Problem 1 (Method of characteristics, 2 points).

Use the method of characteristics to solve the nonlinear initial value problem

$$
\left\{\begin{array}{l}
u_{t}+\left(u_{x}\right)^{4}=0 \quad(x, t) \in \mathbb{R} \times(0, \infty) \\
u(x, 0)=\frac{3}{4} x^{\frac{4}{3}}
\end{array}\right.
$$

Problem 2 (A nonlinear PDE, 4 points).

Consider the initial value problem

$$
\left\{\begin{array}{l}
-\left(u_{x_{1}}\right)^{2}+\left(u_{x_{2}}\right)^{2}+x_{2}^{2}=0 \quad \text { in } \mathbb{R}^{2} \\
u\left(x_{1}, 0\right)=g\left(x_{1}\right)
\end{array}\right.
$$

where g is a C^{1}-function satisfying $g^{\prime}\left(x_{1}\right)>0$ for every x_{1}.
a) Find explicitly the projected characteristics $\left(x_{1}(s), x_{2}(s)\right)$ starting from the point $(y, 0)$, $y \in \mathbb{R}$, assuming $u_{x_{2}}(x, 0) \geq 0$.
b) In the case $g\left(x_{1}\right)=x_{1}$, sketch the projected characteristics and write down an explicit solution in a neighborhood of the x_{1}-axis (your answer may depend on the function $\left.I(s)=\int_{0}^{s} \sin ^{2}(s) \mathrm{d} s\right)$.

Problem 3 (Blow up in Burgers' equation, $3+3$ points).
Let $u_{0} \in C^{\infty}(\mathbb{R})$ be such that u_{0}^{\prime} is bounded and has a unique minimizer s_{0} with $u_{0}^{\prime}\left(s_{0}\right)<0$, $u_{0}^{\prime \prime}\left(s_{0}\right)=0, u_{0}^{\prime \prime \prime}\left(s_{0}\right)>0$.
a) Show that there is $0<t^{*}<\infty$ such that the solution to the initial value problem

$$
\left\{\begin{array}{l}
\partial_{t} u+u \partial_{x} u=0 \quad \text { for } t \in\left(0, t^{*}\right), x \in \mathbb{R} \tag{1}\\
u(0, x)=u_{0}(x)
\end{array}\right.
$$

is given by

$$
u(t, x)=u_{0}(\xi), \quad x=\xi+u_{0}(\xi) t
$$

Determine the largest t^{*}, which depends on some $\xi^{*} \in \mathbb{R}$, such that u as a function of (t, x) exists and solves (1). What happens with $\partial_{t} u, \partial_{x} u$ and the characteristic curves of (11) as $t \rightarrow t^{*}$?
b) Perform a local analysis (Taylor expansion, term comparison) to argue that

$$
u\left(t^{*}, x\right)-u_{0}\left(\xi^{*}\right) \sim-\left(x-x^{*}\right)^{\frac{1}{3}}
$$

for x close to x^{*}, where $x^{*}=\xi^{*}+u_{0}\left(\xi^{*}\right) t^{*}$. Here $a \sim b$ means $a=C b$ for some constant $C>0$, up to higher order terms.

Problem 4 (Eikonal equation on a strip, 4 points).

Consider the Eikonal equation

$$
|D u|=\left(\left(\partial_{x_{1}} u\right)^{2}+\left(\partial_{x_{2}} u\right)^{2}\right)^{\frac{1}{2}}=1
$$

in the strip $U=\left\{0<x_{1}<1\right\} \subset \mathbb{R}^{2}$, with boundary data $u\left(0, x_{2}\right)=u\left(1, x_{2}\right)=0$ for $x_{2} \in \mathbb{R}$.
a) Write the characteristic ODE and determine admissible initial data. (Note that at each point of the boundary you have two possible sets of initial data).
b) Choose the initial data $p_{1}(0)=1$ on the left boundary $\left\{x_{1}=0\right\}$, and $p_{1}(0)=-1$ on the right boundary $\left\{x_{1}=1\right\}$. Explicitly solve the characteristic ODE.
c) Let $\left(x_{1}\left(s, x_{0}\right), x_{2}\left(s, x_{0}\right)\right)$ be the projected characteristics starting from a boundary point $x_{0} \in \partial U$, found in b). Notice that, given $\left(x_{1}, x_{2}\right) \in U$, you cannot uniquely determine $x_{0} \in \partial U$ and s such that $\left(x_{1}, x_{2}\right)=\left(x_{1}\left(s, x_{0}\right), x_{2}\left(s, x_{0}\right)\right)$. What solution do you construct if you assign to $\left(x_{1}, x_{2}\right)$ the characteristic starting from the left boundary if $x_{1}<\alpha$, and the one starting from the right boundary if $x_{1}>\alpha$, where $\alpha \in(0,1)$ is fixed? Is one solution "better" than the others?

