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[8.10. 2019, Lecture 1]

1. Introduction

1.1. Motivation. Overarching theme in analysis and geometry: pass
from smooth to nonsmooth objects.

Theory of PDE: weak solutions and Sobolev spaces have revolution-
ized the theory. Existence ’easy’. Then develop regularity theory to
show that weak solutions are everywhere or at least one large sets bet-
ter, even smooth.

Geometry: just one example. Gromov’s (pre)compactness theorem
states that the set of compact Riemannian manifolds of a given dimen-
sion, with Ricci curvature ≥ c and diameter ≤ D is relatively compact
in the Gromov–Hausdorff metric [3, 4]. Limit spaces are in general no
longer smooth manifolds.

Goals of this lecture:

(1) Extend concept of Sobolev functions to functions defined on
non-smooth spaces

(2) Rigidity results and differentiability
(3) Interesting maps between non-smooth spaces, in particular, qua-

siconformal and quasisymmetric maps

Main reference: [8]
Ad 1. Usual definition relies on weak derivatives. This requires

a differential structure. What can one do if there is no differential
structure.

First hint: For nice sets in Rn we ahve W 1,∞ = Lipschitz and the
number |∇u(x)| = is the ’optimal local Lipschitz constant’.

Second hint: The Sobolev embedding theorem for u ∈ W 1,p and
p > q > n gives the following estimate. If r = 2|x− y| then

|u(x)− u(y)| ≤C|x− y|
(
|Br(x)|−1

∫
Br(x)

|∇u|q dz
)1/q

≤C|x− y| (M(|∇u|q))1/q︸ ︷︷ ︸
Lp function

(x).

Third hint: A function belongs to the Sobolev space W 1,p((0, 1)n)
if and only if it absolutely continuous on a.e. line and the directional
derivatives agree a..e with a function in Lp((0, 1)n). The latter space
is sometimes denoted as ACLp.
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Ad 2. Lip maps are differentiable a.e.
My favourite example of rigidity (’Liouville’s theorem’): if f : U ⊂
Rn → Rn and Df(x) ∈ SO(n) a.e. then Df locally constant and f
locally affine.
In words: infinitesimal isometries are isometries; isometries are affine
(the latter implication strongly uses the Hilbert structure)

Conformal maps: f ∈ W 1,n, p ≥ n, Df(x) = λ(x)R(x) a.e., λ(x) ≥
0, R(x) ∈ SO(n). For n = 2 such maps are holomorphic and hence
analytic. For n 6= 3 they are even more rigid. They must be Möbius
maps, i.e., compositions of rigid motions, dilations and reflections on
the unit sphere. This conclusion fails for p < n/2. In even dimensions
the positive result still holds for p = n/2. In odd dimensions the
optimal p for which the conclusion holds is not known (we only know
that it is strictly less than n and ≥ n/2).
Reformulation of the assumption without derivatives (if λ > 0 a.e) :
for a.e. x

lim
r→0

maxy∈B(x,r) d(f(y), f(x))

miny∈B(x,r) d(f(y), f(x)
= 1

and f ’orientation preserving’ (the can be expressed, for example, by
using the degree which is defined for continuous functions).

Quasiconformal maps: f homeomorphism, f ∈ W 1,n, detDf ≥ 0
a.e. |Df |n ≤ K detDf . In Rn qc maps have higher regularity prop-
erties: f ∈ W 1,p for some p > n. Alternative: either f = const or
detDf > 0 a.e.
There are many quasiconformal maps on Rn (for n = 2 one can con-
struct them by solving a Beltrami equation of the form ∂z̄f = µ(z)∂zf
for some measurable µ with ‖µ‖L∞ < 1. We shall see later that in
spaces different from Rn qc maps can be much more rigid.
Reformulation without derivatives (for λ > 0 a.e.)

lim sup
r→0

maxy∈B(x,r) d(f(y), f(x))

miny∈B(x,r) d(f(y), f(x)
≤ k

for a.e. x.

1.2. Outline of the course. Today: some general remarks and ex-
amples

Then

• First theme: Covering theorems, maximal functions, (usual)
Sobolev spaces, Poincaré inequality, Sobolev spaces on metric
spaces (Hajlasz version) (Chapters 1–5 in [8])
• Lipschitz functions, upper gradients, modulus of a curve family,

Loewner spaces on Poincaré inequality
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• Quasiconformal and quasisymmetric maps (Chapters and 6-12
in [8])
• Recent results for the Heisenberg groups and more general Carnot

groups

1.3. Example 1: fractal spaces. Look at [0, 1] with metric dα(x, y) =
|x− y|α, α ∈ (0, 1).
f : ([0, 1], dα)→ ([0, 1], d1) Lipschitz same as f Hölder
f : ([0, 1], d1)→ ([0, 1], dα) Lipschitz implies f constant
Are there non-trival Sobolev maps?

Fractal spaces give a a good first hint what non-Euclidean may look
like, but it is nicer to look at examples with a bit more structure.

1.4. Example 2: the Heisenberg group H. We will take a rather
hands-on approach. Some calculations which may look a bit miraculous
have their roots in more general facts about Lie groups and the subclass
of Carnot groups. We will study these more systematically later in the
course.

Definition 1.1. The Heisenberg group H consists of upper triangular
3× 3 matrices for which all diagonal entries are 1:

H =


1 x z

0 1 y
0 0 1

 : x, y, z ∈ R

 .

The group operation is given by the usual matrix multiplication.

The group H is trivially a 3-dimensional smooth manifold and group
operation is smooth. Thus H is a Lie group.

Alternative view: H = R3 with the group operation

(x, y, z) ∗ (x′, y′, z′) = (x+ x′, y + y′, z + z′ + xy′).

Often we drop the ∗
It is convenient to denote the left group action by `g and the right

group action by rg. Thus

`g(h) = g ∗ h, rg(h) = h ∗ g.

We view `g as a map from R3 to R3. This map is polynomial and in
particular smooth.

So for H is still just R3 with a group operation. We look for naturally
interact with the group action. This will eventually lead as to a new
metric on H which is invariant under the group action.
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Left-invariant vectorfields. On a general manifold a tangent vector can
be defined as the derivative of a curve X = d

dt
γ(t) or as 1st order

differential operator LX . The two notions are connected by the identity
Connection: LXf = d

dt
f(γ(t)). In R3 we can thus describe tangent

vectors as

X = (a1, a2, a3), or LX = a1
∂

∂x1
+a2

∂

∂x2
+a3

∂

∂x3
= a1

∂

∂x
+a2

∂

∂y
+a3

∂

∂z
.

One usually writes X instead of LX .
Special vector fields on a Lie group: left-invariant fields. Move a

tangent vector by the group action to produce a vector field. Example:
γ : (−1, 1) → H curve with γ(0) = 0. Let X(g) = d

dt
g ∗ γ(t). The

standard left-invariant vectorfields X1, X2, X3 on H are obtained by
taking X1(0) = (1, 0, 0) X2(0) = (0, 1, 0) and X3 = (0, 0, 1). A short
calculation gives

X1(x, y, z) =
d

dt t=0
(x+ t, y, z + x) = (1, 0, 0),

X2(x, y, z) =
d

dt t=0
(x, y + t, z + xt) = (1, 0, x),

X3(x, y, z) =
d

dt t=0
(x, y, z + t) = (0, 0, 1).

These vectorfields satisfy

Xi(g) = D`g(0)Xi(0).

Since `gh = `g`h it follows from the chain rule that we also have

(1.1) Xi(gh) = D`g(h)Xi(h)

(this is usually taken as the formal definition of left-invariance).
At each point g = (x, y, z) the vectorfields X1(g), X2(g) and X3(g)

form a basis of (the tangent space) R3. The corresponding differential
operators are

(1.2) X1 =
∂

∂x
, X2 =

∂

∂y
+ x

∂

∂z
, X3 =

∂

∂z
,

Commutators. Given two (smooth) vectorfields X and Y we define the
commutator by [X, Y ]f = X(Y f)− Y (Xf). Note that the commuta-
tor is again given by a first order differential operator, i.e., a vector-
field. Geometrically [X, Y ] measure the amount of non-commutativity
of flows Φt and Ψt, defined by the vectorfields X and Y , respectively.
More precisely Φt(g) is defined as γ(t) where γ is the solution of the
ODE γ′(s) = X(γ(s)) with initial value γ(0) = g.
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For the Heisenberg group we have

(1.3) [X1, X2] = X3, [X1, X3] = 0, [X2, X3] = 0.

Note that X1, X2, [X1, X2] span tangent space at each point.
Idea: derivatives wrt X1 and X2 are more important.
Example: if f is smooth and X1f = X2f = 0. Then f is constant.
Does a similar argument work for Lipschitz functions? Is it true that

if |X1f | ≤ C and |X2f | ≤ C then f is locally Lipschitz. Counterexam-

ple f(x, y, z) =
√
x2 + y2 + |z| (details: exercise).

[8.10. 2019, Lecture 1]
[9.10. 2019, Lecture 2]

The Carnot-Caratheodory metric on H. We look for a new metric on
H which emphasizes the special role of X1 and X2.

Definition 1.2. We say that γ : [a, b]→ H is a horizontal curve if

γ′(t) ∈ span(X1(γ(t)), X2(γ(t))) ∀t ∈ (a, b).

Let g = (x, y, z) and g′ = (x′, y′, z′). If there exists a horizontal curve
with γ(a) = g and γ(b) = g′ we define the Carnot-Caratheodory dis-
tance as

dH(g, g′) := dCC(g, g′)

:= inf

{∫ b

a

|γ′(t)|H dt : γ horizontal curve, γ(a) = g, γ(b) = g′
}
.

Here define length of a horizontal vectorfield X = α1X1 +α2X2 at a
point g ∈ R3 by

(1.4) |X(g)|H :=
( 2∑
i=1

αi(g)2
)1/2

.

Remarks. Equivalently one can consider piecewise C1 curves. The
new distance is left-invariant, i.e. dH(g ∗ h, h ∗ h′) = dH(h, h′) for all
g, h, h′ ∈ H. This follows easily from the property (1.1) which implies
that `g maps horizontal curves to horizontal curves of equal length.

It follows easily from the following result that two points in H can
always be connected by a horizontal curve.

Proposition 1.3 (Horizontal lifts). Let π : R3 → R2 be the map given
by π(a1, a2, a3) = (a1, a2). Let η : [a, b]→ R2 be a C1 curve and let c3 ∈
R. Then there exists a unique horizontal curve C1 curve γ : [a, b]→ H
such that

(1) π ◦ γ = η,
(2) γ3(a) = c3.
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If κ is a closed curve then

(1.5) γ3(b)− γ3(a) = oriented area (with multiplicity) enclosed by κ.

Moreover

(1.6)

∫ b

a

|γ′(s)|H ds =

∫ b

a

|η′(s)|R2 ds

where |b|R2 =
√
b2

1 + b2
2 is the usual Euclidean length.

Proof. If g = (x, y, z)

(a1, a2, a3) = α1X1(g) + α2X2(g)

if and only if

(1.7) α1 = a1, α2 = a2, a3 = xa2.

Thus a curve γ is horizontal if and only if

γ′3(t) = γ1(t)γ′2(t).

Thus the unique horizontal lift γ is given by

γ1(t) = η1(t), γ2(t) = η2(t)

and

γ3(t) = c3 +

∫ t

a

η1(s)η′2(s) ds

Consider the two-dimension vectorfield v(x, y) = (0, x) The integral on
the right hand side can be rewritten as∫ t

a

η1(s)η′2(s) ds =

∫ t

a

v(η(s)) · η′(s) ds.

Thus if η is closed, encloses the set U and goes around A once in the
anticlockwise sense then Stokes theorem implies that∫ b

a

v(η(s)) · η′(s) ds =

∫
η

v · τ =

∫
U

curlv dx dy = area(U)

since curlv = ∂xv2 − ∂yv1 = 1.
Finally (1.6) follows from the expression of α1 and α2 in (1.7) and

the definition of |a|H. �

Application:

dCC(0, (0, 0, z)) =
√

4π|z|.
Sketch of proof: Let γ be a curve connecting zero to g = (0, 0, z0)

and let η = π ◦ γ. The η is a closed curve. Assume first that η is
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simple closed and encloses the set U . Then it follows from (1.5), the
isoperimetric inequality and (1.6)

|z| = |area(U)| ≤ 1

4π
(length(η))2 =

1

4π

(∫ b

a

|γ′(s)|H ds
)2

.

Optimising over all curves γ which connect 0 and g we see that

|z| ≤ 1

4π
d2
CC(0, g).

One can show that the estimate only improves if η is not simply closed
an one take the weighted area. On the other hand the inequality be-
comes sharp if we choose η as circle of radius R = which passes through
(0, 0) and choose γ as the horizontal lift with γ3(a) = 0.

Moreover we have√
x2 + y2 ≤ dCC(0, (x, y, 0)) ≤ |x|+ |y| ≤

√
2
√
x2 + y2

Indeed the lower bound follows from we first deduce from (1.6). For
the upper bound we consider a piecewise C1. The first piece is the
straight line from 0 to (0, y, 0) along this curve γ1 = 0 and this curve
is horizontal and has length |y|. The second piece is the straight line
from (0, y, 0) to (x, y, 0). Along this curve γ′2 = 0 and hence this curve
is horizontal and has length |x|.

Thus the metric is comparable to the Euclidean metric in the (x, y)
plane and comparable to the fractal metric in the z-direction. We can
make this more precise by introducing an anisotropic dilation.
Scaling of the metric. For r > 0 consider the dilation map defined by

δr(x1, x2, x3) := (rx1, rx2, r
2x3).

This maps is a group homomorphism, i.e.

δr(g ∗ g′) = δrg ∗ δrg′.

Check:

δrg ∗ δrg′ = (rg1, rg2, r
2g3) ∗ (rg′1, rg

′
2, r

2g′3)

= (r(g1 + g′1), r(g2 + g′2), r2(g3 + g′3 + g1g
′
2) = δr(g ∗ g′).

Consequence: the differential of δr scales the the standard left-invariant
vectorfields X1 and X2 by r (and X3 by r2). Indeed, (Dδr)(g)X2 =
d
dt |t=0

(δr(g ∗ (0, t, 0)) = d
dt |t=0

(δrg) ∗ δr((0, t, 0)) = X2(δrg) Thus it fol-

lows directly from the definition of the CC-metric that

(1.8) d(δrg, δrg
′) = rd(g, g′).
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Scaling of natural measure on H. The Lebesgue measure on R3 is left-
invariant and right-invariant, i.e. the left and right translations are
volume-preserving. Thus the Lebesgue measure is the Haar measure
on the group.

Proof:

`gg
′ = g ∗ g′ = (x+ x′, y + y′, z + z′ + xy′)

(d`g)(0)(x′, y′, z′) = (x′, y′, z′ + xy′)

d`g(0) =

1 0 0
0 1 0
0 x 1


This is a lower triangular matrix with 1’s on the diagonal. Hence
det d`g = 1.

For right translation one can use that rg′g = `gg
′ and one gets

drg′(0)(x, y, z) = (x, y, z + xy′)

drg′(0) =

1 0 0
0 1 0
y′ 0 1

 .

Thus det drg′(0) = 1.

Together with (1.8) this implies that

µ(BCC(r)) = r4µ(BCC(1)).

Note the the (topological, smooth) dimension of H is 3 not 4.
Outlook: rigidity results. Bilip maps on H × H factor; bilip maps on
HC are holomorphic
Strategy of proof: ’algebraic step’ plus ’analytic step’.

Define notion of derivative which is adapted to the group structure
and the dilation (’Pansu derivative’). Differentiability at x0 for maps
Rn → Rm: there exists a linear map L : Rm → Rn

1

r
(f(x0 + ry)− f(x0))→ Ly uniformly for y in a compact set.

Pansu derivative for a map f : H→ H. Define left-translation `g(g
′) =

g ∗ g′. The map f is Pansu differentiable at x0 if there exists a group
homomorphism Φ : H→ H such that

δr−1 ◦ `f(x0)−1f(`x0δry)→ Φ(y)uniformly for y in a compact set.

Strategy of proof

• Key results of Pansu: Lipschitz maps are Pansu differentiable
a.e.
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• Study first group homomorphisms (the counterpart of linear
maps on Rn)

• Then show local ’no-switching’ of Pansu derivative

Model problem for ’no-switching’.
f : R2 × R2 → R2 × R2 bilipschitz
For a.e. x: Df(x) block-diagonal or anti-diagonal
Then Df(x) always block-diagonal or always block anti-diagonal and

f(x) = (f1(x1, x2), f2(x3, x4)) or f(x) = (f1(x3, x4), f2(x1, x2)).
Idea of proof:

df ∗(dy1 ∧ dy2) = 0 (in distributions).

f ∗(dy1 ∧ dy2) = ady1 ∧ dy2 + bdy3 ∧ dy4.

There exists a (measurable) set E such that

on E: a 6= 0, b = 0,

on R4 \ E: a = 0, b 6= 0.

Now

0 =df ∗(dy1 ∧ dy2)

=(
4∑
i=1

∂iadyi) ∧ dy1 ∧ dy2 + (
4∑
i=1

∂ibdyi) ∧ dy3 ∧ dy4

=∂3ady3 ∧ dy1 ∧ dy2 + . . .

Hence ∂3a = ∂4a = 0 and a = a(x1, x2). Thus χE = χE(x1, x2).
Similarly χU\E = χE(x3, x4). Hence χE = const. This proves the
result.

Take home message: it is important to develop a rigorous framework
to carry out such calculations beyond the Euclidean setting.

Slightly different coordinates on H. The coordinates chosen above are
the simplest ones as they directly reflect the interpretation of H as
a group of upper triangular matrices. On can also use the matrix
exponential map to define coordinates on H. This leads a definition
which is slightly more symmetric in x and y. Recall that for a matrix
A one defines

expA =
∞∑
k=0

1

k!
Ak
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with the convention A0 = Id. For

A =

0 x̃ z̃
0 0 ỹ
0 0 0

 .

we get

expA =

1 x̃ z̃ + 1
2
x̃ỹ

0 1 ỹ
0 0 1

 .

Thus the relation between the old and new coordinates is

x = x̃, y = ỹ, z = z̃ +
1

2
x̃ỹ

or

x̃ = x, ỹ = y, z̃ = z − 1

2
xy.

The group action is then defined by exp(A ∗ A′) = expA expA′ which
gives

(x̃, ỹ, z̃) ∗ (x̃′, ỹ′, z̃′) = (x̃+ x̃′, ỹ + ỹ′, z̃ + z̃′ +
1

2
(x̃ỹ′ − x̃′ỹ)).

Dropping the tilde again this leads to the left-invariant vectorfields

X1 = ∂x −
1

2
y∂z, X2 = ∂y +

1

2
x∂z, X3 = ∂z.

We have again
[X1, X2] = X3

and the remaining calculations proceed as before.

1.5. Example 3: sub-Riemannian manifolds. Let M be a smooth
n-dimension manifold. Let X1, . . . Xk be vector fields. Assume that
there exists an integer s ≥ 2, such the vectorfields obtained by taking
commutators up to order s span the tangent space at each point.

Example: s = 2. The vectorfields X1, . . . , Xk, [Xi, Xj] span the tan-
gent space at each point.
s = 3 X1, Xk, [Xi, Xj], [Xi, [Xj, Xk] span the tangent space at every
point.

Consequence if f : M → R is smooth and X1f = . . . = Xkf = 0
then f is locally constant.

Horizontal curves and the Carnot-Caratheodory metric can be define
as before.

When is a map u : U ⊂ Rm →M Lipschitz, Sobolev, ...?
[9.10. 2019, Lecture 2]

[15.10. 2019, Lecture 3]
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2. Covering theorem

This section follows very closely Chapter 1 of [8].
In the rest of these notes X will always denote a metric space.
By a ball in a metric space X we mean a pair of a centre x and a

radius r > 0, i.e. we distinguish between two balls B(x, r) and B(y, s)
even if they agree as sets. We refer to the set {z : d(x, z) < r} as the
open ball and {z : d(x, z) ≤ r} as the closed ball. If B = B(x, r) then
λB denotes the ball B(x, λr).

Theorem 2.1 (basic covering theorem). Let F be a family of balls of
uniformly bounded radius. Then there exists a disjointed subfamily G
with the following property: for every ball B ∈ F there exists a ball
B′ ∈ G such that

(2.1) B′ ∩B 6= ∅ radius(B′) ≥ 1

2
radiusB.

In particular

(2.2)
⋃
B∈F

B ⊂
⋃
B′∈G

5B′

Proof. The second assertion follows from the first by the triangle in-
equality. The first assertion is proved by Zorn’s lemma. Let Ω be the
set of disjointed subcollections ω with the following property. If a ball
B ∈ F meets any ball in ω then there exists a ball B′ ∈ ω which
satisfies (2.1). The collection Ω is not empty. Indeed let

R := sup{radius(B) : B ∈ F}.

Then there exists B′ ∈ F such that radius(B′) ≥ 1
2
R. The collection

ω = {B′} belongs to Ω.
By Zorn’s lemma one easily sees that Ω contains a maximal element
G (see [8]). We claim that G has the desired properties. Define

H = {B ∈ F : B does not meet any ball in G}.

If H is empty we are done. If not set

R0 = sup{radius(B) : B ∈ H}.

Then there exist B0 ∈ H such that radius(B0) ≥ 1
2
R0. By definition of

H the collection G ∪ {B0} is disjointed. It follows from the definition
of R0 that G ∪ {B0} ∈ Ω. This contradicts the maximality of G. �
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Definition 2.2. A measure µ is a subadditive map µ : 2X → [0,∞].
A set A is µ-measurable if

µ(E) = µ(E ∩ A) + µ(E \ A) for all sets E.

A measure is Borel regular if all open sets are measurable and every
set is contained in a Borel set of the same measure.

In the following we will always consider Borel regular measures. The
have the following additional regularity properties, see [2, 2.2.2, 2.2.3].

Proposition 2.3. Let µ be a Borel regular measure. And let A be a µ
measurable set with µ(A) <∞. Then:

• µ(A) = sup{µ(C) : C ⊂ A, C closed};
• if all metric balls have finite measure then µ(A) = inf{µ(U) :
U ⊃ A, U open};

If f is a non-negative function on X (not necessarily measurable) we
denote by ∫

X

f dµ

the upper integral.

We say that a measure is doubling if every ball has finite measure
and there exists a constant C such that

(2.3) µ(2B) ≤ Cµ(B).

Examples: Let f : Rn → R be Lebesgue measurable with 0 < c ≤
f ≤ C a.e. and define µ(A) =

∫
A
f dLn. Then µ is doubling; the volume

measure on a compact Riemannian manifold is doubling; the Lebesgue
measure on the Heisenberg group is doubling, in fact L3(B(a, r)) = cr4.

Non-examples: The Dirac measure δ0 is not doubling, the Hausdorff
measure on lower dimensional manifold is not doubling; volume in a
hyperbolic space is not globally doubling µ(Br) ∼ eCr for r � 1.

Theorem 2.4 (Vitali). Let A ⊂ X and let V ⊃ A be open. Let µ be
a doubling measure. Let F be a fine cover of A, i.e., for every a ∈ A
there exists a ball B(a, r) ∈ F and

inf{r : B(a, r) ∈ F} = 0.

Then there exists a disjointed countable subcollection G which covers A
µ a.e., i.e.,

µ(A \
⋃
B∈G

B) = 0.
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Proof. Consider the subcollection

F ′ = {B ∈ F : B ⊂ V, radius(B) ≤ 1}.
Then F ′ is still a fine cover of A. For bounded sets (with F replaced
by F ′) see [8].

Modification for unbounded sets A. If V is countable union of
disjoint open sets Vj then there exist subfamilies Fj such that Fj
is a fine cover of A ∩ Vj and the balls in Fj are contained in Vj.
Thus there exists a countable disjointed collection G =

⋃
Gj with

µ((V ∩ A) \
⋃
B∈G B) = 0.

Finally note that the spheres Sr = {x : d(x0, x) = r} are mutually
disjoint and thus µ(Sr) = 0 for all but at most countably many r ∈
(0,∞). In particular there exists a strictly increasing sequence rj such
that rj → ∞ and µ(Srj) = 0. Now apply the previous reasoning with
Vj = B(0, rj+1) \ (B(0, rj) ∪ Srj). Since µ(X \

⋃
j Vj) = 0 we get

µ(A \
⋃
B∈G B) = 0. �

The Besicovitch covering theorem avoids the doubling condition but
is not very useful in our context, because it does not even hold for the
Heisenberg group, see [14], Section 1.4.

[15.10. 2019, Lecture 3]
[22.10. 2019, Lecture 4]

A typical application of the Vitali covering theorem is the following
result.

Theorem 2.5 (Lebegue’s differentiation theorem). If f is a non-negative
locally integrable function on a doubling metric measure space (X,µ)
then

(2.4) lim
r→0

–

∫
B(x,r)

f dµ = f(x)

for a.e. x ∈ X.

Here a function is called locally integrable in X if for each x ∈ X
there exists a ball B(x, r) such that f is integrable in B(x, r).

We use the abbreviation

–

∫
E

f dµ =
1

µ(E)

∫
E

f dµ.

Some ideas in the proof. Let E denote the set of points where (2.4)
fails. Cover E by closed balls with centers at E and radiii so small
that f is integrable in each ball. By the Vitali covering theorem there
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is a countable union of balls of this kind containing a.e. point of E.
Thus it suffices to show that E has measure zero in every ball B where
f is integrable.

Main claim: if A ⊂ B is measurable and

lim inf
r→0

–

∫
B(x,r)

f dµ ≤ t ∀x ∈ A

then ∫
A

f dµ ≤ tµ(A).

By applying this result to every measurable subset of A we set that in
fact f ≤ t µ a.e. in A.

Proof: Let ε > 0. By Proposition 2.3 there exists an open set U ⊃ A
such that µ(U) < µ(A) + ε. Let F we the collection of closed balls
B(a, r) such that a ∈ A, B(a, r) ⊂ U and

–

∫
B(x,r)

f dµ ≤ t+ ε.

Then F is a fine cover of A. Let G be the set in the Vitali covering
theorem. Since G ⊂ F we have for all B ∈ G∫

B

f dµ ≤ (t+ ε)µ(B) for all B ∈ G.

Since G is disjointed, B ⊂ U and µ(A \
⋃
B∈G B) = 0 we get∫

A

f dµ ≤ (t+ ε)µ(U) ≤ (t+ ε)(µ(A) + ε)

and the claim follows by taking ε ↓ 0.
Similarly if

lim sup
r→0

–

∫
B(x,r)

f dµ ≥ t ∀x ∈ A

then ∫
A

f dµ ≥ tµ(A).

In particular we get lim supr→0 –

∫
B(x,r)

f dµ <∞ a.e. in B.

Now let s < t and consider the set As,t be the set of points in B such
that

lim inf
r→0

–

∫
B(x,r)

f dµ ≤ s < t ≤ lim sup
r→0

–

∫
B(x,r)

f dµ
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Then As,t is measurable and

tµ(As,t) ≤
∫
As,t

f dµ ≤ sµ(As,t).

This implies that µ(As,t) = 0. Letting s and t for the rational numbers

we see that the limit g(x) = limr→0 –

∫
B(x,r)

f dµ exists a.e. in B. A

similar argument shows that the limit agrees with f = g a.e. �
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3. Maximal functions

This section follows very closely Chapter 2 of [8].
For a locally integrable function f define the maximal function by

Mf(x) := sup
r>0

–

∫
B(x,r)

|f | dµ.

Theorem 3.1 (Maximal function theorem [8], Thm. 2.2). Let µ be
a doubling measure. Then the maximal function operator satisfies a
weak (1, 1) estimate and a (p, p) estimate. More precisely the following
estimates hold. If f ∈ L1(X) then

(3.1) µ({Mf > t}) ≤ C(µ)

t

∫
|f | dµ.

If p ∈ (1,∞] then

(3.2)

∫
X

|Mf |p dµ ≤ Cp(µ)

∫
X

|f |p dµ.

The constants C(µ) and Cp(µ) can be bounded in terms of the doubling
constant of µ.

Proposition 3.2. Let ϕ : [0,∞)→ R be locally integrable and let

Φ(t) =

∫ t

0

ϕ(s) ds.

Let f : X → [0,∞) be measurable. Then

(3.3)

∫
X

Φ(f) dµ =

∫ ∞
0

φ(s)µ({f > s} ds.

Proof. This follows directly from Fubini’s theorem. Consider the set

E : {(x, s) : f(x) > s} ⊂ X × R.

Then

µ({f > s} =

∫
X

1E dµ.

and ∫ ∞
0

φ(s)1E ds =

∫ f(x)

0

φ(s) = Φ(f(x)).

Now apply Fubini. �

Proof of Thm. 3.1. The first estimate follows from the basic covering
theorem and the fact that µ is doubling. First consider the local maxi-
mal function MRf(x) = supr<R . . . and then pass to the limit R→∞.
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For the second estimate write f = g + b with g = f1{f≤t/2}. Then
Mg ≤ t/2 and hence {Mf > t} ⊂ {Mb > t/2}. Apply (3.3) to Mf
with Φ(t) = tp and estimate

µ({Mb > t/2}) ≤
∫
X

b dµ

≤ C

t

∫
|f |>t/2

|f | dµ

=
C

t

(∫
|f |>t/2

(
|f | − t

2

)
dµ+

t

2
µ({|f | > t/2})

)
=
C

t

∫ ∞
t/2

µ({|f | > s}) ds+ Cµ({|f | > t/2}.

In the last step we applied (3.3) with Φ(s) = max(s − t
2
, 0) and ϕ =

1(t/2,∞). Now for the integral∫ ∞
0

tp−2

∫ ∞
t/2

µ({|f | > s}) ds dt

integrate by parts in t (Homework: check that there are no boundary
terms at t = 0 and t = ∞) and apply (3.3) with Φ(s) = sp. For the
second contribution we can directly apply (3.3) with Φ(s) = sp. �
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4. Sobolev spaces on subsets of Rn

This section follows very closely Chapter 3 of [8].

4.1. Definition and basic properties. We often write dx for the
Lebesgue measure in Rn.

Definition 4.1. Let f ∈ L1
loc(Rn). We say that f is weakly differen-

tiable if for i = 1, . . . , n there exist gi ∈ L1
loc(Rn) such that

(4.1)

∫
Rn
f∂iϕdx = −

∫
Rn
giϕdx ∀ϕ ∈ C∞c (Rn).

The functions gi are called the weak derivatives of f and we write ∂if :=
gi and ∇f = g = (g1, . . . , gn).

We say that a weakly differentiable function belongs to W 1,p
loc (Rn) or

to W 1,p(Rn) if f, g1, . . . , gn in Lploc(Rn) or in Lp(Rn), respectively. We
set ‖f‖p = ‖f‖Lp and

‖f‖1,p :== ‖f‖p + ‖∇f‖p
Proposition 4.2. For 1 ≤ p < ∞ the space C∞c (Rn) is dense in
W 1,p(Rn). For every f ∈ W 1,p

loc (Rn) there exist fk ∈ C∞(Rn) such that

fk → f, ∂ifk → ∂if in Lploc(R
n).

Proof. This follows easily by convolution with scaled smooth functions
with compact support. Use that ∂i(ϕ∗f) = (∂iϕ)∗f and the definition
of the weak derivative. �

In one dimension: W 1,1
loc = absolutely continuous

General: W 1,p = ACLp
Chain rules, left composition with Lipschitz functions, for u+ =

max(u, 0) we have ∇u+ = ∇u 1u>0 for the weak derivative.
[22.10. 2019, Lecture 4]
[23.10. 2019, Lecture 5]

4.2. Sobolev inequalities. Let u ∈ W 1,p(Rn). We have

(4.2) ‖u‖p∗ ≤ C(n, p)‖∇u‖p if 1 ≤ p < n and p∗ =
np

n− p
and if p > n then u has a continuous representative, which satisfies

(4.3) |u(x)− u(y)| ≤ C(n, p)|x− y|1−n/p‖∇u‖p ∀x, y ∈ Rn.

Alternative characterisation of p∗:

1

p∗
=

1

p
− 1

n
.

To prove the Sobolev inequality there are at least three strategies:
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• Start from |u(x1, . . . , xn)| ≤
∫∞
−∞ |∂1ui(x1, x2, . . . , xn) dx1 per-

mute coordinates, obtain and estimate for |u(x)|n/(n−1) and use
the generalized Hölder inequality;
• use the isoperimetric inequality;
• estimate u by a convolution of |∇u| with a suitable kernel.

In all case it suffices to show the result for functions in C∞c (Rn).
We will follow the third approach. For u ∈ C∞c (Rn) we have

u(x) = −
∫ ∞

0

Dru(x+ rω) dr.

Dru(x+ rω) = ∇u(x+ rω) · ω
Change of variables

y = x+ rω, r = |y − x|, ω =
y − x
r

.

u(x) = − 1

Hn−1(Sn−1

∫ ∞
0

∫
Sn−1

∇u(x+ rω) · ω 1

rn−1
Hn−1(dω)rn−1 dr

u(x) = C(n)

∫
Rn

∇u(y) · (y − x)

|y − x|n
dy.

The Riesz potential of order 1 of a locally integrable function f is
defined by

I1f = | · |1−n ∗ f,
or more explicitly

(I1f)(x) =

∫
Rn

f(y)

|x− y|n−1
dy.

Thus

(4.4) |u| ≤ CI1(|∇u|).

Proposition 4.3 ([8], Prop. 3.19). Let n ≥ 2. Then the sublinear
operator f 7→ I1(|f |) maps L1 to weak Ln/(n−1) and Lp to Lnp/(n−p) for
1 < p < n.

Idea of proof. General strategy: estimate a nonlocal quantity pointwise
by using the maximal function.

First consider the case p = 1. We want to show that

Ln({I1f > t}) ≤ C

tn/(n−1)
‖f‖n/(n−1)

1 .

Since f 7→ I1f is homogeneous of degree 1 it suffices to show this result
for ‖f‖1 = 1.
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Local contribution: integration over annuli gives∫
B(x,ρ)\B(x,ρ/2)

f(y)

|x− y|n−1
dy ≤ CρMf(x)

and summing the geometric series 2−kρ we obtain∫
B(x,ρ)

f(y)

|x− y|n−1
dy ≤ CρMf(x).

Far field contribution:∫
Rn\B(x,ρ)

f(y)

|x− y|n−1
dy ≤ ρ1−n‖f‖1 ≤ Cρ1−n.

Choose ρ =
(
Mf(x)

)−1/n

to balance the two contributions. This

gives

I1f(x) ≤ C(Mf)1−1/n(x)

Thus

Ln({I1f > t} ≤ Ln({Mf > tn/(n−1)}
≤ Ct−n/(n−1)‖f‖1 = Ct−n/(n−1)

Now assume p ∈ (1, n). Again by homogeneity we may assume
‖f‖p = 1. The local estimate is the same. For the far field estimate we
use that the dual exponent satisfies p′ ∈ ( n

n−1
,∞). Hence y 7→ |x−y|1−n

is in Lp
′
(Rn \B(x, ρ)) and∫

Rn\B(x,ρ)

f(y)

|x− y|n−1
dy ≤

(∫
Rn\B(0,ρ)

|z|(1−n)p′ dz

)1/p′

≤ Cρ1−nρn/p
′

=Cρ1−n/p.

Choose ρ−n/p = Mf(x). Then

I1f(x) ≤ CMf(x)1−p/n = CMf(x)(n−p)/n

and thus∫
Rn
|I1f |p∗ dx ≤ C

∫
Rn
|Mf |p dx ≤ C

∫
Rn
|f |p dx = C.

�

Remark 4.4. The weak estimate for p = 1 is optimal, we can in
general not control the Ln/(n−1) norm. To see this let fk(x) = kng(kx),
g ≥ 0,

∫
g = 1. Then (I1fk)(x)→ x1−n.
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Nonetheless Sobolev inequality holds for p = 1. This follows from the
following estimate

2kn/(n−1)Ln({2k < |u| ≤ 2k+1} ≤ C

∫
2k−1≤|u|<2k

|∇u| dx

by summing over k. To prove the estimate we apply the weak Ln/(n−1)

estimate to the function

v = (min(|u|, 2k)− 2k−1)+

with t = 2k−1. Note that |u| > 2k if and only if v > 2k−1 and

|∇v| = |∇u| 12k−1<|u|<2k a.e.

Exercise 4.5. Show that for p ∈ (n,∞)

|(I1f)(x)− (I1f)(z)| ≤ C(p, n)|x− z|1−n/p‖f‖p.
Hint 1: Let r = |x − y|. Distinguish the cases y ∈ B(x, 2r) and y /∈
B(x, r) and the the latter case use that

∣∣∣|x − y|1−n − |z − y|1−n
∣∣∣ ≤

C|x− z||x− y|−n.
Hint 2: argue first that by translation and scaling we may assume x = 0
and |z| = 1. Then distinguish y ∈ B(0, 2) and y /∈ B(0, 2).

The arguments used to prove Proposition 4.3 are very flexible. In
particular the same reasoning yields the following result.

Theorem 4.6 ([8], Thm. 3.22). In a doubling metric measure space
(X,µ) define

I1f(x) :=

∫
X

f(y)d(x, y)

µ(B(x, d(x, y)))
dµ(y)

for a nonnegative measurable f . If there are constants s > 1, and
C ≥ 1 such that

µ(Br) ≥ C−1rs

for every ball of radius r < diam(X) then

(4.5) ‖I1(f)‖sp/(s−p),µ ≤ C(s, p, µ)‖f‖p,µ
for 1 < p < s and

(4.6) µ({I1(f) > t}) ≤ C(s, µ)t−s/(s−1)‖f‖s/(s−1)
1 .

The proof and the rest of the subsection was not discussed in class.

Proof. Again we may assume ‖f‖p = 1. The main point is to show

I1f(x) ≤ CMf(x)1−p/s.
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Then we can proceed as before. The proof of the pointwise inequality
for I1(f) is very similar to the Euclidean case. The main difference is
that for p 6= 1 we use annuli also to estimate the far field contribution.

Local estimate: since µ is doubling we have µ(B(x, r/2) ≥ cµ(B(x, r)
and thus ∫

B(x,r)\B(x,r/2)

f(y)d(x, y)

µ(B(x, d(x, y)))
dµ(y) ≤ CrMf(x).

Far field estimate: First assume that p ∈ (1, s).∫
B(x,R)\B(x,R/2)

(
d(x, y)

µ(B(x, d(x, y)))

)p′
dµ(y)

≤Rp′µ(B(x,R/2))−p
′
µ(B(x,R))

≤CRp′µ(B(x,R/2))1−p′

≤CRp′(1−s/p)

Thus summing the estimate for 2kr from k = 1 to ∞ we get∫
X\B(x,r)

(
d(x, y)

µ(B(x, d(x, y)))

)p′
dµ(y) ≤ Crp

′(1−s/p).

Hence ∫
X\B(x,r

f(y)d(x, y)

µ(B(x, d(x, y)))
dµ(y) ≤ Cr1−s/p.

Since f(y)d(x,y)
µ(B(x,d(x,y)))

≤ Cd(x, y)1−s this estimate also holds for p = 1.

Finally taking r−s/p = Mf(x) we get the desired pointwise estimate
for I1(f). �

The proof via the isoperimetric inequality uses the following result,
see [8], equation (3.34).

Proposition 4.7. Let F : [0,∞)→ [0,∞) be measurable and decreas-
ing. Then for all α ∈ (0, 1)

(4.7)

∫ ∞
0

F (t)α dt ≥
(

1

α

∫ ∞
0

t1/α−1F (t) dt

)α
.

Proof. Assume first the F is continuous, decreasing and has support in
a compact set [0, T ]. Set

L(t) =

∫ t

0

Fα(s) ds, M(t) =
1

α

∫ ∞
0

t1/α−1F (s) ds, R(t) = Mα(t).
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Clearly L(0) = R(0) = 0. It suffices to show that L′ ≤ R′ on (0,∞).
We have

L′(t) = Fα(t).

Moreover
R′(t) = Mα−1(t) t1/α−1F (t).

Since F is decreasing we have

M(t) ≥
∫ t

0

1

α
s1/α−1F (s) ds

≥
∫ t

0

1

α
s1/α−1 ds F (t)

≥ t1/αF (t).

Taking into account that α− 1 < 0 this implies that

Mα−1(t) ≤ t1−1/αF 1−α(t).

Thus
R′(t) ≤ Fα(t) = L′(t).

This proves the result for continuous functions, which are decreasing
and have support in a compact set [0, T ]. The general case follows by
approximation. �

[23.10. 2019, Lecture 5]
[29.10. 2019, Lecture 6]
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5. The Poincaré inequality

This section follows very closely Chapter 4 of [8].
Let B ⊂ Rn be a ball. Assume that u ∈ W 1,p(B) and set

uB = –

∫
B

u dx.

If 1 ≤ p < n then

(5.1) ‖u− uB‖ np
n−p ,B

≤ C(n, p)‖∇u‖p,B.

This inequality if often refereed to us the Poincaré-Sobolev inequality.
Using Hölder’s inequality we deduce the Poincaré inequality

(5.2) ‖u− uB‖p,B ≤ C(n, p)r‖∇u‖p,B
where r is the radius of the ball.

To prove the Poincaré inequality it suffices to consider smooth func-
tions since they are dense in W 1,p(B). Let x, y ∈ B. One starts from
the identity

u(x)− u(y) =

∫ |x−y|
0

Dru(x+ rω) dr where ω =
x− y
|x− y|

.

Integrating over y ∈ B and using polar coordinates we deduce that

|u(x)− uB| ≤ C(n)

∫
B

∇u|(y)

|x− y|n−1
dy

or , in the language of Riesz potentials

|u(x)− uB| ≤ C(n)I1(|∇u|)(x)

where |∇u| is extended by zero outside B(x, r).
From the triangle inequality we get the symmetric version

(5.3) |u(x)− u(y)| ≤ C(I1(|∇u|)(x) + I1(|∇u|)(y))

valid for a smooth function u in B and all x, y ∈ B. Again we extend
|∇u by zero outside B.

By approximation we see that (5.3) holds for a.e. x, y ∈ B if u ∈
W 1,p(B). If p > n and u is the continuous representative then the
estimates holds for every x, y ∈ B.

Definition 5.1 (Chain condition). Given numbers λ ≥ 1, M ≥ 1 and
a > 1 and a ball B0 in a metric space X a bounded set A ⊂ X in
a metric space X is said to satisfy a (λ,M, a)-chain condition with
respect to B0 if for each point x ∈ A there is a sequence of balls Bi :
i = 1, 2, . . .} such that

(1) λBi ⊂ A for all i ≥ 0;
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(2) Bi is centered at x for sufficiently large i;
(3) the radius ri of Bi satisfies

M−1a−i diamA ≤ ri ≤Ma−i diamA

for all i ≥ 0 and
(4) the intersection Bi∩Bi+1 contains a ball B′i such that Bi∪Bi+1 ⊂

MB′i.

Note that the conditions are unchanged if we multiply the metric by
a positive constant.

If µ is a doubling measure on X then there exists an s > 1 such that

(5.4)
µ(Br)

µ(A)
≥ 2−s

( r

diamA

)s
.

Theorem 5.2 (Hajlasz-Koskela, [8], Thm. 4.18). Let (X,µ) be a dou-
bling space and let A ⊂ X be a bounded set satisfying a (λ,M, a)-chain
condition. Suppose that (5.4) holds for some s > 1. Let u and g are
locally integrable function on A with g ≥ 0. If

(5.5) –

∫
B

|u− uB| dµ ≤ C diamB

 –

∫
λB

gp dµ

1/p

for some p ∈ [1, s), some C ≥ 1 and for all balls B in X for which
λB ⊂ A, then for each q < ps/(s − p) there exists a constant C ′ ≥ 1
depending only on q, p, s, λ,M, a, C and the doubling constant of µ, such
that

(5.6)

 –

∫
A

|u− uA|q dµ

1/q

≤ C diamA

 –

∫
A

gp dµ

1/p

.

If the pair (u, g) satisfies a truncation property (satisfied, e.g., by
u ∈ W 1,1

loc and g = |∇u| then one can choose q = ps/(s − p), see [7],
Thm 5.1 and 9.7.

Lemma 5.3. Let (X,µ) be a measure space with µ(X) = 1 and let u
be a measurable function on X. If s > 1 and if

µ({|u| < t} ≤ C0t
−s

then for each q < s we have

‖u‖q ≤
(

s

s− q

)1/q

C
1/s
0 .

Proof. Apply Proposition 3.2 with Φ(t) = tq and use µ({|u| < t} ≤
C0t

−s for t > t0 = C
1/s
0 and µ({|u| < t}) ≤ 1 for t ≤ t0. �
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Proof of Theorem 5.2. The assumption and the conclusion do not change
if we multiply the measure by a positive scalar (note that condition
(5.4) as well as the doubling condition are invariant under that change).
Thus we may assume µ(A) = 1.

We claim that we can also assume without loss of generality that
diam(A) = 1. Assume that we have shown the theorem under the ad-
ditional assumption diamA = 1. For a general metric d consider a new
metric d̃ = (diamdA)−1d and set g̃ = diamdAg. Then diamd̃A = 1 and
the assumption of the theorem holds if we replace diamdB by diamd̃B

and g by d̃. Hence the conclusion holds with the same replacements
and we easily conclude the desired result.

Note that the chain-condition and (5.4) are invariant under the pas-

sage from d to d̃.
Let B0 be the fixed ball in the (λ,M, a)-chain condition. Since the

assumption and conclusion are invariant under adding a constant to u

we may assume that uB0 = 0. Moreover it suffices to bound –

∫
A

|u|q dµ.

Then the bound for uA follows from Jensen’s inequality.
In view of the previous lemma the assertion thus is easily deduced

from the following
Claim. For each ε ∈ (0, 1) and ρ = p(1− ε)/s we have the estimate

(5.7) µ({|u| > t}) ≤ C(ε)

(
t−p
∫
A

gp dµ

)1/(1−ρ)

To see that the claim implies the assertion not that for q < p/(1 −
ρ) = sp/(s − (1 − ε)p) we get from the lemma with decay exponent
σ = p/(1− ρ) and

C0 =

(
C ′(ε)

(∫
A

gp dµ

)1/p
)σ

the estimate

‖u‖q,A ≤ C ′′(ε, q)

(∫
A

gp dµ

)1/p

.

To prove the claim let At denote the set of Lebesgue points of |u|
in {|u| > t}. It suffice to show the estimate for µ(At). For x ∈ At let
Bi the chain of balls in the definition of the (λ,M, a)-chain condition.
Then for each x ∈ At we have

t ≤ u(x) = lim
i→∞

uBi .
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From the fact that B′i ⊂ Bi∩Bi+1 and Bi∪Bi+1 ⊂MBi, the doubling
condition and the estimate |uBi+1

− uBi | ≤ |uBi+1
− u(y)|+ |u(y)− uBi |

we easily deduce that

|uBi+1
− uBi | ≤ C

 –

∫
Bi+1

|u− uBi+1
| dy + –

∫
Bi

|u− uBi | dy

 .

Since uB0 = 0 it follows that

t ≤ C
∞∑
i=0

ri

 –

∫
λBi

gp dµ

1/p

where ri is the radius of Bi. Let we have
∑
a−iε = C ′(ε) and thus we

get ∑
rεi t ≤ C(ε)t.

Thus for every x ∈ At there exists an index ix such that

rεix t ≤ C(ε)rix

 –

∫
λBix

gp dµ


1/p

Since ρ = p(1− ε)/s this is equivalent to

r−sρix
≤ C(ε)t−p –

∫
λBix

gp dµ.

By (5.4) we have
C

µ(Bix)
≤ r−six

Thus

µ(Bix)
1−ρ ≤ C(ε)t−p

∫
λBix

gp dµ.

Let F be the family of balls λBix . Since x ∈ Bix the basic cover-
ing implies that there exists a disjointed subcover G such that At ⊂⋃
B∈G 5B. Since µ(λBix) > 0 and µ(A) < ∞ the family G consists of

at most countable many balls λBj where Bj = Bixj
. Moreover Since µ

is doubling we have

µ(At) ≤
∑
j

µ(5λBj) ≤ C
∑
j

µ(Bj).
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Now we use that for β ∈ (0, 1)

(
∑
j

aj)
β ≤

∑
j

aβj

Thus

µ(At)
1−ρ ≤ C(ε)t−p

∫
A

gp dµ

as claimed. �

[29.10. 2019, Lecture 6]
[30.10. 2019, Lecture 7]
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6. Sobolev spaces on metric spaces

The main references for this section are [5, 6]. This presentation
follows very closely Chapter 5 of [8]. The first definition of a Sobolev
space on a metric space is based on the following inequality

|u(x)− u(y)| ≤ d(x, y)(g(x) + g(y)) for a.e. x, y ∈ X.(6.1)

Definition 6.1 (Hajlasz Sobolev space). Let (X,µ) be a metric mea-
sure space. For 1 ≤ p <∞ define

M1,p(X) = {u ∈ Lp(X) : there exists g ∈ Lp(X) such that (6.1) holds}
We define

‖u‖M1,p := ‖u‖p + inf{‖g‖p : (6.1) holds}.
If there is no danger of confusion of write ‖u‖1,p instead of ‖u‖M1,p .

If p > 1 then one can easily show that there exists a unique gu ∈ Lp(x)
for which the infimum in the definition of the norm of u is achieved.

Theorem 6.2. For all p ∈ [1,∞) the map u 7→ ‖u‖M1,p is a norm and
with this norm M1,p is a Banach space.

Theorem 6.3. Let p ≥ 1 and let U ⊂ Rn be open. Then the space
M1,p(U) is continuously embedded into W 1,p(U).

Proof. Let u ∈M1,p(U). Let V ⊂ U be open and bounded and suppose
that V̄ ⊂ U . Then there exists h0 > 0 such that Bh0(V ) ⊂ U . For
0 < h < h0 and x ∈ V consider the difference quotients

∆h
i u(x) =

u(x+ hei)− u(x)

h
.

Then
|∆h

i u(x)| ≤ g(x) + g(x+ hei).

Thus ∆h
i u is bounded in Lp. If p ∈ (1,∞) then there exists a weakly

convergenc subsequence in Lp with limit hi. Moreover |hi| ≤ 2g. Let
ϕ ∈ C∞c (U). Then there exist V as above such that ϕ ∈ C∞c (V ).
Multiplying ϕ and passing the difference quotient to the test function
we see that u is weakly differentiable in U with derivative hi.

If p = 1 we use the fact that the difference quotients are in addition
equiintegrable. Hence a subsequence converges weakly in L1. �

Corollary 6.4. If X = Rn or X is a ball in Rn and p ∈ (1,∞) then
M1,p(X) = W 1,p(X) with equivalent norms.

Proof. This follows from the estimate

|u(x)− u(y)| ≤ C(n)d(x, y)(M(|∇u|)(x) +M(|∇u|)(y))

and the Lp estimate for the maximal function. �
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The same conclusion holds if X ⊂ Rn is an extension domain, i.e.,
if there exist a bounded linear extension operator E : W 1,p(X) →
W 1,p(Rn).

Theorem 6.5 (Poincaré inequality in M1,p). . Let (X,µ) be a metric
measure space with diamX < ∞ and µ(X) < ∞. Then, for all p ≥ 1
and for all functions u ∈M1,p we have∫

X

|u− uX |p dµ ≤ 2p(diamX)p
∫
X

gp dµ

whenever g ≥ 0 is a function such that (6.1) holds.

Proof. Integrate (6.1) first in y to get a pointwise estimate for u− uX .
Then take the Lp norm. �

One possible approach to Sobolev spaces in an arbitrary metric mea-
sure space is to consider functions u for which an Lp function g can be
found so that a Poincare inequality such as inequality (5.16) holds (not
just globally but uniformly on all balls in the space). This approach
has been pursued in [7].

Note that there are open bounded sets U ⊂ Rn and functions in
W 1,p(U) which do not satisfy a Poincaré inequality. Thus for those
sets W 1,p(U) 6= M1,p(U).

Theorem 6.6 (Approximation by Lipschitz functions). . Let u ∈
M1,p(X) and ε > 0. Then there exists a Lipschitz function v : X → R
such that

µ({u 6= v}) < ε and ‖u− v‖M1,p < ε.

Proof. Let

Eλ = {x : |u(x)| ≤ λ, g(x) ≤ λ}.
Then λpµ(X \ Eλ) → 0 as λ → ∞. Moreover the restriction of u to
Eλ is 2λ-Lipschitz. Thus there exists a 2λ-Lipschitz function uλ which
agrees with u on Eλ. Let Tλ(s) = min(max(s,−λ), λ). Then Tλ is
1-Lipschitz and hence vλ := Tλuλ is 2λ-Lipschitz. Moreover vλ = u on
Eλ. We easily deduce that vλ → 0 in Lp(X) as λ→∞. We claim that

|(u− vλ)(x)− (u− vλ)(y)| ≤ d(x, y)(hλ(x) + hλ(y))

where

hλ = g1X\Eλ + 3λ1X\Eλ .

Indeed if both x and y are in Eλ the left hand side is zero. Assume
that x ∈ X \ Eλ then

|(u− vλ)(x)− (u− vλ)(y)| ≤ d(x, y)(g(x) + g(y) + 2λ).
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If y ∈ X \ Eλ the right hand side is bounded by hλ(x) + hλ(y). If
y ∈ Eλ then g(y) ≤ λ and hence the right hand side is bounded by
hλ(x). Similar reasoning applies if y ∈ X \ Eλ. Now hλ → 0 in Lp(X)
as λ→∞. �

Remark 6.7. The definition of M1,p is global in the following sense. If
u vanishes on an open V we can in general not find a function g which
vanishes on V and still satisfies (6.1). For an example take X = (0, 3)
and assume that u is Lipschitz on (0, 3) with u = 0 on (0, 1) and u = 1
on (2, 3). Then g cannot vanish on (0, 1) ∪ (2, 3), see [8] for further
comments. We will later introduce the concept of an ’upper gradient’
which in contrast to g is local. Upper gradients, however, are only
useful if the space admits sufficiently many rectifiable curves.
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7. Lipschitz functions

This section follows very closely Chapter 6 of [8]. Let X and Y be
metric spaces. A map f : X ⊃ A → Y is Lipschitz if there exists and
L such that

d(f(x), f(y)) ≤ Ld(x, y) for all x, y ∈ A.

If this inequality holds we say that f is L-Lipschitz.

Theorem 7.1. Let X be a metric space and A ⊂ X. If f : A → R is
L-Lipschitz then it can be extended to an L-Lipschitz map from X to
R.

Lemma 7.2. Let X be metric space and let F be a family of L-Lipschitz
maps from X to R. If the function F defined by

F (x) := inf{f(x) : f ∈ F}
is finite at one point then it is L-Lipschitz.

[30.10. 2019, Lecture 7]
[6.11. 2019, Lecture 8]

Theorem 7.3. Every uniformly continuous bounded function in a met-
ric space is a uniform limit of Lipschitz functions.

Proof. Consider the inf-convolutions

fj(x) = inf{f(y) + j|y − x| : y ∈ X}.
�

Theorem 7.4. Let U ⊂ Rn be open. Then the space W 1,∞(U) consists
precisely of bounded functions that are locally uniformly Lipschitz on
U .

The functions need not be globally Lipschitz: consider a set which
is not connected or a slit domain.

Proof. ’Locally uniformly Lipschitz’ means: there exists a representa-
tive u and a number L ≥ 0 such that for every x ∈ U there exists a
ball B(x, r) such that the restriction of u to B(x, r) is Lipschitz.

Thus it suffices to show that for a ball B the space W 1,∞(B) consists
of (equivalence classes of) bounded L-Lipschitz functions and

(7.1) L(u) := sup
x,y∈B,x 6=y

|u(x)− u(y)|
|x− y|

= ‖∇u‖L∞ .

Here on the right hand side we use the Euclidean norm for |∇u(x)|.
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Indeed if u ∈ W 1,∞(B) then u has a continuous representative and
approximating u by convolution and integrating along the line from x
to y we get L(u) ≤ ‖∇u‖L∞ . Instead of approximation we can use a
narrow pencil of lines which connect x and y and use that for Ln−1 a.e.
line in this pencil the restriction of u to that line is in W 1,∞ with the
same gradient bounds. In particular for each ε > 0 there exists such a
line of length < |x− y|+ ε.

Conversely if u is L-Lipschitz then looking at difference quotients
as in the proof of Theorem 6.3 we see that u is weakly differentiable
and the weak partial derivatives are bounded by L. This shows that
‖∇u‖L∞ ≤

√
nL(u). To get the optimal estimate we can consider

difference quotient of the form (u(x+ ta)− u(x))/t for all a ∈ Qn. �

Theorem 7.5 (Rademacher’s theorem). Every (locally) Lipschitz func-
tion on an open set in Rn is differentiable almost everywhere.

Two lines of proof:

• Start from one dimensional case

• Use blow-up and Lebesgue points of the weak derivative

Two refinements:
Stepanoff showed that it suffices to assume

lim sup
y→x

|f(y)− f(x)|
|y − x|

<∞

for almost every x in the domain of definition.

Theorem 7.6. Let p > n and let U ⊂ Rn be open. Every function
in the Sobolev space W 1,p(U) is almost everywhere differentiable. For
n = 1 the result also holds for p = 1.

Idea of proof. Key idea: look at Lebesgue points of ∇u. �
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8. Modulus of a curve family, capacity and upper
gradients

This section follows very closely Chapter 7 of [8].
In a general metric space we have no smooth structure and no coun-

terpart of differentiability. We can, however, still do one dimensional
calculus along rectifiable curves, i.e., curves of finite length.

8.1. Line integrals. A curve in a metric space X is a continuous map
γ from an interval I to X. We often abuse terminology and call γ both
the map and the image γ(I). Curves are special for two reasons: one
can define a length without any differentiable structure and a curve
can always be reparametrized so that it becomes a Lipschitz map.

If I = [a, b] is a closed interval then the length of a curve γ : I → X
is

`(γ) = length(γ) = sup
n∑
i=1

|γ(ti)− γ(ti+1)|,

where the supremum is taken over all increasing sequences ti with a =
t1 and b = tn+1. If I is not closed we defined the length to be the
supremum of the lengths of all closed subcurves of γ. A curve γ is
rectifiable if its length is finite, and it is locally rectifiable if all its closed
subcurves are rectifiable. If I is not closed then a rectifiable curve has
a unique extension to a rectifiable curve on the closure of I.

The length function of a a curve γ : [a, b]→ X is defined by

sγ(t) := `(γ|[a,t]).

Any rectifiable curve can be parametrized by arc length, i.e., it factors
as

γ = γs ◦ sγ,
where γs : [0, `(γ)] → X is the unique 1-Lipschitz map such that the
factorization holds. The curve γs is called the arc length parametriza-
tion of γ.

If γ is a rectifiable curve in X, then the line integral over γ of a Borel
function ρ : X → [0,∞] is defined as∫

γ

ρ :=

∫ `(γ)

0

ρ ◦ γs(t) dt.

Note that if ϕ : I ′ → I is an increasing (not necessarily strictly increas-
ing) map the (γ ◦ ϕ)s = γs and thus∫

γ◦ϕ
ρ =

∫
γ

ρ.



38

If γ is only locally rectifiable we define the line integral by taking the
supremum over all rectifiable subcurves.

If X is an open subset of Rn or of a Riemannian manifold and γ ∈
W 1,1(I;X) then

`(γ) =

∫
I

|γ′(t)| dt

and ∫
γ

ρ =

∫
I

(ρ ◦ γ)(t) |γ′(t)| dt.

To prove the first identify one uses that the length function sγ is addi-

tive and satisfies sγ(t
′)−sγ(t) ≤

∫ t′
t
|γ′(τ)| dτ for t′ > t. Hence sγ is ab-

solutely continuous. Now γ is differentiable a.e. and a a point t0 of dif-
ferentiability the function sγ is also differentiable with s′γ(t0) = |γ′(t0)|.
This yields the assertion. In particular we get |γ′s| = 1 a.e. This proves
the second identity of γ = γs. The general case follows by the chain
rule.

There is one subtle point: a rectifiable curve γ : I → Rn need not be
a W 1,1 map. Indeed consider the Cantor function γ : [0, 1] → [0, 1] ⊂
R. Then `(γ) = 1, but γ is not in W 1,1(I). Indeed γ′ = 0 almost
everywhere.

8.2. Modulus of a curve family. Let (X,µ) be a metric measure
space.

Definition 8.1. Let Γ be a family of curves in X and let p ∈ [1,∞).
We define the p-modulus of Γ by

(8.1) modpΓ = inf

∫
X

ρp dµ,

where the infimum is taken over all Borel functions ρ : X → [0,∞]
which satisfy ∫

γ

ρ ds ≥ 1 for all rectifiable γ ∈ Γ.

Function ρ which satisfy are called admissible functions, or metrics,
for the the family Γ. If Γ contains no rectifiable curve then ρ = 0
is admissible and modpΓ = 0. If Γ contains a constant curve then no
function ρ is admissible and hence modpΓ =∞ (since the infimum over
an empty set is ∞).
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The set function modp is an outer measure, i.e.,

modp∅ = 0,

Γ1 ⊂ Γ2 =⇒ modpΓ1 ≤ modpΓ2,

modp(
∞⋃
i=1

Γi) ≤
∞∑
i=1

modpΓi.

Moreover we have the following property: if Γ and Γ0 are families of
curves such that each curve γ ∈ Γ has a subcurve γ0 ∈ Γ then

(8.2) modpΓ ≤ modpΓ0

since every Γ0 admissible ρ is also Γ admissible.

Comparison to capacity: consider a compact set K ⊂ Rn and a large
open ball B ⊃ K. Let Γ be the set of all rectifiable curves from K to
∂B. Let u : B → R be a C1 function such that

(8.3) u = 1 on K and u = 0 on ∂B.

Then ρ = |∇u| is admissible since

1 =

∫ 1

0

d

dt
(u ◦ γ)(t) dt ≤

∫ 1

0

|∇u|(γ(t)) |γ′(t)| dt =

∫
γ

|∇u|.

Here we used that a rectifiable curve in arclength parametrisation is a
W 1,1 map. Thus

modpΓ ≤ inf

∫
X

|∇u|p dx

where the infimum is taken over all C1 function u which satisfy (8.3).
The right hand side is the p-capacity of the set X (with respect to B).
We will come back to the relation between modulus and capacity later.

[6.11. 2019, Lecture 8]
[12.11. 2019, Lecture 9]

In Rn the most important modulus from the point of view of (quasi)conformal
geometry is the n-modulus modnΓ which is conformally invariant. This
is more generally true on n-dimensional Riemannian manifolds.

A diffeomorphism f : Mn → Nn between two n-dimensional Rie-
mannian manifolds is conformally invariant if at each points its tangent
map is homothety, i.e.,

〈Df(x)X,Df(x)Y 〉f(x) = λ(x)〈X, Y 〉x
for all X, Y ∈ TxMn.
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Theorem 8.2. If f : Mn → Nn is a conformal diffeomorphism then

modnΓ = modnf(Γ)

for all curve families Γ in M .

Proof. First note that f is locally Lipschitz. Thus, if γ : I → Mn is
rectifiable, then f ◦ γ is rectifiable. We first claim that

ρ : Nn → [0,∞] f(Γ) admissible

=⇒ ρ ◦ f |Df | Γ-admissible.

Here |Df(x)| denotes the operator norm of the differential as a map
from TxM

n to Tf(x)N
n. To see this let I be a compact interval and let

γ : I → Mn be rectifiable. Then f ◦ γ : I → Nn is rectifiable since f
is Lipschitz on compact sets. Since the line integral is invariant under
monotone reparametrization and since γs is Lipschitz we have for every
f(Γ) admissible ρ

1 ≤
∫
f◦ρ

ρ =

∫
f◦γs

ρ

=

∫
I

ρ ◦ (f ◦ γs)(t) |(f ◦ γs)′(t)| dt

≤
∫
I

(ρ ◦ f) ◦ γs(t) |Df | ◦ γs(t) |γ′s(t)| dt

=

∫
γs

ρ ◦ f |Df |

This prove the claim.
Conformality of Df implies that

| detDf | = |Df |n.

Thus for every f(Γ) admissible ρ we have∫
Nn

ρn dvolnN =

∫
Mn

ρ ◦ f | detDf | dvolMn

=

∫
Mn

(ρ ◦ f |Df |)n dvolMn ≥ modpΓ.

Hence modpf(Γ) ≥ modpΓ. Applying the same reasoning to f−1 we
get equality. �
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Definition 8.3. Let f : Mn → Nn be a homeomorphism between n-
dimensional Riemannian manifolds. We say that f is K-quasiconformal
if and only if

1

K
modnΓ ≤ modnf(Γ) ≤ KmodnΓ

for all families of curve Γ in Mn.

Proposition 8.4. If f : Mn → Nn is a diffeomorphism of n-dimensional
Riemannian manifolds then f is K-quasiconformal if and only if

(8.4)
1

K
|Df |n ≤ | detDf | ≤ K|Df |n.

Proof. To see that (8.4) implies that f is K-quasiconformal one pro-
ceeds exactly as in the proof of Theorem 8.2. For the converse impli-
cation one considers small cylinders C and the family Γ of straight line
segments which connect the bottom and top surface of the cylinder. �

Basic example: let 0 < r < R. Let Γr,R be the set of all curves which
connect B(0, r) ⊂ Rn and Rn \B(0, R). Then

(8.5) modpΓr,R =

{
C(p, n)|R

n−p
p−1 − r

n−p
p−1 |1−p if 1 < p 6= n,

nHn−1(Sn−1) 1
logn−1 R

r

if p = n.

In particular

modpΓr,R ∼ rn−p if p < n and r � R,(8.6)

modpΓr,R ∼ Rp−n if p > n and r � R,(8.7)

lim
r→0

modnΓr,R = 0.(8.8)

Indeed, to obtain an upper bound for the p-modulus one may use ra-
dialsymmetric functions ρ(x) = c|x|−γ. To get a lower bound one use
the Hölder inequality to get for each ω ∈ Sn−1 and each admissible ρ

1 ≤
∫ R

r

ρ(tω) dt =

∫ R

r

ρ(tω)t
n−1
p t−

n−1
p dt ≤

(∫ R

r

ρp(tω)tn−1 dt

) 1
p
(∫ R

r

t−
n−1
p−1 dt

) p−1
p

.

Rewriting this as a lower bound for
∫ R
r
ρ(tω)tn−1 dt and integration

over ω yields the desired lower bound.

Lemma 8.5. Suppose that (X,µ) is a metric measure space such that

(8.9) µ(BR) ≤ CRn
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for some constant C > 0, exponent n > 1 and for all balls of radius
R > 0. Then for all x0 ∈ X and all r ∈ (0, R

2
) we have that

modnΓ ≤ C ′
(

log
R

r

)1−n

where Γ denotes the family of curves joining B(x0, r) to X \ B(x0, R)
and C ′ is a constant depending only on the values of C and n in (8.9)

Proof. Exercise. Hint: consider the function

ρ(x) = log−1 R

r

1

d(x, x0)
.

and consider the integral of ρn over dyadic balls. �

Corollary 8.6. In the setting of Lemma 8.5 the n-modulus of the fam-
ily of non-constant curves passing through a point is zero. This holds
in particular in Rn.

8.3. Upper gradients.

Definition 8.7. Let X be a metric space and let u : X → R. We say
that a Borel function ρ : X → [0,∞] is an upper gradient of u if for
all x, y ∈ X with x 6= y we have
(8.10)

|u(x)− u(y)| ≤
∫
γ

ρ for all rectifiable curves γ connecting x and y.

The function ρ ≡ ∞ is always an upper gradient. If X contains no
rectifiable curves then ρ ≡ 0 is an upper gradient. For an L-Lipschitz
function ρ ≡ L is an upper gradient, but this is rarely optimal (see the
following exercise).

Exercise. Assume that u : X → R is Lipschitz. Show that the
function ρ defined by

ρ(x) := lim inf
r→0

sup
y∈B(x,r)

|u(y)− u(x)|
r

is an upper gradient of u.
Hint: consider first the case that X is an interval and construct a
suitable fine cover. Then use the arc length parametrization γs.

One can define a Sobolev space N1,p(X) (’Newtonian space’) as the
space those Lp functions u for which are exists a ρ ∈ Lp(X) such that
(8.10) except for a family of curves of p-modulus zero, see [16, 10].
Closely related are Cheeger’s H1,p(X) spaces, see [1], Section 2.
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8.4. Capacity.

Definition 8.8. Let (X,µ) be a metric measure space and let E,F ⊂
X. Then

capp(E,F ) := inf{
∫
X

ρp dµ : ρ is an upper gradient of a function u : X → R

with u ≤ 0 on E and u ≥ 1 on F}(8.11)

Theorem 8.9. We have that

capp(E,F ) = modp(E,F )

where the modulus on the right hand side is the modulus of all curves
joining the sets E and F in X.

Proof. This follows essentially directly from the definitions. Note that
we may assume that E ∩ F = ∅ since otherwise both sides are ∞. For
the estimate ’≤’ one first considers the case that every point x ∈ X
can be joined to E by a rectifiable curve. For a ρ which is admissible
for the family of curves joining E and F one then defines

(8.12) u(x) := inf

∫
γx

ρ

where the infimum is taken over all curves γx joining E to the point
x. It is easy to see that ρ is an upper gradient of u. Indeed let γ by a
rectifiable curve joining x and y, γx be a curve joining E to x and let
γy be the curve γ followed by γx. Then

u(y) ≤
∫
γ

ρ+

∫
γx

ρ.

Taking the infimum over all γx we get

u(y)− u(x) ≤
∫
γ

ρ

and reversing the roles of x and y we see that ρ is an upper gradient
for u.

Now assume that the set

A := {x : there is no rectifiable curve joining E to x}
is non-empty. Note that A ∩ E = ∅. Define ũ : X \ A and set u =
min(ũ, 1) on X \ A and u = 1 on A. Now assume that there exists a
rectifiable curve from x to y. Then either both x and y belong to X \A
or they both belong to A. In the first case the previous calculation
gives the desired bound for |u(x)− u(y)| (since the map t 7→ min(t, 1)
is 1-Lipschitz). In the second case we have u(x) = u(y) = 1. �
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8.5. Sobolev function in Rn and upper gradients. This subsection
was discussed on Nov 19, 2019

Proposition 8.10. Let I = (a, b) be a bounded open interval in R. Let
u : I → R be measurable.

(1) If u ∈ W 1,1(I) then the continuous representative ū has the
upper gradient ρ = |u′| where |u′| denotes the weak derivative.

(2) If u : I → R has an upper gradient ρ ∈ L1(I) then u ∈ W 1,1(I).
Moreover ρ ≥ |u′| a.e. where u′ denotes the weak derivative.

Comment: we require that ρ is Borel measurable. Every Lebesgue
measurable function on I has a Borel measurable representative. Thus
in the first assertion we take ρ as the Borel measurable representative
of |u′|.

Proof. The absolutely continuous representative ū satisfies

ū(x) = c+

∫ x

x0

u′(z) dz.

It easily follows that ρ = |u′| is an upper gradient.
If ρ ∈ L1(I) is an upper gradient one easily sees that u is absolutely

continuous in I. Hence u ∈ W 1,1 and

u(x) = c+

∫ x

x0

u′(z) dz.

On the other hand we have for x− x0 > 0

c−
∫ x

x0

ρ(z) dz ≤ u(x) ≤ c+

∫ x

x0

ρ dz.

Thus ρ ≥ u′ and ρ ≥ −u′ on (x0,∞)∩ I and we get the same assertion
on (−∞, x0) ∩ I. �

For a locally integrable function f : Rn → R we define the restricted
maximal function by

(8.13) (MRf)(x) = sup
0<r≤R

–

∫
B(x,r)

|f | dy

Note that the supremum does not change if we only consider only

rational r in (0, R]. Since x 7→ –

∫
B(x,r)

|f | dy is continuous it follows that

MRf is Borel measurable.

Proposition 8.11. Let u : Rn → R be measurable.
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(1) There exists a constant C with the following property. If u ∈
W 1,p(Rn) then ρ = CMR|∇u| is an upper gradient where ∇u is
the weak derivative.

(2) If ρ ∈ Lp(Rn) is an upper gradient of u then u ∈ W 1,p(Ω) and
ρ ≥ |∇u| a.e.

Proof. For the first assertion consider the standard mollifier ϕε = ε−nϕ( ·
ε
)

with ϕ ∈ C∞c (B(0, 1)), ϕ ≥ 0,
∫
ϕdx = 1. For for 0 < ε < R the func-

tion ρ is an upper gradient of uε if C = supϕ. By the Lebesgue point
theorem uε → u a.e. Thus there exists a null set N such that

|u(x)− u(y)| ≤
∫
γ

ρ

for all x, y ∈ Rn \N and all rectifiable curves joining x and y. Then a
standard argument (see below) shows that u has an extension ū which
satisfies the same estimate for all x, y ∈ Rn.

The second assertion follows from the second assertion in Proposi-
tion 8.10, the fact that Lp functions which are absolutely continuous
on a.e. coordinate line with derivative in Lp belong to W 1,p(I) and
Fubini’s theorem applied to ρ. �

Extension argument:
Suppose that there exists a Borel measurable function ρ : Rn → [0,∞]
such that

|u(x)− u(y)| ≤
∫
γ

ρ

for all x, y ∈ Rn \N and all rectifiable curves connecting x and y.

We would like to define and extension ū of u which has the same
property for all x, y ∈ Rn. Set

N1 := {x ∈ N : there exists a rectifiable curve joining x to Rn \N},
N2 := N \N1.

and define

ū(x) = inf{u(y) +

∫
γ

ρ : y ∈ Ω \N, γ rectifiable curve joining x to y} ∀x ∈ N1,

ū(x) = 0 ∀x ∈ N2.

Note that there is no rectifiable curve which joins N2 and N1. Indeed,
otherwise there would be rectifiable curve joining N2 and Rn \N . Thus
every rectifiable curve starting in N2 has to stay in N2. Hence if x ∈ N2

or y ∈ N2 we only need to check the condition on |u(x) − u(y)| for
x ∈ N2 and y ∈ N2. In that case we have |u(x) − u(y)| = 0 so the
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desired condition holds trivially. If y ∈ Rn \ N and x ∈ N1 then
u(x) ≥ u(y) and the bound on u(x)− u(y) follows from the definition
of u(x). Finally assume that x, x′ ∈ N1 and wlog u(x) ≥ u(x′). Let γ
be a rectifiable curve connecting x′ to x. Let ε > 0 Then there exists
a y ∈ Rn \N and a curve σ connecting y to x′ such that

u(x′) ≥ u(y) +

∫
σ

ρ− ε.

Consider the composition of γ and σ. By definition of u(x) we have

u(x) ≤ u(y)

∫
γ∪σ

ρ ≤ u(x′) + ε+

∫
σ

ρ.

Since ε was arbitrary this concludes the proof.
[12.11. 2019, Lecture 9]

[13.11. 2019, Lecture 10]

9. Löwner spaces

This section follows very closely Chapter 8 of [8].

9.1. The Löwner p-function.

Definition 9.1. Let X be a topological space. A subset E is a con-
tinuum if it is connected and compact. We say that a continuum is
nondegenerate if it is not a point.

We will often tacitly assume that all our continua are nondegenerate.
For two nondegenerate continua E and F in a metric space X we define

dist(E,F ) = inf{d(x, y) : x ∈ E, y ∈ F} = min{d(x, y) : x ∈ E, y ∈ F}
and

∆(E,F ) =
dist(E,F )

min(diamE, diamF )
.

The quantity ∆(E,F ) is a measure how close the sets E and F are
which is invariant under rescaling of the metric.

Let (X,µ) be a metric measure space. For p > 1 we define the
Löwner p-function φp : (0,∞)→ [0,∞] by

(9.1) φp(t) = inf{modp(E,F ) : ∆(E,F ) ≤ t}.
Here modp(E,F ) denotes the p-modulus of the family of curves which
join E and F .

Definition 9.2. Let n > 1. We say that (X,µ) is an n-Löwner space
if φn(t) > 0 for all t > 0.
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Here n need not be an integer.

Proposition 9.3. Suppose that µ(X) < ∞, X is a Löwner n-space
and p ≥ n. Then X is a Löwner p-space.

Proof. This follows from the definition of the modulus and the Hölder
inequality ∫

X

ρn dµ ≤
(∫

X

ρp dµ

)n
p

µ(X)1−n
p .

�

Proposition 9.4. If p 6= n the space Rn is not a Löwner p-space.

Proof. This follows by scaling. We have

∆(λE, λF ) = ∆(E,F )

and
modp(λE, λF ) = λn−pmodp(E,F ).

Taking λ→ 0 for p < n and λ→∞ for p > n we get the assertion. �

Theorem 9.5. The space Rn is a Löwner n-space.

Proof. This follows from a general result for spaces with a lower volume
bound and a Poincaré inequality, see Theorem 10.11 below. Löwner’s
original four page proof [13] is also worth looking at. �

9.2. Hausdorff measure, Hausdorff dimension, topological di-
mension and Löwner spaces. Heinonen [8] defines the Hausdorff
measure as follows.

Definition 9.6. Let X be a metric space. For α > 0 and δ > 0 the
Hausdorff premeasure Hα

δ of a set E ⊂ X is defined as

Hα
δ (E) = inf{

∑
i

(diamBi)
α : E ⊂

⋃
i

Bi, Bi closed ball, diamBi ≤ δ}.

For α > 0 the Hausdorff measure is defined

Hα(E) = sup
δ>0

Hα
δ (E) = lim

δ→0
Hα
δ (E).

For α = 0 the measure H0(E) is the counting measure. The Hausdorff
dimension is defined as

dimHE = inf{α > 0 : Hα(E) = 0}.
Finally the Hausdorff content is defined as

Hα
∞(E) = inf{

∑
i

(diamBi)
α : E ⊂

⋃
i

Bi, Bi closed ball}.
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Usually one allows arbitrary closed sets in the definition of the Haus-
dorff (pre)measure rather than closed balls. This changes the value of
the Hausdorff measure at most by a factor since every closed set A is
contained in a closed ball with diamB ≤ 2 diamA.

In general the Hausdorff content can be much smaller than the Haus-
dorff measure but one easily verifies the following useful fact

(9.2) Hα
∞(E) = 0 ⇐⇒ Hα(E) = 0

Proposition 9.7. Assume that bounded sets in X have finite measure.
If there exists a constant C > 0 such that

µ(BR) ≥ C−1Rn

for all balls for radius R ≤ diamX then dimmathcalH X ≤ n.

Proof. First assume that X is bounded. Use the basic covering theorem
to find a family of closed balls Bi of radius Ri with diamBi ≤ δ which
covers X such that the ball 1

5
Bi are disjointed. Then for α > n

Hα
δ (X) ≤ δα−n

∑
i

(diamBi)
n

≤ δα−n10n
∑

(Ri/5)n

≤ Cδα−n10n
∑

: iµ(
1

5
Bi)

≤ Cδα−n10nµ(X).

The assertion follows by taking δ → 0. For general X write X as a
countable union of bounded sets X =

⋃
k∈N(X ∩B(x0, k)). �

Definition 9.8. We say that a metric measure space (X,µ) is (Ahlfors)
n-regular if there exists a C ≥ 1 and n > 0 such that

(9.3) C−1Rn ≤ µ(BR) ≤ CRn

for all closed balls BR of radius R ∈ (0, diamX).

Exercise. Prove that if µ is a Borel regular measure on a metric
space X satisfying then there is a constant C ′ such that

(C ′)−1Hn(E) ≤ µ(E) ≤ C ′Hn(E).

for all Borel sets E in X.
Hint: use approximation by open and closed sets, see [2], 2.2.2.

Proposition 9.9. If
µ(BR) ≥ C−1Rn

then dimHX ≥ n, in fact Hn(X) > 0. In particular, if (X,µ) is
Ahlfors n-regular then it has Hausdorff dimension n.
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Proof. Suppose that Hn(X) = 0 and let ε > 0. Then there exist closed
balls Bi of radius Ri Then

ε ≥
∑
i

(diamBi)
n = 2n

∑
Rn
i ≥ 2nC

∑
µ(Bi) ≥ 2nCµ(X).

Thus µ(X) = 0, a contradiction. �

The topological dimension of a space if defined recursively. One set

dim ∅ = −1.

Definition 9.10. The topological dimension n of a separable metric
space X is the smallest integer n such that for each point x ∈ X there
exist arbitrarily small neighbourhoods of x whose boundary has topolog-
ical dimension at most n− 1.

Proposition 9.11. The Hausdorff dimension of a metric space is at
least its topological dimension.

Proof. This follows from Theorem 9.12 below. �

Theorem 9.12. Let X be a metric space. Let n be an integer such
that Hn+1(X) = 0. Then the topological dimension of X is at most n.

Proof. Let x0 ∈ X. The main point is to show that

Hn+1(X) = 0 =⇒ Hn(∂B(x0, r)) = 0 for L1 a.e. r > 0.

Then the result follows easily by induction. For the proof of this im-
plication see [8]. Two comments on the proof: for n = 0 one uses the
convention that a0 = 1 if a > 0 and 00 = 0. It suffices to show that
Hn
∞(∂B(x0, r) = 0 (since this implies Hn(∂B(x0, r) = 0. �

Proposition 9.13. If (X,µ) is an n-Löewner space, then there exists
C > 0 such that

µ(BR) ≥ CRn for all balls of radius R ∈ (0, diamX).

Proof. It suffices to show the results for R < 1
2

diamX. Let x ∈ X, then
there exists a point y /∈ B(x,R). Consider a path σ which connects x
and y. Then σ contains a subpath σ1 which connects x to ∂B(x,R/4)
in B(x,R/4) and a subpath σ2 which connects ∂B(x,R/2) to ∂B(x,R)
in B(x,R) \ B(x,R/2). One easily sees that ∆(σ1, σ2) ≤ 2 and that
ρ = 4

R
1B(x,R) is σ1−σ2 admissible. Then the assertion follows from the

definitions of the modulus and the Löwner function. �

Corollary 9.14. No space can be Löwner for an exponent less than its
topological dimension.
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Corollary 9.15. An n-Löwner space of topological dimension n has
Hausdorff dimension n.

[13.11. 2019, Lecture 10]
[19.11. 2019, Lecture 11]

10. Poincaré inequalities and Löwner spaces

In this section we discuss various conditions which are equivalent
to the validity of a Poincaré inequality for all balls (under suitable
assumptions on (X,µ)) and how they are related to the Löwner condi-
tion.

This section is based on Chapter 9 of [8]. More details can be found in
[9]. Subsection10.1 is partially based on lecture notes by Urs Lang, see

https://people.math.ethz.ch/̃lang/LengthSpaces.pdf. Subsection 10.4
follows [11].

10.1. Length spaces, geodesic spaces and the Hopf-Rinow the-
orem. We begin with some purely metric properties of the space X.

Definition 10.1. Let (X, d) be a metric space.

(1) The space (X, d) is called locally compact if for every x ∈ X
there exists an r > 0 such that the closed ball B(x, r) is compact.

(2) The space (X, d) is called proper if every closed and bounded
set is compact;

(3) the space (X, d) is called quasiconvex if there exists a constant
C ≥ 1 such that for any two points x, y ∈ X there exists a curve
of length ≤ Cd(x, y) which joins x and y;

(4) the space (X, d) is called a length space if for any two points
x, y ∈ X the distance d(x, y) is the infimum of the length of all
curves connecting x and y.

(5) The space (X, d) is called geodesic is for any points x and y
there exists a curve γ which joins x and y and has length d(x, y).
Such a curve is called a (lenth-minimizing) geodesic.

The following lemma is taken from lecture notes by Urs Lang.

Lemma 10.2 (Mid-points). Let X be a complete metric space.

(1) X is length space if and only if for all x, y ∈ X and every ε > 0
there exists a z ∈ X such that

d(x, z), d(z, y) ≤ 1

2
d(x, y) + ε;
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(2) X is a geodesic space if and only if for all x, y ∈ X there exists
a z ∈ X such that

d(x, z), d(z, y) ≤ 1

2
d(x, y).

Proof. Necessity is easy in both cases (and does not require complete-
ness): take a suitable rectifiable curve which connects x and y, pa-
rametrize by arc-length and define z to be the mid-point of the curve.
For sufficiency define a Lipschitz curve γ : [0, 1] → X connecting x
and y as follows.First definine γ on the dense set of dyadic points
{j2−k : k ∈ {1, 2, . . .}, j = {1, . . . , 2k−1}} by iteratively applying the
condition (for the assertion about length space use the condition with
εk = 2−kε). The function thus obtained is Lipschitz and hence has
a Lipschitz extension which is easily seen to have the desired proper-
ties. �

Theorem 10.3 (Hopf-Rinow theorem for length spaces). Assume that
X is a length space which is locally compact and complete. Then

(1) X is proper;
(2) X is geodesic

A locally compact length space need not be proper or geodesic. Con-
sider the set B(0, 1) \ {0} in Rn. Then there is no geodesic from x to
−x.

Proof. This proof is taken from Lecture notes by Urs Lang.
To show that X is proper it suffices to show that for every z ∈ X the
closed balls B(z, r) are compact for all r. Fix z and let I = {r ≥ 0 :
B(z, r) is compact}. It suffices to show that I is open and closed in
[0,∞). It is easy to see that local compactness implies that I is open
in [0,∞). Thus it remains to show that [0, R) ⊂ I implies [0, R] ⊂ I
for all R > 0. We show sequential compactness of B(z,R).

Let yj be a sequence in B(z, R). Choose a decreasing sequence εi
converging to 0, with εi < R. Since X is a length space, for all i, , j
there exists an xi ∈ B(z,R − εi

2
) with d(xij, yj) ≤ εi. The sequence

x1
j has a convergent subsequence x1

j(1,k). Consider the corresponding

sequence x2
j(1, k) and pick a convergent subsequence x2

j(2,k).

Continue in this manner. Finally, put j(k) := j(k, k) for k ∈ N ;
the sequence xij(k), k ∈ N converges for all i ∈ N . We claim that
the associated sequence yj(k) is Cauchy. Let ε > 0 and choose i with
εi ≤ ε. Then d(xij(k), x

i
j(l)) ≤ ε for k, l sufficiently large. It follows that

d(yj(k), yj(l)) ≤ d(yj(k), x
i
j(k)) + d(xij(k), x

i
j(l)) + d(xij(l), yj(l)) ≤ εi + ε +
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εi ≤ 3ε. Since X is complete, yj(k) converges. This shows that every

sequence yj in B(z, R) has a convergent subsequence.
The fact that X is geodesic now follows from Lemma 10.2 and com-

pactness. �

Proposition 10.4. If (X, d) is quasiconvex then there exist a new met-
ric din such that (X, din) is a length space and d ≤ din ≤ Cd. In partic-
ular (X, d) is bi-Lipschitz equivalent to a length space. If, in addition,
(X, d) is complete and locally compact then X, din) is geodesic space.

Proof. Define the inner metric by

din(x, y) = inf{lengthd(γ) : γ is a curve which joins x and y.}
By quasiconvexity we have d ≤ din ≤ Cd. It is easy to see that din

satisfies the triangle inequality. Hence din is a metric.
If X is complete in the fact that X is a length space follows easily

from Lemma 10.2. In general we can argue as follows. We need to show
that for any ε > 0 and any x, y ∈ X there exists a curve γ : [0, 1]→ X
with γ(0) = x and γ(1) = y and

lengthdin(γ) ≤ din(x, y) + ε.

By definition there exists a curve γ : [a, b]→ X such that

lengthd(γ) ≤ din(x, y) + ε.

Let a = t1 < t1 < . . . < tN+1 = b and Ii = [ti, ti+1]. It follows from the
definition of the length that

lengthdin(γ) =
n∑
i=1

lengthdin(γIi).

The definition of din implies that

di(γ(ti), γ(ti+1) ≤ lengthdin(γIi).

Thus
n∑
i=1

di(γ(ti), γ(ti+1) ≤ din(x, y) + ε.

Taking the supremum over all N and all choices t1, . . . tN+1 we get the
desired assertion.

To see that (X, din) is geodesic use the Hopf-Rinow theorem. �

Proposition 10.5. For each λ ≥ 1 there exist a > 1 and M ≥ 1
with the following property. Let A be an open ball in a geodesic space
(X, d). Then A satisfies an (λ,M, a)-chain condition (with respect to
the concentric ball B0 = 1

2λ
A ) in the sense of Definition 5.1.
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For a possible choice of a and M see (10.1) and (10.2) below.

Proof. By scaling the metric if needed, we may assume that A = B =
B(x0, 1). Let x ∈ B and set s = d(x, x0). Let γ : [0, s] → X be
a geodesic from x0 to x, parametrized by arc-length. Then we have
d(x0, γ(t)) = t. We consider balls

Bi = B(γ(ti), ri)

With

r0 =
1

2λ
, t0 = 0,

ri = a−ir0, ti+1 − ti = ciri with ci ∈ (0, 1].

We want

ti = s for i ≥ i0

. Thus we take

ci = c for i ≤ i0 − 1 and ci = 0 for i ≥ i0.

Note that Bi ∩Bi+1 contains a ball for radius ri+1/2 = (2a)−1ri and is
contained in a ball for of radius ri + ri+1 = (1 + a−1)ri.

Then the sequence of balls satisfies the (λ,M, a) chain condition if

(1) ti + λri ≤ 1;
(2) 2M−1a−i ≤ ri ≤ 2Ma−i;
(3) M ≥ 2a1 + a−1 = 2a+ 2.

The second condition is satisfied if

M ≥ 4λ.

We have, for i ≤ i0

ti = c
1

2λ

1− a−i

1− a−1
.

Thus the first condition is equivalent to

c
1

2λ

1− a−i

1− a−1
+

1

2
a−i ≤ 1.

A sufficient condition is

c
1

2λ

1

1− a−1
≤ 1.

Since 0 < c ≤ 1 this condition in turn is satisfied if we choose a such
that

(10.1)
1

2λ

1

1− a−1
= 1



54

In addition we want that

s = ti0 = c
1

2λ

1− a−i0
1− a−1

= c(1− a−i0).

Choose i0 such that

1− a−i0+1 < s ≤ 1− a−i0

and set
c =

s

1− a−i0
.

Then all conditions are satisfied if we choose a as in (10.1) and

(10.2) M = max(2a+ 2, 4λ).

�

[19.11. 2019, Lecture 11]
[20.11. 2019, Lecture 12]

10.2. The Poincaré inequality and equivalent conditions. Let
(X,µ) be a metric measure space. Throughout the rest of this section
we assume that

0 < µ(B) <∞
for all balls.

Definition 10.6. Let (X,µ) be a metric measure space and let p, q ∈
(1,∞). We say that X admits weak (p, q) Poincaré inequality if there
are constants 0 < λ ≤ 1 and C > 0 such that

(10.3)

 –

∫
λB

|u− uB|p dµ

1/p

≤ C diamB

 –

∫
B

ρq dµ

1/q

for all balls B in X, all bounded continuous functions u and all upper
gradient ρ of u. We say that X satisfies a Poincaré inequality if the
above statement holds with λ = 1.

In the following we focus on sufficient and necessary conditions for
the validity of a (weak) (1, p) Poincaré inequality. For a locally inte-
grable function f : X → R we define the the Riesz potential

(10.4) (I1f)(x) :=

∫
X

d(x, z)f(z)

µ(B(x, d(x, z))
dµ(z),

the localized Riesz potential for a subset A

(10.5) (I1,Af)(x) :=

∫
A

d(x, z)f(z)

µ(B(x, d(x, z))
dµ(z)
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and the restricted maximal function

(10.6) (MRf)(x) := sup
0<r≤R

–

∫
B(x,r)

|f(z)| dµ(z).

Definition 10.7. Let p ∈ [1,∞). We consider the following five con-
ditions which are supposed to hold for all balls all continuous functions
u : X → R and all upper gradient ρ of u. The constants C1, . . . C6

below are assumed to be independent of B, u, ρ and the points x and
y.

(1) There exists a C1 > 0 such that for all x ∈ 1
2
B

|u(x)− uB|p ≤ C1(diamB)p−1(I1,Bρ
p)(x)

;
(2) There exist C2 > 0 and C3 ≥ 1 such that for all x, y ∈ (4C3)−1B:

|u(x)− u(y)|p ≤ C2|x− y|p−1((I1,Bρ
p)(x) + (I1,Bρ

p)(y));

(3) There exist constants C4 > 0, C5 ≥ 1 and C6 ≥ 1 such that for
all x, y ∈ (4C6)−1B

|u(x)− u(y)|p ≤ C4|x− y|p((MC5|x−y|ρ
p)(x) + (MC5|x−y|ρ

p)(y);

(4) X admits a a weak (1, p)-Poincaré inequality;
(5) X admits a (1, p)-Poincaré inequality.

Theorem 10.8. If (X,µ) is doubling then we have

(1) =⇒ (2) =⇒ (3) =⇒ (4).

If, in addition, X is geodesic then

(4) =⇒ (5) =⇒ (1).

All implications are quantitative in the usual sense.

Proof. We only sketch the argument and refer to [8] for the details.
(1)=⇒ (2): This follows with C2 = 3 from the triangle inequality

|u(x)− u(y)|p ≤ 2p−1(|u(x)− uBx|p + |u(y)− uBx|p)

and application of (1) on Bx = B(x, 2d(y, x)).
(2)=⇒ (3): We estimate the Riesz potential in terms of the max-

imal function by summing over Aj := {z : 2−j−1R ≤ d(z, x) ≤ 2−j}
from j = −1 to ∞. Here the doubling property is used. This gives
and estimate for the form dp−1(x, y)R . . .. Now if d(x, y) ≥ (100C3)−1R
we are done. If d(x, y) < (100C3)−1R we apply (2) to the smaller ball
B̃ = B(x, 4C3d(y, x)) ⊂ B.
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(3)=⇒ (4): This is the most delicate estimate. One can actually
show a weak (p, p)-Poincaré inequality. One first shows the correspond-
ing weak-Lp estimate and then uses a truncation argument similar to
the one in Remark 4.4 adjusted for upper gradients, see the proof of
Lemma 5.15 in [9] for the details. For truncation in the context of
upper gradients see Proposition 10.9 below.

(4)=⇒ (5): This follows from Theorem 5.2 and Proposition 10.5
(note that the λ in Theorem 5.2 corresponds to λ−1 in the definition
of the weak Poincaré inequality).

(5)=⇒ (1): Let x ∈ 1
2
B. Pick y ∈ B with d(x, y) = 1

4
R where R

is the radius of B. Set r1 = 1
2
d(x, y). Along the geodesic from x to

y pick points xi with d(x, xi) = ri := 2−i+1r1 and consider the balls
Bi = B(xi,

ri
2

). Since u is continuous we have u(x) = limi→∞ uBi and

to estimate the telescoping sum for u(x)− uB we use that Bi+1 ⊂ 3
2
Bi,

Jensen’s inequality and the Poincaré inequality. Finally we use that
d(x, xi) ≥ 1

4
ri for x ∈ 3

2
Bi and the only a fixed number of the ball 3

2
Bi

intersect non-trivially. �

Proposition 10.9. Let (X, d) be a metric space.

(1) Let U1 and U2 be open subsets. Suppose that v : U1 ∪U2 → R is
continuous and that ρi is and upper gradient of v|Ui for i = 1, 2.
Extend ρ1 by zero to U2 \ U1 and ρ2 by zero to U1 \ U2. Then
ρ := max(ρ1, ρ2) is an upper gradient for v.

(2) Let W ⊂ X be open, let A ⊂ W be closed and let U ⊃ A
be open. Assume that v : W → R is continuous and locally
constant on W \ A. If ρ is an upper gradient for v the ρ1U is
also an upper gradient for v.

Proof. Let γ : [a, b]→ X be a rectifiable curve such that
∫
γ
ρ <∞. We

want to show that

|v(γ(b))− v(γ(a))| ≤
∫
γ

ρ.

To see this define γτ = γ[a,τ ] and

T := sup{t ∈ [a, b] : |v(γ(τ))− v(γ(a))| ≤
∫
γτ

ρ for all τ ∈ [a, t]}.

It follows from the definition of T that

|v(γ(τ))− v(γ(a))| ≤
∫
γτ

ρ for all τ ∈ [a, T ).

Since both sides of the inequality are continuous in τ the inequality
also for all τ ∈ [a, T ]. If T = b we are done. Thus assume T < b and,
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without loss of generality, γ(T ) ∈ U1. Then there exists and ε > 0 such
that γ([T, T + ε]) ⊂ U1. Thus

|v(γ(τ)− v(γ(T ))| ≤
∫
γ[T,τ ]

ρ1 ≤
∫
γ[T,τ ]

ρ

for all τ ∈ [T, T + ε]. Hence by the triangle inequality

|v(γ(τ)− v(γ(a))| ≤
∫
γτ

ρ

for all τ ∈ [T, T + ε]. This contradicts the definition of T .
To prove the second assertion note that a locally constant function

has 0 as an upper gradient and apply the first assertion with U1 = U ,
U2 = W \ A, ρ1 = ρU and ρ2 = 0. �

[20.11. 2019, Lecture 12]
[26.11. 2019, Lecture 13]

10.3. The Poincaré inequality and Löwner spaces. This subsec-
tion is based on [9]. Recall from Definition 9.8 that the space (X,µ) is
n-regular if there exists C ≥ 1 and n ≥ 1 such that

C−1Rn ≤ µ(BR) ≤ CRn

for all ball BR with radius R ∈ (0, diamX).
The purpose of this subsection is to prove the following result.

Theorem 10.10. Suppose that (X,µ) is proper, n-regular and quasi-
convex. Then X is an n-Löwner space if and only if X admits a weak
(1, n)-Poincaré inequality.

We first show that a weak (1, n)-Poincaré inequality is sufficient.

Theorem 10.11 ([9], Thm. 5.7). Let (X,µ) be a proper, doubling and
quasiconvex metric measure space. Assume that for some n > 1 and
some C > 0 we have the lower mass bound

(10.7) µ(BR) ≥ 1

C
Rn for all balls of radius R < diamX.

If X admits a weak (1, n)-Poincaré inequality then X is an n-Löwner
space.

This implies in particular that Rn is an n-Löwner space, see Theo-
rem 9.5 above.

The proof of Theorem 10.11 is based on two ideas:

(1) A lower bound for the Hausdorff content of E and F and a
Poincaré inequality imply a lower bound on the capacity.
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(2) The one-dimensional Hausdorff content of continuum is at least
its diameter

The following result gives a precise formulation of the first idea.

Theorem 10.12 (’Large Hausdorff content implies large capacity’, see
[9], Thm. 5.9). Suppose that (X,µ) is a doubling space where (10.7)
holds for some n ≥ 1. Suppose further that X admits a weak (1, p)-
Poincaré for some p ∈ [1, n]. Let E,F be two compact subsets of a ball
BR in X and assume that for some s ∈ (n− p, n] and some λ ∈ (0, 1]
we have

(10.8) min(Hs
∞(E),Hs

∞(F )) ≥ λRs−nµ(BR).

Then there is a constant C ′ ≥ 1, depending only on s and on the data
associated with X such that

(10.9)

∫
C′BR

ρp dµ ≥ 1

C ′
λµ(BR)R−p

whenever u is a continuous function on the ball C ′BR with u|E ≤ 0 and
u|F ≥ 1, and ρ is an upper gradient of u in C ′BR.

The theorem can be seen as a quantitative statement of the following
fact in Rn. If p ∈ (1, n] then the set of points where a function in W 1,p

is not well-behaved has p-capacity zero and hence Hausdorff dimension
n− p (see, for example, [19], Theorem 2.6.16 and Section 3).

The reason that Theorem 10.12 is formulated in terms of an indi-
vidual function u and not in terms of capacity is that we have defined
capacity by using arbitrary test functions, while the Poincaré inequality
if required for continuous functions only.

We will also use the following refinement of Theorem 8.9. We define
capL

p (E,F ;X) and capc
p(E,F ;X) in the same way as the capacity, but

restricting to Lipschitz functions or continous functions u, respectively.

Theorem 10.13. Suppose that X is quasiconvex and proper.Let E and
F be disjoint closed sets in X with compact boundaries. Then

capc
p(E ∩B,F ∩B;B) ≤ capL

p (E ∩B,F ∩B;B) ≤ modp(E,F )

for each ball B in X.

We only need the bound capc
p(E ∩ B,F ∩ B;B) ≤ modp(E,F ) and

for this bound quasiconvexity can be replaced by the weaker condition
of ϕ-convexity, see [9], Section 2.15 and Proposition 2.17.

Proof. See the proof of Proposition 2.17 in [9]. The main idea is to
define u as in (8.12), but with ρ replaced by an approximation by
bounded functions. �



59

Finally we make use of a standard comparison of diameter and one-
dimensional Hausdorff content for continua.

Proposition 10.14. Let E be a continuum in a metric space X. Then

(10.10) H1
∞(E) ≥ diamE.

Proof. We may assume diamE > 0 since otherwise there is nothing
to show. Since E is compact there exist x, y ∈ E such that d(x, y) =
diamE. Assume that H1

∞(E) < diamE. Consider the map z 7→
f(z) = d(z, x). Then f is a 1-Lipschitz function and in particular f
maps a closed ball in X to an interval of length no exceeding diamB.
Thus

L1(f(E)) ≤ H1
∞(E) < diamE.

Hence there exists an r ∈ (0, diamE) such that r /∈ f(E). Therefore
E does not intersect the sphere {z ∈ X : d(z, x) = r} and hence E
is the disjoint union of the compact sets E ∩ B(x, r) and E \ B(x, r).
Both sets are nonempty since the former set contains x and the latter
contains y. This contradicts the connectedness of E. �

Proof of Theorem 10.11. Let E and F be two disjoint continua in X.
We write d = dist(E,F ) and assume without loss of generality that

δ = diamE = min(diamE, diamF ).

Fix t such that

t ≥ ∆(E,F ) =
dist(E,F )

min(diamE, diamF )
=
d

δ
.

There exist a point x ∈ E such that the closed ball B̄(x, d) meets F .
Then consider the ball

B = B(x, d+ 2δ).

The compact sets E and F ′ := F ∩ B̄(x, d + δ) both lie in B. We
claim that they both have Hausdorff 1-content at least δ. For E this
follows from Proposition 10.14. If F ′ = F then the proposition also
applies to F ′. So assume F \ F ′ 6= ∅. To see that H1

∞(F ′) ≥ δ we can
argue as in the proof or Proposition 10.14. Define f(z) = d(z, x). If
H1
∞(F ′) < δ then L1(f(F ′)) < δ and hence there exists r ∈ (d, d + δ)

such the sphere {z : d(z, x) = r} does not intersect F ′ and hence does
not intersect F . Thus F is the disjoint union of the compact nonempty
sets F∩B(x, r) ⊃ F∩B(x, d) and F \B(x, r) ⊃ F \F ′. This contradicts
the connectness of F .

Now write

δ =
δ(d+ 2δ)n−1

µ(B)
(d+ 2δ)1−nµ(B).
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and apply Theorem 10.13 and Theorem 10.12 with p = n, s = 1 and
λ = δ(d+ 2δ)n−1/µ(B) to get

modn(E,F ) ≥ capc
n(E,F ;C ′B) ≥ 1

C ′
δ(d+ 2δ)n−1

µ(B)
µ(B)(d+2δ)−n ≥ 1

C ′
1

t+ 2
.

Thus Theorem 10.11 follows. �

Proof of Theorem 10.12. The main idea is to use the Poincaré inequal-
ity on dyadic balls and the basic covering argument. For a first read-
ing one may simplify the algebra by taking R = 1. This is actu-
ally no loss of generality since the Löwner function and the quantity
inf{r−nµ(x, r) : x ∈ X, r > 0} are invariant if we replace d by R−1d
and µ by R−nµ.

Let u be a continuous function on the ball BC′R where C ′ = 10λ−1

and λ is the constant in the weak Poincaré inequality (10.3). Assume
that u|E ≤ 0 and u|F ≥ 1 and the ρ be an upper gradient of u in BC′R.

Case 1: There exist points x ∈ E and y ∈ F such that

|u(x)− uB(x,R)| ≤
1

5
and |u(y)− uB(y,5R)| ≤

1

5
.

Then

1 ≤ |u(x)− u(y)| ≤ 1

5
+ |uB(x,R) − uB(y,5R)|+

1

5
.

Note that B(x,R) ⊂ B(y, 5R) ⊂ C ′BR by our choices. Thus

1 ≤ C –

∫
B(x,R)

|u− uB(y,5R)| dµ.

Using that B(y, 5R) ⊂ B(x, 7R) and the fact that X is doubling we
deduce that

1 ≤ C –

∫
B(y,5R)

|u− uB(y,5R)| dµ ≤ CR

 –

∫
C′BR

ρp dµ

1/p

.

Thus (10.9) holds.
By symmetry of the problem in E and F it thus suffices to consider
Case 2: For all points in x ∈ E we have

1

5
≤ |u(x)− uB(x,R)|.
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Since u is continuous this implies that with Bj(x) = 2−jB(x,R)

1 ≤
∞∑
j=0

|uBj(x) − uBj+1
(x)| ≤ C

∞∑
j=0

–

∫
Bj(x)

|u−Bj(x)| dµ

≤
∞∑
j=0

(2−jR)

 –

∫
C0Bj(x)

ρp dµ


1/p

.

We claim that there exists an ε0 = ε0(s, n, p) > 0 such that for each x
there exists a jx with

(10.11)

∫
C0Bjx (x)

ρp dµ ≥ ε0R
n−s−p(2−jxR)s−nµ(Bjx(x)).

Indeed, otherwise we get

1 ≤
∞∑
j=0

ε
1/p
0 (2−j)(s−n+p)/p) ≤ C(s, n, p)ε

1/p
0

since s > n− p.
By the basic covering theorem there exist countably many disjoint

balls Bk = B(xk, rkR) such that E ⊂
⋃
k 5Bk and

µ(Bk)(rkR)s−n ≤ CRs+p−n
∫
Bk

ρp, dµ.

Hence

λRs−nµ(BR) ≤ Hs
∞(E) ≤

∑
k

(5rkR)s ≤ C
∑
k

(rkR)s−n(rkR)n

≤ C
∑
k

(rkR)s−nµ(Bk) ≤ CRs+p−n
∫
C′BR

ρp dµ,

as desired. �

[26.11. 2019, Lecture 13]
[3.12. 2019, Lecture 14]

We now turn to the implication that Löwner spaces have a (1, n)-
Poincaré inequality.

Theorem 10.15 ([9], Thm. 5.12). Suppose that X is a locally com-
pact, n-regular Löwner space. Then X admits a weak (1, n)-Poincaré
inequality.

In view of Proposition 9.13 the assumption ’n-regular’ can be re-
placed by an upper mass bound.
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Proof. The results follows from the implication (3) =⇒ (4) in Theo-
rem 10.8 and Lemma 10.16 below. �

Lemma 10.16 ([9], Lemma 5.17). Suppose that X is an n-regular
Löwner space. Then there exist constants C4 > 0, C5 ≥ 1 and C6 ≥ 1
such that for all x, y ∈ (4C6)−1B we have

(10.12) |u(x)−u(y)|n ≤ C4|x− y|n((MC5|x−y|ρ
n)(x) + (MC5|x−y|ρ

n)(y)

Lemma 10.17 (Variant of [9], Lemma 3.17). Let X be an n-regular,
n-Löwner space . For M1 ≥ 1 and M2 > 0 there exist M4 ≥ 1, M5 ≥ 1
and ρ > 0, depending only on M1, M2 and the data of X (i.e. the
Löwner function φn and M := sup{µ(B(x,R)/Rn, Rn/µB(x,R) : x ∈
X,R > 0}) with the following property.

If x ∈ X, r > 0 and if E and F be continua in B(x,M1r)\B(x, r/M1)
with diamE ≥M2r, diamF ≥M2r. Then the families of curves

Γ′ = {γ : γ rectifiable curve joining E and F in B(x,M4r) \B(x, r/M4) }
and

Γ′′ = {γ ∈ Γ′ : length(γ) ≤M5M4r}
satisfy

(10.13) modnΓ′ = modn(E,F ;B(x,M4r) \B(x, r/M4)) ≥ 2ρ,

(10.14) modnΓ′′ ≥ ρ

The same conclusion holds if we replace B(x,M1r) \ B(x,M1/r) by
B(x,M1R) and B(x,M4r) \B(x, r/M4) by B(x,M4r)

Proof of Lemma 10.17. Let

Γ := {γ : γ rectifiable curve joining E and F .}
Note that dist(E,F ) ≤ diamB(x,M1r) ≤ 2M1r. Thus

∆(E,F ) ≤ 2M1

M2

.

Hence the Löwner property implies that

modnΓ ≥ φn(
2M1

M2

).

Set

ρ =
1

4
φn(

2M1

M2

).

Let

Γ+ = {γ : γ rectifiable curve joining E and F , γ \B(x,M1r) 6= ∅.}
Γ− = {γ : γ rectifiable curve joining E and F , γ ∩ B̄(x,M1r) 6= ∅.}
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Then Γ ⊂ Γ′ ∪ Γ+ ∪ Γ− and hence

4ρ ≤ modnΓ ≤ modnΓ′ + modnΓ+ + modnΓ.

Now every curve in Γ+ contains a subcurve which connects ∂B(x,M1r)
and ∂B(x,M4r) and thus

modnΓ+ ≤ modnΓ(∂B(x,M1r), ∂B(x,M4r);X) ≤ C ln1−n M4

M1

.

Choose M4 so large that the right hand side is ≤ ρ. Together with the
analogous bound for modnΓ− we get (10.13).

To prove (10.14) it suffices to show that we can choose M5 so large
that modn(Γ′′ \ Γ′) ≤ ρ. consists of curve of length at least M5M4r.
Thus ρ = (M5M4r)

−1 is admissible of Γ′′ \ Γ′. Hence

modn(Γ′′ \ Γ′) ≤M−n
5 (M4r)

−nµ(B(x,M4r) ≤ CM−n
5

since X is n-regular. Choose M5 so large that the right hand side does
not exceed ρ. This completes the proof. �

Lemma 10.18 ([9], Thm. 3.13). Let X be an n-Löwner space of Haus-
dorff dimension n > 1 which satisifes

µ(BR) ≤ CRn

for all balls BR of radius R. Then X is quasiconvex.

Even more is true: two points x, y ∈ X \ B(z, r) can be connected
by a rectiable curve in X \B(z, r/C).

Proof. Let x, y ∈ X and r = d(x, y). One inductively constructs a
family of 2k balls of radius 4−k which includes B(x, 4−k) and B(y, 4−k)
such that the balls a connected by curves whose total length does not
exceed C

∑k−1
j=0 2j4−j ≤ C, see the proof of Thm 3.13 in [9]. By passage

to the limit one finds the desired curve connecting x and y.
Here is a sketch of the constrruction. For first step r1 = 1

4
r, E1 =

B(x, r1) and F1 = B(y, r1). It follows from Lemma 10.17] that the
family of curves which connect E1 and F1 in B(x, 8M4r1) and has
length not exceeding 8M5M4r1 has positive modulus. In particular
there exists such at curve Γ. Now take x2 ∈ E1 ∩ Γ and y2 ∈ F1 ∩ Γ.
Then d(x1, x2) ≤ r1 and d(y1, y2) ≤ r1

In the second repeat the argument for the pairs (x1, x2) and (y1, y2)
and r2 = 1

4
r1. The proceed by induction. �

Proof of Lemma 10.16. See the proof of Lemma 5.17 in [9]. I am not
quite sure how to derive (5.21) from a ’(the proof of) Lemma 3.17 in
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[9]’ by choosing C2 surfficiently large, so in class I used the following
slightly different definition of the annuli Aj, namely

Aj = B(x, 2−2jd) \B(x, 2−2j−1d).

Setting Bj = B(x, 2−2jd) we can apply Lemma 10.17 and we get (5.21)
in [9] where Γj now consists of all curves in the family (γj, γj+1,M4Bj)
whose length does not exceed M5M42−2jd. �

[3.12. 2019, Lecture 14]
[10.12. 2019, Lecture 15]

10.4. The Poincaré inequality in the first Heisenberg group.
This is based on [11], but simplified for the first Heisenberg group. A
alternative short and elegant proof of the 1 − 1 Poincaré inequality
for the first Heisenberg group is due to Varopoulos [18], see also [7],
Proposition 11.17, pp. 68–69 or [15], p. 461.

Change in notation: our XR is −XR in [11].

Convolution in Lie groups. Let G be a group. We define left- and right
translation by

`xy = xy, rxy = yx ∀x, y ∈ G.
Let M be a smooth manifold. As usual we identify tangent vectors

with first order differential operators. The commutator of two smooth
vectorfields is defined by

[X, Y ]f = XY f − Y Xf
for all smooth function f : G → R. The push-forward of a smooth
tangent vector field is given by

ϕ : M →M, [ϕ∗X](ϕ(y)) = dϕ(y)X(y).

The pull-back of a smooth k-form is defined as

(ϕ∗θ)(y)(Y1, . . . , Yk) = θ(ϕ(y), ϕ∗Y1, . . . , ϕ∗Yk).

Definition 10.19. A group G is a (finite-dimensional) Lie group if it
is a smooth (finite-dimensional) manifold and the map

G×G 3 (x, y) 7→ xy−1 ∈ G
is smooth. We denote by

g := TeG

the tangent space of G at the identity.
A vectorfield X on a Lie group is left-invariant or right-invariant if

(`x)∗X = X or (rx)∗X = X for all x ∈ G. Similarly a k-form on G is
left-invariant or right-invariant if (`x)

∗α = α or (rx)
∗α = α.
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A Lie group is unimodular if it has a nontrivial volume form which
is left- and right-invariant.

Note that for a Lie group the maps `x and rx are smooth diffeomorm-
phisms.

Proposition 10.20. For each V ∈ g there exists a unique left-invariant
vectorfield XV and a unique right-invariant vector-field YV such that

X(e) = Y (e) = V.

Similarly for a (constant) k-form α ∈ Λkg there exist unique left- and
right-invariant k-forms β, γ ∈ Ωk(G) such that

β(e) = γ(e) = α.

A left-invariant vectorfield is generated by a family of right-translations.
More precisely let η : (−a, a)→ G be a smooth curve with η(0) = e and
η′(0) = V . Then the vectorfield defined by

X(y) =
d

dt t=0
f(rη(t)y)

is left-invariant.
If X is a left-invariant vectorfield and Y is a right-invariant vector-

field then
[X, Y ] = 0.

Define reflection R given by Rf(x) = f(x−1). If X is left-invariant
then the vectorfield XR defined by

XRF = −RXRf
is right-invariant and XR(e) = X(e).

From now on we assume that G is unimodular and we will always
equip G with left- and right-invariant (Haar) measure µ. Note that µ
is also invariant under the inversion map I(x) = x−1.

Definition 10.21. For a continuous function f : G → R and a con-
tinuous function g : G→ R with compact support we define the convo-
lution

(10.15) (f ∗ g)(x) =

∫
G

f(xy−1)g(y)µ(dy).

Proposition 10.22. If f and g are in addition C1 then for all left-
invariant vectorfields X and all right-invariant vectorfields Y

X(f ∗ g) = f ∗Xg, Y (f ∗ g) = Y f ∗ g
and

f ∗XRg = (Xf) ∗ g.
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Moreover Young’s inequality holds for all p ∈ [1,∞]

‖f ∗ g‖Lp ≤ ‖f‖Lp‖g‖L1 .

The first Heisenberg group H1. We recall from the introduction the
exponential map

exp : R3 → R3×3

given by

expx = exp

0 x1 x3

0 0 x2

0 0 0

 =

1 x1 x3 + 1
2
x1x2

0 1 x2

0 0 1


Note exp is a diffeomorphism from R3 to a 3× 3 matrices of the form
Id + upper triangular matrices.

Then the first Heisenberg group H1 can be identified with R3 together
with the group operation ∗ defined by

exp(x ∗ y) = exp x exp y.

A short calculation shows that

x ∗ y = (x1 + y1, x2 + y2, x3 + y3 +
1

2
(x1y2 − y1x2)).

Note that 0 ∗ x = x ∗ 0 = x and

x ∗ (−x) = 0.

Thus 0 is the neutral element in the group and inverse x−1 agrees with
−x. As before the left-translation and right-translation are defined by
lxy = x ∗ y = ryx for all x, y ∈ H1. A basis of left-invariant vector-field
is given by

X1(x) =
∂

∂x1

− 1

2
x2

∂

∂x3

, X2(x) =
∂

∂x2

+
1

2
x1

∂

∂x3

, X3(x) =
∂

∂x3

.

The dual basis of differential forms is given by

θ1 = dx1, θ2 = dx2, θ3 = dx3 +
1

2
(x2dx1 − x2dx1).

Then
[X1, X2] = X3, dθ3 = −θ1 ∧ θ2.

For the above basis we obtain

XR
1 (x) =

∂

∂x1

+
1

2
x2

∂

∂x3

, XR
2 (x) = − ∂

∂x2

− 1

2
x1

∂

∂x3

, XR
3 (x) =

∂

∂x3

.

In particular we have

XR
1 = X1 + x2X3, XR

2 = X2 − x1X3, XR
3 = X3
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and
[XR

1 , X
R
2 ] = −XR

3 .

Moreover
[Xj, X

R
k ] = 0 for all j and k.

We have already seen that the Lebesgue measure µ = L3 is biinvari-
ant. Alternative view point The volume form is given by

ω = θ1 ∧ θ2 ∧ θ3 = θR1 ∧ . . .
is left- and right-invariant.

We also reacall the definition of dilation

δt(x) = (tx1, tx2, t
2x3)

and the fact that δt(x ∗ y) = δtx ∗ δty. The Jacobian of δt with respect
to Lebesgue measure is Jδt = t4. We define

Itϕ := t−4ϕ ◦ δt.
Then

‖Itϕ‖L1 = ‖ϕ‖L1 .

Theorem 10.23. There exists a constant C such that for all smooth
f : H1 → R we have

min
c∈R

∫
Bx,r/2

|f − c|2 ≤ Cr

∫
Bx,2r

2∑
i=1

|Xif |2 dµ.

Overview of the proof. By translation and dilation by δr we may as-
sume without loss of generality that x = 0 and r = 1.

The proof is based three ideas

• The quantity

inf
γ∈R

∫
B 1

2

|f ∗ ϕ− γ|2 dµ

can be estimated by the usual Poincaré inequality in R3 which
involves the full gradient of f ∗ ϕ.
• The full gradient of f∗ϕ can be estimated in terms of ‖X1f‖L2(B2)+
‖X2f‖L2(B2).
• We have

f − f ∗ ϕ =

∫ 1

0

d

dt
(f ∗ Itϕ) dt.

This is a continuous version of the telescoping sum trick f(x)−
fB1 =

∑∞
i=0 uB2−i

.

�



68

[10.12. 2019, Lecture 15]
[11.12. 2019, Lecture 16]

To carry out this argument we use the following result which will be
proved below.

Lemma 10.24 (Control of all derivatives by horizontal derivatives,
[11], Lemma 3.1.). For every j ∈ {1, 2, 3} and every i ∈ {1, 2} there
exists a differential operators Dij such that

(10.16) Xj(f ∗ ϕ) =
2∑
i=1

Xif ∗Djiϕ ∀f ∈ C∞(H), ∀ϕ ∈ C∞c (H)

For each i ∈ {1, 2} there exists a differential operator D(i) such that
for any ϕ ∈ C∞c (H) the functions ϕ(i) := D(i)ϕ satisfy

(10.17)
∂

∂t
f ∗ Itϕ =

2∑
i=1

(Xif) ∗ Itϕ(i).

Proof of Theorem10.23 . Using left translation and dilation it suffices
to show that

(10.18) min
γ∈R

∫
B1/2

|f(x)− γ| dx ≤ C

∫
B2

2∑
i=1

|Yif(x)|2 dx

where B1/2 and B2 are balls with center 0.
Let ϕ ∈ C∞c (B1) we a standard mollifying kernel.For a continuous

function f : H→ R we have

lim
t→0

f ∗ Itϕ = f

Thus we get

‖f − f ∗ ϕ‖L2(B 1
2

) ≤
∫ 1

0

‖ d
dt
f ∗ Itϕ‖L2(B 1

2
) dt.

The second assertion in Lemma 10.24 and Young’s inequality imply
that

‖f − f ∗ ϕ‖2
L2(B 1

2
) ≤

2∑
i=1

‖Xif‖2
L2(B2).

On the other hand we use the usual Poincaré inequality to estimate
‖f ∗ ϕ − (f ∗ ϕ)B1/2

‖L2(B1/2) in terms of
∑3

j=1 ‖Xj(f ∗ ϕ)‖B 1
2

. Now

the assertion follows from the first assertion in in Lemma 10.24 and
Young’s inequality. �
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Proof of Lemma 10.24. In view of the identity f ∗XRg = Xf ∗g which
holds for left-invariant vectorfields the result follows directly from the
following lemma. �

Lemma 10.25. (1) For j = 1, 2, 3 and i = 1, 2 there exists differ-
ential operators Dij such that

(10.19) Xjϕ =
2∑
i=1

XR
i Dijϕ ∀ϕ ∈ C∞c (G).

(2) For i = 1, 2 there exists differential operators D(i) such that for
any ϕ ∈ C∞c (G)

∂

∂t
Itϕ =

2∑
i=1

XR
i Itϕ

(i)

where ϕ(i) = D(i)ϕ.

Proof.

(
d

dt
Itϕ)(x) =

d

dt
t−4ϕ(t−1x1, t

−1x2, t
−2x3)

=− 4t−5ϕ(tx1, tx2, t
2x3)

−
2∑
i=1

t−6xi(∂iϕ)(t−1x1, t
−1x2, t

−2x3)− 2t−7x3(∂3ϕ)(t−1x1, t
−1x2, t

−2x3)

=− 4t−5ϕ(tx1, tx2, t
2x3)

−
2∑
i=1

t−5xi
∂

∂xi
ϕ(t−1x1, t

−1x2, t
−2x3)− 2t−5x3

∂

∂xi
ϕ(t−1x1, t

−1x2, t
−2x3)

=−
2∑
i=1

t−4 ∂

∂xi
(t−1xiϕ(t−1x1, t

−1x2, t
−2x3))− 2t−3 ∂

∂x3

(t−2x3ϕ(t−1x1, t
−1x2, t

−2x3))

Now

∂

∂x1

= XR
1 (x)−1

2
x2

∂

∂x3

,
∂

∂x2

= XR
2 (x)+

1

2
x1

∂

∂x3

,
∂

∂x3

= −[XR
1 , X

R
2 ].

Setting ηi = yiϕ(y) and using that xi∂3h = ∂3(xih) for i = 1, 2 we get

(
d

dt
Itϕ)(x)

=−XR
1 Itη1 −XR

2 Itη2 + 2t(XR
1 X

R
2 −XR

2 X
R
1 )Itη3

=−XR
1 Itη1 −XR

2 Itη2 + 2(XR
1 It(X

R
2 η3)−XR

2 It(X
R
1 Itη3)).
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Here we used that fact for i = 1, 2 we have XR
i (h ◦ δr) = r(XR

i h) ◦ δr
Thus the assertion holds with

ϕ(1) = −η1 + 2XR
2 η3, ϕ(2) = −η2 − 2XR

1 η3.

�

10.5. No Poincaré inequality in hyperbolic space. Let u be a
C1 map on a Riemannian manifold (equipped with the inner metric).
Then the smallest upper gradient is given by

|∇u|g =

(∑
g−1
ij

∂u

∂xi
∂u

∂xj

)1/2

.

[11.12. 2019, Lecture 16]
[17.12. 2019, Lecture 17]

11. Quasisymmetric maps

This section very closely follows Chapter 10 of [8].

11.1. Definition and elementary properties. Recall: C1 map f :
Rn → Rn. Linear maps map balls to ellipsoids. Extends to small
neighbourhood. More global picture? Example f(x) = |x|p−1x.

General assumption: X and Y will always denote metric spaces.
When necessary we write the metrics explicitly as dX and dY .

Definition 11.1. (1) We say that f : X → Y is an embedding if
f is a homeomorphism from X to f(X).

(2) We say that an embedding is quasisymmetric if there exists a
homemorphism η : [0,∞)→ [0,∞) such for all triples x, a, b ∈
X and all t > 0

(11.1)
dX(a, x) ≤ tdX(b, x) =⇒ dY (f(a), f(x)) ≤ η(t)dY (f(b), f(x)).

(3) An embedding is called bi-Lipschitz if there exists an L ≥ 1 such
that both f and f−1 are L-Lipschitz.

We use also use the terms η-quasisymmetric and L-Lipschitz. We
often just write d instead of dX and dY .

One easily verifies that every L-bi-Lipschitz map is η quasisymmetric
with η(t) = L2t. If 0 < ε ≤ 1 and

X = Y, dY (x, y) = dε(x, y)

then the identity map is alway quasisymmetric but rarely bi-Lipschitz.
Example: X = Y = Rn, f(x) = λx.
Example: X = Y = Rn, f(x) = |x|p−1x, p > 0.
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Definition 11.2. An embedding f : X → Y is called weakly (H−)quasisymmetric
if there exists a constant H such that
(11.2)

dX(a, x) ≤ dX(b, x) =⇒ dY (f(a), f(x)) ≤ HdY (f(b), f(x)).

Weakly quasisymmetric maps need not be quasisymmetric.
Example X = N× {0,−1}, f(n, 0) = (n, 0), f(n,−1

4
) = (n,− 1

4n
).

Consider x = (n, 0), b = (n,−1
4
), a = (n−1, 1). Then d(x, a) ≤ 4d(x, b)

and d(f(x), f(a))/d(f(x), f(b))→∞ as n→∞.
We will show below that in many interesting spaces weak quasisym-

metry implies quasisymmetry. First we develop the basic theory.

Proposition 11.3. If f : X → Y is η-quasisymmetric, then f−1 :
f(X)→ X is η̃ quasisymmetric with

η̃(t) =
1

η−1(t−1)
for t > 0.

If f : X → Y and g : Y → Z are ηf and ηg quasisymmetric, the
g ◦ f : X → Z is ηg ◦ ηf quasisymmetric.

Proof. Let x′, a′, b′ ∈ Y and let x = f−1(x′), a = f−1(a′), b = f−1(b′).
Let t > 0 and assume that

d(a′, x′)

d(b′, x′)
≤ t, s :=

d(a, x)

d(b, x)
.

Then d(b, x)/d(a, x) = s−1 and hence

1

t
≤ d(b′, x′)

d(a′, x′)
≤ η
(1

s

)
Note that η is strictly increasing since η is a homemorphism from [0,∞)
to itself. Thus

η−1
(1

t

)
≤ 1

s
which implies that s ≤ η̃(t) as desired.

The proof of the second assertion is straightforward. �

Proposition 11.4. The restriction to a subset of an η-quasisymmetric
map is η-quasisymmetric.

Proposition 11.5. Quasisymmetric embeddings map bounded spaces
into bounded spaces. More quantitatively, if f : X → Y is η-quasisymmetric
and if A ⊂ B ⊂ X are such that 0 < diamA ≤ diamB < ∞, then
diam f(B) is finite and

(11.3)
1

2η
(

diamB
diamA

) ≤ diam f(A)

diam f(B)
≤ η

(
2 diamA

diamB

)
.
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Proof. To see that diamB is finite choose bn ∈ B and b′n ∈ B such that

1

2
diamB ≤ d(bn, b

′
n)→ diamB, as n→∞.

Then for any b ∈ B we have

d(b, b1) ≤ diamB ≤ 2d(b′1, b1).

Thus
d(f(b), f(b1)) ≤ η(2)d(f(b′1), f(b1)).

Thus diamB ≤ 2η(2)d(f(b′1), f(b1)).
To prove (11.3) let x, a ∈ A. Then

d(bn, b
′
n) ≤ d(bn, a) + d(b′n, a).

By symmetry we may assume that

d(bn, a) ≥ 1

2
d(bn, b

′
n).

This implies

d(f(x), f(a)) ≤ η

(
d(x, a)

d(bn, a)

)
d(f(bn), f(a))

Since d(bn, b
′
n)→ diamB we get the second inequality in (11.3).

The first inequality follows by applying the second inequality to f−1

and using Proposition 11.3. Indeed we have

diamA

diamB
≤ η̃

(
2 diam f(A)

diam f(B)

)
.

Thus
diamA

diamB
≤ 1/η−1

(
diam f(B)

2 diam f(A)

)
,

diamB

diamA
≥ η−1

(
diam f(B)

2 diam f(A)

)
,

η

(
diamB

diamA

)
≥ diam f(B)

2 diam f(A)

and the last inequality is equivalent to the first inequality in (11.3). �

Two useful consequences.

Proposition 11.6. Quasisymmetric maps take Cauchy sequences to
Cauchy sequences.

Proof. Let (an) be a Cauchy sequence and set An = {ak : k ≥ n}.
Then B := A1 is bounded and by assumption diamAn → 0 as n→∞.
It follows from (11.3) that diam f(An)→ 0. �
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Proposition 11.7. An η-quasisymmetric embedding of one space in
another extends to an η-quasisymmetric embedding of the completions.

Proof. Use that Cauchy sequences are mapped to Cauchy sequences
and the following fact. If an and a′n are Cauchy sequences and d(an, a

′
n)→

0 as n→∞ then d(f(an), f(a′n))→ 0. �

11.2. Doubling spaces.

Definition 11.8. A metric space is called doubling if there is a constant
C1 ≥ 1 such that every set of diameter d can be covered by at most C1

sets of diameter d/2.

If X is doubling there exists a function C1 : (0, 1
2
] such that each set

of diameter d can be covered by at most C1(ε) sets of diameter εd. The
function C1 be chosen of the form

(11.4) C1(ε) = Cε−β

for some C ≥ 1 and β > 0.

Definition 11.9. Given a doubling metric space, the infimum of all
numbers β > 0 such that a covering function of the form (11.4) can be
found is the Assouad dimension1 of X.

Example: the Assouad dimension of Rn is n.
Example: show that the Hausdorff dimension does not exceed the

Assouad dimension. Show that the Assouad dimension of the compact
set X = {0, 1, 1

2
, 1

3
, . . .} ⊂ R is 1. Hint: cover the set [ 1

2l
, 1l

]
∩X.

[17.12. 2019, Lecture 17]
[18.12. 2019, Lecture 18]

Proposition 11.10. If X carries a doubling measure then X is dou-
bling.

The converse implication is in general false, but one can show that
every complete doubling space carries a doubling measure [12].

Proof. It suffices to show that any closed ball B(x, d) can be covered
by a fixed number of closed balls of radius d/4.

To do so we use the following observation. Let ρ > 0 and let A ⊂ X
be a set with diamA > ρ. Define

M := sup{k : ∃x1, . . . , xk ∈ A : d(xi, xj) ≥ ρ if i 6= j.}

1The terms (metric) covering dimension or uniform metric dimension are also
used for this concept
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If M <∞ then A can be covered by M closed balls of radius ρ. Indeed
let x1, . . . , xM points as in the definition of M . Then

⋃M
i=1B(xi, r) ⊂ A

as otherwise we get a contradiction to the definition of M .
Now we apply the observation with A = B(x, d). Assume that there

exist k points x1, . . . xk ∈ B(x, d) with d(xi, xj) ≥ d/4 whenever i 6=
j. Then the balls B(xi, d/12) are disjoint. Moreover B(xi, d/12) ⊂
B(x, 2d) ⊂ B(xi, 3d). Since µ is doubling we have

µ(B(x, 2d)) ≤ Cµ(B(xi, d/12).

Summing over i we get

kµ(B(x, 2d)) ≤ Cµ(B(x, 2d))

and thus k ≤ bCc. Hence B(x, d) can be covered by bCc balls of radius
d/4 and diameter d/2. �

Theorem 11.11. A quasisymmetric image of a doubling space is dou-
bling, quantitatively.

Proof. Let f : X → Y be an η-quasisymmetric homeomorphism. It
suffices to show that every ball B of diameter d in Y can be covered
by at most some fixed number C2 of sets of diameter at most d/4. Let
B = B(y, d) and let

L = sup
z∈B

d(f−1(y), f−1(z))

(recall that the image of a bounded set under the quasisymmetric map
f−1 is bounded). Then we can cover f−1(B) by at most C1(ε) sets
of diameter at most ε2L for any ε ≤ 1

2
where C1 is a covering func-

tion of X. Let A1, . . . , Ap be such sets, so that p = p(ε) ≤ C1(ε).
We may clearly assume that Ai ∈ f−1(B) for all i = 1, . . . , p. Thus
f(A1), . . . f(Ap) cover B and are contained in B so by Proposition 11.5
we compute that their diameters satisfy

diam f(Ai) ≤ diamB η

(
2 diamAi

diam f−1(B)

)
≤ dη

(
4εL

L

)
≤ dη(4ε).

Now choose ε so small that η(ε) ≤ 1
4
. �

Theorem 11.12. A weakly quasisymmetric embedding of a connected
doubling space in a doubling space is quasisymmetric, quantitatively.

Let X be a metric space and let x0, . . . , xN ∈ X and let ε > 0. We
say that the (N + 1)-tuple (x0, . . . , xN) is an ε-chain if joining x0 and



75

xN if d(xi, xi+1) ≤ ε. If (x0, . . . xN) and (y0, . . . yM) are ε-chains and
xN = y0 then (x0, . . . xN , y1, . . . yM) is an ε-chain.

Lemma 11.13. A connected metric space X is ε-chainable for all ε >
0, that is for each ε > 0 and each pair of points a, b ∈ X there exist an
ε-chain joining a and b.

Note that in general for connected metric space X there is no path
(=continuous curve) joining a and b. Example: X = {(x, y) ∈ R2 : x ∈
(0, 1], y = sinx−1}∪{(0, 0)} ⊂ R2, a = (0, 0), b = (1, sin 1). There exist
metric spaces which are ε-chainable for all ε > 0 but not connected.
The simplest example is X = (−1, 0) ∩ (0, 1) ⊂ R.

Proof. Let A be a the set of points which can be joined to a by an
ε-chain. We show that A is open and closed. Since a ∈ A the set A
is also non-empty and thus A = X as X is connected. To see that A
is open not that b ∈ A implies that B(b, ε) ⊂ A since every point in
x ∈ B(b, ε) can be joined to b by the chain (b, x). To see that A is
closed consider bn ∈ A with bn → b. Then there exist a k such that
d(bk, b) ≤ ε. Thus (bk, b) is an ε-chain and hence b ∈ A. �

Proof of Theorem 11.12. Let f : X → Y be weakly H-quasisymmetric,
where both X and Y are doubling, and in addition X is connected. We
may clearly assume that X is not a singleton. Pick three distinct points
a, b, x from X and write

t =
d(a, x)

d(b, x)
, t′ =

d(f(a), f(x))

d(f(b), f(x))
.

We need to show that t′ ≤ η(t) where η(t)→ 0 as t→ 0.

First assume that t > 1. It suffices to show that there exist s ≤ C(t)
and points a0, . . . as+1 such that

a0 = x,

d(a0, a1) ≤ r,(11.5)

d(ai, ai+1) ≤ d(ai−1, ai) for i = 1, . . . , s,(11.6)

d(x, a) ≤ d(x, as+1).(11.7)

Then weak H−quasisymmetry implies that

d(f(a0), f(a1) ≤ Hd(f(x), f(b)),

d(f(ai), f(ai+1)) ≤ Hd(f(ai−1, f(ai)) for i = 1, . . . , s,

d(f(x), f(a)) ≤ Hd(f(x), f(as+1)).
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From this we conclude that

Hd(f(x), f(as+1)) ≤ H
s∑
i=0

d(f(ai), f(ai+1)

≤ H

s∑
i=0

H i+1d(f(x), f(b)).

Hence we may take

η(t) =
H2

H − 1
HC(t)+1.

To explain the construction of the points ai we first make the addi-
tional assumption that X is path-connected. Let γ : [0, 1] → X be a
(continuous) curve with γ(0) = x and γ(1) = a. Let

r := d(x, b).

Set σ0 = 0 and define inductively

σi+1 = sup{σ ∈ [σi, 1] : d(γ(σ), γ(σi)) ≤ r}.
Case 1: d(x, γ(σi+1)) < d(x, a)

Continue the iteration.
Case 2: d(x, γ(σi+1)) ≥ d(x, a)

Set s = i and stop the iteration.
Set

ai = γ(σi).

In Case 1 we have σi+1 ∈ (0, 1) (since γ(1) = a so that d(x, γ(1)) =
d(x, a)) and thus

(11.8) d(ai, ai+1) = r.

The key point is to show that Case 2 indeed occurs and that s can
be bounded in terms of t. To see this assume that d(x, ai) < d(x, a) for
i = 0, . . . , k. We will derive an upper bound for k from the doubling
property of X. It follows from the definition of σj that for j = 0, . . . k−
2.

d(γ(σ), γ(σj)) > r if σ > σj+1.

Thus d(ai, aj) > r if i ≥ j+ 2. Together with (11.8) and the symmetry
of d we see that

(11.9) d(ai, aj) ≥ r for i 6= j and i, j ≤ k.

Now tr = d(x, a) and thus {a0, . . . , ak} ⊂ B(x, tr). The ball B(x, tr)
can be covered by C1(1/4t) sets of diameter r/2 where C1 is a covering
function of X. In view of (11.9) none of those sets can contain more
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than one of the points a0, . . . ak. Thus k+1 ≤ C1(1/4t). It follows that
s+ 1 ≤ C1(1/4t).

Now we carry out the proof using only the fact that X is connected.
In this case there may not be a curve which joins a and x, but for each
ε > 0 there is an ε-chain (x0, . . . , xN) which joins a and x. We will
select the points ai from the set {x0, . . . , xN}. In this case we will in
general not be able to choose the points ai such that d(ai+1, ai) = r
but we have to allow for an error of ε. To ensure that i 7→ d(ai+1, ai)
is decreasing we will choose the points ai such that

r − (i+ 1)ε < d(ai+1, ai) ≤ r − iε.
where

r = d(b, x) and ε = min
( r

2C1(1/6t)
,
r

2

)
.

where C1 denotes the covering function of X.
More precisely we define indices ki and points ai inductively as fol-

lows. Set k0 = 0 and define

ki+1 = max{k ∈ [ki, N ] ∩ N : d(xk, xki) ≤ r − iε.

ai+1 = xki+1
.

Case 1 : d(x, ai+1) < d(x, a).
Continue the iteration.

Case 2: d(x, ai+1) ≥ d(x, a). Set s = i and stop the iteration.

In Case 1 we have in particular ki+1 < N (since d(x, xN) = d(x, a))
and

(11.10) d(ai, xki+1+m) > r − iε.
for all m ∈ N ∩ [1, N − ki+1] by the maximality of ki+1. Taking m = 1
and using that (x0, . . . , xN) is an ε-chain we deduce that

(11.11) r − iε ≥ d(ai, ai+1) > r − (i+ 1)ε.

We next show Case 2 must occur and that s+ 1 ≤ bC(1/6t)c =: K.
To see this assume that either Case 2 does not occur or s+ 1 ≥ K + 1.
Since tr = d(x, a) there then exist a0, . . . aK as above such that ai ∈
B(a, tr). Moreover applying (11.11) for i ≤ K − 1 and (11.10) for
i ≥ K − 2 we see that

d(aj, ai) ≥ r − (i+ 1)ε ≥ r −Kε ≥ 1

2
r if K ≥ j > i.

On the other hand we have {a0, . . . aK} ⊂ B(a, tr). The ball B(a, tr)
can be covered by at most C(1/6t) sets of diameter r/3. Thus each
point a0, . . . aK can be contained in at most one of the covering sets.
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Hence K + 1 ≤ C(1/6t). This contradicts the definition of K, namely
K = bC(1/6t)c.

Now (11.5)–(11.7) follow from (11.11) and the definition in Case 2.

Now consider the case t ≤ 1. We need to find η(t) such that t′ ≤ η(t)
and η(t)→ 0 as t→ 0. We also need to make η a homemorphism but
this is easily achieved. Weak quasisymmetry implies that t′ ≤ H for
t ≤ 1. Hence we may assume t < 1

3
.

Let s be the smallest integer such that

3−s ≤ t or, equivalently 3−sd(b, x) ≤ d(a, x).

Then s ≥ 2 and

(11.12)
log 1/t

log 3
≤ s.

Since X is connected there exists points b = b0, b1, . . . bs−1 such that

d(bi, x) = 3−id(b, x) for i = 0, . . . , s− 1.

Now for 0 ≤ i < j ≤ s− 1 we have

d(bi, bj) ≥ d(bi, x)− d(bj, x) ≥ 2

3
3−i

and thus

d(a, bj) ≤ d(a, x) + d(bj, x) ≤ 2 3−j ≤ d(bi, bj).

Weak h-quasisymmetry implies that

d(f(a), f(bj)) ≤ Hd(f(bi), f(bj)).

Moreover d(x, bj) ≤ d(bi, bj) which yields

d(f(x), f(bj)) ≤ Hd(f(bi), f(bj)).

Hence

(11.13) t′d(f(b), f(x)) = d(f(a), f(x)) ≤ 2Hd(f(bi), f(bj)).

Since d(bi, x) ≤ d(b, x) all s the points f(b0), . . . f(bs−1) lie in the
closed ball B(f(x), Hd(f(b), f(x))). By (11.13) these points are sepa-
rated by (t′/2H)d(f(b), f(x)). Thus the doubling property of Y implies
that

s ≤ C ′(t′/(4H2)) ≤ C4β
′
H2β′t′−β

′

where C ′ is the covering function of Y . Combining this with (11.12)
we see that

t′ ≤ C̃H2(log 1/t)−1/β′

and the right and side goes to zero as t→ 0. �
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[18.12. 2019, Lecture 18]
[21.1. 2020, Lecture 19]

11.3. Compactness of families of quasisymmetric maps. A fam-
ily of η-quasisymmetric maps need not be compact. For example, for
X = Rn the family F = {x 7→ λx : λ > 0} is not compact. Under
mild normalizing condition we do, however, obtain compactness and
compactness is a key property of quasisymmetric maps.

The first key ingredient an equicontinuity result.

Definition 11.14. Let X and Y be metric spaces. A family F of maps
from X to Y is equicontinuous at point x0 ∈ X if for every ε > 0 there
exists a δ > 0 such that for all x ∈ X

d(x, x0) < δ and f ∈ F =⇒ d(f(x), f(x0)) < ε.

The familiy is called (pointwise) equicontinuous if it is equicontinuous
at every x0 ∈ X. The family is called uniformly equicontinuous if for
every ε > 0 there exists a δ > 0 such that for all x, y ∈ X

d(x, y) < δ and f ∈ F =⇒ d(f(x), f(y)) < ε.

There is also version of equicontinuity at x0 from maps from a topo-
logical space X into a metric space Y : for each ε > 0 there exists a
neighbourhood Ux0 of x0 such that f(Ux0) ⊂ B(f(x0), ε) for all f ∈ F .

Proposition 11.15. Given metric spaces X and Y , two points a, b ∈
X and a homeomorphism η : [0,∞)→ [0,∞) with η(0) = 0 the family

F := {f : X → Y : f is η-quasisymmetric and |f(a)− f(b)| ≤M}
is equicontinuous

Proof. Fix x0 ∈ X. Exchanging the roles of a and b if necessary we can
assume that x0 6= a. Then

d(f(x), f(x0) ≤ η

(
d(x, x0)

d(a, x0)

)
d(f(a), f(x0))

≤ η

(
d(x, x0)

d(a, x0)

)
η

(
d(a, x0)

d(a, b)

)
d(f(a), f(b))

≤ η

(
d(x, x0)

d(a, x0)

)
η

(
d(a, x0)

d(a, b)

)
M.

This shows equicontinuity at x0. �

Corollary 11.16. If Y is bounded then the family of all η-quasisymmetric
embeddings of X in Y is equicontinuous.
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Definition 11.17. Let X be a topological space and let Y be a metric
space. A family F of maps from X to Y is normal if every sequence
from the family subconverges uniformly on compact sets.

Theorem 11.18 (Arzela-Ascoli theorem). An equicontinuous family
F of maps from a separable topological space X to a metric space Y is
normal if for each x ∈ X of the set

{f(x) : f ∈ F}
is precompact.

Sketch of proof. Let (fk) be a sequence in F . Let D be a countable
dense subset. By diagonalization we find a subsequence (still denoted
fk) such that fk(x) converges for every x ∈ D. This sequence will not
be changed. We do not take further subsequences.

For an arbitrary point a ∈ X use equicontinuity at a and the fact that
every neighbourhood Ua intersects D to show that fk(a) is a Cauchy se-
quence. Since {fk(a) : k ∈ N} is precompact, a subsequence converges.
Thus the whole sequence converges. Hence there exists f : X → Y
such that

fk(x)→ f(x) ∀x ∈ X.
Equicontinuity is inherited. In particular f is continuous.

Uniform convergence on compact sets follows by equicontinuity and
finite subcovers. �

The second key ingredient is the stability of the qs-condition under
pointwise convergence.

Proposition 11.19. Suppose that a sequence (fk) of η-quasisymmetric
maps from X to Y converges pointwise to a (not necessarily continu-
ous) map f . Then f is either constant or η-quasisymmetric and the
convergence is uniform on compact sets.

Proof. If f(a) = f(b) for some a 6= b then d(fn(a), fn(b)) → 0. By qs
d(fn(a), fn(x))→ 0 for any x. Hence f constant.

Generally: let a, b, x ∈ X. Then

d(fn(a), fn(x)) ≤ η

(
d(a, x)

d(b, x)

)
d(fn(b), fn(x))

Pass to pointwise limit. Thus f has the same property.
It follows that f is continuous (fix b, take a→ x). If f is not injective

then f is constant (there exist b, x s.t. f(b) = f(x))).
If f is injective and qs then f−1 is η̃ qs (same proof as before; con-

tinuity of the inverse was not used). Thus f−1 is continuous. Hence f
is an embedding.
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For uniform convergence on compact sets use a finite cover by small
balls and η-quasisymmetry. �

Recall that a metric space is proper if all closed and bounded sets
are compact (or, equivalently all closed balls are compact).

Corollary 11.20. Let X be a separable metric space. Let F be a family
of η-quasisymmetric embeddings of X in Y . Assume that

(1) Y is compact or;
(2) Y is proper and there is x0 ∈ X and y0 ∈ Y such that f(x0) = y0

for all f ∈ F .

Assume in addition that there exists a C ≥ 1 and a, b ∈ X such that

(11.14) ∀f ∈ F C−1 ≤ d(f(a), f(b)) ≤ C.

Then F is a (sequentially) compact family of embeddings, i.e., every
sequence (fn) in F subconverges (uniformly on compacta) to an element
of F .

Proof. To show subconvergence we use the Arzela-Ascoli theorem, The-
orem 11.18. Equicontinuity follows from (11.14) and Proposition 11.15.

Precompactness of {f(x) : f ∈ F} for fixed x is clear under assump-
tion (i). Under assumption (ii) we use that by qs f(x) lies in the closed
ball f(y0, η(d(x, x0)). This ball is compact since Y is proper.

Quasisymmetry of the limit follows from Proposition 11.19. �

For maps from Rn to Rp there is a characterisation of qs embeddings
based on compactness. Fix H ≥ 1, integers 1 ≤ p ≤ n and unit vector
e ∈ Rn ⊂ Rp. Let

QH := {f : Rp → Rn : f weakly H-qs embedding, f(0) = 0, f(e) = e }.

Note that in this case weak quasisymmetry implies quasisymmetry,
quantitatively by Theorem 11.12.

Recall that a similarity of Rn is a composition of translations, dila-
tions and rotations. For an arbitrary embedding f : Rn → Rp let

Wf := {g = α ◦ f ◦ β : α, β similarities, g(0) = 0, g(e) = e }.

Theorem 11.21. The family QH is (sequentially) compact. An em-
bedding f : Rp → Rn is quasisymmetric if and only if Wf belongs to
some (sequentially) compact family of embeddings.

Proof. Compactness of QH follows from Corollary 11.20. Note that if
f is η-quasisymmetric then all elements of Wf are η-quasisymmetric
and hence Wf is contained a a set QH for a suitable H.



82

If remains to show that f is (weakly) quasisymmetric if Wf belongs
to some compact family of embeddings. Pick three points a, b, x ∈ Rp

so that

d(a, x) ≤ d(b, x).

By pre- and postcomposing with appropriate similarities we can assume
x = 0 = f(x) and b = e = f(b) without changing the family Wf .
It suffices to show that f(a) lies in some fixed ball whose radius in
independent of f . But this is clear from the fact that a lies in the
closed unit ball of Rp and Wf lies in a sequentially compact family of
embeddings. �

[21.1. 2020, Lecture 19]
[22.1. 2020, Lecture 20]

12. Quasisymmetric maps II

This section very closely follows Chapter 11 of [8].

12.1. Hölder continuity of quasisymmetric maps. We have seen
that under a mild normalizing condition quasisymmetric maps are
equicontinuous. Now we want to investigate whether they are even
Hölder continuous. The key condition is a new condition on the do-
main of definition X which is weaker than connectness. In the following
definition B(x, r) denotes the open ball or radius r.

Definition 12.1. A metric space X is called uniformly perfect if there
exists a constant C > 1 such that for every x ∈ X and for each r > 0
the set B(x, r) \B(x, r/C) is non-empty whenever X \B(x, r) is non-
empty.

The condition forbids small islands in the set. It can be reformulated
as follows. We say that B(x,R) \ B(x, r) is an annulus if 0 < r < R
and X \ B(x,R) is non-empty. At set is uniformly perfect if and only
if for every empty annulus the ratio R/r is bounded from above.

Connected spaces are uniformly perfect, as well as many fractals. For
example, the classical ternary Cantor set is uniformly perfect (Exercise
!).

Proposition 12.2. Uniform perfectness is a quasisymmetric invari-
ant, quantitatively.

Proof. Exercise. �
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Theorem 12.3. A quasisymmetric embedding f of a uniformly perfect
space X is η-quasisymmetric with η of the form

η(t) = C max(tα, t1/α)

where C ≥ 1 and α ∈ (0, 1] depend on the data associated with X and
f .

Corollary 12.4. Quasisymmetric embeddings on uniformly perfect spaces
are Hölder continuous on bounded sets.

Proof. This follows from the second inequality in (11.3) with B a
bounded set and A = {x, y} ⊂ B. �

For general sets there are maps which are quasisymmetric, but not
Hölder continuous. As an example consider the compact space X =
{0} ∪ {e−n! : n = 2, 3, . . .} ⊂ R and the map f : X → R given
by f(x) = −(log x)−1 for x 6= 0 and f(0) = 0. Note that f cannot
be extended to a quasisymmetric from R → R or from [0, 1] → R
(otherwise Theorem 12.3 could be applied to the extension).

For the proof of Theorem 12.3 it is convenient to use the following
equivalent characterisation of uniformly perfect spaces.

Lemma 12.5. A metric space X is uniformly perfect if and only if
there are numbers 0 < λ1 ≤ λ2 < 1 so that for each pair of points
a, b,∈ X there exists a point x ∈ X with

(12.1) λ1d(a, b) ≤ d(a, x) ≤ λ2d(a, b).

Proof. If X is uniformly perfect we set R = d(a, b)/2. The set X \
B(a,R) is non-empty because it contains the point b. Thus there is a
point x ∈ X which satisfies

R/C ≤ d(x, a) < R.

It follows that the desired assertion holds with λ2 = 1
2

and λ1 = 1/(2C).
To prove the converse implication, let B(a, r) be a ball such that

X \B(a, r) contains a point b. We will show that the annulus B(a, r) \
B(a, λ1r) is not empty, so that X is uniformly perfect with constant
C = λ−1

1 . This is achieved by iterating condition (12.1): pick a point
x0 ∈ X such that

λ1d(a, b) ≤ d(a, x0) ≤ λ2d(a, b).

If d(a, x0) < r then x0 lies in the annulus B(a, r) \B(a, λ1r) and we
are done. If d(a, x0) ≥ r we repeat the preceeding reasoning with b
replaced with x0. Thus we find a point x1 such that
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λd(a, x0) ≤ d(a, x1) ≤ λ2d(a, x0) ≤ λ2
2d(a, b).

Now as long as d(a, xk−1) ≥ r we inductively pick points xk such that

λ1r ≤ λ1d(a, xk−1) ≤ d(a, xk) ≤ λ2d(a, xk−1) ≤ λk+1
2 d(a, b).

Since the right hand side converges to zero there must exist a k such
that d(a, xk) < r and d(a, xk−1) ≥ r. This shows that B(a, r)\B(a, λ1r)
is non-empty and the proof is finished. �

Proof of Theorem 12.3. Pick three distinct points x, a, b ∈ X and set

t =
d(x, a)

d(x, b)
.

Case 1: t ≥ 1.
Using condition (12.1) we find points x0 = a, x1, x2, . . . such that

λ1d(a, x) ≤ d(x1, x) ≤ λ2d(a, x)

and
λ1d(xi, x) ≤ d(xi+1, x) ≤ λ2d(xi, x) ≤ λi+1

2 d(a, x).

Let s be the largest integer such that d(b, x) ≤ d(xs, x). Then d(b, x) >
d(xs+1, x) ≥ λ1d(xs, x). Thus

λ1d(xs, x) ≤ d(b, x) ≤ d(xs, x) ≤ λs2d(a, x).

This implies that

d(f(a), f(x)) ≤ Hs+1d(f(b), f(x)), where H = η(λ−1
1 ).

On the other hand,

d(b, x) ≤ λs2d(a, x) = λs2td(b, x).

Hence
t ≥ λ−s2

and thus
d(f(a), f(x)) ≤ Htβd(f(b), f(x))

where β = (logH)/(log λ−1
2 ).

Case 2: t < 1.

We first note that we may assume without loss of generality that
η(λ2) ≤ 1

2
. Indeed, we know that there exist 0 < λ1 ≤ λ2 < 1 such that

for each pair of points p, q there is a point y1 which satisfies λ1d(p, q) ≤
d(p, y1) ≤ λ2d(p, q). Applying the condition iteratively to the pairs
p, yi−1 we find that there exists points yi such that λi1d(p, q) ≤ d(p, yi) ≤
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λi2d(p, q). Thus in condition (12.1) we may replace λ1, λ2 by λi1 and λi2.
Since η(λi2)→ 0 as i→∞ we may in particular assume that η(λ2) ≤ 1

2
.

Now we can proceed as in the case t ≥ 1. Exchanging the roles of a
and b we find points x0 = b, x1, . . . , xs such that

λ1d(xi, x) ≤ d(xi+1, x) ≤ λ2d(xi, x) ≤ λi+1
2 d(b, x).

and

λ1d(xs, x) ≤ d(a, x) ≤ d(xs, x) ≤ λs2d(b, x).

Thus

d(f(xs), f(x)) ≤ 2−sd(f(b), f(x)), d(f(a), f(x)) ≤ Hd(f(xs), f(x))

where H = η(1). Hence

t ≥ λs+1
1

and

d(f(a), f(x)) ≤ η(1)2−sd(f(b), f(x)) ≤ 2η(1)tαd(f(b), f(x))

with α = log 2/ log λ−1
1 . �

12.2. Quasisymmetry in Euclidean domains.

Theorem 12.6. Let D and D′ be domains in Rn, n ≥ 2. A homemor-
phism f : D → D′ is K-quasiconformal (in the sense of Definition 8.3 )
if and only if there is a homeomorphism η : [0,∞)→ [0,∞) with η(0) =
0 such f is an η-quasisymmetric map in each ball B(x, 1

2
dist(x, ∂D))

for x ∈ D. The statement is quantitative involving K, η, and the
dimension n.

Proof. For the time being we only show necessity. Let B = B(x, r) for
some x ∈ D where r = 1

2
dist(x, ∂D). By Theorem 11.12 it suffices to

show that f is weakly quasisymmetric in B. Thus pick three distinct
points a, z, w ∈ B such that d(a, z) ≤ d(a, w). We need to show that
there exists an H = H(n,K) such that

(12.2) d(f(a), f(z)) ≤ Hd(f(a), f(w)).

In the following H will denote any positive constant that depends on
K and n only.

First we will show that there is a path γ′ joining f(a) and f(w) in
D′ such that

(12.3) diam γ′ ≤ Hd(f(a), f(w)).

Indeed, if the line segment [f(a), f(w)] from f(a) to f(w) does not
meet ∂D′ there is nothing to show. Otherwise let σ′ be the closed
subsegment of [f(a), f(w)] that connects f(a) to ∂D′ inside D′ (we
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ignore that f−1 may not be defined on ∂D′. This can be cured by a
simple limiting argument). The preimage of σ of σ′ connects a to ∂D.

Let y′ be a point on γ′ := f([a, w]) such that d(y′, f(a)) > 2d(f(w), f(a)).
If no such point exists then the desired condition (12.3) holds with
H = 4. Consider the half-line from f(a) that passes through y′ and
let L′ be the part of that line that lies in D′ but outside the ball
B(f(a), d(f(a), y′)) and connects y′ to ∂D′. Note that L′ may not
meet any finite part of ∂D′.

By the standard modulus estimate, see (8.5), we find that the curve
family Γ′ that joins σ′ to L′ inside D′ has modulus at most

(12.4) C

(
log

d(y′, f(a))

d(f(w), f(a))

)1−n

.

On the other hand, in the domain D, both preimages σ := f−1(σ′)
and L = f−1(L′) connect the ballB(x, r) to the complement ofB(x, 2r).
Thus ∆(σ∩B(x, 3

2
r), L∩B(x, 3

2
r) ≤ 1

2
. Because B(x, 2r) lies in D, the

modulus of the preimage family Γ = f−1Γ′ is bounded from below by
a fixed constant, see Theorem 9.5 and Lemma 10.17. 2

The quasi-invariance of the modulus thus implies, in view of expres-
sion (12.4) That d(y′, f(a)) ≤ Hd(f(w), f(a)), and the estimate (12.3)
follows.

The proof of the estimate (12.2) is very similar. Essentially one
replaces σ′ by γ′ and uses the point f(z) rather than f(w) for the
definition of L′. First note that if d(f(a), f(z)) ≤ 2 diam γ′ were are
done. Otherwise consider the half-line from f(a) through f(z) and
let L′ be the segment of the line that lies in D′ by outside the ball
B(f(a), d(f(a), f(z)). Let Γ′ denote the family of curves which join γ′

2The main technical point which was not discussed in class is that we need a
lower bound for the family of curves which joint σ to L and in addition stay inside
D. If we apply Lemma 10.17 with M1 = 3

2 , E = σ∩B(x, 32r), F = L∩B(x, 32r) and
use the version of the lemma with B(x,M1r) rather than B(x1,M1r) \B(x, r/M1)
then we get a lower bound for the modulus for curves which join E to F and stay
inside B(x,M4r). We would need M4 = 2 but this is not guaranteed by the lemma.
We instead obtain a slightly weaker result, namely that f is quasisymmetric in a
smaller set B(x, 1

C dist(x, ∂D) for some large C. To get the full strength of the result
we can argue as follows. There exists a K1-quasiconformal map g : B(x,M4r) →
B(x, 2r) which is the identity on B(x, 32r), see Proposition12.7 and take ρ = 2r,

λ = 3
4 and L = M4/2. Let Γ̃ be the family of curve which joint E to F and

stay inside B(x,M4r). We know from Lemma 10.17 that modnΓ̃ ≥ c > 0. Thus

modng(Γ̃) ≥ c/K1. Now g is the identity on E and F . Thus g(Γ) consists of curve

which joint E and stay inside B(x, 2r). Then Γ ⊃ g(Γ̃) which implies the desired
lower bound for modnΓ.
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and L′ inside D′. Again by (8.5) we have

(12.5) modn(Γ′) ≤ C

(
log

d(f(z), f(a))

diam γ′

)1−n

.

Let R = d(a, w) and note that L joins B(a,R) and B(x, r) to the
complement of B(x, 2r). If R ≥ r/2 we can use that E := B(x, 3

2
) ∩ γ

and F =: B(x, 3
2
) ∩ L both have diameter not smaller than r/2. Thus

there is a lower bound on the modulus of the family Γ of curves which
join E and F in B(x, 2r). Then modnΓ′ ≥ modnf(Γ) ≥ c/K and the
desired estimate follows.

If R < r/2 then B(a, 2R) ⊂ B(x, 2r). Thus E = γ ⊂ B(a, 3
2
R) and

F = L ∩ B(a, 3
2
R) have diameter not smaller than R/2. Hence there

is a lower bound on the modulus of the family Γ of curves which join
E and F inside B(a, 2R). Moreover Γ′ ⊃ f(Γ) and we conclude as
before. �

Proposition 12.7. Let L > 1, λ ∈ (1
2
, 1). Then there exists a K1

(depending on L and λ) such that for all ρ > 0 there exists a K1-
quasiconformal map g : Rn ⊃ B(x, Lρ) → B(ρ) and g is the identity
on B(x, λρ).

Proof. By translation and dilation we may assume x = 0 and ρ = 1.
Let h : [0,∞)→ [0,∞) be smooth with 0 < c ≤ h′ ≤ C and define

g(y) = h(|y|) y
|y|

for y 6= 0 and g(0) = 0. The g is a C1 map and the eigenvalues of
(Dg)TDg are given by a single eigenvalue λr = h′(|y|) and an (n− 1)-
fold eigenvalue λt = h(|y|)/|y|. Choose h such that h(t) = t for t ≤
λ, h(L) = 1 and 1−λ

2L
≤ h′(t) ≤ 1 for t ∈ (λ, L). Then λt/λr is

bounded from above and below in terms of λ and L. Hence g is K1-
quasiconformal where K1 depends only on λ and L. �

[22.1. 2020, Lecture 20]
[28.1. 2020, Lecture 21]
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