Problem 1 (Legendre transform, $2+2+2$ points).

For a function $H: \mathbb{R}^{n} \rightarrow \mathbb{R}$, denote by $L=H^{*}$ its Legendre transform.
a) Let $H(p):=\frac{1}{r}|p|^{r}$, for $1<r<\infty$. Show that $L(q)=\frac{1}{r^{\prime}}|q|^{r^{\prime}}$, where $\frac{1}{r}+\frac{1}{r^{\prime}}=1$.
b) Let $H(p):=\frac{1}{2} p \cdot A p+b \cdot p$, where $A \in \mathbb{R}^{n \times n}$ is a symmetric, positive definite matrix, and $b \in \mathbb{R}^{n}$. Compute L.
c) Let $H(p)=\sqrt{1+p^{2}}, p \in \mathbb{R}$. Compute L on its domain of definition.

Problem 2 (Subdifferential and Hopf-Lax formula, $2+2$ points).
Let $H: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a convex function and $L=H^{*}$ is the Legendre transform of H.
a) We say that $q \in \mathbb{R}^{n}$ belongs to the subdifferential of H at p, written $q \in \partial H(p)$, if

$$
H(r) \geq H(p)+q \cdot(r-p) \quad \text { for all } r \in \mathbb{R}^{n}
$$

Prove that

$$
q \in \partial H(p) \quad \Longleftrightarrow \quad p \in \partial L(q) \quad \Longleftrightarrow \quad p \cdot q=H(p)+L(q)
$$

b) Assume that $g \in C^{1}\left(\mathbb{R}^{n}\right)$ is globally Lipschitz continuous and that $H \in C^{1}\left(\mathbb{R}^{n}\right)$ satisfies $\lim _{|p| \rightarrow \infty} \frac{H(p)}{|p|}=\infty$. Recall, the Hopf-Lax formula:

$$
u(x, t)=\min _{y \in \mathbb{R}^{n}}\left\{t L\left(\frac{x-y}{t}\right)+g(y)\right\} .
$$

Let $R=\sup _{y \in \mathbb{R}^{n}}|D H(\nabla g(y))|$, where $H=L^{*}$. Prove that

$$
u(x, t)=\min _{y \in B(x, R t)}\left\{t L\left(\frac{x-y}{t}\right)+g(y)\right\}
$$

where $B(x, R t)=\left\{y \in \mathbb{R}^{n}:|y-x|<R t\right\}$. (This proves finite propagation speed for the Hamilton-Jacobi equation).
Hint: you can use the fact that, for a C^{1} function H, the subdifferential $\partial H(p)$ is actually its derivative. In other words $\partial H(p)$ contains precisely one element, $D H(p)$.

Problem 3 (Hopf-Lax formula, 2 points).
Use Hopf-Lax formula to solve explicitly the PDE

$$
\left\{\begin{array}{l}
u_{t}+\frac{3}{4} u_{x}^{\frac{4}{3}}=0 \quad \text { for }(x, t) \in \mathbb{R} \times(0, \infty) \\
u(x, 0)=x
\end{array}\right.
$$

Problem 4 (L^{∞}-contraction property of Hamilton-Jacobi equations, 4 points). Let $H \in C^{2}\left(\mathbb{R}^{n}\right)$ be uniformly convex with $\lim _{|p| \rightarrow \infty} \frac{H(p)}{|p|}=\infty$, and let $g_{1}, g_{2}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be Lipschitz continuous. Assume u^{1}, u^{2} are weak solutions of the initial-value problem

$$
\begin{cases}u_{t}^{i}+H\left(\nabla u^{i}\right)=0 & \text { in } \mathbb{R}^{n} \times(0, \infty) \\ u^{i}=g^{i} & \text { on } \mathbb{R}^{n} \times\{t=0\}\end{cases}
$$

$i=1,2$. Prove the inequality

$$
\left\|u^{1}(\cdot, t)-u^{2}(\cdot, t)\right\|_{L^{\infty}\left(\mathbb{R}^{n}\right)} \leq\left\|g^{1}-g^{2}\right\|_{L^{\infty}\left(\mathbb{R}^{n}\right)} \quad \text { for all } t>0
$$

Total: 16 points

