Problem Sheet 8 (due Monday 11.06.2018)

Problem 1 (N -wave, 4 points).
Let u be the entropy solution to

$$
\left\{\begin{array}{l}
u_{t}+\partial_{x}\left(\frac{|u|^{p}}{p}\right)=0 \quad \text { in } \mathbb{R} \times(0, \infty) \\
u(x, 0)=u_{0}(x)
\end{array}\right.
$$

where $p \in(2, \infty)$ and

$$
u_{0}(x)= \begin{cases}-1 & \text { for }-1 \leq x<0 \\ 1 & \text { for } 0 \leq x<1 \\ 0 & \text { otherwise }\end{cases}
$$

Find the asymptotic shape $u(\cdot, t)$ as $t \rightarrow \infty$.

Problem 2 (Vanishing viscosity, 8 points).

Let F be smooth and uniformly convex, $g \in L^{\infty}(\mathbb{R})$ be compactly supported, $T>0$. Let $\varepsilon>0$, set $M=\varepsilon^{-1}$, and suppose that $u^{\varepsilon} \in C^{\infty}([-M, M] \times[0, T])$ is a solution to the viscous conservation law

$$
\begin{cases}u_{t}^{\varepsilon}+F\left(u^{\varepsilon}\right)_{x}=\varepsilon u_{x x}^{\varepsilon} & \text { for }(x, t) \in(-M, M) \times(0, T] \tag{1}\\ u_{x}^{\varepsilon}=0 & \text { for }(x, t) \in\{ \pm M\} \times(0, T] \\ u^{\varepsilon}=g^{\varepsilon} & \text { for }(x, t) \in[-M, M] \times\{0\},\end{cases}
$$

where $g^{\varepsilon}=\eta^{\varepsilon} * g$ and η^{ε} is the standard mollifier.
a) Show that

$$
\begin{equation*}
\left\|u^{\varepsilon}\right\|_{L^{\infty}([-M, M] \times[0, T])} \leq\|g\|_{L^{\infty}(\mathbb{R})} . \tag{2}
\end{equation*}
$$

Hint: Use a maximum principle argument. For instance, consider the function $w(x, t):=$ $u^{\varepsilon}(x, t)-\delta t$, for $\delta>0$, and show that the maximum of w is attained for $t=0$.
b) Since F is uniformly convex, there exists $\theta>0$ such that $F^{\prime \prime} \geq \theta$. Show that

$$
\begin{equation*}
u_{x}^{\varepsilon}(x, t) \leq \frac{1}{\theta t} \quad \text { for all }(x, t) \in[-M, M] \times(0, T] \tag{3}
\end{equation*}
$$

Hint: Set $U(x, t):=u_{x}^{\varepsilon}(x, t)$ and find a PDE solved by U by differentiating (1). Show that $v(x, t):=\frac{1}{\theta t}$ is a supersolution of this PDE and conclude by a comparison principle argument (similar to the one used in Problem 2 in the Problem Sheet 5).
c) Assume that

$$
\lim _{\varepsilon \rightarrow 0^{+}} u^{\varepsilon}(x, t)=u(x, t) \quad \text { for almost every }(x, t) \in \mathbb{R} \times[0, T]
$$

Show that the limit function u is the entropy solution to the conservation law

$$
\begin{cases}u_{t}+F(u)_{x}=0 & \text { for }(x, t) \in \mathbb{R} \times(0, T), \\ u=g & \text { for }(x, t) \in \mathbb{R} \times\{0\}\end{cases}
$$

Hint: Check that u is an integral solution by multiplying (1) by a test function and passing to the limit as $\varepsilon \rightarrow 0$. Moreover, use (3) to show that u satisfies the entropy condition.

Problem 3 (A linear system, 4 points).
Consider the system of conservation laws

$$
\begin{equation*}
\partial_{t} u+\partial_{x}(A u)=0, \quad(x, t) \in \mathbb{R} \times(0, \infty) \tag{4}
\end{equation*}
$$

where $u: \mathbb{R} \times[0, \infty) \rightarrow \mathbb{R}^{n}, A \in \mathbb{R}^{n \times n}$ is a diagonalizable matrix with real eigenvalues.
a) Find the Rankine-Hugonoit condition along a shock curve. What does it mean?
b) By a linear transformation, show that (4) decouples into a system of n independent equations.

Total: 16 points

