Problem Sheet 7 (due Monday 04.06.2018)

Problem 1 (Riemann's problem, 4 points).
Find the entropy solution to the Riemann's problem

$$
\begin{cases}u_{t}+\left(e^{u}\right)_{x}=0 & \text { in } \mathbb{R} \times(0, \infty) \\ u=g & \text { on } \mathbb{R} \times\{t=0\}\end{cases}
$$

with

$$
g(x)= \begin{cases}2 & \text { for } x<0 \\ 1 & \text { for } x>0\end{cases}
$$

Problem 2 (Weak vs. strong solution, 4 points).
Show that every smooth solution u to the conservation law

$$
\partial_{t} u+\partial_{x}\left(\frac{u^{2}}{2}\right)=0
$$

also solves

$$
\partial_{t}\left(u^{2}\right)+\frac{2}{3} \partial_{x}\left(u^{3}\right)=0
$$

which is a conservation law for u^{2} with flux $F(u)=\frac{2}{3} u^{\frac{3}{2}}$.
By considering a Riemann problem with $u_{l}>u_{r}$ or otherwise, show that the two equations have different weak solutions.

Problem 3 (Uniqueness of entropy solutions, 4 points).
Consider the Riemann's problem

$$
\begin{cases}u_{t}+\left(\frac{u^{2}}{2}\right)_{x}=0 & (x, t) \in \mathbb{R} \times(0, \infty) \\ u(x, 0)=0 & \text { for } x<0 \\ u(x, 0)=1 & \text { for } x>0\end{cases}
$$

Let u and v be defined by

$$
u(x, t)=\left\{\begin{array}{ll}
0 & \text { if } x<\frac{1}{2} t, \\
1 & \text { if } x>\frac{1}{2} t,
\end{array} \quad v(x, t)= \begin{cases}0 & \text { if } x<0 \\
\frac{x}{t} & \text { if } 0<x<t \\
1 & \text { if } x>t\end{cases}\right.
$$

Sketch u and v and the characteristics. Are both u and v integral solutions to the initial value problem? Are they entropy solutions?

Problem 4 (Long time asymptotics for periodic initial data, 4 points). Let u be the entropy solution to the initial value problem

$$
\begin{cases}u_{t}+\left(\frac{u^{2}}{2}\right)_{x}=0 & \text { in } \mathbb{R} \times(0, \infty), \\ u(x, 0)=g(x) & \text { on } \mathbb{R}\end{cases}
$$

where g is the periodic extension of

$$
g(x)= \begin{cases}0 & \text { if }-1<x<0 \\ 1 & \text { for } 0<x<1\end{cases}
$$

Show that

$$
\|u(\cdot, t)-\bar{g}\|_{\infty} \rightarrow 0 \quad \text { as } t \rightarrow \infty,
$$

where $\bar{g}=\frac{1}{2} \int_{-1}^{1} g(x) \mathrm{d} x=\frac{1}{2}$, and determine the rate of convergence in t.

