Problem 1 (Hopf-Lax formula, 4 points).

Let E be a closed subset of \mathbb{R}^n . Show that *if* the Hopf-Lax formula could be applied to the initial-value problem

$$\begin{cases} u_t + |Du|^2 = 0 & \text{in } \mathbb{R}^n \times (0, \infty), \\ u = u_0 & \text{on } \mathbb{R}^n \times \{t = 0\}, \end{cases}$$
(1)

where

$$u_0(x) = \begin{cases} 0 & \text{if } x \in E, \\ \infty & \text{if } x \notin E, \end{cases}$$

then it would give the solution

$$u(x,t) = \frac{1}{4t} \text{dist} (x, E)^2.$$
 (2)

Is (2) a reasonable solution to (1)? Notice that, if ∂E is sufficiently smooth, there is a neighborhood U of E such that dist $(x, E) := \inf_{y \in E} |x - y|$ is differentiable almost everywhere in $U \setminus E$ with |Ddist(x, E)| = 1.

Problem 2 (Uniqueness for Hamilton-Jacobi equation, 4 points).

Let $U \subset \mathbb{R}^n$ be a bounded open set, and let $U_T := U \times (0,T]$, $\Gamma_T := \overline{U}_T \setminus U_T$. Let $H : \overline{U}_T \times \mathbb{R}^n \to \mathbb{R}$.

a) Let $u, v \in C^1(U_T) \cap C(\overline{U}_T)$ satisfy

$$\begin{cases} u_t + H(x, Du) \le 0 & \text{in } U_T, \\ u \le g & \text{on } \Gamma_T, \end{cases}$$
$$\begin{cases} v_t + H(x, Dv) \ge 0 & \text{in } U_T, \\ v \ge g & \text{on } \Gamma_T. \end{cases}$$

Show that $u \leq v$ in \overline{U}_T .

b) Show that there is at most one solution $u \in C^1(U_T) \cap C(\overline{U}_T)$ to

$$\begin{cases} u_t + H(x, Du) = 0 & \text{in } U_T, \\ u = g & \text{on } \Gamma_T. \end{cases}$$

Hint: show that, for $\varepsilon > 0$ *, the function* $w := u - v - \varepsilon t$ *attains its maximum on* Γ_T *.*

Problem 3 (Conservation laws: shock, 4 points).

Find an integral solution to

$$\begin{cases} u_t + F(u)_x = 0 & \text{in } \mathbb{R} \times (0, \infty), \\ u = g & \text{on } \mathbb{R} \times \{t = 0\}, \end{cases}$$

with

$$F(u) = u^2 + u,$$
 $g(x) = \begin{cases} 1 & \text{for } x < 0, \\ -3 & \text{for } x > 0. \end{cases}$

Problem 4 (Conservation laws: rarefaction wave, 4 points). Find an integral solution to the initial value problem

$$\begin{cases} u_t + u^2 u_x = 0 & \text{in } \mathbb{R} \times (0, \infty), \\ u = g & \text{on } \mathbb{R} \times \{t = 0\}, \end{cases}$$

with

$$g(x) = \begin{cases} 0 & \text{for } x < 0, \\ -2 & \text{for } x > 0. \end{cases}$$

Hint: the solution should involve a rarefaction wave of the form v(x/t)*.*

Total: 16 points