Problem Sheet 5 (due Monday 14.05.2018)

Problem 1 (Hopf-Lax formula, 4 points).

Let E be a closed subset of \mathbb{R}^{n}. Show that if the Hopf-Lax formula could be applied to the initial-value problem

$$
\begin{cases}u_{t}+|D u|^{2}=0 & \text { in } \mathbb{R}^{n} \times(0, \infty) \tag{1}\\ u=u_{0} & \text { on } \mathbb{R}^{n} \times\{t=0\}\end{cases}
$$

where

$$
u_{0}(x)= \begin{cases}0 & \text { if } x \in E \\ \infty & \text { if } x \notin E\end{cases}
$$

then it would give the solution

$$
\begin{equation*}
u(x, t)=\frac{1}{4 t} \operatorname{dist}(x, E)^{2} \tag{2}
\end{equation*}
$$

Is (2) a reasonable solution to (1)? Notice that, if ∂E is sufficiently smooth, there is a neighborhood U of E such that dist $(x, E):=\inf _{y \in E}|x-y|$ is differentiable almost everywhere in $U \backslash E$ with $|D \operatorname{dist}(x, E)|=1$.

Problem 2 (Uniqueness for Hamilton-Jacobi equation, 4 points).

Let $U \subset \mathbb{R}^{n}$ be a bounded open set, and let $U_{T}:=U \times(0, T], \Gamma_{T}:=\bar{U}_{T} \backslash U_{T}$. Let H : $\bar{U}_{T} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$.
a) Let $u, v \in C^{1}\left(U_{T}\right) \cap C\left(\bar{U}_{T}\right)$ satisfy

$$
\begin{aligned}
& \begin{cases}u_{t}+H(x, D u) \leq 0 & \text { in } U_{T} \\
u \leq g & \text { on } \Gamma_{T}\end{cases} \\
& \begin{cases}v_{t}+H(x, D v) \geq 0 & \text { in } U_{T} \\
v \geq g & \text { on } \Gamma_{T}\end{cases}
\end{aligned}
$$

Show that $u \leq v$ in \bar{U}_{T}.
b) Show that there is at most one solution $u \in C^{1}\left(U_{T}\right) \cap C\left(\bar{U}_{T}\right)$ to

$$
\begin{cases}u_{t}+H(x, D u)=0 & \text { in } U_{T} \\ u=g & \text { on } \Gamma_{T}\end{cases}
$$

Hint: show that, for $\varepsilon>0$, the function $w:=u-v-\varepsilon t$ attains its maximum on Γ_{T}.

Problem 3 (Conservation laws: shock, 4 points).

Find an integral solution to

$$
\begin{cases}u_{t}+F(u)_{x}=0 & \text { in } \mathbb{R} \times(0, \infty) \\ u=g & \text { on } \mathbb{R} \times\{t=0\}\end{cases}
$$

with

$$
F(u)=u^{2}+u, \quad g(x)= \begin{cases}1 & \text { for } x<0 \\ -3 & \text { for } x>0\end{cases}
$$

Problem 4 (Conservation laws: rarefaction wave, 4 points).
Find an integral solution to the initial value problem

$$
\begin{cases}u_{t}+u^{2} u_{x}=0 & \text { in } \mathbb{R} \times(0, \infty) \\ u=g & \text { on } \mathbb{R} \times\{t=0\}\end{cases}
$$

with

$$
g(x)= \begin{cases}0 & \text { for } x<0 \\ -2 & \text { for } x>0\end{cases}
$$

Hint: the solution should involve a rarefaction wave of the form $v(x / t)$.

