Problem 1 (Uniqueness by energy methods, 4 points).
Show that there is at most one smooth solution $u(x, t)$ to the equation

$$
u_{t t}+c u_{t}-u_{x x}=f \quad(x, t) \in(0,1) \times(0, \infty)
$$

$c \in \mathbb{R}$, with initial conditions $u(x, 0)=g(x), u_{t}(x, 0)=h(x)$, and boundary conditions $u(0, t)=u(1, t)=0$.
Hint: study the function $E(t):=\frac{1}{2} \int_{0}^{1}\left(u_{t}^{2}(x, t)+u_{x}^{2}(x, t)\right) \mathrm{d} x$ (you may distinguish the cases $c \geq 0$ and $c<0$).

Problem 2 (Picone's example, 4 points).

Let $u \in C^{1}(\bar{\Omega})$ be a solution to

$$
a(x, y) u_{x}+b(x, y) u_{y}=-u
$$

where $\Omega=B_{1}(0)$ is the unit ball in \mathbb{R}^{2}. Assume that $a, b \in C^{\infty}\left(\mathbb{R}^{2}\right)$ and $a(x, y) x+b(x, y) y>0$ on $\partial \Omega$. Prove that u vanishes identically in Ω.
Hint: show that $\max _{\bar{\Omega}} u \leq 0, \min _{\bar{\Omega}} u \geq 0$.

Problem 3 (Viscous Burgers' equation, 4 points).

Consider the viscous Burgers' equation

$$
u_{t}+u u_{x}=\nu u_{x x}
$$

with $\nu \in \mathbb{R}$.
a) Identify the exponents n, m such that self-similar solutions of the form $u(x, t)=t^{m} f\left(x t^{n}\right)$ can be obtained. Write down the resulting ODE for the function f.
b) Let $s(x, t)$ be a solution to the heat equation $s_{t}=\nu s_{x x}$. Show that, if we make the transformation $u(x, t)=-2 \nu s_{x} / s$, we obtain a solution to the viscous Burgers' equation.

Problem 4 (Korteweg-de Vries equation, 4 points).

Consider the Korteweg-de Vries equation

$$
u_{t}+6 u u_{x}+u_{x x x}=0
$$

We look for a traveling wave solution $u(x, t)=f(x-c t)$. Write the resulting ODE for f. Assuming that both f and its derivatives vanish at infinity, integrate this equation once to get a second order ODE for f.

