Problem 1 (Symmetries in Boltzmann equation, $3+3$ points).
Let $f=f(t, x, \xi)$ be a solution to the Boltzmann equation.
a) Let $R \in S O(3)$ be a rotation matrix and define $\tilde{f}(t, x, \xi):=f(t, R x, R \xi)$. Show that \tilde{f} is also a solution to Boltzmann equation.
b) Let $\lambda>0$ and define $\tilde{f}(t, x, \xi):=\lambda^{\alpha} f\left(\lambda^{-\beta} t, \lambda^{-\gamma} x, \lambda^{-\delta} \xi\right)$. Under which conditions on the parameters $\alpha, \beta, \gamma, \delta$ is \tilde{f} a solution to Boltzmann equation?

Problem 2 (Characterization of collision invariants, 6 points).

Let $\varphi: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a C^{2} function such that

$$
\varphi+\varphi_{*}=\varphi^{\prime}+\varphi_{*}^{\prime}
$$

for all $\xi, \xi_{*} \in \mathbb{R}^{3}$ and unit vector n, where

$$
\begin{array}{ll}
\varphi=\varphi(\xi), \quad \varphi_{*}=\varphi\left(\xi_{*}\right), \quad \varphi^{\prime}=\varphi\left(\xi^{\prime}\right), \quad \varphi_{*}^{\prime}=\varphi\left(\xi_{*}^{\prime}\right) \\
\xi^{\prime}=\xi-n\left(\left(\xi-\xi_{*}\right) \cdot n\right), \quad \xi_{*}^{\prime}=\xi+n\left(\left(\xi-\xi_{*}\right) \cdot n\right)
\end{array}
$$

Show that there exist $a, c \in \mathbb{R}$ and $b \in \mathbb{R}^{3}$ such that $\varphi(\xi)=a+b \cdot \xi+c|\xi|^{2}$.
Hint: consider $\psi(\xi)=\varphi(\xi)-a-b \cdot \xi-c|\xi|^{2}$, with $a=\varphi(0), b=\nabla \varphi(0), c=\frac{1}{6} \Delta \varphi(0)$. Notice that ψ is a collision invariant.
a) With a suitable choice of ξ, ξ_{*}, n show that ψ is radially symmetric, that is, $\psi(\xi)=\theta(|\xi|)$.
b) Then, again choosing ξ, ξ_{*}, n conveniently, show that $\theta^{\prime} \equiv 0$ and hence $\theta \equiv 0$ (use in particular the fact that $\Delta \psi(0)=0)$.

Problem 3 (Collision invariants, 4 points).

Show that the condition

$$
\varphi+\varphi_{*}=\varphi^{\prime}+\varphi_{*}^{\prime}
$$

defining collision invariants can be written as follows:

$$
\varphi(\xi+u+v)+\varphi(\xi)=\varphi(\xi+u)+\varphi(\xi+v)
$$

provided u and v are two vectors such that $u \cdot v=0$.

