j=1

Ck

k!
N−1

(
‖(N+ + 1)apξ‖+ τp‖(N+ + 1)3/2ξ‖

)
for some fixed C > 0, independent of k and N . Similarly, it is simple to see that∫ 1

0
ds1

∫ s1

0
ds2 . . .

∫ sk

0
dsk+1 e

−sk+1Bτ ‖[τkp b
]
[p, Bτ ]esk+1Bτ ‖ ≤ CkN1/2

k!
→ 0 (k →∞).

Letting k →∞ and defining dp =
∑∞

j=1 d
(j)
p , this proves (3.38) and (3.39).
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We are now ready to approximately diagonalize the Fock space Hamiltonian LN .

Proposition 3.5. The excitation Hamiltonian GN = e−BτLNeBτ , with LN defined in
(3.23) and Bτ defined in (3.35), (3.36), is given in form sense on UN (DN ) by

GN =
N − 1

2
v̂(0)− 1

2

∑
p∈Λ∗+

[
p2 + v̂(p)−

√
p4 + 2p2v̂(p)

]
+
∑
p∈Λ∗+

√
p4 + 2p2v̂(p) a∗pap+EGN ,

(3.40)
where the self-adjoint operator EGN is such that for all ξ ∈ D(K+) ∩ F≤N+ , we have

− CN−1/2〈ξ,N+K+ξ〉 ≤ 〈ξ, EGN ξ〉 ≤ CN
−1/2〈ξ,N+K+ξ〉 (3.41)

for some constant C = C(v) > 0, which is independent of N ∈ N. In particular, for
low-energy wavefunctions ξ = χ(−∞;ζ](GN −Nv̂(0)/2)ξ ∈ F≤N+ , we have that

−N−1/2(C + ζ)2 ≤ 〈ξ, EGN ξ〉 ≤ N
−1/2(C + ζ)2. (3.42)

Proof. The proof follows from Corollary 3.1, Lemma 3.4 and Lemma 3.5. Let us indicate
the main steps by analyzing first the operator

e−Bτ
( ∑
p∈Λ∗+

p2b∗pbp

)
eBτ .

By truncating the sum over p ∈ Λ∗+ first, analyzing the resulting bounded operator via
the expansion 3.5 and then removing the truncation using the monotone convergence
theorem (recall that p2a∗pap ≥ 0 for all p ∈ Λ∗+), we find that

e−Bτ
( ∑
p∈Λ∗+

p2b∗pbp

)
eBτ =

∑
p∈Λ∗+

p2
(
γpb
∗
p + σpb−p + d∗p

)(
γpbp + σpb

∗
−p + dp

)
=
∑
p∈Λ∗+

p2
[
γ2
pb
∗
pbp + σ2

pbpb
∗
p + 2γpσp(b

∗
pb
∗
−p + bpb−p)

]
+
∑
p∈Λ∗+

p2
[
d∗p
(
γpbp + σpb

∗
−p
)

+ h.c.
]

+
∑
p∈Λ∗+

p2d∗pdp,

(3.43)

where we defined γp = cosh(τp) and σp = sinh(τp). By normal ordering, we find∑
p∈Λ∗+

p2σ2
pbpb

∗
p =

∑
p∈Λ∗+

p2σ2
pb
∗
pbp +

∑
p∈Λ∗+

p2σ2
p(1−N+/N)−N−1

∑
p∈Λ∗+

p2σ2
pa
∗
pap.

Using that
∑

p∈Λ∗+
p2σ2

p ≤ C
∑

p∈Λ∗+
p2τ2

p ≤ C‖v‖22, it is clear that∣∣∣∣N−1
∑
p∈Λ∗+

p2σ2
p〈ξ,N+ξ〉+N−1

∑
p∈Λ∗+

p2σ2
p〈ξ, a∗papξ〉

∣∣∣∣ ≤ CN−1〈ξ, (N+ + 1)ξ〉 (3.44)
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for every ξ ∈ D(K+). Similarly, the two contributions in the last line of (3.43) are error
terms. We have for instance for every ξ ∈ D(K+) that∣∣∣∣ ∑
p∈Λ∗+

p2〈ξ,
[
d∗p
(
γpbp + σpb

∗
−p
)

+ h.c.
]
ξ〉
∣∣∣∣ ≤ C ∑

p∈Λ∗+

p2‖dpξ‖
(
γp‖bpξ‖+ σp‖(N+ + 1)1/2ξ‖

)
≤ CN−1

∑
p∈Λ∗+

p2
(
‖(N+ + 1)apξ‖+ τp‖(N+ + 1)3/2ξ‖

)(
‖bpξ‖+ τp‖(N+ + 1)1/2ξ‖

)
≤ CN−1/2〈ξ,N+K+ξ〉.

Similarly, we bound the remaining terms in (3.43). Proceeding in the same way for the
remaining quadratic contributions to LN proves (3.40) after a tedious, but straightfor-
ward calculation. The bounds (3.41) and (3.42) are a direct consequence of Lemma 3.4
(applied to −Bτ instead of Bτ , but it is clear that the proof of Lemma 3.4 does not
change when we switch the roles of the operators Bτ by −Bτ ).

The following theorem and its corollary constitute the main results of this section -
a rigorous derivation of the excitation spectrum of the mean field Hamiltonian HN and
a norm approximation for the ground state vector of HN , valid up to errors that vanish
in the limit N →∞ with explicit rates of convergence (cf. [63, 30]).

Theorem 3.3. Let HN be as in (3.14) and let EN denote its ground state energy. Then

EN =
N − 1

2
v̂(0)− 1

2

∑
p∈Λ∗+

[
p2 + v̂(p)−

√
p4 + 2p2v̂(p)

]
+O(N−1/2) (3.45)

Moreover, in the limit of large N , the eigenvalues of HN − EN below a given threshold
ζ > 0, are given by finite sums of the form∑

p∈Λ∗+

npεp +O
(
N−1/2(1 + ζ2)

)
, εp =

√
p4 + 2p2v̂(p) (3.46)

where 0 6= np ∈ N for finitely many p ∈ Λ∗+.

Remark. Theorem 3.3 can be extended to the inhomogeneous setting, analysing the
spectrum of Htrap

N as defined in (3.1) describing trapped particles, see [30].

Proof. The proof follows from Proposition 3.5 and the Min-Max Theorem 2.17. Since
HN is unitarily equivalent to GN , defined in Proposition 3.5, it is enough to compare the
min-max values of GN with those of the diagonal operator QN , defined by

QN =
N − 1

2
v̂(0)− 1

2

∑
p∈Λ∗+

[
p2 + v̂(p)−

√
p4 + 2p2v̂(p)

]
+
∑
p∈Λ∗+

√
p4 + 2p2v̂(p) a∗pap.

As already indicated in Section 3.2.2, QN is self-adjoint on D(K+) with purely discrete
spectrum, given by finite sums of the form

N − 1

2
v̂(0)− 1

2

∑
p∈Λ∗+

[
p2 + v̂(p)−

√
p4 + 2p2v̂(p)

]
+
∑
p∈Λ∗+

npεp.
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This follows from Theorem 2.21. Note that a complete ONB of eigenvectors of QN is{ M∏
p∈Λ∗+

(np!)
−1(a∗p)

npΩ : np ∈ N0 with
∑
p∈Λ∗+

np ≤ N
}

and that this set is also a complete set of eigenvectors of K+. To prove the theorem,
we compare the min-max values of GN with those of QN . To this end, let’s denote by
(λk)k∈N0 the min-max values of GN and by (µk)k∈N0 the min-max values of QN , counted
with multiplicity. The theorem follows if we can show that

|λk − µk| ≤ CN−1/2(1 + ζ2) (3.47)

for some C > 0, which is independent of N .
Let us start to prove that λk ≥ µk − CN−1/2(1 + ζ2). First of all, it follows from

equations (3.40) and (3.42) that

EN = λ0 =
N − 1

2
v̂(0)−1

2

∑
p∈Λ∗+

[
p2+v̂(p)−

√
p4 + 2p2v̂(p)

]
+O(N−1/2) = µ0+O(N−1/2)

Indeed, the upper bound can be obtained by testing GN with the vacuum Ω ∈ F≤N+ , and
the lower bound follows then directly from (3.42). To bound the higher eigenvalues λk
from below by µk, k ∈ N, we use that λk ≤ ζ and (3.42) to deduce

λk = inf
dim(V )=k,

V=χ(−∞;ζ](G̃N )(V )

sup
ξ∈V,‖ξ‖=1

〈ξ,GNξ〉

≥ inf
dim(V )=k

sup
ξ∈V,‖ξ‖=1

〈ξ,QNξ〉 − CN−1/2(1 + ζ2) = µk − CN−1/2(1 + ζ2),

where we defined G̃N = GN − EN .
On the other hand, to prove that λk ≤ µk + CN−1/2(1 + ζ2), we notice first that

the previous bound implies µk ≤ ζ + C for N sufficiently large. Then, since we have
N+K+ ≤ N+(QN − µ0) ≤ (QN − µ0)2, we easily deduce λk ≤ µk + CN−1/2(1 + ζ2)
from (3.40) and (3.41), by testing GN on a suitable k-dimensional eigenspace of QN
corresponding to its k-th eigenvalue µk.

Corollary 3.2. Let HN be as in (3.14) and denote by ψN a normalized ground state
vector13 of HN , which is unique up to multiplication by a constant phase. Then, there
exists some ω ∈ [0, 2π) and a constant C > 0 s.t.∥∥ψN − eiωU∗NeBτΩ

∥∥2

2
≤ Cλ−1

1 N−1/2, (3.48)

where λ1 denotes the first eigenvalue of HN − EN above λ0 = 0.

13Assuming N to be sufficiently large, uniqueness of the ground state vector follows from Theorem
3.3, by noticing that the gap of HN − EN is positive.
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Proof. We remark that the proof can be extended to eigenvectors with higher eigenvalues,
see [30]. We choose ω ∈ [0, 2π) s.t. eiω〈ψN , U∗NeBτΩ〉 = |〈ψN , U∗NeBτΩ〉|. Then (3.48)
follows if we can show that

1− |〈ξN ,Ω〉|2 ≤
C

2λ1
N−1/2,

where ξN = eBτUNψN ∈ F≤N+ . To prove the last bound, we simply observe that

CN−1/2 ≥ 〈ξN , (QN − EN )ξN 〉 ≥ 〈ξN ,
[
(QN − EN )|Ω〉〈Ω|+ µ1(1− |Ω〉〈Ω|)

]
ξN 〉

≥ λ1〈ξN , (1− |Ω〉〈Ω|)ξN 〉 − CN−1/2 = λ1(1− |〈ξN ,Ω〉|2)− CN−1/2.

4 Basic Results in the Thermodynamic and GP Limits

The mean field regime considered in the previous section is characterized by very weak
interactions. This enables us to obtain strong quantitative statements about BEC and
the ground state energy (assuming v to be sufficiently regular). The original paper
of Bogoliubov [9], on the other hand, dealt more generally with the usual setting in
quantum statistical mechanics of N particles confined to a box ΛL = [−L

2 ,
L
2 ]3 of side

length L. In the thermodynamic limit, one is interested in basic properties of the gas
in the limit where the particle density ρ = N/L3 is fixed while the particle number N
and the volume V = L3 are both sent to N,V → ∞. This limit is the natural limit in
the setting of quantum statistical mechanics, which takes into account temperature and
which aims to give precise meaning to the concept of phase transitions.

In these notes, we focus on the ground state energy, which in the language of quantum
statistical mechanics corresponds to the setting of zero temperature. For sufficiently
small density, one can obtain e.g. the leading order approximation of the ground state
energy in the thermodynamic limit. Some aspects of this problem are discussed below.
Proving BEC of the ground state in the thermodynamic limit, on the other hand, is
a major open problem in mathematical physics. Instead of going into this direction
further, we focus on deriving BEC in another scaling regime called the Gross-Pitaevskii
(GP) limit. Here, one chooses L = N so that ρ = ρN = 1/N2 → 0 as N → ∞. One
can interpret the GP limit as the simplest simultaneous infinite volume and low-density
limit, where interactions have a non-trivial effect. In this section, we describe basic
results in these two limits: in the thermodynamic limit, we derive an upper bound on
the ground state energy (which turns out to be correct to leading order in ρ) and in the
Gross-Pitaevskii limit we derive a result on the ground state energy and BEC that is
comparable to Theorem 3.2 in the mean field regime.

We start with some heuristics on the ground state energy of the Bose gas and discuss
afterwards the proof of the upper bound in the thermodynamic limit. We work in L2

s(Λ
N
L )

where ΛL = [−L
2 ,

L
2 ]3 denotes the box of side length L > 0 and the Hamiltonian of the
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system reads

HN =
N∑
i=1

(−∆)xi +
∑

1≤i<j≤N
v(xi − xj). (4.1)

To focus on the main ideas, we assume for simplicity as before that v ∈ C∞c (BR0) ⊂
C∞c (R3) is radial and we also assume that it is pointwise non-negative. Here, R0 > 0 is
a fixed parameter (in the thermodynamic limit, notice that L ∼ N1/3 � R0 for N large
enough). Our goal is to understand the leading order contribution to the ground state
energy EN at low density ρ. Following our experience with mean field systems, it may
seem tempting to conjecture that

ψN = ϕ⊗N0 ∈ L2
s(Λ

N
L ), for ϕ0 =

1

L3/2
=
( ρ
N

)1/2
∈ L2(ΛL)

yields the right energy to leading order. In other words, we might expect that

lim
N→∞

EN
N

= 〈ψN , HNψN 〉 =
1

2
ρ v̂(0) + o(ρ). (4.2)

Here, v̂(p) =
∫
R3 dx e

−ipxv(x) denotes the Fourier transform of v. This naive mean field
prediction (4.2) turns out to be wrong: to obtain the right energy, we need to replace the
constant v̂(0), describing the influence of the potential v to leading order, by another
quantity which is called the scattering length a of v. This is motivated in the next
section. The next theorem follows from [19, 46].

Theorem 4.1. The ground state energy EN of HN , defined in (4.1), satisfies

lim
N→∞

EN
N

= 4πaρ+ E ,

for an error E = E(ρa3) with the property that limρa3→0 E = 0.

Remark. In view of Section 3.2.2, it is worth to note that Bogoliubov’s method can be
used to predict the second order correction to the ground state energy, which turns out
to be of order O(ρ

3
2 ). The formula is called Lee-Huang-Yang formula [39, 38] and was

recently proved in [68, 28]; see also [2, 29] for related improvements.

In the following subsections, we introduce the scattering length a and the related
solution of the zero-energy scattering equation, collect some of its properties, relate it to
the two-body problem and prove the upper bound in Theorem 4.1. For the lower bound,
see for instance [46, 44, 16, 27]. The last section of this chapter discusses an analogue
of Theorem 4.1 and outlines a proof of BEC in the Gross-Pitaevskii limit.

4.1 Heuristics: Scattering Length and Two-Body Problem

Suppose we consider two particles moving in R3 and interacting through v, the two-body
Hamiltonian acting in a suitable dense subspace of L2

s(R6) as

H2 = −∆x1 −∆x2 + v(x1 − x2).
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To solve the Schrödinger equation, it is suitable to change to relative and center of mass
coordinates. The latter coordinates are defined by

R =
1

2
(x1 + x2), r = x1 − x2.

Problem 4.1. Let ψ ∈ C2(R6) and let Φ : R6 → R6 denote the diffeomorphism defined
by (x1, x2) 7→ Φ(x1, x2) =

(
(R(x1, x2), r (x1, x2)

)
. Verify that for all x1, x2 ∈ R3

(
(−∆x1 −∆x2)(ψ ◦ Φ)

)
(x1, x2) =

(
− 1

2
∆R ψ − 2∆r ψ

)
(Φ(x1, x2)).

In other words, solving the two-body problem with interaction v is the same as
solving a one body problem with external potential v (the center of mass dynamics is
trivial). So, let’s look at the Schrödinger equation for the one body Hamiltonian

h = −∆ +
1

2
v,

acting on a suitable domain in L2(R3). On a heuristic level, we would like to find a
complete set of eigenfunctions of h. Under our assumptions, this can only be understood
in a generalized sense14 like in the free case, where v = 0. Indeed, in the latter case the
plane waves x 7→ ξp(x) = e2πipx, p ∈ R3, solve the Schrödinger equation

−∆ϕ = Eϕ

for energies E = 4π2|p|2, and any ψ ∈ L2(R3) can be expanded in the sense that

ψ(x) =

∫
R3

dp ψ̂(p) e2πipx, ψ̂(p) =

∫
R3

dx e−2πipxψ(x).

Although the (ξp)p∈R3 are not elements in L2(R3) (so that we can not speak of eigen-
functions in the usual sense) they are eigenfunctions in the distributional sense that∫

R3

dx e−2πipx(−∆ψ)(x) = ̂(−∆ψ)(p) = 4π2|p|2ψ̂(p) = 4π2|p|2
∫
R3

dx e−2πipxψ(x).

Curiously, it turns out that there is an analogous (generalized) eigenfunction expan-
sion for L2(R3) functions in terms of a complete set of eigenfunctions of the one body
Hamiltonian h with potential v. This is a topic in scattering theory, discussed in depth
in [57] (including the heuristic discussion of this subsection and its rigorous justifica-
tion). Physically, the intuition is that for a short range potential v, the state fp of the
interacting system with energy E = 4π2|p|2 should look far in the past like a free state
(the so called incoming wave function) of the same energy, that is

e−ithfp ≈ eit∆ξp
14The discrete part of the spectrum of h is empty, see e.g. [31].
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for t ≈ −∞. Equivalently, fp ≈ limt→−∞ e
itheit∆ξp = Ω+ξp. Now, noting that Ω+ =

eish Ω+eis∆ for every s ∈ R, it follows that Ω+(−∆) = hΩ+ and we obtain that

fp(x) ≈ e−it∆e−it(−∆+v/2)fp(x) +
( i

2

∫ t

0
ds e−is∆ v e−ishfp

)
(x)

≈ e2πipx +
( i

2
lim
ε↘0

∫ −∞
0

ds e−is∆−is4π
2|p|2+sε v fp

)
(x)

≈ e2πipx +
1

2

(
lim
ε↘0

(
−∆− 4π2|p|2 − iε

)−1
v fp

)
(x)

≈ e2πipx − 1

8π

∫
R3

dy
e2πip(x−y)

|x− y|
v(y)fp(y).

In particular, the state fp behaves for large |x| � 1 (to leading order in v) like

fp(x) ≈ e2πipx − e2πipx

8π|x|

∫
R3

dy v(y). (4.3)

Physically, this is interpreted as saying that a wave function of the interacting system
with energy E = 4π2|p|2 consists of the sum of an incoming plane wave and an outgoing
spherical wave, the latter describing the scattering effect of the obstacle v (in physics
textbooks, (4.3) is commonly the starting point for the discussion of elastic two-body
scattering processes, see for instance [37, Chapter XVII]).

How is this discussion useful for the many body problem? Well, at low density, the
collision of two particles should be quite rare and it is therefore natural to think of the
ground state wave ψN of HN to look like a wave function of the form

ψN ≈ ϕ⊗N0

∏
1≤i<j≤N

f(xi − xj).

The key question is then what correlation factor f we should use. Motivated by our
heuristic discussion above and the fact that we consider the ground state wave function
ψN of HN , we would like to use the solution f of the zero energy scattering equation

(−2∆ + v)f = 0 in R3 with lim
x→∞

f(x) = 1. (4.4)

One can define f rigorously based on the theory of ODE, but here we follow the varia-
tional approach as in [44, Appendix C] (valid for a much larger class of potentials v as
discussed in these notes, see [44, Appendix C] for the details).

To state the main result on f , we fix some R > R0. Then for φ ∈ H1(BR), we set

ER(φ) =

∫
BR

dx
(

2|∇φ(x)|2 + v(x)|φ(x)|2
)
. (4.5)

Recall that by the trace theorem for Sobolev functions, we can assign L2(SR)-boundary
values to any φ ∈ H1(BR), where here and in the following SR = ∂BR.
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Proposition 4.1. The functional (4.5) admits a unique non-negative minimizer in the
set H1(BR) ∩ {φ ∈ H1(BR) : φ|SR = 1}. Denoting the minimizer by fR, then fR is a
radially symmetric function, 0 < fR < 1 and it satisfies in distributional sense

−2∆fR + vfR = 0.

For |x| ∈ (R0;R], fR is given by

fR(x) =
(

1− a

|x|

)
/
(

1− a

R

)
(4.6)

for a number a (= a(v)), the scattering length of v, which is independent of the choice of
R (> R0). Furthermore, we have that

ER(fR) = 8πa/(1− a/R), and v̂(0) =

∫
R3

dx v(x) > 8πa (if v 6= 0). (4.7)

Proof. We use the direct methods of the calculus of variations. We start with a minimiz-
ing sequence (φj)j∈N inH1(BR)∩{φ ∈ H1(BR) : φ|SR = 1}. By Prop. 3.1, we can assume
that the φj are non-negative (if not, we can replace each φj by |φj | which only lowers
the energy). Furthermore, by replacing φj if necessary by min(φj , 1|BR) ∈ H1(BR), we
can assume that φj ≤ 1 for all j ∈ N, and noticing that 1|BR−φj ∈ H

1
0 (BR), we can also

assume w.l.o.g. that 1|BR − φj ∈ C
∞
c (BR), by density of C∞c (BR) ⊂ H1(BR). Finally,

using once again the convexity of the map ρ 7→ ‖∇√ρ‖22, we can assume that each φj is
radially symmetric, replacing it by the spherical average

BR 3 x 7→
√

1

|S|x||

∫
S|x|

dω |φj |2

if necessary. Next, we notice that the sequence (φj) is bounded in H1(BR) and has
a weakly convergent subsequence, denote its limit by fR ∈ H1(BR). By the compact
embedding H1(BR) ↪→ L2(BR), we can also assume that φj converges to fR pointwise
almost surely so that in particular 0 ≤ fR ≤ 1. Furthermore, since 1|BR −φj ∈ C

∞
c (BR)

for all j ∈ N, we must have that 1|BR − fR ∈ H
1
0 (BR), that is, (fR)|SR = 1. Now, the

functional ER is weakly sequentially lower semi-continuous (exercise), so that

ER(fR) = inf
φ∈H1(BR)∩{φ∈H1(BR):φ|SR=1}

ER(φ).

That is, fR is a minimizer of ER. The Euler-Lagrange equation follows as usual by
differentiating t 7→ ER(fR + tξ) at t = 0, for a given ξ ∈ C∞c (BR). This implies that

−2∆fR + vfR = 0.

By elliptic regularity, fR is continuous and since vfR ≥ 0, fR is subharmonic (for the
definition and basic properties, we refer to [40, Chapter 9]). Subharmonic functions
satisfy the maximum principle (see [40, Theorem 9.3]) which tells us that either fR < 1
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in BR or fR = 1 in BR. Since we exclude the trivial case that v = 0, we must have
fR < 1 in BR. That fR > 0 follows as in the proof of Prop. 3.2 and then, the uniqueness
of fR follows from the convexity inequality for gradients, Prop. 3.1.

The specific form (4.6) of fR can be seen as follows. In the annulus |x| ∈ (R0;R], fR
is a harmonic function, i.e. ∆fR = 0 (in particular, fR is smooth in this annulus). The
only smooth, radial solutions in R3 to this equation are of the form x 7→ c1 + c2|x|−1

(why? ), where one of the constants is fixed by the boundary condition on SR. This
means fR can be written as in (4.6) for some a, which may a priori depend on R.

Let’s check that a is independent of R. If not, we would find R < R̃ and solutions
fR, fR̃ both having the form (4.6) in the regions where |x| ∈ (R0;R] and |x| ∈ (R0; R̃],
respectively. Defining a new function g

R̃
∈ H1(B

R̃
) via

g
R̃

(x) =

{
f
R̃

(R)fR(x) if |x| ≤ R,
f
R̃

(x) if R < |x| ≤ R̃,

we can only have that E
R̃

(g
R̃

) ≤ E
R̃

(f
R̃

) (why? ), so by the uniquness, we conclude that

g
R̃

= f
R̃

which also implies that a(R) = a(R̃) = a.
An important observation implied by the previous argument is that the function

x 7→ (1− a/R)fR(x)

is independent of R > R0. In particular, we can define the solution f : R3 → R of the
zero-energy scattering equation (4.4) as the limit

f(x) = lim
R→∞

(1− a/R)fR(x).

Then f clearly solves (4.4) and it equals

f(x) = 1− a

|x|
,

for |x| > R0 so that limx→∞ f(x) = 1, as desired.
Finally, let us explain (4.7). The energy formula follows from

ER(fR) = 2

∫
SR

dω∇fR ·
x

|x|
+

∫
BR

dx fR(x)
(
− 2∆fR(x) +

1

2
v(x)fR(x)

)
=

8πa

1− a/R
,

while the bound on v̂(0) follows from v̂(0) = ER(1|BR) ≥ ER(fR) > 8πa.

Problem 4.2. Let f denote the solution of (4.4). Prove that

8πa =

∫
R3

dx v(x)f(x).

Problem 4.3. Show that the solution f of (4.4) is increasing in |x|. Moreover, show
that for all x ∈ R3, we have that

f(x) ≥ max
[
1− a

|x|
, 0
]
.
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Hint: Use the maximum principle for subharmonic functions.

Problem 4.4. Let v = λχBR0
(0) be a box potential of strength λ > 0 and range R0 > 0.

Compute its scattering length a explicitly in terms of λ and R0.

The scattering length has the following interpretation. It follows from Proposition
4.1 that a < R, the range of v. On the other hand, if one considers a hard core potential

vhc =

{
∞ if |x| ≤ R,
0 else,

one can check that the solution of the scattering equation (4.4) is given by

fhc =

{
0 if |x| ≤ R,
1− ahc|x|−1 else.

In particular, by continuity, we see that ahc = R. The interpretation is that if two
particles interact via v and we want to ignore the details of v, but replace it for simplicity
with a hard-core box potential, the best range to choose is the scattering length a(v).

We close this section with a basic result that explains why (4.2) cannot expected to
be correct. To this end, consider two bosons moving in ΛL = R3/LZ3 and interacting
through v ∈ C∞c (BR(0)), v ≥ 0 for some small R > 0. Thus, the state of the system is
described by a wave function in L2

s(Λ
2
L). Denote by E2,L the ground state energy of

H2,L = −∆x1 −∆x2 + v(x1 − x2).

Then, we have the following asymptotics for E2,L = inf σ(H2,L), as L→∞.

Lemma 4.1. There exists an error o(1) that satisfies limL→∞ o(1) = 0 so that

E2,L = 8πaL−3
(
1 + o(1)

)
. (4.8)

Proof. To use the same notation as in Section 3.2, note that (4.8) is equivalent to

e2,L = inf σ
(
−∆x1 −∆x2 + L2v(L(x1 − x2))

)
= 8πaL−1

(
1 + o(1)

)
(4.9)

for a system of two bosons moving in T3 and interacting through the rescaled potential
L2v(L.), by a simple change of variables. Let’s abbreviate in the sequel

h = −∆x1 −∆x2 + vL,

where vL denotes the multiplication operator L2v(L(x1 − x2)) in L2
s(T3 × T3).

The proof of (4.9) is based on some recent ideas introduced in [17, Section 2]; see
also [11]. It uses the Schur complement formula and it consists of three main steps:

(1) Prove BEC of the ground state ψgs through a simple energy upper bound.

(2) Use the a priori information on BEC to prove the correct energy lower bound.
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(3) Construct a related trial state to derive the correct energy upper bound.

To prove an a priori bound on the number of orthogonal excitations, notice that

〈ψgs,N+ψgs〉 ≤ 〈ψgs, (−∆x1 −∆x2)ψgs〉 ≤ e2,L ≤ 〈ϕ0 ⊗ ϕ0,hϕ0 ⊗ ϕ0〉 =
v̂(0)

L
. (4.10)

The bound (4.10) implies that for the ground state ψgs, the number of particles in the
condensate state ϕ0 = 1|T3 ∈ L2(T3) is bounded from below by

〈ψgs, a
∗
0a0ψgs〉 = 2− 〈ψgs,N+ψgs〉 ≥ 2− L−1 v̂(0).

Now, define the projections Π0 = |ϕ0 ⊗ ϕ0〉〈ϕ0 ⊗ ϕ0| and Π+ = 1 − Π0. By the Schur
complement formula from linear algebra, it is straightforward to verify the identity

h = (1 + s∗)
(
−∆x1 −∆x2 + Π0vrenΠ0 + Π+vLΠ+

)
(1 + s), where

s = Π+

(
Π+hΠ+

)−1
Π+vLΠ0, vren = vL − vLΠ+

(
Π+hΠ+

)−1
Π+vL.

(4.11)

Notice here that Π+hΠ+ ≥ 4π2Π+ (using that v ≥ 0 pointwise) so that Π+hΠ+ is
invertible as a map from Π+L

2
s(T3 × T3) to itself. Note, moreover, that Π0 s = s2 = 0.

On a heuristic level, we may expect that h s ≈ vL, which should be compared to the
zero energy scattering equation, which is equivalent to (−2∆+vL)(1−fL) = vL. In other
words, we may expect that s, a translation invariant operator on L2

s(T3 × T3), is close
to the multiplication operator sL that multiplies by (1− f(L(x1 − x2)) in L2

s(T3 × T3).
Below, we use this observation. Before doing so, note first that (4.11) implies

h ≥ Π0vrenΠ0 =
1

2
〈ϕ0 ⊗ ϕ0, vrenϕ0 ⊗ ϕ0〉a∗0a∗0a0a0.

Using (4.10) and the identity a∗0a0 = 2−N+, we obtain

〈ψgs,hψgs〉 ≥
1

2
〈ϕ0 ⊗ ϕ0, vrenϕ0 ⊗ ϕ0〉〈ψgs, (2−N+)(1−N+)ψgs〉

≥ 〈ϕ0 ⊗ ϕ0, vrenϕ0 ⊗ ϕ0〉(1− CL−1).
(4.12)

Based on the above heuristic remark on s, we now expect that

〈ϕ0 ⊗ ϕ0, vrenϕ0 ⊗ ϕ0〉 = 〈ϕ0 ⊗ ϕ0, vL(1− s)ϕ0 ⊗ ϕ0〉 ≈
∫
dxL2(vf)(Lx) = 8πaL−1,

and our next task is to make this rigorous. To this end, let f denote the solution of
(4.4), let χ ∈ C∞c (B 1

2
(0)) be a non-negative, radial bump function s.t. χ|B 1

4
(0) = 1 and

fL(x1, x2) = χ(x1 − x2)f(L(x1 − x2)), sL(x1, x2) = (1− fL)(x1, x2).

In particular, both fL, sL ∈ L2
s(T3 × T3) are in the domain of h (which is the same as

the domain of −∆x1 −∆x2). Viewing sL as a multiplication operator, we have that

h sL = vL − 4L−1a
x1 − x2

|x1 − x2|3
· (∇χ)(x1 − x2)− 2L−1a

(∆χ)(x1 − x2)

|x1 − x2|
= vL + L−1χ̃(x1 − x2).
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for L large enough. Notice that χ̃ ∈ C∞c
(
B 1

2
(0) \ B 1

4
(0)
)
. Identifying χ̃ with the

multiplication operator χ̃(x1 − x2) in L2
s(T3 × T3), the last identity implies that

sϕ0 ⊗ ϕ0 = Π+

(
Π+hΠ+

)−1
Π+vLϕ0 ⊗ ϕ0

= Π+

(
Π+hΠ+

)−1
Π+h sLϕ0 ⊗ ϕ0 − L−1Π+

(
Π+hΠ+

)−1
Π+χ̃ϕ0 ⊗ ϕ0

= sLϕ0 ⊗ ϕ0 −Π+

(
Π+hΠ+

)−1
Π+hΠ0 sLϕ0 ⊗ ϕ0

−Π0sLϕ0 ⊗ ϕ0 − L−1Π+

(
Π+hΠ+

)−1
Π+χ̃ϕ0 ⊗ ϕ0

and thus

〈ϕ0 ⊗ ϕ0, vrenϕ0 ⊗ ϕ0〉

= 8πaL−1 + 〈ϕ0 ⊗ ϕ0, vLΠ+

(
Π+hΠ+

)−1
Π+hϕ0 ⊗ ϕ0〉〈ϕ0 ⊗ ϕ0, sLϕ0 ⊗ ϕ0〉

+ L−1v̂(0)〈ϕ0 ⊗ ϕ0, sLϕ0 ⊗ ϕ0〉+ L−1〈ϕ0 ⊗ ϕ0, vLΠ+

(
Π+hΠ+

)−1
Π+χ̃ϕ0 ⊗ ϕ0〉.

Based on Problem 4.5, we conclude that

0 ≤ L−1v̂(0)〈ϕ0 ⊗ ϕ0, sLϕ0 ⊗ ϕ0〉 ≤ CL−2

∫
T3×T3

dx1dx2

|x1 − x2|
≤ CL−2.

Using this bound and Cauchy-Schwarz, we obtain that

0 ≤ 〈ϕ0 ⊗ ϕ0, vLΠ+

(
Π+hΠ+

)−1
Π+hϕ0 ⊗ ϕ0〉〈ϕ0 ⊗ ϕ0, sLϕ0 ⊗ ϕ0〉

≤ CL−1
〈
v

1
2
Lϕ0 ⊗ ϕ0,Π+v

1
2
LΠ+

(
Π+hΠ+

)−1
Π+v

1
2
LΠ+ v

1
2
Lϕ0 ⊗ ϕ0

〉
+ CL−1

〈
v

1
2
Lϕ0 ⊗ ϕ0,Π0v

1
2
LΠ+

(
Π+hΠ+

)−1
Π+v

1
2
LΠ0v

1
2
Lϕ0 ⊗ ϕ0

〉
≤ CL−2v̂(0) + CL−1

〈
v

1
2
Lϕ0 ⊗ ϕ0,Π0vLΠ0v

1
2
Lϕ0 ⊗ ϕ0

〉
≤ CL−2.

Finally, we use that vLϕ0 ⊗ ϕ0 = hϕ0 ⊗ ϕ0 so that

L−1| 〈ϕ0 ⊗ ϕ0, vLΠ+

(
Π+hΠ+

)−1
Π+χ̃ϕ0 ⊗ ϕ0〉| ≤ CL−1‖s‖op

and arguing similarly as in the previous step, we find

‖s‖2op = 〈ϕ0 ⊗ ϕ0, vLΠ+

(
Π+hΠ+

)−2
Π+vLϕ0 ⊗ ϕ0〉 ≤ CL−1.

Collecting the above estimates and inserting them into (4.12) shows that

e2,L ≥ 8πaL−1
(
1 − CL−

1
2
)
.

This proves the correct energy lower bound. To finish the proof, it remains to prove
the corresponding ground state energy upper bound. To this end, we need to find a
suitable trial state. Motivated by the above computations, it should be obvious that

ψ =
(1− s)ϕ0 ⊗ ϕ0

‖(1− s)ϕ0 ⊗ ϕ0‖
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is a good candidate. Indeed, ‖(1− s)ϕ0 ⊗ ϕ0‖ ≥ 1− CL−
1
2 and using that

h (1− s)ϕ0 ⊗ ϕ0 = 〈ϕ0 ⊗ ϕ0, vrenϕ0 ⊗ ϕ0〉(1 + s∗)ϕ0 ⊗ ϕ0,

it is straightforward to show that e2,L ≤ 〈ψ,hψ〉 ≤ 8πaL−1
(
1 +CL−1

)
. This proves the

ground state energy formula (4.9) for an error which is bounded by |o(1)| ≤ CL−
1
2 .

Problem 4.5. Let f denote the solution of the zero energy scattering equation (4.4) for
v as above. Show that w = 1− f satisfies for some C > 0 the bounds

|w(x)| ≤ C

1 + |x|
, |ŵ(p)| ≤ C

1 + |p|2
.

What Lemma 4.1 demonstrates is that the naive conjecture (4.2) is not even correct
for a system of two particles that interact in a large volume through a regular short range
potential v. Two body correlations that are caused by the interaction lower the ground
state energy in a non-trivial way and we should not expect that this picture becomes
simpler in case of N interacting particles. Indeed, a more reasonable conjecture than
(4.2) is that the ground state energy EN of the N -body system equals to leading order
in the density ρ = NL−3 the two-body ground state energy times the number of pairs of
particles that can be formed from N particles. This provides a possible interpretation
for the formula in Theorem 4.1, which turns out to be correct for dilute systems.

4.2 Ground State Energy Upper Bound in Thermodynamic Limit

Following the heuristic discussion from the last section, we now switch to the proof of
the upper bound for Theorem 4.1, following [44, Theorem 2.2]. We denote by a the
scattering length of v and consider HN in (4.1) with periodic boundary conditions.

Theorem 4.2. If the diluteness parameter Y = ρa3 is small enough, we have that

EN
N
≤ 4πaρ

(
1 +O(Y

1
3 )
)
.

Remark. The parameter ρ
1
3 a is a diluteness parameter for the gas: ρ−

1
3 corresponds to

the average distance between two particles and a to the effective range of v.

Proof. The theorem follows by constructing a suitable trial state. We will construct a
vector which is not symmetric under permutations of the particles. The reason why this
is no problem is that the positive ground state ψN of HN on all of L2(ΛNL ) is unique, and
since HN commutes with the symmetrization operator SN , the symmetrization of ψN
must be equal to ψN itself. Therefore, the ground state energy of HN on all of L2(ΛNL )
is in fact the same as the ground state energy on the symmetric wave functions L2

s(Λ
N
L ).

The construction of the trial state is based on an idea from [19]. We set

ψ(x1, . . . , xN ) = F1(x1)F2(x1, x2) . . . FN (x1, . . . , xN ),
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where F1 = 1 and where Fi for i > 1 is of the form

Fi(x1, . . . , xi) = g(ti), ti = min
{
|xi − xj | : j = 1, . . . , i− 1

}
.

In words, Fi is a function that only depends on the distance of xi to its nearest neighbor
of the previous particles x1, . . . , xi−1. Heuristically, one should have in mind to insert
the N particles one by one into the system. The function g is defined by

g(r) =

{
f(|x|)/f(b) : |x| = r ≤ b,
1 : |x| > b

for some b = ρ−1/3 (f denotes the zero energy scattering solution).
We now need to estimate the kinetic and potential energies of our wave function. For

the following computations, it will be useful to introduce the notation

εik(x1, . . . , xN ) =


1 : for i = k,

−1 : for ti = |xi − xk|,
0 : else.

Furthermore, let us denote in the following by ni the unit vector

ni =
xi − xj(i)

ti
=

xi − xj(i)
|xi − xj(i)|

,

where j(i) ∈ {1, . . . , i− 1} is chosen such that |xi − xj(i)| = ti. We then find

1

ψ
∇kψ =

1∏N
i=1 Fi

∇k
N∏
i=1

Fi =
1

Fi
g′(tk)nk +

N∑
i=k+1

1

Fi
∇kFi =

N∑
i=1

1

Fi
εiknig

′(ti),

which implies after summing over k that

ψ−2
N∑
k=1

|∇kψ|2 =
N∑

i,j,k=1

F−1
i F−1

j εikεjkni · njg′(ti)g′(tj)

=
∑

1≤k≤i≤N
F−2
i ε2

ikg
′(ti)

2 + 2
∑

1≤k≤i<j≤N
F−1
i F−1

j εikεjkni · njg′(ti)g′(tj)

≤
∑

1≤i≤N

(
F−2
i g′(ti)

2 +
∑

1≤k<i≤N
F−2
i ε2

ikg
′(ti)

2

)
+ 2

∑
1≤k≤i<j≤N

F−1
i F−1

j |εikεjk|g
′(ti)g

′(tj)

≤ 2
∑

1≤i≤N
F−2
i g′(ti)

2 + 2
∑

1≤k≤i<j≤N
F−1
i F−1

j |εikεjk|g
′(ti)g

′(tj).

The factor 2 for the first sum comes from the observation that, for fixed i, we have
F−2
i g′(ti)

2 =
∑

1≤k<i F
−2
i ε2

ikg
′(ti)

2. The energy of the trial state is thus bounded by

〈ψ,HNψ〉
‖ψ‖2

≤
N∑
j=1

2
∫
ψ2F−2

j g′(tj)
2

‖ψ‖2
+

∑
1≤i<j≤N

∫
ψ2v(xi − xj)
‖ψ‖2

+ 2
∑

1≤k≤i<j≤N

∫
ψ2|εikεjk|F−1

i F−1
j g′(ti)g

′(tj)

‖ψ‖2
.

(4.13)
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Next, we show that the first two contributions on the r.h.s. in (4.13) can be combined
using the scattering equation, once we suitably isolate the dependence on xi and xj in
the integrands. After that, we show that the third term in (4.13) is an error term.

To combine the first two terms, let us denote by Fp,i, for i < p, the value of Fp if xi
was omitted as possible nearest neighbor, i.e.

Fp,i(x1, x2, . . . , xp) = g(tpi), tp,i = min
{
|xi − xj | : j = 1, . . . , i− 1, i+ 1, . . . , p− 1

}
.

Then Fp,i is certainly independent of xi and we define analogously Fp,ij , for i, j < p,
removing the points xi, xj as possible nearest neighbors. We will use these functions
to get upper and lower bounds on the factors Fi that appear in both numerator and
denominator in the terms in (4.13).

By the monotonicity of the scattering function f and since 0 < f ≤ 1, we have that

F 2
p,ig

2(|xp − xi|) ≤
(

min(Fp,i, g(|xp − xi|)
)2 ≤ F 2

p,i,

F 2
p,ijg

2(|xp − xi|)g2(|xp − xj |) ≤
(

min(Fp,ij , g(|xp − xi|), g(|xp − xj |)
)2 ≤ F 2

p,ij .

To isolate the dependence on the coordinates xi, xj , for i < j, we then bound

F 2
i+1 . . . F

2
j−1F

2
j+1 . . . F

2
N ≤ F 2

i+1,i . . . F
2
j−1,iF

2
j+1,ij . . . F

2
N,ij (4.14)

as well as

F 2
i . . . F

2
N ≥F 2

i+1,i . . . F
2
j−1,iF

2
j+1,ij . . . F

2
N,ij

∏
r<i

g2(|xi − xr|)
∏
i<s<j

g2(|xs − xi|)

×
∏
t<j

g2(|xj − xt|)
∏
u>j

g2(|xu − xi|)g2(|xu − xj |)

=F 2
i+1,i . . . F

2
j−1,iF

2
j+1,ij . . . F

2
N,ij

∏
k 6=i,k 6=j

g2(|xk − xi|)
∏
l 6=j

g2(|xl − xj |).

Using for 0 ≤ εi ≤ 1 the elementary inequality∏
i

(1− εi) ≥ 1−
∑
i

εi,

which follows easily by induction (exercise), we arrive at the lower bound

F 2
i . . . F

2
N ≥F 2

i+1,i . . . F
2
j−1,iF

2
j+1,ij . . . F

2
N,ij

×
(

1−
∑

k 6=i,k 6=j
(1− g2(|xi − xk|))

)(
1−

∑
l 6=j

(1− g2(|xj − xl|))
)
.

(4.15)

Now, let’s use (4.14) to control the numerator in the sum of the first two terms in (4.13)
from above. Together with

g′(tj)
2 ≤

∑
i<j

g′(|xi − xj |)2,
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we get for fixed i < j that∫ (
2ψ2F−2

j g′(|xi − xj |)2 + ψ2v(xi − xj)
)

≤
∫ (

2g′(|xi − xj |)2 + v(xi − xj)g2(|xi − xj |)2
)∫

F 2
i+1,i . . . F

2
j−1,iF

2
j+1,ij . . . F

2
N,ij ,

where the first factor on the right hand side is equal to

2L3

∫
Bb

dx
(
|∇fb(x)|2 + v(x)f2

b (|x|)2
)

= 8πaL3(1− a/b)−1.

The denominator ‖ψ‖2, on the other hand, is bounded from below by∫
ψ2 ≥

∫
F 2
i+1,i . . . F

2
j−1,iF

2
j+1,ij . . . F

2
N,ij

×
(

1−
∑
l 6=j

(1− g2(|xj − xl|))
)(

1−
∑

k 6=i,k 6=j
(1− g2(|xi − xk|))

)
.

Here, we can first integrate out the xi and xj variables and then remain with the factor∫
F 2
i+1,i . . . F

2
j−1,iF

2
j+1,ij . . . F

2
N,ij , which cancels the factor from the numerator. With∫

ΛL

dxi

(
1−

∑
k 6=i,k 6=j

(1− g2(|xi − xk|))
)

= L3 − (N − 2)

∫
ΛL

dx (1− g2(|x|))

and the pointwise bound f(x) ≥ max
[
0, 1− a|x|−1

]
from Problem 4.3, we get∫

ΛL

dx (1− g2(|x|)) ≤ 4π

3
b3 + 4π

∫ b

a
dr (r − a)2 =

4π

3
b3
(
1− (1− a/b)3

)
.

Choosing b = ρ−1/3 and putting the previous bounds together, we conclude that

1

N

( N∑
j=1

2
∫
ψ2F−2

j g′(tj)
2

‖ψ‖2
+

∑
1≤i<j≤N

∫
ψ2v(xi − xj)
‖ψ‖2

)

≤ 1

N

N∑
j=1

(j − 1)

L3

8πa

(1− aρ
1
3 )
(
1− 4π

3

(
1− (1− aρ

1
3 )3
))2 ≤ 4πρ a

(
1 +O(Y

1
3 )
)
.

(4.16)

This controls the first two terms in (4.13) as desired. To finish the proof, one can proceed
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similarly for the third term in (4.13), we follow the arguments from [62]. We bound

i∑
k=1

∫
ψ2|εikεjk|F−1

i F−1
j g′(ti)g

′(tj)

≤
i∑

k=1

∫
|εikεjk|g(ti)g(tj)g

′(ti)g
′(tj) dxidxj

∫
F 2
i+1,i . . . F

2
j−1,iF

2
j+1,ij . . . F

2
N,ij

≤ 2
i−1∑
k=1

(∫
ΛL

dxi g(|xi − xk|)g′(|xi − xk|)
)2 ∫

F 2
i+1,i . . . F

2
j−1,iF

2
j+1,ij . . . F

2
N,ij

= 2(i− 1)

(∫
ΛL

dx g(|x|)g′(|x|)
)2 ∫

F 2
i+1,i . . . F

2
j−1,iF

2
j+1,ij . . . F

2
N,ij

for every fixed i < j, where in the first step we used once more the upper bound (4.14).
The factor

∫
F 2
i+1,i . . . F

2
j−1,iF

2
j+1,ij . . . F

2
N,ij will cancel with the same factor from the

denominator, which we bound exactly as in the first step of the proof. Thus, it only
remains to control the integral

∫
ΛL
dx g(|x|)g′(|x|). Using again Problem 4.3, integration

by parts and that f ≤ 1, we find the simple upper bound∫
ΛL

dx g(|x|)g′(|x|) ≤ 4π

(
1

2
b2 −

∫ b

a
dr r(1− a/r)2

)
≤ 12πaρ−1/3.

Inserting this into the previous estimate, summing over i and j and using the same
bound for the denominator as in the first step, this yields altogether that

2

N

∑
1≤k≤i<j≤N

∫
ψ2|εikεjk|F−1

i F−1
j g′(ti)g

′(tj)

‖ψ‖2

≤ CN
2

L6

(
aρ−1/3

)2(
1 +O(Y

1
3 )
)

= 4πρaO(Y
1
3 )
(
1 +O(Y

1
3 )
)
.

(4.17)

Inserting (4.16) and (4.17) into (4.13), this concludes the upper bound.

4.3 Ground State Energy and BEC in Ultra Dilute Regimes

In this section, we consider the Bose gas in the Gross-Pitaevskii regime with Hamiltonian

HN =

N∑
i=1

−∆xi +
∑

1≤i<j≤N
N2V (N(xi − xj)). (4.18)

This operator is self-adjoint on a suitable dense domain in L2
s(Λ

N ) for Λ = T3. As in
previous sections, we assume for simplicity that V ∈ C∞c (R3) is radial and non-negative.

The Gross-Pitaevskii regime is characterized by the specific scaling N2V (N.) of the
two-body potential and it is equivalent to what is called an ultra-dilute regime. This
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is meant in the following sense: by a change of variables (similarly as in Lemma 4.1),
studying the spectrum of HN is equivalent to studying the spectrum of the Hamiltonian

HN,L =
N∑
i=1

−∆xi +
∑

1≤i<j≤N
V (xi − xj)

in L2
s

(
ΛNL
)
, for the side length L = N1−κ with parameter κ = 0, where

ΛL = R3/LZ3.

Notice that the number of particles density ρ = ρN of N particles moving in ΛL for
L = N1−κ, a box of volume N3−3κ, is equal to ρN = N3κ−2. So, if κ < 2

3 , we have that

lim
N→∞

ρN = 0.

In other words, the limit N → ∞ corresponds to a joint thermodynamic and low-
density limit in which the asymptotic number of particles density limN→∞ ρN vanishes.
Heuristically, one thus considers a system in which the infinite volume limiting theory
should resemble a free, non-interacting theory. One might therefore expect that proving
BEC in such regimes is simpler compared to the usual thermodynamic limit. This
interpretation also suggests that the larger the parameter κ, the faster the density tends
to zero as N →∞ and the closer the theory should be to a non-interacting theory.

What is the simplest scaling regime in which a proof of BEC for the ground state
becomes non-trivial? Notice that for L = N1−κ, κ < 0, ψN denoting the ground state

of HN,L and ϕ
(L)
0 = L−

3
2 ∈ L2(ΛL), one has the trivial upper bound

〈ψN ,NL,+ψN 〉 ≤ L2〈ψN , HN,LψN 〉 ≤ L2
〈
(ϕ

(L)
0 )⊗N , HN,L(ϕ

(L)
0 )⊗N

〉
= N1+κv̂(0)� N,

where N (L)
+ =

∑
0 6=p∈2πZ3/L a

∗
pap denotes the number of orthogonal excitations in the

setting of L2
s

(
ΛNL
)
. Thus, for κ < 0, complete BEC is trivially true for the ground

state (in fact, for every state with energy sufficiently close to the ground state energy).
Clearly, the previous argument breaks down at κ = 0, the Gross-Pitaevskii scaling.
The GP regime can thus be viewed as the simplest ultra dilute scaling regime in which
correlation effects have a non-trivial impact on the spectrum and the dynamics of the
system. Increasing the diluteness parameter κ ≥ 0 further towards 2

3 interpolates from
the Gross-Pitaevskii to the thermodynamic scaling (at density one).

Before discussing the GP scaling in more detail, note also that the mean field systems
discussed in Section 3 can be viewed as further simplifications of GP systems. Indeed, in
view of (4.18) and the previous discussion, the mean field Hamiltonian in (3.14) describes
equivalently a system of N bosons moving in the large volume ΛN and interacting with
the long-range potential N−3v(N−1.). This potential ranges essentially over all of ΛN
and one may think of it as a weak, approximately constant interaction potential. It is
therefore not very surprising that a proof of BEC is comparatively simple.
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Let us now present some basic results in the GP regime (at the cost of slightly more
technical proofs, the following results can also be generalized to ultra-dilute regimes with
sufficiently small, but positive κ > 0). For notational convenience, we consider systems
of N bosons moving in T3 and we analyze the Hamiltonian HN , defined in (4.18). In
terms of the creation and annihilation operators, HN takes the form

HN =
∑
p∈Λ∗+

|p|2a∗pap +
1

2N

∑
p,q,r∈Λ∗

V̂ (r/N)a∗p+ra
∗
q−rapqq. (4.19)

The following result is an analogue of Theorem 3.2.

Theorem 4.3 (Ground State Energy and BEC). Let EN = inf σ(HN ) and let ψN be a
normalized ground state vector. If a denotes the scattering length of V , then

EN = 4πaN + o(N) and 〈ψN ,N+ψN 〉 ≤ o(N) (4.20)

for some error o(N) ≥ 0 that satisfies limN→∞N
−1o(N) = 0.

Remark. The GP regime has been analyzed in great detail in the past two decades.
The first proof of BEC was obtained in [42]. Later, BEC was proved for a larger class
of approximate ground states [43, 49] and optimal bounds on the number of excitations
were obtained in [4, 7, 48, 14]. Analogous results were proved in parallel in the dynamical
setting [23, 24, 26, 25, 53, 3, 13]. Bogoliubov’s theory was recently derived in [6] with
generalizations to the trapped [50, 15] and the two dimensional setting [18]. For further
results on the GP regime, see for instance the review paper [60].

Proof. We follow [11] and present some key steps of its proof. We refer the interested
reader to [11] for the complete details. The proof is a generalization of the arguments
in the proof of Lemma 4.1 from the two-body problem to the N -body problem.

Note first that the ground state energy upper bound follows from Theorem 4.2. More
precisely, by a simple change of variables, Theorem 4.2 implies that

EN ≤ 4πaN +O(N
5
6 ).

So, let’s focus on the lower bound and the proof of BEC. Here, we would like to mimic
the overall strategy of the proof of Lemma 4.1. Recall that in Lemma 4.1, we first proved
BEC based on simple a priori energy bounds, then we deduced the ground state energy
lower bound and finally we concluded the upper bound. The key difficulty in the proof
of Theorem 4.3 is that simple a priori bounds do not directly imply BEC. We therefore
need to find a good replacement for the first step. To this end, let ζ ≥ 0 and define

N>ζ =
∑

r∈Λ∗:|r|>ζ

a∗rar.

Analogously, we define the operatorsN≥ζ ,N<ζ andN≤ζ ; note thatN+ = N>0. Recalling
that K+ =

∑
r∈Λ∗+

|r|2a∗rar, our key observation is that, although we do not know a priori

that 〈ψN ,N+ψN 〉 = o(N), we can use the simple form bound

N>Nβ ≤ N−2βK+ ≤ N−2βHN (4.21)
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to conclude at least that for every α > 0, we have that

〈ψN ,N>NαψN 〉 ≤ CN1−2α = o(N).

In other words, the number of particles of very large momenta (of size greater than Nα)
is small compared to the total number N of particles. In view of the strategy of the
proof of Lemma 4.1, this suggests to define the low momentum set

PL =
{
p ∈ Λ∗ : |p| ≤ Nα

}
. (4.22)

We then let ΠL : L2(Λ2)→ L2(Λ2) denote the orthogonal projection onto

span(ϕk ⊗ ϕl : k, l ∈ PL)

and set ΠH = 1−ΠL. Substituting the Schur complement identity

VN = (1 +N−1η∗)
(
−∆x1 −∆x2 +N−1ΠLVrenΠL + ΠHVNΠH

)
(1 +N−1η)

+ ∆x1 + ∆x2 ,

= ΠLVrenΠL +N−1η∗(−∆x1 −∆x2) + (−∆x1 −∆x2)N−1η

+N−1η∗(−∆x1 −∆x2)N−1η + (1 +N−1η∗)ΠHVNΠH(1 +N−1η),

where we set VN = N2V (N(x1 − x2)) as well as

η = N ΠH

[
ΠH(−∆x1 −∆x2 + VN )ΠH

]−1
ΠHVNΠL,

Vren = N
(
VN − VNΠH

[
ΠH(−∆x1 −∆x2 + VN )ΠH

]−1
ΠHVN

)
,

into HN leads to the identity (exercise)

HN =
∑
r∈Λ∗+

|r|2c∗rcr +
1

2N

∑
p,q,r∈Λ∗:

p,q,p+r,q−r∈PL

〈ϕp+r ⊗ ϕq−r, Vrenϕp ⊗ ϕq〉a∗p+ra∗q−rapaq

+
1

2N

∑
p,q,r∈Λ∗

〈
ϕp+r ⊗ ϕq−r,

(
1 +

η∗

N

)
ΠHVNΠH

(
1 +

η

N

)
ϕp ⊗ ϕq

〉
a∗p+ra

∗
q−rapaq −RN .

(4.23)

Here, we recall that Λ∗+ = Λ∗ \ {0} and we introduced the operators

cr = ar +
1

N

∑
(p,q)∈P2

L

〈ϕp+q−r ⊗ ϕr, η ϕp ⊗ ϕq〉a∗p+q−rapaq (∀ r ∈ Λ∗),

RN =
1

N2

∑
r,p,q,s,t∈Λ∗

|r|2〈η ϕp ⊗ ϕq, ϕp+q−r ⊗ ϕr〉〈ϕs+t−r ⊗ ϕr, η ϕs ⊗ ϕt〉

× a∗pa∗qa∗s+t−rap+q−rasat.

(4.24)
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By the positivity of VN ≥ 0, we can lower bound the r.h.s. in (4.23) by

HN ≥
∑
r∈Λ∗+

|r|2c∗rcr +
1

2N

∑
p,q,r∈Λ∗:

p,q,p+r,q−r∈PL

〈ϕp+r ⊗ ϕq−r, Vrenϕp ⊗ ϕq〉a∗p+ra∗q−rapaq −RN .

(4.25)

To control the r.h.s. in (4.25) further from below, we use several bounds that are proved
in detail in [11] (see also [17]): a careful and elementary analysis shows that∣∣〈ϕk1 ⊗ ϕk2 , Vrenϕk3 ⊗ ϕk4〉

∣∣ ≤ C,∣∣〈ϕk1 ⊗ ϕk2 , Vrenϕk3 ⊗ ϕk4〉 − 8πa
∣∣≤ C

N

(
Nα +

4∑
i=1

N−α|ki|2
)
,

∣∣〈ϕk1 ⊗ ϕk2 , η ϕk3 ⊗ ϕk4〉∣∣ ≤ C δk1+k2,k3+k4

|k1|2 + |k2|2
1(P2

L)c((k1, k2))1P2
L
((k3, k4))

(4.26)

for some C > 0 and for all k1, k2, k3, k4 ∈ Λ∗ that satisfy k1 +k2 = k3 +k4. On the other
hand, it is a straightforward observation (exercise) that Vren is a translation invariant
operator so that 〈ϕk1 ⊗ ϕk2 , Vrenϕk3 ⊗ ϕk4〉 = 0 if k1 + k2 6= k3 + k4.

Now, let’s use the bounds in (4.26) to control the r.h.s. in (4.25) further. First of
all, we notice that the leading order energy contribution is hidden in the renormalized
potential energy term. This follows from the mean field type estimate

1

2N

∑
p,q,r∈Λ∗:

p,q,p+r,q−r∈PL

〈ϕp+r ⊗ ϕq−r, Vrenϕp ⊗ ϕq〉a∗p+ra∗q−rapaq

≥ 4πa

N

∑
p,q,r∈Λ∗:

p,q,p+r,q−r∈PL

a∗p+ra
∗
q−rapaq − CNα−2|PL|N 2

≤2Nα

≥ 4πa

N

( ∑
q∈PL

a∗qaq

)∗( ∑
q∈PL

a∗qaq

)
− 4πa

N

∑
p,r∈Λ∗:
p,p+r∈PL

a∗p+rap+r − CN4α

≥ 4πa

N

(
N −N>Nα

)2 − CN4α ≥ 4πaN − CN−2αK+ − CN4α.

(4.27)

Similarly, we can control the renormalized kinetic energy. Recalling (4.24) and setting

dr =
Nκ

N

∑
(p,q)∈P2

L

〈ϕp+q−r ⊗ ϕr, η ϕp ⊗ ϕq〉a∗p+q−rapaq,
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so that cr = ar + dr, we lower bound∑
r∈Λ∗+

|r|2c∗rcr − 4π2
(
N<Nβ − a∗0a0

)
≥

∑
r∈Λ∗+:0<|r|<Nβ

4π2c∗rcr −
∑

r∈Λ∗+:0<|r|<Nβ

4π2a∗rar

=
∑

r∈Λ∗+:0<|r|<Nβ

4π2
(
d∗rar + a∗rdr + d∗rdr

)
≥ 4π2

N

∑
p,q,r∈Λ∗:0<|r|<Nβ

〈ϕp+q−r ⊗ ϕr, η ϕp ⊗ ϕq〉a∗ra∗p+q−rapaq + h.c.,

for some β < α. Together with (4.26) and Cauchy-Schwarz, we obtain for ξ ∈ L2
s(Λ

N )∣∣∣∣ 1

N

∑
p,q,r∈Λ∗:0<|r|<Nβ

〈ϕp+q−r ⊗ ϕr, η ϕp ⊗ ϕq〉〈ξa∗ra∗p+q−rapaqξ〉
∣∣∣∣

≤ C

N1+2α

∑
(p,q,r)∈P 3

L:

0<|r|<Nβ , |p|> 1
3
Nα, p+q−r∈PcL

‖arap+q−rξ‖‖apaqξ‖

≤ CN
3
2
β− 1

2
α〈ξ,N> 1

3
Nαξ〉 ≤ CN−α〈ξ,K+ξ〉

(4.28)

Notice that due to the constraint p+ q − r ∈ PcL and the condition |r| < Nβ for β < α,
at least one of the momenta p and q has to be larger than 1

3N
α for large N .

Now, combining (4.25), (4.27) and (4.28) (for the choice β = α
2 , α = 1

5) with the fact
that 〈ψN ,K+ψN 〉 ≤ CN for the ground state ψN of HN , we obtain the lower bound

〈ψN , HNψN 〉 ≥ 4πaN + c 〈ψN ,N+ψN 〉 − 〈ψN , RNψN 〉 − CN
4
5 .

for suitable C, c > 0. Using similar arguments as in (4.27) and (4.28), one can finally
show that 〈ψN , RNψN 〉 = o(N) (see [11] for the details) so that

4πaN + o(N) ≥ 〈ψN , HNψN 〉 ≥ 4πaN + c 〈ψN ,N+ψN 〉+ o(N).

This proves (4.20) and finishes the proof of Theorem 4.3.

135



References

[1] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, E. A. Cornell.
Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269
(1995), 198–201.

[2] G. Basti, S. Cenatiempo, B. Schlein. A new second-order upper bound for the
ground state energy of dilute Bose gases. Forum Math. Sigma 9 (2021).

[3] N. Benedikter, G. de Oliveira, B. Schlein. Quantitative derivation of the Gross-
Pitaevskii equation. Comm. Pure Appl. Math. 68, no. 8, pp. 1399-1482 (2014).

[4] C. Boccato, C. Brennecke, S. Cenatiempo, B. Schlein. Complete Bose-Einstein
condensation in the Gross-Pitaevskii regime. Comm. Math. Phys. 359, no. 3, pp.
975-1026 (2018).

[5] C. Boccato, C. Brennecke, S. Cenatiempo, B. Schlein. The excitation spectrum of
Bose gases interacting through singular potentials. J. Eur. Math. Soc. 22, no. 7,
pp. 2331-2403 (2020).

[6] C. Boccato, C. Brennecke, S. Cenatiempo, B. Schlein. Bogoliubov Theory in the
Gross-Pitaevskii limit. Acta Mathematica 222, no. 2, pp. 219-335 (2019).

[7] C. Boccato, C. Brennecke, S. Cenatiempo, B. Schlein. Optimal Rate for Bose-
Einstein Condensation in the Gross-Pitaevskii Regime. Comm. Math. Phys. 376,
pp. 1311-1395 (2020).

[8] V. I. Bogachev. Gaussian Measures. Mathematical Surveys and Monographs 62,
American Mathematical Society (1998).

[9] N. N. Bogoliubov. On the theory of superfluidity. Izv. Akad. Nauk. USSR 11 (1947),
77. Engl. Transl. J. Phys. (USSR) 11, 23 (1947).

[10] S. N. Bose. Plancks Gesetz und Lichtquantenhypothese. Z. Phys. 26, pp. 178-181
(1924).

[11] C. Brennecke, M. Brooks, C. Caraci, J. Oldenburg. A Short Proof of Bose-Einstein
Condensation in the Gross-Pitaevskii Regime and Beyond. Ann. Henri Poincaré
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