Problem Sheet 2 (due Monday 23.04.2018)

Problem 1 (Method of characteristics, $2+2$ points).

Use the method of characteristics to solve the following equations:
a) $\begin{cases}x_{1} \partial_{x_{1}} u-x_{2} \partial_{x_{2}} u+u=x_{1} & \text { in } \mathbb{R}^{2}, \\ u\left(x_{1}, x_{2}\right)=x_{1} & \text { on } \Gamma=\left\{x_{2}=x_{1}^{2}\right\} .\end{cases}$
b) $\begin{cases}u \partial_{x_{1}} u+\partial_{x_{2}} u=1 & \text { in } \mathbb{R}^{2}, \\ u\left(x_{1}, x_{2}\right)=\frac{1}{2} x_{1} & \text { on } \Gamma=\left\{x_{2}=x_{1}\right\} .\end{cases}$

Problem 2 (A quasilinear PDE, 4 points).

Show that the solution to the quasilinear PDE

$$
u_{y}+a(u) u_{x}=0
$$

with initial condition $u(x, 0)=h(x)$ is given implicitly by

$$
u(x, y)=h(x-a(u) y)
$$

Show that the solution becomes singular for some positive y, unless $a(h(s))$ is a nondecreasing function of s.

Problem 3 (Linear transport, 4 points).

Consider the linear transport equation

$$
\partial_{t} u(t, x)+a(t, x) \partial_{x} u(t, x)=0
$$

a) Determine the characteristic curves $x=x(t), x(0)=x_{0}$ for the transport velocities
(1) $a(t, x)=x$,
(2) $a(t, x)=\omega \cos (\omega t+\phi), \omega, \phi \in \mathbb{R}$,
(3) $a(t, x)=g(x)$, where

$$
g(x)= \begin{cases}0 & \text { if } x \leq 0, \\ -x & \text { if } 0<x<1, \\ -1 & \text { if } x \geq 1\end{cases}
$$

In each case, sketch the trajectories $x(t)$ for $t>0$ and several values of x_{0}.
b) Give a simple yet nontrivial condition on $a(t, x)$ such that characteristic curves do not intersect.
c) Give a simple yet nontrivial condition on $a(t, x)$ such that a solution exists for all $t>0$.

Problem 4 (4 points).
Suppose $u: \mathbb{R} \times[0, T] \rightarrow \mathbb{R}$ is a smooth solution of $u_{t}+u u_{x}=0$ which is periodic in x with period $L>0$, i.e., $u(x+L, t)=u(x, t)$. Show that

$$
\max _{x} u(x, 0)-\min _{x} u(x, 0) \leq L / T
$$

Total: 16 points

