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[8.10. 2019, Lecture 1]

1. INTRODUCTION

1.1. Motivation. Overarching theme in analysis and geometry: pass
from smooth to nonsmooth objects.

Theory of PDE: weak solutions and Sobolev spaces have revolution-
ized the theory. Existence ’easy’. Then develop regularity theory to
show that weak solutions are everywhere or at least one large sets bet-
ter, even smooth.

Geometry: just one example. Gromov’s (pre)compactness theorem
states that the set of compact Riemannian manifolds of a given dimen-
sion, with Ricci curvature > ¢ and diameter < D is relatively compact
in the Gromov—Hausdorff metric [3 [4]. Limit spaces are in general no
longer smooth manifolds.

Goals of this lecture:

(1) Extend concept of Sobolev functions to functions defined on
non-smooth spaces

(2) Rigidity results and differentiability

(3) Interesting maps between non-smooth spaces, in particular, qua-
siconformal and quasisymmetric maps

Main reference: [§]

Ad 1. Usual definition relies on weak derivatives. This requires
a differential structure. What can one do if there is no differential
structure.

First hint: For nice sets in R® we ahve W1 = Lipschitz and the
number |Vu(z)| = is the ’optimal local Lipschitz constant’.

Second hint: The Sobolev embedding theorem for v € W? and
p > q > n gives the following estimate. If r = 2|z — y| then

ulo) - )] <Clo — ol (1B [ N vulta:) v

<Clz — y| (M(|Vu|")"(z).
—_——
LP function

Third hint: A function belongs to the Sobolev space W1P((0,1)")
if and only if it absolutely continuous on a.e. line and the directional
derivatives agree a..e with a function in LP((0,1)"). The latter space
is sometimes denoted as ACL,,.



Ad 2. Lip maps are differentiable a.e.

My favourite example of rigidity (‘Liouville’s theorem’): if f : U C
R™ — R™ and Df(xz) € SO(n) a.e. then Df locally constant and f
locally affine.

In words: infinitesimal isometries are isometries; isometries are affine
(the latter implication strongly uses the Hilbert structure)

Conformal maps: f € Wb p >n, Df(x) = Az)R(z) a.e., A\(z) >
0, R(z) € SO(n). For n = 2 such maps are holomorphic and hence
analytic. For n # 3 they are even more rigid. They must be Mobius
maps, i.e., compositions of rigid motions, dilations and reflections on
the unit sphere. This conclusion fails for p < n/2. In even dimensions
the positive result still holds for p = n/2. In odd dimensions the
optimal p for which the conclusion holds is not known (we only know
that it is strictly less than n and > n/2).

Reformulation of the assumption without derivatives (if A > 0 a.e) :

for a.e. x

lim MmaXyeB(z,r) d(f(y>7 f(.I)) _

r—0 minyEB(a:,r) d(f(y)7 f(x)
and f ’orientation preserving’ (the can be expressed, for example, by
using the degree which is defined for continuous functions).

Quasiconformal maps: f homeomorphism, f € W', det Df > 0

a.e. |Df|™ < Kdet Df. In R™ qc maps have higher regularity prop-
erties: f € WP for some p > n. Alternative: either f = const or
det Df >0 a.e.
There are many quasiconformal maps on R" (for n = 2 one can con-
struct them by solving a Beltrami equation of the form 0sf = u(2)0. f
for some measurable p with |||/~ < 1. We shall see later that in
spaces different from R™ qc maps can be much more rigid.
Reformulation without derivatives (for A > 0 a.e.)

. maXyGB(a:,r) d(f(y)a f(m))
S iy A (9). f@) =

for a.e. z.

1.2. Outline of the course. Today: some general remarks and ex-

amples
Then

e First theme: Covering theorems, maximal functions, (usual)
Sobolev spaces, Poincaré inequality, Sobolev spaces on metric
spaces (Hajlasz version) (Chapters 1-5 in [§])

e Lipschitz functions, upper gradients, modulus of a curve family,
Loewner spaces on Poincaré inequality



e Quasiconformal and quasisymmetric maps (Chapters and 6-12
in )

e Recent results for the Heisenberg groups and more general Carnot
groups

1.3. Example 1: fractal spaces. Look at [0, 1] with metric d,(z,y) =
|z —y|*, a € (0,1).
f:([0,1],d,) — ([0,1],d;) Lipschitz same as f Holder
f:([0,1],dy) — ([0, 1],d,) Lipschitz implies f constant
Are there non-trival Sobolev maps?

Fractal spaces give a a good first hint what non-Euclidean may look
like, but it is nicer to look at examples with a bit more structure.

1.4. Example 2: the Heisenberg group H. We will take a rather
hands-on approach. Some calculations which may look a bit miraculous
have their roots in more general facts about Lie groups and the subclass
of Carnot groups. We will study these more systematically later in the
course.

Definition 1.1. The Heisenberg group H consists of upper triangular
3 x 3 matrices for which all diagonal entries are 1:

H = rx,y,z €R

OO =
o~ K
— QW

The group operation is given by the usual matriz multiplication.

The group H is trivially a 3-dimensional smooth manifold and group
operation is smooth. Thus H is a Lie group.
Alternative view: H = R? with the group operation

(v,y,2)* (2,9, 2) = (x+ 2,y +y, 2+ 2 +zy).

Often we drop the *
It is convenient to denote the left group action by ¢, and the right
group action by r,. Thus

£g<h) =gx*h, Tg(m =hxg.

We view ¢, as a map from R? to R®. This map is polynomial and in
particular smooth.

So for H is still just R? with a group operation. We look for naturally
interact with the group action. This will eventually lead as to a new
metric on H which is invariant under the group action.
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Left-invariant vectorfields. On a general manifold a tangent vector can
be defined as the derivative of a curve X = £~(t) or as 1st order
differential operator Lx. The two notions are connected by the identity
Connection: Lxf = 4 f(v(t)). In R® we can thus describe tangent
vectors as

X - I 0 0 g 0 0 0
= (al, as, Clg), or X = CL16—M+G28—$2+G38—$3 = a18—$+a28—y+aga—z.
One usually writes X instead of Lx.

Special vector fields on a Lie group: left-invariant fields. Move a
tangent vector by the group action to produce a vector field. Example:
v : (=1,1) = H curve with v(0) = 0. Let X(g) = Lg% y(t). The
standard left-invariant vectorfields X;, X5, X3 on H are obtained by
taking X;(0) = (1,0,0) X2(0) = (0,1,0) and X3 = (0,0,1). A short

calculation gives

d
Xi(x,y,2) = %t:0<x +t,y,z+x) =(1,0,0),
d
Xo(x,y,2) = Ef:o(m,y +t,z+xt) = (1,0, z),
d
X3(x,y,2) = %tzo(x,y,z—i—t) =(0,0,1).

These vectorfields satisfy

Xi(g) = D{y(0)X;(0).
Since £g, = L4y it follows from the chain rule that we also have
(1.1) Xi(gh) = Deg(h)X;(h)

(this is usually taken as the formal definition of left-invariance).

At each point g = (z,y, z) the vectorfields X;(g), X2(g) and X3(g)
form a basis of (the tangent space) R®. The corresponding differential
operators are
0 9, 0 0
O Xo = 8_y+$$’ X3 = 95
Commutators. Given two (smooth) vectorfields X and Y we define the
commutator by [X,Y]f = X(Y f) — Y(Xf). Note that the commuta-
tor is again given by a first order differential operator, i.e., a vector-
field. Geometrically [X, Y] measure the amount of non-commutativity
of flows ®, and V,, defined by the vectorfields X and Y, respectively.
More precisely ®,(g) is defined as () where v is the solution of the
ODE +/(s) = X (y(s)) with initial value v(0) = g.

(1.2) X, =



For the Heisenberg group we have
(13) [XIJ XQ] = X37 [X17X3] = 07 [X27X3] =0.

Note that X, X, [X1, X5] span tangent space at each point.
Idea: derivatives wrt X; and X5 are more important.
Example: if f is smooth and X;f = Xsf = 0. Then f is constant.
Does a similar argument work for Lipschitz functions? Is it true that
if | X1 f] < C and | X5 f| < C then f is locally Lipschitz. Counterexam-
ple f(x,y,2) = /22 + y* + || (details: exercise).
[8.10. 2019, Lecture 1]
19.10. 2019, Lecture 2]

The Carnot-Caratheodory metric on H. We look for a new metric on
H which emphasizes the special role of X; and X5.

Definition 1.2. We say that 7 : [a,b] — H is a horizontal curve if

(1) € span(X (4(1), Xo(1())) V¢ € (a,b).
Let g = (z,y,2) and ¢ = (2/,y,2'). If there exists a horizontal curve

with y(a) = g and y(b) = ¢" we define the Carnot-Caratheodory dis-
tance as

du(g,9') = dec(9,9')

b
;= inf {/ |7 ()| dt : v horizontal curve,vy(a) = g, y(b) = g’} :

Here define length of a horizontal vectorfield X = a; X7 4+ ax X5 at a
point g € R? by
2
(14) X (9l = (D eil9)?)"”.
i=1
Remarks. Equivalently one can consider piecewise C! curves. The
new distance is left-invariant, i.e. dy(g * h,h x h’) = dg(h, k') for all
g,h,h' € H. This follows easily from the property which implies
that ¢, maps horizontal curves to horizontal curves of equal length.
It follows easily from the following result that two points in H can
always be connected by a horizontal curve.

Proposition 1.3 (Horizontal lifts). Let 7 : R® — R? be the map given
by w(ay, az,az) = (ar,as). Letn : [a,b] — R? be a C' curve and let c3 €
R. Then there exists a unique horizontal curve C' curve v : [a,b] — H
such that

(1) moy=n,
(2) v3(a) = cs.



If k is a closed curve then
(1.5) ~3(b) — v3(a) = oriented area (with multiplicity) enclosed by k.

Moreover

(1.6 [ W@ = [ e

where |blgz = \/b? + b3 is the usual Euclidean length.
Proof. If g = (z,y, 2)

(a1, a2, a3) = an X1(g) + 2 X2(9)
if and only if
(1.7) = ay, Qo =das, a3 = Tas.
Thus a curve 7 is horizontal if and only if

Y3(t) = () n(t).
Thus the unique horizontal lift v is given by
n(t) =m(t), 7(t) = ()

and

%®=%+/m@%@%

Consider the two-dimension vectorfield v(z,y) = (0, z) The integral on
the right hand side can be rewritten as

[ msits)as = [ otats)) o).

Thus if 1 is closed, encloses the set U and goes around A once in the
anticlockwise sense then Stokes theorem implies that

/abv(n(s)) i/ (s) ds = /nv-f - /Ucurlv d dy — area(U)

since curlv = 0,vy — Oy = 1.
Finally (1.6]) follows from the expression of a; and as in ([1.7)) and
the definition of |a|y. O

Application:

dcc(o, (0, O, Z)) = 47T|Z‘.

Sketch of proof: Let v be a curve connecting zero to g = (0,0, 2g)
and let n = mo~. The n is a closed curve. Assume first that 7, is
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simple closed and encloses the set U. Then it follows from (1.5)), the
isoperimetric inequality and (|1.6))

o] = farea(t)] < -Gengeh(n))* = - ( / (s |Hds)

Optimising over all curves v which connect 0 and g we see that

1
2| < =dec(0,9).

One can show that the estimate only improves if 7 is not simply closed
an one take the weighted area. On the other hand the inequality be-
comes sharp if we choose 7 as circle of radius R = which passes through
(0,0) and choose ~ as the horizontal lift with ~v5(a) = 0.

Moreover we have

Va2 +y2 < dee(0, (2,y,0)) < ||+ |y| < V222 + 32

Indeed the lower bound follows from we first deduce from (L.6). For
the upper bound we consider a piecewise C'. The first piece is the
straight line from 0 to (0,y,0) along this curve 3 = 0 and this curve
is horizontal and has length |y|. The second piece is the straight line
from (0,y,0) to (z,y,0). Along this curve 74 = 0 and hence this curve
is horizontal and has length |z|.

Thus the metric is comparable to the Euclidean metric in the (z,y)
plane and comparable to the fractal metric in the z-direction. We can
make this more precise by introducing an anisotropic dilation.

Scaling of the metric. For » > 0 consider the dilation map defined by

6, (11, 09, 23) = (ray, 139, 7273).
This maps is a group homomorphism, i.e.
0r(g%g') = 6,9 % 0rg’.
Check:
0rg % 0rg' = (rgr, 792, 77g3) * (rgh, 795, 1% d})
= (r(g1 + 91),7(92 + 92),7%(93 + g5 + 9195) = 0:(g * ¢).

Consequence: the differential of 4, scales the the standard left-invariant
vectorfields X; and X, by r (and X3 by 72). Indeed, (D4,)(g9)Xs =
%\t:o(é (g% (0,t,0)) = dt|t 0(0-9) ¥ 6,((0,¢,0)) = X2(6,g) Thus it fol-
lows directly from the definition of the C'C-metric that

(1.8) d(6,g,6:9") = rd(g,q).
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Scaling of natural measure on H. The Lebesgue measure on R? is left-
invariant and right-invariant, i.e. the left and right translations are
volume-preserving. Thus the Lebesgue measure is the Haar measure
on the group.

Proof:

lygd =gxg = (.7c+x y+y,z+2 +xy)

(de,)(0)(«', 9/, 2') = (2, ¢/, 2" + 2yf)

0
dt,(0) = 0
1

- 8 O

1
0
0
This is a lower triangular matrix wit

detdl, = 1.
For right translation one can use that ryg = ¢,¢" and one gets

dry (0)(x,y, 2) = (z,y, 2 + 2/)

1’s on the diagonal. Hence

1 00
drg(0)=[0 1 0
0 1

/

Thus det dry (0) = 1.

Together with (1.8]) this implies that

#(Beo(r)) = r*u(Boo(1)).

Note the the (topological, smooth) dimension of H is 3 not 4.
Outlook: rigidity results. Bilip maps on H x H factor; bilip maps on
HC are holomorphic
Strategy of proof: ’algebraic step’ plus "analytic step’.

Define notion of derivative which is adapted to the group structure
and the dilation ("Pansu derivative’). Differentiability at z, for maps
R™ — R™: there exists a linear map L : R™ — R"

1
—(f(xo+ry) — f(x0)) = Ly uniformly for y in a compact set.
,

Pansu derivative for a map f : H — H. Define left-translation £,(¢’) =
g *¢. The map f is Pansu differentiable at xg if there exists a group
homomorphism ® : H — H such that
Op—1 0 L gy f (€ay6ry) — @(y)uniformly for y in a compact set.
Strategy of proof

e Key results of Pansu: Lipschitz maps are Pansu differentiable
a.e.
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e Study first group homomorphisms (the counterpart of linear
maps on R")

e Then show local 'no-switching’ of Pansu derivative

Model problem for 'no-switching’.

f:R? x R? — R? x R? bilipschitz

For a.e. z: D f(x) block-diagonal or anti-diagonal

Then D f(x) always block-diagonal or always block anti-diagonal and

f(x) = (fi(w1, 22), fa(ws, 24)) or f(z) = (fi(w3,74), fo(71,72)).
Idea of proof:

df*(dyy A dyz) = 0 (in distributions).
[ (dys N dyz) = ady, A dyz + bdys A dys.

There exists a (measurable) set E such that

on E: a#0, b=0,

onR*\E: a=0, b#0.

Now

4 4

:(Z diady;) A dyy A dys + (Z 0;bdy;) N dys N dy,
i=1 i=1

:agadyg VAN dyl A dyQ —+ ...

Hence 03a = Osa = 0 and a = a(xy,z3). Thus xg = xp(zi,z2).
Similarly xi;\e = xF(xs,24). Hence xyp = const. This proves the
result.

Take home message: it is important to develop a rigorous framework
to carry out such calculations beyond the Euclidean setting.

Slightly different coordinates on H. The coordinates chosen above are
the simplest ones as they directly reflect the interpretation of H as
a group of upper triangular matrices. On can also use the matrix
exponential map to define coordinates on H. This leads a definition
which is slightly more symmetric in = and y. Recall that for a matrix
A one defines

=1
exp A = Z EAk
k=0
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with the convention A° = Id. For

N

I
o OO
O O R
[@nBN<FER N

we get
1 & Z4izy
expA=|(0 1 0
0 0 1

Thus the relation between the old and new coordinates is
1
r=1z, y=y, Z=5+§533?

or

—_

rT=x, Y=y, Z=2—=TY.

[\

z
The group action is then defined by exp(A x A") = exp Aexp A’ which
gives

- o~ SO U S
(,9.2) x (@9, 2) = @+ g+ 7,2+ 2+ 5 (75 —7')).
Dropping the tilde again this leads to the left-invariant vectorfields
1 1
Xl = aﬂc - §y827 X2 - ay + §Iazn X3 = 32

We have again
(X1, Xo] = X3
and the remaining calculations proceed as before.

1.5. Example 3: sub-Riemannian manifolds. Let M be a smooth
n-dimension manifold. Let Xi,... X} be vector fields. Assume that
there exists an integer s > 2, such the vectorfields obtained by taking
commutators up to order s span the tangent space at each point.

Example: s = 2. The vectorfields Xj, ..., Xy, [X;, X;] span the tan-
gent space at each point.
s = 3 X1, Xg, [ X4, Xj|, [Xi, [X;, Xi] span the tangent space at every
point.

Consequence if f : M — R is smooth and X f = ... = X3 f =0
then f is locally constant.

Horizontal curves and the Carnot-Caratheodory metric can be define
as before.

When is a map v : U C R™ — M Lipschitz, Sobolev, ...7

[9.10. 2019, Lecture 2]
[15.10. 2019, Lecture 3|
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2. COVERING THEOREM

This section follows very closely Chapter 1 of [8].

In the rest of these notes X will always denote a metric space.

By a ball in a metric space X we mean a pair of a centre z and a
radius 7 > 0, i.e. we distinguish between two balls B(z,r) and B(y, )
even if they agree as sets. We refer to the set {z : d(x,z) < r} as the
open ball and {z : d(x, z) < r} as the closed ball. If B = B(x,r) then
AB denotes the ball B(z, Ar).

Theorem 2.1 (basic covering theorem). Let F be a family of balls of
uniformly bounded radius. Then there exists a disjointed subfamily G
with the following property: for every ball B € F there exists a ball
B’ € G such that

1
(2.1) B'NB#0 radius(B’) > iradiuSB.

In particular

(2.2) U Bc 5B

BeF B'eG

Proof. The second assertion follows from the first by the triangle in-
equality. The first assertion is proved by Zorn’s lemma. Let () be the
set of disjointed subcollections w with the following property. If a ball
B € F meets any ball in w then there exists a ball B’ € w which
satisfies (2.1). The collection € is not empty. Indeed let

R :=sup{radius(B) : B € F}.

Then there exists B’ € F such that radius(B’) > 1R. The collection
w = {B’} belongs to .

By Zorn’s lemma one easily sees that () contains a maximal element
G (see [8]). We claim that G has the desired properties. Define

H ={B € F : B does not meet any ball in G}.
If H is empty we are done. If not set
Ry = sup{radius(B) : B € H}.

Then there exist By € H such that radius(By) > %Rg. By definition of
H the collection G U {By} is disjointed. It follows from the definition
of Ry that GU{By} € Q. This contradicts the maximality of G. O
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Definition 2.2. A measure p is a subadditive map p : 2% — [0, 00].
A set A is p-measurable if

w(E)=pu(ENA)+u(E\A) forall sets E.

A measure is Borel reqular if all open sets are measurable and every
set is contained in a Borel set of the same measure.

In the following we will always consider Borel regular measures. The
have the following additional regularity properties, see [2, 2.2.2, 2.2.3].

Proposition 2.3. Let pu be a Borel reqular measure. And let A be a p
measurable set with u(A) < oco. Then:
o u(A) =sup{u(C): C C A, C closed};
e if all metric balls have finite measure then u(A) = inf{u(U) :
UDA, U open};

If f is a non-negative function on X (not necessarily measurable) we

denote by
| fan
b's

We say that a measure is doubling if every ball has finite measure
and there exists a constant C' such that

(2.3) p(2B) < Cu(B).

Examples: Let f : R® — R be Lebesgue measurable with 0 < ¢ <
f < Cae. and define pu(A) = [, fdL". Then i is doubling; the volume
measure on a compact Riemannian manifold is doubling; the Lebesgue
measure on the Heisenberg group is doubling, in fact £3(B(a,r)) = crt.

Non-examples: The Dirac measure d; is not doubling, the Hausdorff
measure on lower dimensional manifold is not doubling; volume in a
hyperbolic space is not globally doubling u(B,) ~ " for r > 1.

the upper integral.

Theorem 2.4 (Vitali). Let A C X and let V O A be open. Let u be
a doubling measure. Let F be a fine cover of A, i.e., for every a € A
there exists a ball B(a,r) € F and

inf{r : B(a,r) € F} = 0.

Then there exists a disjointed countable subcollection G which covers A
W a.e., i.e.,

wA\ | B)=0.

Beg
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Proof. Consider the subcollection
F'={B e F:BcCYV,radius(B) < 1}.

Then F’ is still a fine cover of A. For bounded sets (with F replaced
by F') see [8].

Modification for unbounded sets A. If V' is countable union of
disjoint open sets V; then there exist subfamilies F; such that F;
is a fine cover of AN V; and the balls in F; are contained in V.
Thus there exists a countable disjointed collection G = (JG; with
u((V A\ Upeg B) = 0.

Finally note that the spheres S, = {x : d(x¢,z) = r} are mutually
disjoint and thus p(.S,) = 0 for all but at most countably many r €
(0,00). In particular there exists a strictly increasing sequence r; such
that r; — oo and u(S,;) = 0. Now apply the previous reasoning with
Vi = B(0,7j:1) \ (B(0,r;) U S,,). Since u(X \ U;V;) = 0 we get
N(A\UBegB> =0. U

The Besicovitch covering theorem avoids the doubling condition but
is not very useful in our context, because it does not even hold for the
Heisenberg group, see [14], Section 1.4.

[15.10. 2019, Lecture 3]
[22.10. 2019, Lecture 4]

A typical application of the Vitali covering theorem is the following
result.

Theorem 2.5 (Lebegue’s differentiation theorem). If f is a non-negative
locally integrable function on a doubling metric measure space (X, )
then
2:4) [ fdu= ()

B(z,r)
for a.e. x € X.

Here a function is called locally integrable in X if for each z € X
there exists a ball B(z,r) such that f is integrable in B(z, 7).
We use the abbreviation

g[fdu:ﬁéfdu-

Some ideas in the proof. Let E denote the set of points where (2.4))
fails. Cover E by closed balls with centers at E and radiii so small
that f is integrable in each ball. By the Vitali covering theorem there
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is a countable union of balls of this kind containing a.e. point of E.
Thus it suffices to show that E has measure zero in every ball B where
f is integrable.

Main claim: if A C B is measurable and

lim inf ][ fdu<t VreA
r—0
B(z,r)
then
Af@sw%)

By applying this result to every measurable subset of A we set that in
fact f <t p a.e. in A.

Proof: Let ¢ > 0. By Proposition [2.3| there exists an open set U D A
such that p(U) < u(A) +e. Let F we the collection of closed balls
B(a,r) such that a € A, B(a,r) C U and

fdu<t+e.
B(z,r)

Then F is a fine cover of A. Let G be the set in the Vitali covering
theorem. Since G C F we have for all B € G

/ fdu < (t+e)u(B) forall Beg.
B

Since G is disjointed, B C U and u(A\ [Jgeg B) = 0 we get

/A Fu < (t+)u(U) < (t+ ) (u(A) + <)

and the claim follows by taking € | 0.
Similarly if
lim sup ][ fdu>t Vre A

r—0
B(w,r)

then
Afwzmmy

In particular we get lim sup,_,, f fdp <ooae. in B.
B(z,r)
Now let s < t and consider the set A,; be the set of points in B such
that
limiélf fdu <s<t<limsup ][ fdu
r—

r—0
B(z,r) B(z,r)
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Then A, is measurable and
t:u(As,t) < fdp < SM(As,t)-
As,t
This implies that p(As¢) = 0. Letting s and ¢ for the rational numbers
we see that the limit g(x) = lim,_ ][ fdup exists a.e. in B. A

B(z,r)
similar argument shows that the limit agrees with f = g a.e. U
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3. MAXIMAL FUNCTIONS

This section follows very closely Chapter 2 of [8].
For a locally integrable function f define the maximal function by

M f(x) := sup ]f |fldp.
r>0
B(z,r)
Theorem 3.1 (Maximal function theorem [8], Thm. 2.2). Let p be
a doubling measure. Then the maximal function operator satisfies a
weak (1,1) estimate and a (p,p) estimate. More precisely the following
estimates hold. If f € LY(X) then

(3.1) u(gas > 1) < W [1s1an
If p € (1,00] then
(3.2 sy e [ 1rpdn

The constants C(p) and Cp(p) can be bounded in terms of the doubling
constant of .

Proposition 3.2. Let ¢ : [0,00) — R be locally integrable and let

t
CD(t):/ ©(s)ds.
0
Let f: X — [0,00) be measurable. Then

(3.3) /X (1) dy = / T o(s) u({f > s} ds.

Proof. This follows directly from Fubini’s theorem. Consider the set
E :{(z,s): f(z) >s} C X xR.
Then
u(ls > s} = [ tedu
and )

/0 ()1 ds = / "™ o) = a(f(2)).

Now apply Fubini. O

Proof of Thm.[3.1 The first estimate follows from the basic covering
theorem and the fact that p is doubling. First consider the local maxi-
mal function Mpf(z) =sup,_p... and then pass to the limit R — oo.
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For the second estimate write f = g + b with g = fl;7<;/2;. Then
Mg < t/2 and hence {Mf >t} C {Mb > t/2}. Apply (3.3) to M f
with ®(t) = t* and estimate

e

<S 1
|f1>t/2
C t t
_ g |, 11> s}y ds Cul{If] > ¢/2).

In the last step we applied (3.3) with ®(s) = max(s — £,0) and ¢ =
L(¢/2,00). Now for the integral

/ e //OO u({1f] > s})ds dt

integrate by parts in ¢ (Homework: check that there are no boundary

terms at t = 0 and t = oo) and apply (3.3) with ®(s) = sP. For the
3.3)

second contribution we can directly apply ( with ®(s) = sP. O
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4. SOBOLEV SPACES ON SUBSETS OF R"
This section follows very closely Chapter 3 of [8].

4.1. Definition and basic properties. We often write dx for the
Lebesgue measure in R"™.

Definition 4.1. Let f € L] _(R"). We say that [ is weakly differen-

loc

tiable if fori=1,...,n there exist g; € Li. (R"™) such that

loc

(4.1) foipdr = —/ gipdr Yo e CFR").
R” n

The functions g; are called the weak derivatives of f and we write O; f =
giand Vf=9g=1(91,---,9n)-

We say that a weakly differentiable function belongs to VV;?(R") or
to WHP(R™) if f, g1, .., gn in LY _(R™) or in LP(R™), respectively. We
set |[fllp = lfllz» and

[ fllp == 1Al + IV £l

Proposition 4.2. For 1 < p < oo the space CX(R™) is dense in
WLP(R™). For every f € W-P(R") there exist f € C*°(R") such that

fk — f, &fk — 81f m LfOC(Rn).
Proof. This follows easily by convolution with scaled smooth functions
with compact support. Use that 0;(¢* f) = (0;0) * f and the definition
of the weak derivative. O

In one dimension: W, = absolutely continuous
General: WP = ACL,
Chain rules, left composition with Lipschitz functions, for ut =
max(u,0) we have Vu™ = Vu 1, for the weak derivative.
[22.10. 2019, Lecture 4]
23.10. 2019, Lecture 5]

4.2. Sobolev inequalities. Let u € WP(R"). We have

(4.2) |ull,» < C(n,p)|[|Vull, ifl<p<nandp* = np
n—p
and if p > n then u has a continuous representative, which satisfies
(43)  [u(x) —uy)| < C(n,p)|lz =y 7|Vl Vz,y€R"
Alternative characterisation of p*:
11 1
P p n

To prove the Sobolev inequality there are at least three strategies:
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e Start from |u(zy,...,x,)] < f_oooo |Oyu;(xq, 2o, . .., @) dxy per-

|n/(n71

mute coordinates, obtain and estimate for |u(x) ) and use

the generalized Holder inequality;
e use the isoperimetric inequality;
e estimate u by a convolution of |Vu| with a suitable kernel.

In all case it suffices to show the result for functions in C2°(R").
We will follow the third approach. For v € C°(R"™) we have

u(z) = — /OOO D,u(x + rw) dr.

D,u(zx 4+ rw) = Vu(z + rw) - w

Change of variables

Yy—x
y=zr+rw, r=ly—z, w= )
r
1 > 1 n—1 n—1
U({E) = —W ; - VU({E + 7”(.{)) . me (dw)r d?"

Vu(y) - (y — =)
u(x) =C(n dy.
() = C(n) AT
The Riesz potential of order 1 of a locally integrable function f is
defined by

]lf:|'|1_n*f7

or more explicitly

(L1.f)(z) = /Rn %d@/.
Thus
(4.4) ul < CL(|Vul).

Proposition 4.3 ([8], Prop. 3.19). Let n > 2. Then the sublinear
operator f + I (|f]) maps L' to weak L™=V and LP to L™/("P) for
1<p<n.

Idea of proof. General strategy: estimate a nonlocal quantity pointwise
by using the maximal function.
First consider the case p = 1. We want to show that

" C n)(n—
L0 > 1) < s IO,

Since f — I1 f is homogeneous of degree 1 it suffices to show this result
for || f]|1 = 1.
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Local contribution: integration over annuli gives
/ L)n_l dy < Cp M f(z)
B(x,0)\B(z,p/2) [z —y
and summing the geometric series 27%p we obtain
/ L)n_ldyéCPMf(x)-
B(z,p) |‘T - y|

Far field contribution:

J = =Y UEV s P

M Bzp) [T —y["

Choose p = (M f (.CB)) " to balance the two contributions. This
gives
L f(z) < C(Mf)' =" (x)
Thus
L'{If >t} < LM f > /Dy
A T

Now assume p € (1,n). Again by homogeneity we may assume
Il fll, = 1. The local estimate is the same. For the far field estimate we
use that the dual exponent satisfies p’ € (25, 00). Hence y — [z—y['™"

is in L” (R™\ B(z, p)) and

1/p
B\ B(z,p) [T~ V] R\ B(0,)

—Cpr,
Choose p~™? = M f(z). Then
Lif(x) < OMf(2)'™P/" = OMf(z)mP)/n
and thus
/R I, f|P* da < C/ IMfPde < C [ e =C.
U

Remark 4.4. The weak estimate for p = 1 is optimal, we can in
general not control the L™ ™= norm. To see this let fi.(x) = k"g(kz),
g>0, [g=1. Then (I fx)(x) — '™
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Nonetheless Sobolev inequality holds for p = 1. This follows from the
following estimate

okn/(n=) pr(fok < |u| < 2841} < C’/ |Vu|dx
2k—1<|u| <2k
by summing over k. To prove the estimate we apply the weak L™ 1
estimate to the function
v = (minJul, 2°) — 251y
with t = 2871, Note that |u| > 2% if and only if v > 2¥~1 and
’VU‘ - ’VU| 12k—1<|u|<2k a.e.
Exercise 4.5. Show that for p € (n, o)

(1) (@) = (Lf)(2)] < Clp,n)|z — 22| £
Hint 1: Let r = |z — y|. Distinguish the cases y € B(x,2r) and y ¢
B(z,r) and the the latter case use that ’]x —yl" =]z — y|1_"’ <
Clz — z||z —y|™™.
Hint 2: argue first that by translation and scaling we may assume x = 0
and |z| = 1. Then distinguish y € B(0,2) and y ¢ B(0,2).

The arguments used to prove Proposition are very flexible. In
particular the same reasoning yields the following result.

Theorem 4.6 ([§], Thm. 3.22). In a doubling metric measure space
(X, 1) define

_ fy)d(z,y)
“ﬂ”‘ﬂmmew»W@

for a nonnegative measurable f. If there are constants s > 1, and
C > 1 such that

W(B,) > C7hr?
en

for every ball of radius r < diam(X) th

(45) “[1(][.)”3[)/(37;)),# < C(Sapa M)Hf”p,,u
forl<p<sand

(4.6) (L) > 1)) < Cs, it VIFI Y,

The proof and the rest of the subsection was not discussed in class.
Proof. Again we may assume ||f||, = 1. The main point is to show

Lif(x) < CM f(x)'7/>.
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Then we can proceed as before. The proof of the pointwise inequality
for 1;(f) is very similar to the Euclidean case. The main difference is
that for p # 1 we use annuli also to estimate the far field contribution.

Local estimate: since p is doubling we have u(B(z,r/2) > cu(B(z, 1)
and thus

/ f(y)d(z,y)
B(z,r)\B(z,r/2) pw(B(z,d(x,y)))

Far field estimate: First assume that p € (1, s).

d(z,y) 4
/B(ﬂc,R)\B(m,R/Q) (M(B(x, d(x, y)))) du(y)
<R ju(B(x, R/2)) " u(B(x, R))

<CRY u(B(x, R/2))""
SCRP'(l—S/p)

du(y) < CrM f(z).

Thus summing the estimate for 2¥r from k = 1 to oo we get

d(z,y) i i
/X\B(w,r) (M(B(a:,d(a;,y)))> dp(y) < C :

fy)d(z,y) -

dply) < Cri=s.
/);'\B@W /L(B(%, d(.ﬁE, y)))

Since % < Cd(x,y)'™* this estimate also holds for p = 1.

Finally taking r~*/? = M f(x) we get the desired pointwise estimate

for I, (f). O

Hence

The proof via the isoperimetric inequality uses the following result,
see [8], equation (3.34).

Proposition 4.7. Let F: [0,00) — [0,00) be measurable and decreas-
ing. Then for all o € (0,1)

(4.7) /Ooo F(t)*dt > G /OOO YL R (1) dt)a.

Proof. Assume first the F' is continuous, decreasing and has support in
a compact set [0,7]. Set

L(t) = /0 CFe(s)ds. M) = - / T el p(s) ds, R(t) = MO(2).

@ Jo
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Clearly L(0) = R(0) = 0. It suffices to show that L' < R’ on (0, 00).
We have
L'(t) = F ().
Moreover
R'(t) = Mo7L(t) tY*"LF(1).
Since F' is decreasing we have

t
1
M(t)z/ —sYelp(s) ds
e

b1
2/ —st/*"lds F(t)
e

> tYeF(t).
Taking into account that a — 1 < 0 this implies that
Me—L(t) <tV pl=e().
Thus
R'(t) < F*(t) = L'(t).
This proves the result for continuous functions, which are decreasing

and have support in a compact set [0,7]. The general case follows by
approximation. O

[23.10. 2019, Lecture 5]
[29.10. 2019, Lecture 6]
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5. THE POINCARE INEQUALITY

This section follows very closely Chapter 4 of [8].
Let B C R™ be a ball. Assume that u € W?P(B) and set

ug = ][udx.

B
If 1 <p<n then

(5.1) lu — upll 22 5 < C(n,p)||Vullys.

This inequality if often refereed to us the Poincaré-Sobolev inequality.
Using Holder’s inequality we deduce the Poincaré inequality

(5.2) lu—upllps < Cn,p)r|Vull,s

where r is the radius of the ball.

To prove the Poincaré inequality it suffices to consider smooth func-
tions since they are dense in W'?(B). Let z,y € B. One starts from
the identity

lz—yl T —vy
u(z) —u(y) = / Dyu(z + rw)dr  where w = ——.
0 |z =y

Integrating over y € B and using polar coordinates we deduce that
Vul(y)
Bz —y["!
or , in the language of Riesz potentials
u(z) —up| < C(n)L(|Vul)(x)

where |Vul is extended by zero outside B(z, ).
From the triangle inequality we get the symmetric version

(5:3) u(z) —u(y)| < C(L(Vu))(z) + L([Vu])(y))

valid for a smooth function v in B and all x,y € B. Again we extend
|Vu by zero outside B.

By approximation we see that holds for a.e. z,y € B if u €
WHP(B). If p > n and u is the continuous representative then the
estimates holds for every z,y € B.

Definition 5.1 (Chain condition). Given numbers A > 1, M > 1 and
a > 1 and a ball By in a metric space X a bounded set A C X in
a metric space X is said to satisfy a (AN, M,a)-chain condition with
respect to By if for each point x € A there is a sequence of balls B; :
i=1,2,...} such that

(1) AB; C A for alli > 0;

u(z) —up| < C(n)
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(2) B; is centered at x for sufficiently large i;
(3) the radius r; of B; satisfies
M la 7 diam A < r; < Ma " diam A
for allt >0 and
(4) the intersection B;NB;1 contains a ball B, such that B;UB; 1 C
MB..
Note that the conditions are unchanged if we multiply the metric by
a positive constant.
If 41 is a doubling measure on X then there exists an s > 1 such that
pBr) o o, ( r >
5.4 >27° .
(5.4) w(A) — diam A
Theorem 5.2 (Hajlasz-Koskela, [§], Thm. 4.18). Let (X, ) be a dou-
bling space and let A C X be a bounded set satisfying a (A, M, a)-chain

condition. Suppose that (5.4) holds for some s > 1. Let u and g are
locally integrable function on A with g > 0. If

1/p

(5.5) ][\u—uB]du < C'diam B ][ g* du

B AB
for some p € [1,s), some C > 1 and for all balls B in X for which
AB C A, then for each q < ps/(s — p) there exists a constant C" > 1
depending only on q,p, s, A\, M, a,C" and the doubling constant of u, such

that
1/q 1/p

(5.6) f|u—uA|qdp, < C'diam A ][gpdu
A A
If the pair (u,g) satisfies a truncation property (satisfied, e.g., by
u € Wh! and g = |Vu/| then one can choose ¢ = ps/(s — p), see [T,

loc

Thm 5.1 and 9.7.

Lemma 5.3. Let (X, p) be a measure space with u(X) =1 and let u
be a measurable function on X. If s > 1 and if

p({lul <t} < Cot™
then for each q < s we have

1/q
HquS( : ) .
—dq

S

Proof. Apply Proposition with ®(t) = 7 and use u({|u| < t} <
Cot™® for t >ty = C’é/s and p({|u] < t}) <1 fort <t. O
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Proof of Theorem[5.2. The assumption and the conclusion do not change
if we multiply the measure by a positive scalar (note that condition
as well as the doubling condition are invariant under that change).
Thus we may assume p(A) = 1.

We claim that we can also assume without loss of generality that
diam(A) = 1. Assume that we have shown the theorem under the ad-
ditional assumption diam A = 1. For a general metric d consider a new
metric d = (diamg A)~'d and set § = diamy Ag. Then diam; A = 1 and
the assumption of the theorem holds if we replace diam,; B by diam; B
and g by d. Hence the conclusion holds with the same replacements
and we easily conclude the desired result.

Note that the chain-condition and are invariant under the pas-
sage from d to d.

Let By be the fixed ball in the (A, M, a)-chain condition. Since the
assumption and conclusion are invariant under adding a constant to u

we may assume that up, = 0. Moreover it suffices to bound ][ |ul? dp.
A

Then the bound for uy follows from Jensen’s inequality.

In view of the previous lemma the assertion thus is easily deduced
from the following
Claim. For each € € (0,1) and p = p(1 — €)/s we have the estimate

(5.7) u({lul > 1) < C(e) (t—P / & du) o

To see that the claim implies the assertion not that for ¢ < p/(1 —
p) = sp/(s — (1 —¢)p) we get from the lemma with decay exponent

o= /(1 p) amd
Cy = <C’(z—:) ( /A 5 d,L) 1/,,)0

1/p
lullos < C"(e,q) ( / & du) .

To prove the claim let A; denote the set of Lebesgue points of |u|
in {|u| > t}. It suffice to show the estimate for pu(A;). For z € A; let
B; the chain of balls in the definition of the (A, M, a)-chain condition.
Then for each z € A; we have

the estimate

t <wu(x)=lim ug,.
11— 00
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From the fact that B; C B;NB;;1 and B;UB;1 C M B;, the doubling
condition and the estimate |up,,, —up,| < |ug,,, —u(y)| + |u(y) — up,
we easily deduce that

<c| [ h-unaldys -
B B;

i1

dy

|uBi+1 — Up,

Since up, = 0 it follows that

tSC’Zri ][gpdu
i=0

AB;

1/p

where 7; is the radius of B;. Let we have > a~* = C’(¢) and thus we
get

> rit < Cle)t.

Thus for every x € A; there exists an index i, such that

1/p

i t < Ce)ry, ][ g dp

ABi,

Since p = p(1 — €)/s this is equivalent to

r. < Cle)t™ ][ g’ dpu.

By (5.4) we have

Thus
W(B <@ [
ABi,

Let F be the family of balls AB;, . Since x € B;, the basic cover-
ing implies that there exists a disjointed subcover G such that A; C
Ugeg 5B. Since u(AB;,) > 0 and pu(A) < oo the family G consists of
at most countable many balls AB; where B; = Bixj’ Moreover Since p
is doubling we have

(A < D u(5AB;) < C ) p(By).
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Now we use that for 8 € (0, 1)

Thus

as claimed. O

[29.10. 2019, Lecture 6]
[30.10. 2019, Lecture 7|
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6. SOBOLEV SPACES ON METRIC SPACES

The main references for this section are [5, 6]. This presentation
follows very closely Chapter 5 of [§]. The first definition of a Sobolev
space on a metric space is based on the following inequality

(6.1)  Julz) —u(y)| < d(z,y)(g(x) +9(y)) forae z,yecX.

Definition 6.1 (Hajlasz Sobolev space). Let (X, ) be a metric mea-
sure space. For 1 < p < oo define

M"(X) = {u € LP(X) : there exists g € L’(X) such that (6.1]) holds}
We define

[ellair == [Jull, + nf{llgll, : (6.1) holds}.

If there is no danger of confusion of write ||u||;, instead of ||u||ps1s.
If p > 1 then one can easily show that there exists a unique g, € LP(x)
for which the infimum in the definition of the norm of u is achieved.

Theorem 6.2. For all p € [1,00) the map u — ||u|| e is a norm and
with this norm M is a Banach space.

Theorem 6.3. Let p > 1 and let U C R™ be open. Then the space
MY (U) is continuously embedded into WP(U).

Proof. Let u € M (U). Let V C U be open and bounded and suppose
that V' C U. Then there exists hy > 0 such that B, (V) C U. For
0 < h < hg and z € V consider the difference quotients
u(z + he;) — u(x)

. )

AMy(z) =

Then
|Alu(z)] < g(x) + g(z + hey).

Thus Alu is bounded in LP. If p € (1,00) then there exists a weakly
convergenc subsequence in LP with limit h;. Moreover |h;| < 2g. Let
@ € CX(U). Then there exist V as above such that ¢ € C>®(V).
Multiplying ¢ and passing the difference quotient to the test function
we see that u is weakly differentiable in U with derivative h;.

If p = 1 we use the fact that the difference quotients are in addition
equiintegrable. Hence a subsequence converges weakly in L!. 0

Corollary 6.4. If X = R" or X is a ball in R™ and p € (1,00) then
MY (X) = W' (X) with equivalent norms.

Proof. This follows from the estimate
u(z) —uly)| < C(n)d(z, y)(M([Vul)(x) + M([Vul)(y))

and the LP estimate for the maximal function. O
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The same conclusion holds if X C R” is an extension domain, i.e.,
if there exist a bounded linear extension operator F : W'?(X) —
Whr(R™).

Theorem 6.5 (Poincaré inequality in M'?). . Let (X, u) be a metric
measure space with diam X < oo and u(X) < co. Then, for all p > 1
and for all functions u € M we have

/|u—uX|pdu§2p(diamX)p/gpdu
X b

whenever g > 0 is a function such that (6.1)) holds.

Proof. Integrate (6.1)) first in y to get a pointwise estimate for u — uy.
Then take the L” norm. O

One possible approach to Sobolev spaces in an arbitrary metric mea-
sure space is to consider functions u for which an L? function g can be
found so that a Poincare inequality such as inequality (5.16) holds (not
just globally but uniformly on all balls in the space). This approach
has been pursued in [7].

Note that there are open bounded sets U C R™ and functions in
WHP(U) which do not satisfy a Poincaré inequality. Thus for those
sets WhP(U) # MYP(U).

Theorem 6.6 (Approximation by Lipschitz functions). . Let u €
M"Y (X) and e > 0. Then there exists a Lipschitz function v : X — R
such that

p{u #v}) <e and |u—v|y» <e.

Proof. Let

Eyx={z:|u(x)| <\ g(x) <A}
Then MWu(X \ Ey) — 0 as A — oo. Moreover the restriction of u to
E)\ is 2\-Lipschitz. Thus there exists a 2\-Lipschitz function u, which
agrees with u on E). Let T)\(s) = min(max(s,—\), ). Then T} is
1-Lipschitz and hence vy := Thuy is 2A-Lipschitz. Moreover vy = u on
E\. We easily deduce that vy — 0in LP(X) as A — co. We claim that

[(u = va)(@) = (u—v)(Y)| < d(z,y)(ha(x) + ha(y))
where
hy = glx\g, +3A1x\E,-

Indeed if both z and y are in E) the left hand side is zero. Assume
that © € X \ E, then

[(w—va)(z) — (u—vx) ()| < d(z,y)(g(x) + g(y) + 2X).
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If y € X\ E, the right hand side is bounded by hy(z) + hy(y). If
y € E) then g(y) < X and hence the right hand side is bounded by
hy(x). Similar reasoning applies if y € X \ E\. Now hy — 0 in LP(X)
as A — 00. O

Remark 6.7. The definition of M'? is global in the following sense. If
u vanishes on an open V we can in general not find a function g which
vanishes on' V' and still satisfies (6.1)). For an example take X = (0, 3)
and assume that u is Lipschitz on (0,3) with u =0 on (0,1) and u =1
on (2,3). Then g cannot vanish on (0,1) U (2,3), see [§] for further
comments. We will later introduce the concept of an "upper gradient’
which in contrast to g s local. Upper gradients, however, are only
useful if the space admits sufficiently many rectifiable curves.
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7. LIPSCHITZ FUNCTIONS

This section follows very closely Chapter 6 of [8]. Let X and Y be
metric spaces. A map f: X D A — Y is Lipschitz if there exists and
L such that

d(f(z), f(y)) < Ld(z,y) for all z,y € A.
If this inequality holds we say that f is L-Lipschitz.

Theorem 7.1. Let X be a metric space and A C X. If f : A — R s
L-Lipschitz then it can be extended to an L-Lipschitz map from X to
R.

Lemma 7.2. Let X be metric space and let F be a family of L-Lipschitz
maps from X to R. If the function F' defined by

F(x):=mf{f(z): f e F}
s finite at one point then it is L-Lipschitz.

[30.10. 2019, Lecture 7]
[6.11. 2019, Lecture 8|

Theorem 7.3. Every uniformly continuous bounded function in a met-
ric space is a uniform limit of Lipschitz functions.

Proof. Consider the inf-convolutions

fi(x) =inf{f(y) +jly —2|:y € X}.
O

Theorem 7.4. Let U C R™ be open. Then the space Wh>(U) consists
precisely of bounded functions that are locally uniformly Lipschitz on

U.

The functions need not be globally Lipschitz: consider a set which
is not connected or a slit domain.

Proof. "Locally uniformly Lipschitz’ means: there exists a representa-
tive v and a number L > 0 such that for every x € U there exists a
ball B(z,r) such that the restriction of u to B(z,r) is Lipschitz.

Thus it suffices to show that for a ball B the space W>(B) consists
of (equivalence classes of) bounded L-Lipschitz functions and

(7.1) L(u) := sup Mzuvuum.

z,y€B,x#y [z — |

Here on the right hand side we use the Euclidean norm for |Vu(x)|.
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Indeed if u € WH*°(B) then u has a continuous representative and
approximating u by convolution and integrating along the line from x
to y we get L(u) < ||Vul/z=~. Instead of approximation we can use a
narrow pencil of lines which connect z and 3 and use that for £"! a.e.
line in this pencil the restriction of u to that line is in W* with the
same gradient bounds. In particular for each ¢ > 0 there exists such a
line of length < |z — y| + €.

Conversely if w is L-Lipschitz then looking at difference quotients
as in the proof of Theorem we see that u is weakly differentiable
and the weak partial derivatives are bounded by L. This shows that
IVul||p~ < +/nL(u). To get the optimal estimate we can consider
difference quotient of the form (u(z +ta) —u(x))/t for alla € Q™. O

Theorem 7.5 (Rademacher’s theorem). Every (locally) Lipschitz func-
tion on an open set in R™ is differentiable almost everywhere.

Two lines of proof:
e Start from one dimensional case

e Use blow-up and Lebesgue points of the weak derivative

Two refinements:
Stepanoff showed that it suffices to assume

lim sup W < 00

for almost every x in the domain of definition.

Theorem 7.6. Let p > n and let U C R™ be open. FEvery function
in the Sobolev space WYP(U) is almost everywhere differentiable. For
n =1 the result also holds for p = 1.

Idea of proof. Key idea: look at Lebesgue points of Vu. U
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8. MODULUS OF A CURVE FAMILY, CAPACITY AND UPPER
GRADIENTS

This section follows very closely Chapter 7 of [8].

In a general metric space we have no smooth structure and no coun-
terpart of differentiability. We can, however, still do one dimensional
calculus along rectifiable curves, i.e., curves of finite length.

8.1. Line integrals. A curve in a metric space X is a continuous map
~ from an interval I to X. We often abuse terminology and call v both
the map and the image y(I). Curves are special for two reasons: one
can define a length without any differentiable structure and a curve
can always be reparametrized so that it becomes a Lipschitz map.

If I = [a,b] is a closed interval then the length of a curve y: I — X
is

((y) = length(y) = sup Z () — Y (tir1)],

where the supremum is taken over all increasing sequences t; with a =
t; and b = t,41. If I is not closed we defined the length to be the
supremum of the lengths of all closed subcurves of 7. A curve ~ is
rectifiable if its length is finite, and it is locally rectifiable if all its closed
subcurves are rectifiable. If I is not closed then a rectifiable curve has
a unique extension to a rectifiable curve on the closure of I.

The length function of a a curve 7 : [a,b] — X is defined by

Sy (t) = L(Va,)-
Any rectifiable curve can be parametrized by arc length, i.e., it factors
as
Y= Vs © Sy,

where 75 : [0,4(y)] — X is the unique 1-Lipschitz map such that the
factorization holds. The curve ; is called the arc length parametriza-
tion of .

If v is a rectifiable Curve in X, then the line integral over v of a Borel
function p : X — [0, 00] is deﬁned as

[om [ o

Note that if ¢ : I’ — I is an increasing (not necessarily strictly increas-
ing) map the (y o ¢)s = 7, and thus

=1
Yo ¥
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If ~ is only locally rectifiable we define the line integral by taking the
supremum over all rectifiable subcurves.

If X is an open subset of R” or of a Riemannian manifold and ~ €
WHH(I; X) then

£ww=¢wwﬂw

and

klp:[@OﬂUWﬂUMt

To prove the first identify one uses that the length function s, is addi-

tive and satisfies s, (t') — s, (t) < ftt/ |7/(7)| dr for t' > t. Hence s., is ab-
solutely continuous. Now + is differentiable a.e. and a a point ¢y of dif-
ferentiability the function s, is also differentiable with s (o) = |7/ (to)|-
This yields the assertion. In particular we get |7.| = 1 a.e. This proves
the second identity of v = 7,. The general case follows by the chain
rule.

There is one subtle point: a rectifiable curve v : I — R"” need not be
a Wl map. Indeed consider the Cantor function v : [0,1] — [0,1] C
R. Then /(y) = 1, but v is not in WH(I). Indeed 7/ = 0 almost
everywhere.

8.2. Modulus of a curve family. Let (X, u) be a metric measure
space.

Definition 8.1. Let T" be a family of curves in X and let p € [1,00).
We define the p-modulus of T' by

(8.1) mod,I" = inf/ PP dpu,
b

where the infimum is taken over all Borel functions p : X — [0, 0]
which satisfy

/pds > 1 for all rectifiable v € T'.
”

Function p which satisfy are called admissible functions, or metrics,
for the the family I'. If I' contains no rectifiable curve then p = 0
is admissible and mod,I' = 0. If I' contains a constant curve then no
function p is admissible and hence mod,I" = oo (since the infimum over
an empty set is 00).
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The set function mod, is an outer measure, i.e.,
mod,l = 0,
rcr, — IIlOdpF1 < IIlOdpFQ,

modp([j Fl) S i modpFi.
=1 =1

Moreover we have the following property: if I' and I’y are families of
curves such that each curve v € I' has a subcurve 7y € I' then

(8.2) mod,I" < mod,I'y
since every ['y admissible p is also I' admissible.
Comparison to capacity: consider a compact set K C R™ and a large

open ball B O K. Let I' be the set of all rectifiable curves from K to
OB. Let u: B — R be a C'! function such that

(8.3) u=1on K and u =0 on 0B.

Then p = |Vu| is admissible since

= / < wom)(tydi < / Tl (y(1)) 1/ (1) dt = / Vul.

Here we used that a rectifiable curve in arclength parametrisation is a
Wt map. Thus

mod,I" < inf/ |VulP dz
X

where the infimum is taken over all C'! function u which satisfy (8.3)).
The right hand side is the p-capacity of the set X (with respect to B).

We will come back to the relation between modulus and capacity later.

[6.11. 2019, Lecture 8]
[12.11. 2019, Lecture 9]

In R™ the most important modulus from the point of view of (quasi)conformal

geometry is the n-modulus mod,,I" which is conformally invariant. This
is more generally true on n-dimensional Riemannian manifolds.

A diffeomorphism f : M™ — N™ between two n-dimensional Rie-
mannian manifolds is conformally invariant if at each points its tangent
map is homothety, i.e.,

(Df(@)X, Df(x)Y) @) = Mx)(X,Y)s
forall X)Y € T, M™.
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Theorem 8.2. If f: M™ — N™ is a conformal diffeomorphism then
mod,I" = mod,, f(I)

for all curve families T' in M.

Proof. First note that f is locally Lipschitz. Thus, if v : I — M" is
rectifiable, then f o is rectifiable. We first claim that

p:N"—[0,00] f(I') admissible
— po f|Df| T-admissible.

Here |Df(x)| denotes the operator norm of the differential as a map
from T, M™ to Ty N". To see this let I be a compact interval and let
~v : I — M™ be rectifiable. Then f o~ : I — N" is rectifiable since f
is Lipschitz on compact sets. Since the line integral is invariant under
monotone reparametrization and since 7, is Lipschitz we have for every

f(I") admissible p

1§/ p=/ p
fop Jovs

- / po (for)(t)(f o) () di
< / (po £) o 7(t) [Df] 0 1(t) ()] dt
:/ po fIDS]

This prove the claim.
Conformality of D f implies that

|det Df| = [Df|".

Thus for every f(I') admissible p we have
/ p" dvol :/ po f|det Df|dvolym

:/ (po fIDf])" dvolpm > mod,I.
Mn

Hence mod, f(T') > mod,I". Applying the same reasoning to f~! we
get equality. O
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Definition 8.3. Let f : M™ — N™ be a homeomorphism between n-
dimensional Riemannian manifolds. We say that f is K -quasiconformal
if and only if

1

?modnf < mod, f(I") < Kmod,I'

for all families of curve I' in M™.

Proposition 8.4. If f : M™ — N" is a diffeomorphism of n-dimensional

Riemannian manifolds then f is K-quasiconformal if and only if
1
(3.4) DI < |det Df| < KIDS|"

Proof. To see that implies that f is K-quasiconformal one pro-
ceeds exactly as in the proof of Theorem [8.2] For the converse impli-
cation one considers small cylinders C' and the family I" of straight line
segments which connect the bottom and top surface of the cylinder. [

Basic example: let 0 <7 < R. Let I', g be the set of all curves which
connect B(0,r) C R™ and R\ B(0, R). Then

Clp,n)|Rv= — ot "7 if 1 <p#n,
(85) mOdPFT,R - {an—l(Sn—l) 1

og"TE if p = n.
In particular
(8.6) mod,I', g ~ P ifp<nandr <R,
(8.7) mod,I', g ~ RPT" ifp>nandr <R,
(8.8) lin(l) mod, I, g = 0.
r—

Indeed, to obtain an upper bound for the p-modulus one may use ra-
dialsymmetric functions p(z) = c|z|~7. To get a lower bound one use
the Holder inequality to get for each w € S"~! and each admissible p

R R n—1 n—1 R % R n—1 pT
1§/ p(tw)dt:/ p(tw)tptpdt§</ pp(tw)t"_ldt) (/ tpldt) :

Rewriting this as a lower bound for er p(tw)t" 1 dt and integration
over w yields the desired lower bound.

Lemma 8.5. Suppose that (X, i) is a metric measure space such that

(8.9) w(Bgr) < CR"
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for some constant C > 0, exponent n > 1 and for all balls of radius

R > 0. Then for all zo € X and all r € (0, %) we have that

1-n
mod,,I" < ¢’ <log E)
,

where T' denotes the family of curves joining B(xo,r) to X \ B(xo, R)
and C' is a constant depending only on the values of C' and n in (8.9)

Proof. Exercise. Hint: consider the function

R 1
=log™' — :
pla) =log™ — 0. 70)
and consider the integral of p™ over dyadic balls. O

Corollary 8.6. In the setting of Lemma[8.5 the n-modulus of the fam-
ily of non-constant curves passing through a point is zero. This holds
in particular in R™.

8.3. Upper gradients.

Definition 8.7. Let X be a metric space and let u: X — R. We say
that a Borel function p : X — [0,00] is an upper gradient of u if for
all z,y € X with x # y we have

(8.10)

lu(z) —u(y)] < /p for all rectifiable curves v connecting x and y.
Y

The function p = oo is always an upper gradient. If X contains no
rectifiable curves then p = 0 is an upper gradient. For an L-Lipschitz
function p = L is an upper gradient, but this is rarely optimal (see the
following exercise).

Exercise. Assume that v : X — R is Lipschitz. Show that the
function p defined by

p(x) :=liminf sup July) = u(=)l
r—0 yeB(z,r) r
is an upper gradient of w.
Hint: consider first the case that X is an interval and construct a
suitable fine cover. Then use the arc length parametrization ;.

One can define a Sobolev space N'?(X) ("Newtonian space’) as the
space those L? functions u for which are exists a p € LP(X) such that
except for a family of curves of p-modulus zero, see [16], [10].
Closely related are Cheeger’s HP(X) spaces, see [1], Section 2.
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8.4. Capacity.

Definition 8.8. Let (X, i) be a metric measure space and let E, F C
X. Then

cap,(E, F) := inf{/ PP du : p is an upper gradient of a function u: X — R
X
(8.11) with u <0 on E and u > 1 on F}

Theorem 8.9. We have that
cap,(E, F') = mod,(E, F)

where the modulus on the right hand side is the modulus of all curves
joining the sets B and F in X.

Proof. This follows essentially directly from the definitions. Note that
we may assume that £ N F = () since otherwise both sides are oco. For
the estimate "<’ one first considers the case that every point x € X
can be joined to E by a rectifiable curve. For a p which is admissible
for the family of curves joining £ and F' one then defines

(8.12) u(z) == inf/ p

where the infimum is taken over all curves 7, joining F to the point
x. It is easy to see that p is an upper gradient of u. Indeed let v by a
rectifiable curve joining x and y, v, be a curve joining E to x and let
7y be the curve « followed by v,. Then

U(y)élp+lwp-

Taking the infimum over all v, we get

uly) ~u@) < [ 4

”
and reversing the roles of z and y we see that p is an upper gradient
for w.

Now assume that the set

A := {x : there is no rectifiable curve joining E to x}

is non-empty. Note that AN E = (). Define @ : X \ A and set u =
min(a,1) on X \ A and u = 1 on A. Now assume that there exists a
rectifiable curve from z to y. Then either both = and y belong to X'\ A
or they both belong to A. In the first case the previous calculation
gives the desired bound for |u(z) — u(y)| (since the map ¢ — min(¢, 1)
is 1-Lipschitz). In the second case we have u(z) = u(y) = 1. O
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8.5. Sobolev function in R" and upper gradients. This subsection
was discussed on Nov 19, 2019

Proposition 8.10. Let [ = (a,b) be a bounded open interval in R. Let
u: I — R be measurable.

(1) If u € WYY(I) then the continuous representative u has the

upper gradient p = |u'| where |u'| denotes the weak derivative.
(2) Ifu: I — R has an upper gradient p € L'(I) then v € WH(I).
Moreover p > |u'| a.e. where u' denotes the weak derivative.

Comment: we require that p is Borel measurable. Every Lebesgue
measurable function on I has a Borel measurable representative. Thus
in the first assertion we take p as the Borel measurable representative
of |u/|.

Proof. The absolutely continuous representative u satisfies
u(zr) = c+/ u'(2)dz.
zo

It easily follows that p = |u/| is an upper gradient.
If p € L'(I) is an upper gradient one easily sees that u is absolutely
continuous in I. Hence v € WH! and

u(z) =c+ /9«“ u'(2) dz.
Zo
On the other hand we have for x — xg > 0
c—/xp(z)dz <u(z) < c—i—/zpdz.
xo o
Thus p >« and p > —u' on (zg,00) NI and we get the same assertion
on (—oo,z9) N I. O

For a locally integrable function f : R” — R we define the restricted
maximal function by

(813) (Mef)(w) = swp [ 7]y
0<r<R
B(z,r)
Note that the supremum does not change if we only consider only
rational 7 in (0, R]. Since x +— | f| dy is continuous it follows that
B(z,r)
Mg f is Borel measurable.

Proposition 8.11. Let u : R™ — R be measurable.
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(1) There exists a constant C' with the following property. If u €
WLP(R™) then p = CMg|Vul is an upper gradient where Vu is
the weak derivative.

(2) If p € LP(R™) is an upper gradient of u then u € WP(Q) and
p > |Vul a.e.

Proof. For the first assertion consider the standard mollifier o, = ™

with ¢ € C(B(0,1)), ¢ >0, [¢dz = 1. For for 0 < ¢ < R the func-
tion p is an upper gradient of u. if C' = sup ¢. By the Lebesgue point
theorem u. — u a.e. Thus there exists a null set N such that

jule) —ulw) < [ o
v
for all z,y € R™\ N and all rectifiable curves joining = and y. Then a
standard argument (see below) shows that u has an extension @ which
satisfies the same estimate for all x,y € R".

The second assertion follows from the second assertion in Proposi-
tion [8.10] the fact that L? functions which are absolutely continuous
on a.e. coordinate line with derivative in LP belong to WP(I) and
Fubini’s theorem applied to p. O

Extension argument:
Suppose that there exists a Borel measurable function p : R" — [0, o]
such that

ule) ~ul) < [ o

v
for all z,y € R"\ N and all rectifiable curves connecting x and y.

We would like to define and extension @ of w which has the same
property for all x,y € R". Set

Ny :={z € N : there exists a rectifiable curve joining = to R" \ N},
N2 =N \ Nl.
and define

u(r) = inf{u(y) + /p cy € Q\ N, ~ rectifiable curve joining z to y}
v

u(r) =0 Vze Ns.

Note that there is no rectifiable curve which joins Ny and N;. Indeed,
otherwise there would be rectifiable curve joining Ny and R™\ N. Thus
every rectifiable curve starting in N, has to stay in Ny. Hence if z € Ny
or y € Ny we only need to check the condition on |u(x) — u(y)| for
r € Ny and y € Ny. In that case we have |u(z) — u(y)| = 0 so the

e(2)

Vx € Nl,
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desired condition holds trivially. If y € R*\ N and = € N; then
u(z) > u(y) and the bound on u(x) — u(y) follows from the definition
of u(x). Finally assume that z,2’ € N; and wlog u(x) > u(z’). Let
be a rectifiable curve connecting =’ to x. Let € > 0 Then there exists
ay € R"\ N and a curve o connecting y to z’ such that

u(e) 2 u(w)+ [ p-=

[

Consider the composition of v and o. By definition of u(x) we have

ww) <uty) [ pute)res [p

YUo o

Since € was arbitrary this concludes the proof.

[12.11. 2019, Lecture 9]
[13.11. 2019, Lecture 10|

9. LOWNER SPACES

This section follows very closely Chapter 8 of [§].
9.1. The Lowner p-function.

Definition 9.1. Let X be a topological space. A subset E is a con-
tinuum if it is connected and compact. We say that a continuum is
nondegenerate if it is not a point.

We will often tacitly assume that all our continua are nondegenerate.
For two nondegenerate continua F and F' in a metric space X we define

dist(E, F) = inf{d(z,y) : v € E,y € F} =min{d(z,y) :x € E,y € F}
and
dist(E, F)

min(diam E, diam F)’
The quantity A(F, F) is a measure how close the sets £ and F' are
which is invariant under rescaling of the metric.

Let (X, u) be a metric measure space. For p > 1 we define the
Lowner p-function ¢, : (0, 00) — [0, 00| by
(9.1) ¢p(t) = inf{mod,(E, F) : A(E,F) < t}.
Here mod,(E, F') denotes the p-modulus of the family of curves which
join K and F'.

A(E,F) =

Definition 9.2. Let n > 1. We say that (X, ) is an n-Lowner space
if on(t) >0 for allt > 0.
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Here n need not be an integer.

Proposition 9.3. Suppose that p(X) < oo, X is a Léwner n-space
and p > n. Then X is a Lowner p-space.

Proof. This follows from the definition of the modulus and the Holder

inequality
/p”duﬁ (/ ppdu) p(X)' 5.
b's X

Proposition 9.4. If p # n the space R" is not a Lowner p-space.
Proof. This follows by scaling. We have
AMNE,\F) = A(E,F)

and
mod,(AE, AF) = X" Pmod, (£, F).
Taking A — 0 for p < n and A — oo for p > n we get the assertion. [

Theorem 9.5. The space R™ is a Lowner n-space.

Proof. This follows from a general result for spaces with a lower volume
bound and a Poincaré inequality, see Theorem [10.11| below. Lowner’s
original four page proof [13] is also worth looking at. O

9.2. Hausdorff measure, Hausdorff dimension, topological di-
mension and Lowner spaces. Heinonen [§] defines the Hausdorff
measure as follows.

Definition 9.6. Let X be a metric space. For a > 0 and § > 0 the
Hausdorff premeasure H§ of a set £ C X 1is defined as

H§(E) = inf{) (diam B,)* : E C | | B, B; closed ball, diam B; < 6}.

For a > 0 the Hausdor[f measure is defined
HY(FE) =sup HJ'(F) = lim HJ'(F).
For o = 0 the measure H°(E) is the counting measure. The Hausdorff
dimension is defined as
dimy £ = inf{a > 0 : HY(E) = 0}.
Finally the Hausdorff content is defined as
HS(E) = inf{> (diam B;)* : E C | JB;, B; closed ball}.
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Usually one allows arbitrary closed sets in the definition of the Haus-
dorff (pre)measure rather than closed balls. This changes the value of
the Hausdorff measure at most by a factor since every closed set A is
contained in a closed ball with diam B < 2diam A.

In general the Hausdorff content can be much smaller than the Haus-
dorff measure but one easily verifies the following useful fact

(9.2) HS(E)=0 <= H%E)=0
Proposition 9.7. Assume that bounded sets in X have finite measure.
If there exists a constant C' > 0 such that
p#(Br) > C™'R"
for all balls for radius R < diam X then dim,qpean X < n.

Proof. First assume that X is bounded. Use the basic covering theorem
to find a family of closed balls B; of radius R; with diam B; < ¢ which
covers X such that the ball %Bi are disjointed. Then for a@ > n

Hy(X) < 6" (diam B;)"
< 507M0M Y (Rqi/5)"
< om0y (=B
< O30 Y il B)
< CH M0 u(X).

The assertion follows by taking 6 — 0. For general X write X as a
countable union of bounded sets X = | J, .y(X N B(xo, k)). O

Definition 9.8. We say that a metric measure space (X, ) is (Ahlfors)
n-reqular if there exists a C' > 1 and n > 0 such that

(9.3) C™'R" < u(Bg) < CR"
for all closed balls Br of radius R € (0, diam X).

Exercise.  Prove that if y is a Borel regular measure on a metric
space X satisfying then there is a constant C” such that

(CY " HW(E) < w(E) < C'Hu(E).
for all Borel sets E in X.
Hint: use approximation by open and closed sets, see [2], 2.2.2.
Proposition 9.9. If
1(Bg) > C™'R"

then dimy X > n, in fact H*(X) > 0. In particular, if (X, pu) is
Ahlfors n-regular then it has Hausdorff dimension n.
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Proof. Suppose that H™"(X) = 0 and let ¢ > 0. Then there exist closed
balls B; of radius R; Then

e>> (diamB;)" =2"Y R!'>2"CY u(B;) > 2"Cp(X).

Thus pu(X) = 0, a contradiction. O

The topological dimension of a space if defined recursively. One set
dim() = —1.

Definition 9.10. The topological dimension n of a separable metric
space X s the smallest integer n such that for each point x € X there
exist arbitrarily small neighbourhoods of x whose boundary has topolog-
ical dimension at most n — 1.

Proposition 9.11. The Hausdorff dimension of a metric space is at
least its topological dimension.

Proof. This follows from Theorem below. 0

Theorem 9.12. Let X be a metric space. Let n be an integer such
that H"1(X) = 0. Then the topological dimension of X is at most n.

Proof. Let xyp € X. The main point is to show that
H'THX)=0 = H"(0B(zo,7)) =0 for L' a.e. 7> 0.

Then the result follows easily by induction. For the proof of this im-
plication see [§]. Two comments on the proof: for n = 0 one uses the
convention that a® = 1 if @ > 0 and 0° = 0. It suffices to show that
HY (OB(zg,7) = 0 (since this implies H™(0B(xq,r) = 0. O

Proposition 9.13. If (X, ) is an n-Léewner space, then there exists
C > 0 such that

w(Br) > CR"™  for all balls of radius R € (0, diam X).

Proof. Tt suffices to show the results for R < % diam X. Let x € X, then
there exists a point y ¢ B(z, R). Consider a path ¢ which connects x
and y. Then o contains a subpath o; which connects = to 0B(z, R/4)
in B(x, R/4) and a subpath oy which connects dB(z, R/2) to dB(z, R)
in B(z,R) \ B(z,R/2). One easily sees that A(oy,0,) < 2 and that
p= %1 B(z,R) 18 01 — 09 admissible. Then the assertion follows from the
definitions of the modulus and the Lowner function. O

Corollary 9.14. No space can be Lowner for an exponent less than its
topological dimension.
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Corollary 9.15. An n-Lowner space of topological dimension n has
Hausdorff dimension n.

[13.11. 2019, Lecture 10]
[19.11. 2019, Lecture 11|

10. POINCARE INEQUALITIES AND LOWNER SPACES

In this section we discuss various conditions which are equivalent
to the validity of a Poincaré inequality for all balls (under suitable
assumptions on (X, 1)) and how they are related to the Léwner condi-
tion.

This section is based on Chapter 9 of [§]. More details can be found in
[9]. Subsectio is partially based on lecture notes by Urs Lang, see
https://people.math.ethz.ch/lang/LengthSpaces.pdf. Subsection m
follows [L1].

10.1. Length spaces, geodesic spaces and the Hopf-Rinow the-
orem. We begin with some purely metric properties of the space X.

Definition 10.1. Let (X, d) be a metric space.

(1) The space (X,d) is called locally compact if for every x € X
there exists anr > 0 such that the closed ball B(z,7) is compact.

(2) The space (X,d) is called proper if every closed and bounded
set 1s compact;

(3) the space (X,d) is called quasiconvex if there exists a constant
C > 1 such that for any two points x,y € X there exists a curve
of length < Cd(z,y) which joins x and y;

(4) the space (X,d) is called a length space if for any two points
x,y € X the distance d(z,y) is the infimum of the length of all
curves connecting x and y.

(5) The space (X,d) is called geodesic is for any points x and y
there exists a curve vy which joins x and y and has length d(x,y).
Such a curve is called a (lenth-minimizing) geodesic.

The following lemma is taken from lecture notes by Urs Lang.

Lemma 10.2 (Mid-points). Let X be a complete metric space.

(1) X is length space if and only if for all x,y € X and everye > 0
there exists a z € X such that

1
d(l’, z),d(z,y) S éd(may) + &;
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(2) X is a geodesic space if and only if for all x,y € X there exists
a z € X such that

d(z, z),d(z,y) < %d(:v,y).

Proof. Necessity is easy in both cases (and does not require complete-
ness): take a suitable rectifiable curve which connects z and y, pa-
rametrize by arc-length and define z to be the mid-point of the curve.
For sufficiency define a Lipschitz curve v : [0,1] — X connecting x
and y as follows.First definine v on the dense set of dyadic points
{527% : k € {1,2,...},j = {1,...,2%1}} by iteratively applying the
condition (for the assertion about length space use the condition with
er = 27%¢). The function thus obtained is Lipschitz and hence has
a Lipschitz extension which is easily seen to have the desired proper-
ties. U

Theorem 10.3 (Hopf-Rinow theorem for length spaces). Assume that
X is a length space which is locally compact and complete. Then

(1) X is proper;
(2) X is geodesic

A locally compact length space need not be proper or geodesic. Con-
sider the set B(0,1) \ {0} in R™. Then there is no geodesic from = to
—.

Proof. This proof is taken from Lecture notes by Urs Lang.

To show that X is proper it suffices to show that for every z € X the
closed balls B(z,r) are compact for all 7. Fix z and let [ = {r > 0 :
B(z,r) is compact}. It suffices to show that I is open and closed in
[0,00). It is easy to see that local compactness implies that I is open
in [0,00). Thus it remains to show that [0, R) C I implies [0, R] C I
for all R > 0. We show sequential compactness of B(z, R).

Let y; be a sequence in B(z, R). Choose a decreasing sequence ¢;
converging to 0, with ; < R. Since X is a length space, for all i,
there exists an z; € B(z, R — §) with d(2%,y;) < ;. The sequence
$]1 has a convergent subsequence le'(l,k)‘ Consider the corresponding
sequence x?(l, k) and pick a convergent subsequence m?(lk).

Continue in this manner. Finally, put j(k) := j(k,k) for k € N,
the sequence z%(k), k € N converges for all i € N. We claim that
the associated sequence y;() is Cauchy. Let € > 0 and choose 7 with

g; < e. Then d(x;'.(k), x§(l)) < ¢ for k, [ sufficiently large. It follows that

Ay, i) < dYi), Tj) + AT, T50) + @), vi0) < e +e+
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g; < 3e. Since X is complete, y;x) converges. This shows that every
sequence ¥; in B(z, R) has a convergent subsequence.

The fact that X is geodesic now follows from Lemma and com-
pactness. O

Proposition 10.4. If (X, d) is quasiconvex then there exist a new met-
ric din, such that (X, dy,) is a length space and d < d;, < Cd. In partic-
ular (X, d) is bi-Lipschitz equivalent to a length space. If, in addition,
(X, d) is complete and locally compact then X, dy,) is geodesic space.

Proof. Define the inner metric by
din(z,y) = inf{length,(v) : v is a curve which joins x and y.}

By quasiconvexity we have d < d;, < Cd. It is easy to see that d,
satisfies the triangle inequality. Hence dj, is a metric.

If X is complete in the fact that X is a length space follows easily
from Lemmal[I0.2] In general we can argue as follows. We need to show
that for any € > 0 and any z,y € X there exists a curve v : [0,1] - X
with (0) = z and (1) = y and

length, (v) < din(z,y) +e.
By definition there exists a curve v : [a,b] — X such that
length,(v) < din(z,y) + €.

Leta =1t <t; <...<tyy1 =band [; = [t;, t;11]. It follows from the
definition of the length that

length, (7) =Y _length, (y1,).
=1

The definition of d;, implies that
di(y(t:), v(tis1) < lengthy (7r,)-

Thus
> di(y(t:), Y(tiz1) < dinlx,y) + .
i=1
Taking the supremum over all N and all choices t,...txy.11 We get the

desired assertion.
To see that (X, dy,) is geodesic use the Hopf-Rinow theorem. O

Proposition 10.5. For each A > 1 there exist a > 1 and M > 1
with the following property. Let A be an open ball in a geodesic space
(X,d). Then A satisfies an (A, M, a)-chain condition (with respect to
the concentric ball By = %A ) in the sense of Definition .
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For a possible choice of a and M see ((10.1]) and ((10.2)) below.

Proof. By scaling the metric if needed, we may assume that A = B =
B(zg,1). Let € B and set s = d(x,z0). Let v : [0,s] — X be
a geodesic from xg to x, parametrized by arc-length. Then we have
d(zo,7v(t)) = t. We consider balls

B; = B(v(t:),r:)

With
1
rg=—, to=0,
0 2\ 0
r, = a_iTo, tz’—s—l — tz = C;T; with C; € (O, ]_]
We want

t;=s fori>ig
. Thus we take
cg=cfori<ig—1 and ¢ =0 fori> i.

Note that B; N B;y1 contains a ball for radius r;,/2 = (2a)~'r; and is
contained in a ball for of radius r; + ri;; = (1 +a™)r;.
Then the sequence of balls satisfies the (A, M, a) chain condition if
(2) 2M~ta™ < r; < 2Ma™"
(3) M >2al+a ! =2a+2.

The second condition is satisfied if

M > 4.
We have, for i < iq
. 11—a"
TONT ot
Thus the first condition is equivalent to
Ll-a 1
c— —a .
2201 —a1 2 -
A sufficient condition is
1
— < 1.
“N1—a 1™

Since 0 < ¢ <1 this condition in turn is satisfied if we choose a such
that
1 1

A1l —a!

(10.1) =1
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In addition we want that
1 1—a %
C—
2201 —qa!

s =t = =c(l —a™™).

Choose 7y such that

l—a ot cg< 1 —q

and set
s
c= —
1—a
Then all conditions are satisfied if we choose a as in ((10.1)) and
(10.2) M = max(2a + 2,4M).

U

[19.11. 2019, Lecture 11]
20.11. 2019, Lecture 12]

10.2. The Poincaré inequality and equivalent conditions. Let
(X, 1) be a metric measure space. Throughout the rest of this section
we assume that

0<pu(B) < oo
for all balls.

Definition 10.6. Let (X, u) be a metric measure space and let p,q €
(1,00). We say that X admits weak (p,q) Poincaré inequality if there
are constants 0 < A <1 and C > 0 such that

1/p 1/q

(10.3) ][ lu —ug|P du < Cdiam B ][pq dp

AB B
for all balls B in X, all bounded continuous functions v and all upper
gradient p of u. We say that X satisfies a Poincaré inequality if the
above statement holds with A = 1.

In the following we focus on sufficient and necessary conditions for
the validity of a (weak) (1,p) Poincaré inequality. For a locally inte-
grable function f: X — R we define the the Riesz potential

d(z,2) [ (2)
10.4 ]fx::/ du(z),
the localized Riesz potential for a subset A

(10.5) (Liaf)(@) = /A Mﬁ?ﬂl{%)

dp(z)
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and the restricted maximal function

(100 (Mef)(a) = swp [ 1] dutz).
© B(z,r)

Definition 10.7. Let p € [1,00). We consider the following five con-
ditions which are supposed to hold for all balls all continuous functions
u: X — R and all upper gradient p of uw. The constants C4,...Cg
below are assumed to be independent of B, u, p and the points x and
Y.

(1) There exists a Cy > 0 such that for all x € %B

lu(z) — uplP < Cy(diam B)*~'(I; pp?)(x)

(2) There exist Co > 0 and C3 > 1 such that for all x,y € (4C3) 1 B:

u(z) —u(y)lP < Colz — y/~ (L,50") () + (L,0")(y));
(8) There exist constants Cy > 0, C5 > 1 and Cg > 1 such that for
all z,y € (4C6)™'B
() = u(y)[" < Calz = y[P(Mosje—y 0”) (@) + (Mesja—y1 27)(Y);
(4) X admits a a weak (1, p)-Poincaré inequality;
(5) X admits a (1,p)-Poincaré inequality.
Theorem 10.8. If (X, u) is doubling then we have
1) = (2) = 03) = ).
If, in addition, X is geodesic then
(4) = (5) = (1).
All implications are quantitative in the usual sense.

Proof. We only sketch the argument and refer to [§] for the details.
(1)== (2):  This follows with Cy = 3 from the triangle inequality

ju(z) — u(y)|” < 277 (Ju(z) — up, 7 + |u(y) — up,|")

and application of (1) on B, = B(x,2d(y,x)).

(2= (3):  We estimate the Riesz potential in terms of the max-
imal function by summing over A; := {z : 2777'R < d(z,z) < 277}
from j = —1 to co. Here the doubling property is used. This gives
and estimate for the form dP~!(x,y)R. ... Now if d(x,y) > (100Cs5)"'R
we are done. If d(z,y) < (100C5)"'R we apply (2) to the smaller ball
B = B(x,4Csd(y, z)) C B.
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(3)= (4):  This is the most delicate estimate. One can actually
show a weak (p, p)-Poincaré inequality. One first shows the correspond-
ing weak-L” estimate and then uses a truncation argument similar to
the one in Remark adjusted for upper gradients, see the proof of
Lemma 5.15 in [9] for the details. For truncation in the context of
upper gradients see Proposition below.

(4)= (5):  This follows from Theorem and Proposition [10.5]
(note that the A in Theorem corresponds to A7 in the definition
of the weak Poincaré inequality).

(5)= (1): Let z € B. Pick y € B with d(z,y) = 1R where R
is the radius of B. Set r; = 3d(x,y). Along the geodesic from z to
y pick points z; with d(z,z;) = r; := 27", and consider the balls
B; = B(w;,74). Since u is continuous we have u(r) = lim;_ up, and
to estimate the telescoping sum for u(z) — up we use that By C %Bi,
Jensen’s inequality and the Poincaré inequality. Finally we use that
d(x,x;) > %‘ri for x € %Bi and the only a fixed number of the ball %Bi
intersect non-trivially. U

Proposition 10.9. Let (X,d) be a metric space.

(1) Let Uy and Uy be open subsets. Suppose that v: Uy UUy — R is
continuous and that p; is and upper gradient of vy, fori =1, 2.
Extend py by zero to Us \ Uy and py by zero to Uy \ Uy. Then
p :=max(py, pa) is an upper gradient for v.

(2) Let W C X be open, let A C W be closed and let U D A
be open. Assume that v : W — R is continuous and locally
constant on W\ A. If p is an upper gradient for v the ply is
also an upper gradient for v.

Proof. Let 7 : [a,b] — X be a rectifiable curve such that fw p < oo. We
want to show that

0(3(8)) — v(x(a))] < / .

.
To see this define v, = 7, and

T :=sup{t € [a,b] : |[v(y(7)) —v(v(a))| < / p for all 7 € [a,t]}.

YT
It follows from the definition of T that

o)~ (@) < [ ptoralir € o).

Yr
Since both sides of the inequality are continuous in 7 the inequality
also for all 7 € [a,T]. If T = b we are done. Thus assume T < b and,
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without loss of generality, v(7') € U;. Then there exists and £ > 0 such
that v([7,7 + ¢]) C U;. Thus

@) - [ m< [

YT,7] YT,7]

for all 7 € [T, T + ¢]. Hence by the triangle inequality

o) - vh@)l < [ o
I
for all 7 € [T, T + ¢]. This contradicts the definition of 7'

To prove the second assertion note that a locally constant function
has 0 as an upper gradient and apply the first assertion with U; = U,
Uy=WN\A, p1 =py and ps = 0. O

20.11. 2019, Lecture 12]
126.11. 2019, Lecture 13|

10.3. The Poincaré inequality and Lowner spaces. This subsec-
tion is based on [9]. Recall from Definition [9.8| that the space (X, ) is
n-regular if there exists C' > 1 and n > 1 such that

C™'R" < u(Bg) < CR"

for all ball Bg with radius R € (0, diam X).
The purpose of this subsection is to prove the following result.

Theorem 10.10. Suppose that (X, u) is proper, n-reqular and quasi-
convex. Then X is an n-Lowner space if and only if X admits a weak
(1,n)-Poincaré inequality.

We first show that a weak (1,n)-Poincaré inequality is sufficient.

Theorem 10.11 ([9], Thm. 5.7). Let (X, u) be a proper, doubling and
quasiconver metric measure space. Assume that for some n > 1 and
some C' > 0 we have the lower mass bound

1
(10.7) w(Bgr) > ER” for all balls of radius R < diam X .

If X admits a weak (1,n)-Poincaré inequality then X is an n-Lowner
space.

This implies in particular that R™ is an n-Lowner space, see Theo-
rem [9.5] above.
The proof of Theorem [10.11]is based on two ideas:

(1) A lower bound for the Hausdorff content of E and F and a
Poincaré inequality imply a lower bound on the capacity.
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(2) The one-dimensional Hausdorff content of continuum is at least
its diameter

The following result gives a precise formulation of the first idea.

Theorem 10.12 ("Large Hausdorff content implies large capacity’, see
[9], Thm. 5.9). Suppose that (X, u) is a doubling space where ((10.7))
holds for some n > 1. Suppose further that X admits a weak (1,p)-
Poincaré for some p € [1,n]. Let E, F be two compact subsets of a ball
Bpr in X and assume that for some s € (n — p,n| and some A € (0, 1]
we have

(10.8) min(H, (E), 12 (F)) > AR* " u(Bg).

Then there is a constant C' > 1, depending only on s and on the data
associated with X such that

1 _

(10.9) PP dp > EAN(BR)R P
C'Br

whenever u is a continuous function on the ball C' B with wp < 0 and

wp > 1, and p is an upper gradient of u in C'Bpg.

The theorem can be seen as a quantitative statement of the following
fact in R™. If p € (1,n] then the set of points where a function in W*?
is not well-behaved has p-capacity zero and hence Hausdorff dimension
n — p (see, for example, [19], Theorem 2.6.16 and Section 3).

The reason that Theorem [[0.12] is formulated in terms of an indi-
vidual function v and not in terms of capacity is that we have defined
capacity by using arbitrary test functions, while the Poincaré inequality
if required for continuous functions only.

We will also use the following refinement of Theorem [8.9] We define
capII;(E, F; X) and capy(E, F'; X) in the same way as the capacity, but
restricting to Lipschitz functions or continous functions u, respectively.
Theorem 10.13. Suppose that X is quasiconvex and proper.Let E and
F' be disjoint closed sets in X with compact boundaries. Then

capS(EN B, F N B; B) < capy(EN B, F N B; B) < mod,(E, F)
for each ball B in X.

We only need the bound cap§(E N B, F'N B; B) < mod,(F, F) and
for this bound quasiconvexity can be replaced by the weaker condition
of p-convexity, see [9], Section 2.15 and Proposition 2.17.

Proof. See the proof of Proposition 2.17 in [9]. The main idea is to
define uw as in (8.12), but with p replaced by an approximation by
bounded functions. U
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Finally we make use of a standard comparison of diameter and one-
dimensional Hausdorff content for continua.

Proposition 10.14. Let E be a continuum in a metric space X . Then
(10.10) H! (F) > diam E.

Proof. We may assume diam £/ > 0 since otherwise there is nothing
to show. Since F is compact there exist x,y € E such that d(z,y) =
diam F. Assume that H. (F) < diam E. Consider the map z —
f(2) = d(z,z). Then f is a 1-Lipschitz function and in particular f
maps a closed ball in X to an interval of length no exceeding diam B.
Thus
LYf(E)) <HL(E) < diamE.

Hence there exists an r € (0, diam F) such that r ¢ f(FE). Therefore
E does not intersect the sphere {z € X : d(z,z) = r} and hence E
is the disjoint union of the compact sets £ N B(x,r) and E \ B(x,r).
Both sets are nonempty since the former set contains x and the latter
contains y. This contradicts the connectedness of E. U

Proof of Theorem [10.11 Let E and F' be two disjoint continua in X.
We write d = dist(£, F') and assume without loss of generality that
§ = diam F = min(diam F, diam F').

Fix ¢ such that

dist(E, F)
min(diam £, diam F)
There exist a point x € E such that the closed ball B(z,d) meets F.
Then consider the ball

t>A(E,F) =

_4d
-5

B = B(z,d + 29).

The compact sets £ and F' := F N B(x,d + §) both lie in B. We
claim that they both have Hausdorff 1-content at least §. For E this
follows from Proposition [10.14l If F” = F then the proposition also
applies to F’. So assume F'\ F’ # ). To see that H! (F") > 6 we can
argue as in the proof or Proposition [10.14] Define f(z) = d(z,z). If
HL (F') < § then L'(f(F’)) < ¢ and hence there exists 7 € (d,d + 0)
such the sphere {z : d(z,2) = r} does not intersect I’ and hence does
not intersect F'. Thus F' is the disjoint union of the compact nonempty
sets FNB(x,r) D FNB(x,d) and F\ B(z,r) D F\ F’. This contradicts
the connectness of F'.
Now write

5(d + 26y

"=

(d+28)" " u(B).
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and apply Theorem [10.13| and Theorem [10.12| with p = n, s = 1 and
A =0(d+20)""1/u(B) to get

1.5(d +20)"! 11

G g B 2 G

modn(E,F)anp;(E,F,C'B)Z _at+2
O

Thus Theorem [T0.11] follows.

Proof of Theorem [10.13. The main idea is to use the Poincaré inequal-
ity on dyadic balls and the basic covering argument. For a first read-
ing one may simplify the algebra by taking R = 1. This is actu-
ally no loss of generality since the Lowner function and the quantity
inf{r"u(z,r) : * € X,r > 0} are invariant if we replace d by R~d
and p by R™"pu.

Let u be a continuous function on the ball By where C' = 101
and A is the constant in the weak Poincaré inequality . Assume
that ujg < 0 and ur > 1 and the p be an upper gradient of u in Berg.

Case 1: There exist points x € E and y € F' such that

and  |u(y) — upgsr)| <

U] =

Then

1 1
1< Ju(@) —uly)] < <+ luper) — upsn| + ¢

Note that B(z, R) C B(y,5R) C C'Bpg by our choices. Thus

1 S C ][ ]u—uB(y75R)|d,u.
B(z,R)

Using that B(y,5R) C B(z,7R) and the fact that X is doubling we
deduce that
1/p
1<C ][ |u —upwsp|dp < CR ][ PP du

B(y,5R) C'Br

Thus ((10.9) holds.

By symmetry of the problem in £ and F' it thus suffices to consider
Case 2: For all points in z € E we have

< [u(z) = up,mp|

] =
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Since u is continuous this implies that with B;(z) = 277 B(x, R)

12 fumy — (o |<OZ][ )| dy
=0

B (z)
1/p

<Semn| [ s
7=0 CoBj(z)

We claim that there exists an g9 = g¢(s,n,p) > 0 such that for each x
there exists a j, with

1) [ pduz R TR RY (B, ().
CO‘BJI ((E)

Indeed, otherwise we get

1< gg/P(279)em e < O (s, p)ey”
j=0
since s > n — p.

By the basic covering theorem there exist countably many disjoint
balls B, = B(xy,r,R) such that £ C J, 5By and

(B (rR)™™ < CRP™ / 7. dp.

Hence
AR " u(Br) < H:(E) < Z 5riR)® < CZ reR)* " (1, R)"

< CD (rkR)"u(By) < CRTP P dp,
3 C'Br

as desired. O

[26.11. 2019, Lecture 13|
[3.12. 2019, Lecture 14|

We now turn to the implication that Lowner spaces have a (1,n)-
Poincaré inequality.

Theorem 10.15 ([9], Thm. 5.12). Suppose that X is a locally com-
pact, n-reqular Léwner space. Then X admits a weak (1,n)-Poincaré
imequality.

In view of Proposition the assumption 'n-regular’ can be re-
placed by an upper mass bound.
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Proof. The results follows from the implication (3) = (4) in Theo-
rem [10.8 and Lemma [[0.T6 below. O

Lemma 10.16 ([9], Lemma 5.17). Suppose that X is an n-regular
Lowner space. Then there exist constants Cy > 0, C5 > 1 and Cg > 1
such that for all x,y € (4Cs)~'B we have

(10.12) [u(z) —u(@)]" < Calr — g (Moo ") (@) + (Meyey0")(3)

Lemma 10.17 (Variant of [9], Lemma 3.17). Let X be an n-regular,
n-Lowner space . For My > 1 and My > 0 there exist My > 1, My > 1
and p > 0, depending only on My, My and the data of X (i.e. the
Lowner function ¢, and M := sup{u(B(z,R)/R", R"/uB(z,R) : © €
X, R > 0}) with the following property.

Ifre X, r>0andif E and F be continua in B(x, Myr)\B(z,r /M)
with diam E > Myr, diam F' > Myr. Then the families of curves
I = {~: 7 rectifiable curve joining E and F in B(xz, Myr) \ B(x,r/M,) }
and

I ={y eI :length(y) < MsMyr}

satisfy

(10.13) mod,,I" = mod,(E, F'; B(x, Myr) \ B(xz,r/My)) > 2p,

(10.14) mod, I > p

The same conclusion holds if we replace B(x, Myr) \ B(x, My/r) by
B(z, MiR) and B(x, Myr) \ B(z,r/My) by B(x, Myr)

Proof of Lemma [10.17. Let
[ :={y: 7 rectifiable curve joining F and F.}

Note that dist(£, F') < diam B(x, Myr) < 2Myr. Thus

2M,
A(EF) < .
( 7 ) — ]\42
Hence the Lowner property implies that
2M,
d, I > ¢, .
mod, " > 6(571)
Set 1 oM
1
Let

I'y ={v: v rectifiable curve joining F and F, v\ B(x, Mir) # (.}
I'_ = {y: ~ rectifiable curve joining F and F, v N B(z, Myr) # (.}
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Then I' C I"UT, UT_ and hence
4p < mod,I"' < mod,I" + mod,I" | + mod,I'.

Now every curve in I'; contains a subcurve which connects 0B(x, M;r)
and 0B(x, Myr) and thus

My
x

Choose M, so large that the right hand side is < p. Together with the
analogous bound for mod,I'_ we get .

To prove it suffices to show that we can choose M5 so large
that mod, (T \ ") < p. consists of curve of length at least MzM,r.
Thus p = (Ms;Myr)~! is admissible of I \ T". Hence

mod,, (" \ T) < M;"(Myr) " u(B(x, Myr) < CM:™

mod, Iy < mod,['(0B(x, Myr),0B(z, Myr); X) < CIn'™"

since X is n-regular. Choose Mj5 so large that the right hand side does
not exceed p. This completes the proof. O

Lemma 10.18 ([9], Thm. 3.13). Let X be an n-Lowner space of Haus-
dorff dimension n > 1 which satisifes

n(Br) < CR"
for all balls Br of radius R. Then X 1is quasiconvex.

Even more is true: two points z,y € X \ B(z,r) can be connected
by a rectiable curve in X \ B(z,r/C).

Proof. Let z,y € X and r = d(z,y). One inductively constructs a
family of 2% balls of radius 4= which includes B(z,47%) and B(y,47*)
such that the balls a connected by curves whose total length does not
exceed C Zf;é 27473 < (O, see the proof of Thm 3.13 in [9]. By passage
to the limit one finds the desired curve connecting x and y.

Here is a sketch of the constrruction. For first step ry = }lr, E; =
B(x,r) and Fy = B(y,r1). It follows from Lemma that the
family of curves which connect F; and Fy in B(z,8Myr) and has
length not exceeding 8M5M, r; has positive modulus. In particular
there exists such at curve I'. Now take zo € Ey NI and yp, € F1 NT.
Then d(x1,z5) < ry and d(y1,y2) < rq

In the second repeat the argument for the pairs (x1,zs) and (y1,y2)
and ro = %7“1. The proceed by induction. ([l

Proof of Lemma[10.16, See the proof of Lemma 5.17 in [9]. T am not

quite sure how to derive (5.21) from a ’(the proof of) Lemma 3.17 in
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[9]" by choosing Cy surfficiently large, so in class I used the following
slightly different definition of the annuli A;, namely
Aj = B(x,27%d)\ B(x,27%71d).

Setting B; = B(z,27%d) we can apply Lemma|10.17 and we get (5.21)
in [9] where I'; now consists of all curves in the family (v;, vj+1, MaB;)
whose length does not exceed MsM,2-%d. 0

[3.12. 2019, Lecture 14]
[10.12. 2019, Lecture 15

10.4. The Poincaré inequality in the first Heisenberg group.
This is based on [I1], but simplified for the first Heisenberg group. A
alternative short and elegant proof of the 1 — 1 Poincaré inequality
for the first Heisenberg group is due to Varopoulos [I§], see also [7],
Proposition 11.17, pp. 68-69 or [15], p. 461.

Change in notation: our X% is — X% in [11].

Convolution in Lie groups. Let G be a group. We define left- and right
translation by
by =xy, ry=yxr Vr,yeQqG.

Let M be a smooth manifold. As usual we identify tangent vectors
with first order differential operators. The commutator of two smooth
vectorfields is defined by

X,Y)f = XY[-YX[

for all smooth function f : G — R. The push-forward of a smooth
tangent vector field is given by

p: M= M, [p.X](e(y) = do(y) X (y).
The pull-back of a smooth k-form is defined as

(@ (W) (Y1, .., Vi) = 0(p(y), 0uY1, ..o, 0uY5).

Definition 10.19. A group G is a (finite-dimensional) Lie group if it
is a smooth (finite-dimensional) manifold and the map
GxG2(x,y) oy ted
1s smooth. We denote by
g:=1T.G

the tangent space of G at the identity.

A wvectorfield X on a Lie group is left-invariant or right-invariant if
(0y)e X = X or (ry)«X = X for all x € G. Similarly a k-form on G is
left-invariant or right-invariant if (€,)*a = « or (r,)*a = a.
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A Lie group is unimodular if it has a nontrivial volume form which
18 left- and right-invariant.

Note that for a Lie group the maps ¢, and r, are smooth diffeomorm-
phisms.

Proposition 10.20. For each V' € g there exists a unique left-invariant
vectorfield Xy and a unique right-invariant vector-field Yy such that
X(e)=Y(e)=V.

Similarly for a (constant) k-form o € A*g there exist unique left- and
right-invariant k-forms 3,7 € QF(G) such that

ple) =(e) =

A left-invariant vectorfield is generated by a family of right-translations.
More precisely let n : (—a,a) — G be a smooth curve with n(0) = e and
n'(0) = V. Then the vectorfield defined by

d

Xy =—

W) =5, Srwy)
is left-invariant.

If X is a left-invariant vectorfield and Y is a right-invariant vector-
field then

(X, Y] =0.

Define reflection R given by Rf(x) = f(z™'). If X is left-invariant

then the vectorfield X*® defined by
XBF = —_RXRf

is right-invariant and X%(e) = X (e).

From now on we assume that GG is unimodular and we will always

equip G with left- and right-invariant (Haar) measure p. Note that p
is also invariant under the inversion map I(z) = z~'.

Definition 10.21. For a continuous function f : G — R and a con-
tinuous function g : G — R with compact support we define the convo-
lution

(10.15) (f % g)(x / F ey g(y) ldy).

Proposition 10.22. If f and g are in addition C' then for all left-
wmwvariant vectorfields X and all right-invariant vectorfields Y

X(fxg)=f*Xg, Y(fxg)=Yfxg
and

fxXfg=(Xf)x
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Moreover Young’s inequality holds for all p € [1, 0]
1f = gllee < ([ fllzellgllzr-

The first Heisenberg group H!'. We recall from the introduction the
exponential map
exp : R® — R¥3

given by
0 1 I3 1 Tr1 I3 + 51‘11’2
expr=exp |0 0O x| =0 1 To
0O 0 0 0 0 1

Note exp is a diffecomorphism from R3 to a 3 x 3 matrices of the form
Id 4+ upper triangular matrices.

Then the first Heisenberg group H! can be identified with R? together
with the group operation * defined by

exp(x * y) = exp T exp y.
A short calculation shows that
1
vxy=(r1+y, T2+ Yo, 3+ Y3 + 5(5613/2 — Y122)).
Note that 0 xz =2 %0 = 2 and

xx(—x)=0.

Thus 0 is the neutral element in the group and inverse 2=* agrees with
—x. As before the left-translation and right-translation are defined by
Ly =xxy=r,x for all z,y € H'. A basis of left-invariant vector-field
is given by

0 1 0 0 1 0 0
X =— — —p,— X - 4y — X -7
1(33) 81’1 2]:2 81537 2(37) (9362 + le 81’3’ 3(37) 81’3
The dual basis of differential forms is given by
1
0, = dz', 0y =dz? 03 =dz®+ 5(ac%lxl — 2%dat).
Then
(X1, Xo] = X3, dbs = —6, N0y
For the above basis we obtain
0 1 0 0 1 0 0
XBr)= —4+-pp—. XB2)= - -y —, XE(x)=—.
1 (x) 8951 + 2x2 81'3’ 2 (-77) (9.1'2 Qxl 81'3’ 3 (-77) 81'3

In particular we have
X=X 420X, XE=Xo—21 X3, X&=X3
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and
Moreover
[X;, X]=0 forall jand k.
We have already seen that the Lebesgue measure u = £3 is biinvari-
ant. Alternative view point The volume form is given by
w:91/\92/\93:9f/\
is left- and right-invariant.
We also reacall the definition of dilation
5i(x) = (txy, tag, txs)
and the fact that 0,(z * y) = d;x * 6;y. The Jacobian of ¢, with respect
to Lebesgue measure is Jd, = t*. We define
ItQO = t_4g0 e} (St.
Then
el = llellzr

Theorem 10.23. There exists a constant C such that for all smooth
f:H' = R we have

2
min f—02§0r/ Xif|?du.
uin | i 3

27 j=1]

Overview of the proof. By translation and dilation by 4, we may as-
sume without loss of generality that x =0 and r = 1.
The proof is based three ideas

e The quantity
it [ 1fxp— o d
yER B

2
can be estimated by the usual Poincaré inequality in R?® which
involves the full gradient of f x .
o The full gradient of f*y can be estimated in terms of || X1 f|[ z2(p,)+

[ X2 flL2(B,)-
e We have

Ld
f—f*wz/o o x L) dt.

This is a continuous version of the telescoping sum trick f(z)—
fBl = Zzoio uBQ*i °
O
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[10.12. 2019, Lecture 15]
[11.12. 2019, Lecture 16|

To carry out this argument we use the following result which will be
proved below.

Lemma 10.24 (Control of all derivatives by horizontal derivatives,
[11], Lemma 3.1.). For every j € {1,2,3} and every i € {1,2} there
exists a differential operators D;; such that

(10.16)  X;(f*9)=> Xif *x Djp Vf e C®(H), Vo € C(H)

For each i € {1,2} there exists a differential operator D such that
for any ¢ € C*(H) the functions ¢\ := DWy satisfy

9 2 .
(10.17) ol xle =D (Xif)  Lip”.
=1

Proof of Theoreni10.25 . Using left translation and dilation it suffices
to show that

(10.18) min/ @) —de<c [ S Wif@)P ds
B2

vER ;M

where B;/; and By are balls with center 0.
Let ¢ € C°(B;) we a standard mollifying kernel.For a continuous
function f : H — R we have

lim f+ Typ = f
Thus we get
v od
— < —f*1 dt.
||f f*SOHLZ(B%) _/0 “dtf* tQOHL?(B%)

The second assertion in Lemma and Young’s inequality imply
that

2
[f = fx* (:0||%2(B%) < Z ||Xz‘f‘|%2(32)-
=1

On the other hand we use the usual Poincaré inequality to estimate
1f %@ = (f 5 )by ull2(,,,) in terms of 20 [|X;(f % ¢)||5,. Now
the assertion follows from the first assertion in in Lemma and
Young’s inequality. 0



69

Proof of Lemma[10.27. In view of the identity f* X®g = X f x g which
holds for left-invariant vectorfields the result follows directly from the
following lemma. Il

Lemma 10.25. (1) For j =1,2,3 and i = 1,2 there exists differ-
ential operators D;; such that

2
(10.19) Xjo =Y X['Dyp VpeCX(G).
i=1
(2) Fori = 1,2 there exists differential operators D™ such that for
any ¢ € C2(G)

0

R i)
ol = ZX Lt

where ¢ = D@,

Proof.
d d
(dt[t(’p)( ):Et Yot e, t g, t )

= — 4t 5p(tay, try, t2as)
2
- Z t_6$1(8lg0) (t_ll'l, t_ll‘g, t_2fL‘3) - 2t_7x3(83<,0) (t_ll‘l, t_lfL’Q, t_2$3)

i=1
= — 4t_590(ta:1, tay, t2x3)

—Zt xl

0
:—Zt_4 t Yoot ey t g, arg))—2t_3a—(t_2x3g0(t_1x1,t_lxg,t_2x3))

0
ot g, t g, T 2g) — 2670 I’ga ottt g, t2s)
X X

€3
Now
J R 1 0 g 1 0 0 _ ivR yvR
8x1 —Xl (x) 2x2al’37 8362 _X ( >+2x18x3 8x3 a [X17X2].

Setting 1; = y;p(y) and using that x;03h = 05(z;h) for i = 1,2 we get

(4 Lo))

= — X[y — XUy + 26( X' X3F — XX ) I
=— XL — XELmy + 2(XTL(XEns) — XEL (X Lns)).
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Here we used that fact for i = 1,2 we have XF(h o 4,) = r(XFh) 04,
Thus the assertion holds with
oW = = +2XTns, @ = —np — 2X ;.
]

10.5. No Poincaré inequality in hyperbolic space. Let u be a
C! map on a Riemannian manifold (equipped with the inner metric).
Then the smallest upper gradient is given by

ou ou \?
o —1
'V“'g—@% aa—) -

[11.12. 2019, Lecture 16|
[17.12. 2019, Lecture 17]

11. QUASISYMMETRIC MAPS
This section very closely follows Chapter 10 of [§].

11.1. Definition and elementary properties. Recall: C* map f :
R™ — R". Linear maps map balls to ellipsoids. Extends to small
neighbourhood. More global picture? Example f(z) = |z[P~'z.

General assumption: X and Y will always denote metric spaces.
When necessary we write the metrics explicitly as dxy and dy.

Definition 11.1. (1) We say that f : X — Y is an embedding if
f is a homeomorphism from X to f(X).
(2) We say that an embedding is quasisymmetric if there exists a
homemorphism n : [0,00) — [0,00) such for all triples x,a,b €
X and allt >0
(11.1)

dx(a,z) <tdx(b,x) = dy(f(a), f(z)) < n(t)dy(f(b), f(x)).

(3) An embedding is called bi-Lipschitz if there exists an L > 1 such
that both f and f~1' are L-Lipschitz.

We use also use the terms n-quasisymmetric and L-Lipschitz. We
often just write d instead of dx and dy.

One easily verifies that every L-bi-Lipschitz map is n quasisymmetric
with n(t) = L?. If 0 < e <1 and

X =Y, dy(z,y)=dy)

then the identity map is alway quasisymmetric but rarely bi-Lipschitz.
Example: X =Y =R", f(z) = Az.
Example: X =Y =R", f(z) = |z|P"'z, p > 0.
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Definition 11.2. An embedding f : X — Y is called weakly (H—)quasisymmetric
if there exists a constant H such that
(11.2)

dx(a,7) <dx(b,x) = dy(f(a), f(z)) < Hdy(f(0), f(2)).

Weakly quasisymmetric maps need not be quasisymmetric.
Example X = N X {07 _1}7 f(n70) - (n,O), f(n7 _l) = (TL, _L)

4 4n
Consider z = (n,0), b= (n,—1), a = (n—1,1). Then d(z,a) < 4d(z,b)

and d(f(x), f(a))/d(f(x), f(b)) = o0 as n — oo,

We will show below that in many interesting spaces weak quasisym-
metry implies quasisymmetry. First we develop the basic theory.

Proposition 11.3. If f : X — Y is n-quasisymmetric, then f~1 :
f(X) — X is 7 quasisymmetric with
1
Sy 1
i) n~H ()
If f : X =Y and g :Y — Z are ny and n, quasisymmetric, the
gof: X — Zisngons quasisymmetric.
Proof. Let 2’,a/,b' € Y and let z = f~1(2/), a = f~ ('), b = f1(V).
Let ¢t > 0 and assume that
d(a,x")
b, x")
Then d(b,z)/d(a,r) = s~* and hence
1 d, ) 1
Z< <n(=
t — d(a,z") — 77(5)
Note that 7 is strictly increasing since 7 is a homemorphism from [0, co)
to itself. Thus

fort > 0.

<t,

4,1
n 1(;) <
which implies that s < 7(t) as desired.

The proof of the second assertion is straightforward. O

w | =

Proposition 11.4. The restriction to a subset of an n-quasisymmetric
map 1s 1-quasisymmetric.

Proposition 11.5. Quasisymmetric embeddings map bounded spaces
into bounded spaces. More quantitatively, if f : X — Y isn-quasisymmetric
and if A C B C X are such that 0 < diam A < diam B < oo, then
diam f(B) is finite and

1 < diam f(A) < (leamA) ‘

2n (d2nB) = diam f(B) diam B

(11.3)
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Proof. To see that diam B is finite choose b, € B and b/, € B such that
1
5 diam B < d(b,,, b)) — diam B, as n — oc.

Then for any b € B we have
d(b,by) < diam B < 2d(b7, by).
Thus

d(f(b), f(b1)) < n(2)d(f(b1), f(br))-
Thus diam B < 2n(2)d(f(b)), f(b1)).
To prove let x;a € A. Then

d(b,, b)) < d(by,a) +d(b,,a).
By symmetry we may assume that
1
d(by,a) > §d(bn,bﬁl)-

This implies

i) fa) < n (5 ) dls ). fla)

Since d(b,, b)) — diam B we get the second inequality in (11.3]).
The first inequality follows by applying the second inequality to f~!
and using Proposition [11.3| Indeed we have

diam A < (leamf( ))

diam B diam f(B)
Thus diam A diam f(B)
iam _, [ diam
diam B < 1/n (2 diam f(A))
diam B - < diam f(B) )
diam A — 2 diam f(A)
(diamB) - diam f(B)
diam A ) — 2diam f(A)

and the last inequality is equivalent to the first inequality in (11.3). O
Two useful consequences.

Proposition 11.6. Quasisymmetric maps take Cauchy sequences to
Cauchy sequences.

Proof. Let (a,) be a Cauchy sequence and set A, = {ax : k > n}.
Then B := A; is bounded and by assumption diam A,, — 0 as n — oo.
It follows from (11.3) that diam f(A,) — 0. O
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Proposition 11.7. An n-quasisymmetric embedding of one space in
another extends to an n-quasisymmetric embedding of the completions.

Proof. Use that Cauchy sequences are mapped to Cauchy sequences
and the following fact. If a,, and a, are Cauchy sequences and d(a,,, a,,) —
0 as n — oo then d(f(ay), f(al)) — 0. O

11.2. Doubling spaces.

Definition 11.8. A metric space is called doubling if there is a constant
C1 > 1 such that every set of diameter d can be covered by at most C
sets of diameter d/2.

If X is doubling there exists a function C} : (0, 1] such that each set
of diameter d can be covered by at most C(¢) sets of diameter ed. The
function C be chosen of the form

(11.4) Ci(e) =Ce™"
for some C' > 1 and 5 > 0.

Definition 11.9. Given a doubling metric space, the infimum of all
numbers 3 > 0 such that a covering function of the form (11.4)) can be
found is the Assouad dimensioﬂ of X.

Example: the Assouad dimension of R" is n.

Example: show that the Hausdorff dimension does not exceed the
Assouad dimension. Show that the Assouad dimension of the compact
set X ={0,1, %, %, ...} CRis 1. Hint: cover the set [%, lTl NnxX.

[17.12. 2019, Lecture 17
[18.12. 2019, Lecture 18|

Proposition 11.10. If X carries a doubling measure then X is dou-
bling.

The converse implication is in general false, but one can show that
every complete doubling space carries a doubling measure [12].

Proof. 1t suffices to show that any closed ball B(z,d) can be covered
by a fixed number of closed balls of radius d/4.

To do so we use the following observation. Let p > 0 and let A C X
be a set with diam A > p. Define

M :=sup{k:3zy,...,x, € A:d(z;,x;) > pifi#j.}

'The terms (metric) covering dimension or uniform metric dimension are also
used for this concept
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If M < oo then A can be covered by M closed balls of radius p. Indeed
let x1, ..., x5 points as in the definition of M. Then Uf\il B(x;,r) C A
as otherwise we get a contradiction to the definition of M.

Now we apply the observation with A = B(x,d). Assume that there
exist k points xy,...z, € B(x,d) with d(z;,z;) > d/4 whenever i #
j. Then the balls B(x;,d/12) are disjoint. Moreover B(x;,d/12) C
B(z,2d) C B(x;,3d). Since u is doubling we have

u(B(x,2d)) < Cu(B(x;,d/12).
Summing over ¢ we get
ku(B(x,2d)) < Cu(B(x,2d))

and thus & < |C]. Hence B(z,d) can be covered by |C'] balls of radius
d/4 and diameter d/2. O

Theorem 11.11. A quasisymmetric image of a doubling space is dou-
bling, quantitatively.

Proof. Let f : X — Y be an n-quasisymmetric homeomorphism. It
suffices to show that every ball B of diameter d in Y can be covered
by at most some fixed number C5 of sets of diameter at most d/4. Let
B = B(y,d) and let

L=supd(f~'(y), f7'(2))
zeB
(recall that the image of a bounded set under the quasisymmetric map
/7! is bounded). Then we can cover f~'(B) by at most C(g) sets
of diameter at most 2L for any ¢ < % where C' is a covering func-
tion of X. Let A;,..., A, be such sets, so that p = p(e) < Ci(e).
We may clearly assume that A; € f~1(B) for all i = 1,...,p. Thus
f(Ay), ... f(Ap) cover B and are contained in B so by Proposition [11.5]

we compute that their diameters satisfy

diam f(A4;) < diam B 7 < 2diam A, )

diam f~1(B)
< dy (%) < dn(4e).

Now choose ¢ so small that n(e) < 1. O

Theorem 11.12. A weakly quasisymmetric embedding of a connected
doubling space in a doubling space is quasisymmetric, quantitatively.

Let X be a metric space and let xg,...,xy € X and let ¢ > 0. We
say that the (N + 1)-tuple (zo,...,zy) is an e-chain if joining zy and
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xy if d(x;, i) < e. If (xg,...2zn) and (yo,...yr) are e-chains and
TN = Yo then (zg,...TN,¥1,...Yn) is an e-chain.

Lemma 11.13. A connected metric space X is e-chainable for all € >
0, that is for each € > 0 and each pair of points a,b € X there exist an
e-chain joining a and b.

Note that in general for connected metric space X there is no path
(=continuous curve) joining a and b. Example: X = {(z,y) e R? : z €
(0,1],y = sinz~'}U{(0,0)} € R? a = (0,0), b= (1,sin1). There exist
metric spaces which are e-chainable for all € > 0 but not connected.
The simplest example is X = (—=1,0) N (0,1) C R.

Proof. Let A be a the set of points which can be joined to a by an
e-chain. We show that A is open and closed. Since a € A the set A
is also non-empty and thus A = X as X is connected. To see that A
is open not that b € A implies that B(b,e) C A since every point in
x € B(b,e) can be joined to b by the chain (b,x). To see that A is
closed consider b, € A with b, — b. Then there exist a k such that
d(bg,b) < e. Thus (bg, b) is an e-chain and hence b € A. O

Proof of Theorem[11.13. Let f : X — Y be weakly H-quasisymmetric,
where both X and Y are doubling, and in addition X is connected. We
may clearly assume that X is not a singleton. Pick three distinct points
a,b, r from X and write

QL

@), difa).f(@)
d(b,z)’ d(f(b), f(x))
We need to show that t' < n(t) where n(t) — 0 as t — 0.

t =

First assume that ¢t > 1. It suffices to show that there exist s < C(t)
and points ag, ... as11 such that

ag =z,
(11.5) d(ag,ar) <,

(11.6) d(a;,a;41) < d(aj—q,a;) fori=1,... s,
(11.7) d(z,a) < d(z,as1).

Then weak H—quasisymmetry implies that

d(f(ao), f(a1) < Hd(f(x), f(D)),
d(f(ai), f(aiy1)) < Hd(f(ai—1, f(a;)) fori=1,....s,
d(f(x), f(a)) < Hd(f(2), f(as+1))-
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From this we conclude that

HammMMMSHXMWMJ@m

< HY  H™MA(f(x), f(b).
i=0
Hence we may take
H? C(t)+1
t) = H .
n(t) = 77—

To explain the construction of the points a; we first make the addi-
tional assumption that X is path-connected. Let v : [0,1] — X be a
(continuous) curve with v(0) = z and y(1) = a. Let

r:=d(x,b).
Set 0o = 0 and define inductively

511 = supor € [0, 1] = d(x(0),1(00)) < 7.

Case 1: d(z,v(0i41)) < d(x,a)
Continue the iteration.

Case 2: d(z,v(0i41)) > d(x,a)
Set s = ¢ and stop the iteration.

Set

a; = (07).

In Case 1 we have 0,1 € (0,1) (since y(1) = a so that d(x,v(1)) =

d(x,a)) and thus

(118) d(ai, ai+1) =T.

The key point is to show that Case 2 indeed occurs and that s can
be bounded in terms of ¢. To see this assume that d(z, a;) < d(z,a) for
1 =0,...,k. We will derive an upper bound for k£ from the doubling
property of X. It follows from the definition of o; that for j = 0,... k—
2.

d(y(o),v(0;)) >r ifo>0j4.
Thus d(a;,a;) > rif ¢ > j+2. Together with and the symmetry
of d we see that

(11.9) d(ai,a;) >r fori# jandi,j<k.

Now tr = d(x,a) and thus {ao,...,a;} C B(x,tr). The ball B(z,tr)
can be covered by C(1/4t) sets of diameter /2 where C} is a covering
function of X. In view of (11.9) none of those sets can contain more
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than one of the points ay, . ..a,. Thus k+1 < Cy(1/4t). It follows that
s+ 1< Ci(1/4t).

Now we carry out the proof using only the fact that X is connected.
In this case there may not be a curve which joins a and x, but for each
e > 0 there is an e-chain (xy,...,zy) which joins @ and z. We will
select the points a; from the set {xg,...,zy}. In this case we will in
general not be able to choose the points a; such that d(a;41,a;) =
but we have to allow for an error of €. To ensure that i — d(a;+1,a;)
is decreasing we will choose the points a; such that

r—(i+1)e < d(ait1,a;) <r—ie.

where
r r
2C1(1/6t)’ 2>'
where C denotes the covering function of X.
More precisely we define indices k; and points a; inductively as fol-
lows. Set kg = 0 and define

ki1 = max{k € [k;, NN N : d(zg, zx,) <1 —ic.

r=d(b,z) and &= min(

a;+1 = xki+1 .
Case 1: d(x,a;41) < d(z,a).
Continue the iteration.
Case 2: d(z,a;41) > d(x,a). Set s =i and stop the iteration.

In Case 1 we have in particular k;1; < N (since d(z,zy) = d(z,a))
and

(11.10) d(@i, Ty 4m) > 1T — i€

for all m € NN [1, N — ki1 by the maximality of k;, ;. Taking m =1
and using that (zo,...,zy) is an e-chain we deduce that

(1111) r— 1 > d(ai,aiﬂ) >7r— (Z+1)€

We next show Case 2 must occur and that s +1 < |C(1/6t)| =: K.
To see this assume that either Case 2 does not occur or s+1 > K + 1.
Since tr = d(x,a) there then exist ao,...ax as above such that a; €

B(a,tr). Moreover applying (11.11)) for i < K — 1 and ((11.10]) for

1 > K — 2 we see that
1
d(aj,a,»)ZT—(i—i-l)&Z?“—K%?Z57’ 1fKZ.]>Z

On the other hand we have {ay,...ax} C B(a,tr). The ball B(a,tr)
can be covered by at most C'(1/6t) sets of diameter r/3. Thus each
point ag,...ax can be contained in at most one of the covering sets.
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Hence K 4+ 1 < C(1/6t). This contradicts the definition of K, namely
K =|C(1/6t)].
Now ([11.5)—(11.7) follow from (L1.11]) and the definition in Case 2.

Now consider the case t < 1. We need to find 7(¢) such that ¢’ < n(t)
and 7n(t) — 0 as t — 0. We also need to make 1 a homemorphism but
this is easily achieved. Weak quasisymmetry implies that ' < H for
t < 1. Hence we may assume t < %

Let s be the smallest integer such that

37 <t or, equivalently 37°d(b,x) < d(a,x).

Then s > 2 and

(11.12)

Since X is connected there exists points b = by, by, ... bs_1 such that
d(b;,r) = 37'd(b,z) fori=0,...,5—1.
Now for 0 <i < j < s—1 we have
d(bi,by) > d(bi, ) — d(b;, ) > 23—1‘
and thus
d(a,b;) < d(a,z) +d(bj,z) <2377 < d(b;, b;).
Weak h-quasisymmetry implies that

d(f(a), f(b;)) < Hd(f(b:), f(b)))-
Moreover d(z,b;) < d(b;,b;) which yields

d(f(x), f(b;)) < Hd(f(bs), f(b;)).

Hence

(11.13) t'd(f(b), f(x)) = d(f(a), f(x)) < 2Hd(f(b;), f(b;))-

Since d(b;,x) < ( z) all s the points f(bg), ... f(bs—1) lie in the
closed ball B(f(z ) d(f(b), f(z))). By (11.13) these points are sepa-
rated by (¢'/2H)d(f(b), f(z)). Thus the doubling property of Y implies
that

s < C'(t'/(4H?)) < C4P HP'¢'=F
where C" is the covering function of Y. Combining this with (11.12])
we see that 3
t' < CH*(log1/t)V#

and the right and side goes to zero as ¢t — 0. U
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[21.1. 2020, Lecture 19|

11.3. Compactness of families of quasisymmetric maps. A fam-
ily of n-quasisymmetric maps need not be compact. For example, for
X = R” the family F = {z — Az : A > 0} is not compact. Under
mild normalizing condition we do, however, obtain compactness and
compactness is a key property of quasisymmetric maps.

The first key ingredient an equicontinuity result.

Definition 11.14. Let X andY be metric spaces. A family F of maps
from X to'Y s equicontinuous at point xo € X if for every € > 0 there
exists a & > 0 such that for all x € X

d(z,z0) <dand f e F = d(f(x), f(z0)) <e.

The familiy is called (pointwise) equicontinuous if it is equicontinuous
at every xo € X. The family is called uniformly equicontinuous if for
every € > 0 there exists a 0 > 0 such that for all v,y € X

dlx,y)<dand fe F = d(f(z),f(y)) <e.

There is also version of equicontinuity at xo from maps from a topo-
logical space X into a metric space Y: for each € > 0 there exists a
neighbourhood U,, of xy such that f(U,,) C B(f(xg),¢) for all f € F.

Proposition 11.15. Given metric spaces X and Y, two points a,b €
X and a homeomorphism 1 : [0,00) — [0, 00) with n(0) = 0 the family

F:={f: X =Y fisn-quasisymmetric and |f(a) — f(b)| < M}
1S equicontinuous

Proof. Fix xy € X. Exchanging the roles of a and b if necessary we can
assume that zy # a. Then

) ) < (G2 ) (@), S

(@, 20)
< (Gt g (S dcra). o)
(2. 10
)

o) 1)

This shows equicontinuity at z. O

8
8

8

8

Corollary 11.16. IfY is bounded then the family of all n-quasisymmetric
embeddings of X in'Y is equicontinuous.
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Definition 11.17. Let X be a topological space and let'Y be a metric
space. A family F of maps from X toY is normal if every sequence
from the family subconverges uniformly on compact sets.

Theorem 11.18 (Arzela-Ascoli theorem). An equicontinuous family
F of maps from a separable topological space X to a metric spaceY 1is
normal if for each x € X of the set

{f(x): feF}
18 precompact.

Sketch of proof. Let (fx) be a sequence in F. Let D be a countable
dense subset. By diagonalization we find a subsequence (still denoted
fx) such that fi(x) converges for every x € D. This sequence will not
be changed. We do not take further subsequences.

For an arbitrary point a € X use equicontinuity at a and the fact that
every neighbourhood U, intersects D to show that fi(a) is a Cauchy se-
quence. Since { fx(a) : k € N} is precompact, a subsequence converges.
Thus the whole sequence converges. Hence there exists f : X — Y
such that

fr(x) — f(z) VreX.
Equicontinuity is inherited. In particular f is continuous.

Uniform convergence on compact sets follows by equicontinuity and

finite subcovers. ]

The second key ingredient is the stability of the gs-condition under
pointwise convergence.

Proposition 11.19. Suppose that a sequence (f) of n-quasisymmetric
maps from X to'Y converges pointwise to a (not necessarily continu-
ous) map f. Then f is either constant or n-quasisymmetric and the
convergence is uniform on compact sets.

Proof. 1f f(a) = f(b) for some a # b then d(f,(a), fn(b)) — 0. By gs
d(fn(a), fu(x)) — 0 for any z. Hence f constant.
Generally: let a,b,x € X. Then

) fule) <0 (G670 ) AU ). o)

Pass to pointwise limit. Thus f has the same property.

It follows that f is continuous (fix b, take a — x). If f is not injective
then f is constant (there exist b, z s.t. f(b) = f(x))).

If f is injective and gs then f~!is 7 gqs (same proof as before; con-
tinuity of the inverse was not used). Thus f~! is continuous. Hence f
is an embedding.
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For uniform convergence on compact sets use a finite cover by small
balls and n-quasisymmetry. O

Recall that a metric space is proper if all closed and bounded sets
are compact (or, equivalently all closed balls are compact).

Corollary 11.20. Let X be a separable metric space. Let F be a family
of m-quasisymmetric embeddings of X in'Y. Assume that

(1) 'Y is compact ory
(2) Y is proper and there is xy € X andyy € Y such that f(zo) = yo

forall f € F.
Assume in addition that there exists a C' > 1 and a,b € X such that
(11.14) VieF C'<d(f(a), f(b) <C.

Then F is a (sequentially) compact family of embeddings, i.e., every
sequence (f,) in F subconverges (uniformly on compacta) to an element

of F.

Proof. To show subconvergence we use the Arzela-Ascoli theorem, The-
orem . Equicontinuity follows from and Proposition .
Precompactness of {f(z) : f € F} for fixed x is clear under assump-
tion (i). Under assumption (ii) we use that by gs f(x) lies in the closed
ball f(yo,n(d(z,z0)). This ball is compact since Y is proper.
Quasisymmetry of the limit follows from Proposition [11.19] O

For maps from R"™ to R? there is a characterisation of gqs embeddings
based on compactness. Fix H > 1, integers 1 < p < n and unit vector
e € R" C RP. Let

Qp :={f:RF - R": f weakly H-qs embedding, f(0) =0, f(e) =e }.

Note that in this case weak quasisymmetry implies quasisymmetry,

quantitatively by Theorem [11.12]
Recall that a similarity of R" is a composition of translations, dila-

tions and rotations. For an arbitrary embedding f : R” — RP? let
Wy :={g=ao fof:q, [ similarities, g(0) =0, g(e) = e }.

Theorem 11.21. The family Qg is (sequentially) compact. An em-
bedding f : RP — R" is quasisymmetric if and only if Wy belongs to
some (sequentially) compact family of embeddings.

Proof. Compactness of Qg follows from Corollary [11.20 Note that if
f is m-quasisymmetric then all elements of Wy are n-quasisymmetric
and hence Wy is contained a a set QQy for a suitable H.
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If remains to show that f is (weakly) quasisymmetric if W belongs
to some compact family of embeddings. Pick three points a,b,x € RP
so that

d(a,z) < d(b,x).

By pre- and postcomposing with appropriate similarities we can assume
r=0= f(x) and b = e = f(b) without changing the family W;.
It suffices to show that f(a) lies in some fixed ball whose radius in
independent of f. But this is clear from the fact that a lies in the
closed unit ball of R” and Wy lies in a sequentially compact family of
embeddings. 0

[21.1. 2020, Lecture 19]
[22.1. 2020, Lecture 20)|

12. QUASISYMMETRIC MAPS 11

This section very closely follows Chapter 11 of [§].

12.1. Holder continuity of quasisymmetric maps. We have seen
that under a mild normalizing condition quasisymmetric maps are
equicontinuous. Now we want to investigate whether they are even
Holder continuous. The key condition is a new condition on the do-
main of definition X which is weaker than connectness. In the following
definition B(z,r) denotes the open ball or radius r.

Definition 12.1. A metric space X 1is called uniformly perfect if there
exists a constant C > 1 such that for every x € X and for each r > 0
the set B(x,r)\ B(x,r/C) is non-empty whenever X \ B(x,r) is non-
empty.

The condition forbids small islands in the set. It can be reformulated
as follows. We say that B(x, R) \ B(z,r) is an annulus if 0 < r < R
and X \ B(z, R) is non-empty. At set is uniformly perfect if and only
if for every empty annulus the ratio R/r is bounded from above.

Connected spaces are uniformly perfect, as well as many fractals. For
example, the classical ternary Cantor set is uniformly perfect (Exercise

).

Proposition 12.2. Uniform perfectness is a quasisymmetric invari-
ant, quantitatively.

Proof. Exercise. 0
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Theorem 12.3. A quasisymmetric embedding [ of a uniformly perfect
space X 1is n-quasisymmetric with n of the form

n(t) = C max(t®, t/%)

where C' > 1 and o € (0,1] depend on the data associated with X and
f.

Corollary 12.4. Quasisymmetric embeddings on uniformly perfect spaces
are Holder continuous on bounded sets.

Proof. This follows from the second inequality in (11.3)) with B a
bounded set and A = {z,y} C B. O

For general sets there are maps which are quasisymmetric, but not
Holder continuous. As an example consider the compact space X =
{oyufe™ :n =23,...} C R and themap f : X — R given
by f(z) = —(logx)™! for x # 0 and f(0) = 0. Note that f cannot
be extended to a quasisymmetric from R — R or from [0,1] — R
(otherwise Theorem could be applied to the extension).

For the proof of Theorem [12.3] it is convenient to use the following
equivalent characterisation of uniformly perfect spaces.

Lemma 12.5. A metric space X is uniformly perfect if and only if
there are numbers 0 < Ay < Ay < 1 so that for each pair of points
a,b, € X there exists a point x € X with

(12.1) Ad(a,b) < d(a,z) < Aod(a,b).

Proof. If X is uniformly perfect we set R = d(a,b)/2. The set X \
B(a, R) is non-empty because it contains the point b. Thus there is a
point z € X which satisfies

R/C <d(z,a) < R.

It follows that the desired assertion holds with Ay = £ and A, = 1/(2C).

To prove the converse implication, let B(a,r) be a ball such that
X\ B(a,r) contains a point b. We will show that the annulus B(a, )\
B(a, A1) is not empty, so that X is uniformly perfect with constant
C = A\['. This is achieved by iterating condition : pick a point
zo € X such that

Ad(a,b) < d(a,zq) < Aod(a,b).

If d(a,zo) < r then zy lies in the annulus B(a,r) \ B(a, \;r) and we
are done. If d(a,zo) > r we repeat the preceeding reasoning with b
replaced with zy. Thus we find a point z; such that
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M(a,z0) < d(a,r1) < \ad(a, ) < A3d(a,b).
Now as long as d(a, zx_1) > r we inductively pick points xj such that

M < Md(a, zp—y) < d(a,zy) < Ad(a, zp—1) < NsTd(a, b).

Since the right hand side converges to zero there must exist a k such
that d(a,zy) < rand d(a,zg_1) > r. This shows that B(a,r)\B(a, A7)

is non-empty and the proof is finished. O
Proof of Theorem [12.5, Pick three distinct points z,a,b € X and set
d(z,a)
" d(z,b)
Case 1: t > 1.
Using condition ([12.1]) we find points z¢ = a, x1, x3, ... such that

Ad(a,x) < d(zy,x) < Aod(a, x)
and ‘
Md(x;, x) < d(xiy1, 1) < Mad(xs, 2) < Nsd(a, 7).
Let s be the largest integer such that d(b,z) < d(zs,x). Then d(b, z) >
d(zsi1,2) > Md(zs, x). Thus
Md(zg, x) < d(b,x) < d(xs,x) < Nd(a, x).
This implies that

d(f(a), f(x)) < H*TH(f(b), f(x)), where H =n(AT").
On the other hand,
d(b,x) < Ad(a,z) = Atd(b, x).
Hence
t>A°
and thus

d(f(a), f(x)) < HE?d(f(b), f(2))
where 3 = (log H)/(log A\; ).

Case 2: t < 1.

We first note that we may assume without loss of generality that
n(Ag) < % Indeed, we know that there exist 0 < A\; < Ay < 1 such that
for each pair of points p, ¢ there is a point y; which satisfies \1d(p, ¢) <
d(p,y1) < Xod(p,q). Applying the condition iteratively to the pairs
p, ;1 we find that there exists points y; such that Aid(p, ¢) < d(p,y;) <
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Asd(p, q). Thus in condition (12.1) we may replace A;, Ao by A! and \S.
Since n(Ay) — 0 as i — oo we may in particular assume that n(X;) < 3.

Now we can proceed as in the case ¢t > 1. Exchanging the roles of a
and b we find points xo = b, 1, ..., x, such that

Md(xs, ) < d(xi41,7) < Aad(xs, 2) < N5Hd(b, 7).
and
Md(zs, z) < d(a,z) < d(zs,x) < A5d(b, x).
Thus

d(f(zs), f(z)) <27°d(f(b), f(2)), d(f(a), f(x)) < Hd(f(zs), f())
where H = n(1). Hence
t > \5tt

and

d(f(a), f(z)) < n(1)27°d(f(b), f(x)) < 2n(1)t*d(f(b), f(x))
with a = log2/log A\{*. O

12.2. Quasisymmetry in Euclidean domains.

Theorem 12.6. Let D and D' be domains in R™, n > 2. A homemor-
phism f : D — D' is K -quasiconformal (in the sense of Definition[8.9 )
if and only if there is a homeomorphismn : [0, 00) — [0, 00) with n(0) =
0 such [ is an n-quasisymmetric map in each ball B(m,%dist(x,aD))
for x € D. The statement is quantitative involving K, n, and the
dimension n.

Proof. For the time being we only show necessity. Let B = B(z,r) for
some z € D where r = 1 dist(z,0D). By Theorem it suffices to
show that f is weakly quasisymmetric in B. Thus pick three distinct
points a, z,w € B such that d(a,z) < d(a,w). We need to show that
there exists an H = H(n, K) such that

(12.2) d(f(a), f(2)) < Hd(f(a), f(w)).

In the following H will denote any positive constant that depends on
K and n only.

First we will show that there is a path 4/ joining f(a) and f(w) in
D’ such that

(12.3) diam~' < Hd(f(a), f(w)).

Indeed, if the line segment [f(a), f(w)] from f(a) to f(w) does not
meet OD’ there is nothing to show. Otherwise let ¢’ be the closed
subsegment of [f(a), f(w)] that connects f(a) to 0D’ inside D’ (we
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ignore that f~! may not be defined on dD’. This can be cured by a
simple limiting argument). The preimage of o of ¢’ connects a to dD.
Let ' be a point on v := f([a, w]) such that d(y', f(a)) > 2d(f(w), f(a)).
If no such point exists then the desired condition holds with
H = 4. Consider the half-line from f(a) that passes through ¢’ and
let L' be the part of that line that lies in D’ but outside the ball
B(f(a),d(f(a),y’)) and connects y" to dD'. Note that L' may not
meet any finite part of 9D’.
By the standard modulus estimate, see , we find that the curve
family I that joins o’ to L’ inside D’ has modulus at most

Ay, fl@) )
124) (s st fy)

On the other hand, in the domain D, both preimages o := f~!(o’)
and L = f~Y(L') connect the ball B(z, r) to the complement of B(x, 2r).
Thus A(cNB(z, 2r), LN B(z, 3r) < 1. Because B(x,2r) lies in D, the
modulus of the preimage family I' = f~'I" is bounded from below by
a fixed constant, see Theorem and Lemma E|

The quasi-invariance of the modulus thus implies, in view of expres-

sion (12.4) That d(v/, f(a)) < Hd(f(w), f(a)), and the estimate (12.3))
follows.

The proof of the estimate (12.2]) is very similar. Essentially one
replaces o’ by +' and uses the point f(z) rather than f(w) for the
definition of L’. First note that if d(f(a), f(z)) < 2diam~’ were are
done. Otherwise consider the half-line from f(a) through f(z) and
let L' be the segment of the line that lies in D" by outside the ball
B(f(a),d(f(a), f(2)). Let I'" denote the family of curves which join 7/

2The main technical point which was not discussed in class is that we need a
lower bound for the family of curves which joint o to L and in addition stay inside
D. If we apply Lemmawith M, =3, E=0nB(xz,3r), F=LNB(z,3r) and
use the version of the lemma with B(z, Myr) rather than B(xy, Myr) \ B(z,r/M)
then we get a lower bound for the modulus for curves which join E to F' and stay
inside B(x, Myr). We would need My = 2 but this is not guaranteed by the lemma.
We instead obtain a slightly weaker result, namely that f is quasisymmetric in a
smaller set B(z, & dist(z, D) for some large C. To get the full strength of the result
we can argue as follows. There exists a Kj-quasiconformal map g : B(x, Myr) —
B(x,2r) which is the identity on B(z, %r), see Propositio and take p = 2r,
A= % and L = My/2. Let I be the family of curve which joint E to F and
stay inside B(z, Myr). We know from Lemma that mod,I" > ¢ > 0. Thus
mod,,g(T') > ¢/K;. Now g is the identity on E and F. Thus g(T') consists of curve

which joint F and stay inside B(z,2r). Then I' D g(I') which implies the desired
lower bound for mod,,I'.
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and L’ inside D’. Again by we have
1-n
(12.5) mod,(I") < C (1og w> |

diam ~/

Let R = d(a,w) and note that L joins B(a, R) and B(x,r) to the
complement of B(z,2r). If R > r/2 we can use that E := B(z,3) N~y
and F =: B(z,3) N L both have diameter not smaller than r/2. Thus
there is a lower bound on the modulus of the family I" of curves which
join E and F'in B(x,2r). Then mod,[” > mod, f(I') > ¢/K and the
desired estimate follows.

If R < /2 then B(a,2R) C B(z,2r). Thus E =~ C B(a, 3R) and
F = LN B(a, 2R) have diameter not smaller than R/2. Hence there
is a lower bound on the modulus of the family I'" of curves which join
E and F inside B(a,2R). Moreover I'' O f(I') and we conclude as
before. O

Proposition 12.7. Let L > 1, A € (3,1). Then there exists a K,
(depending on L and X\) such that for all p > 0 there exists a K-
quasiconformal map g : R" D B(x, Lp) — B(p) and g is the identity
on B(x, \p).

Proof. By translation and dilation we may assume x = 0 and p = 1.
Let h : [0,00) — [0,00) be smooth with 0 < ¢ < A’ < C and define

gly) = h<|y\>|§—|

for y # 0 and g(0) = 0. The g is a C' map and the eigenvalues of
(Dg)T Dg are given by a single eigenvalue A\, = I/(|y|) and an (n — 1)-
fold eigenvalue Ay = h(|y|)/|y|. Choose h such that h(t) = ¢ for t <
A R(L) = 1and 22 < B/(t) < 1fort € (A, L). Then A/, is
bounded from above and below in terms of A and L. Hence g is K-
quasiconformal where K7 depends only on A and L. 0

[22.1. 2020, Lecture 20|
[28.1. 2020, Lecture 21]
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