Problem 1 (Galerkin method and Céa's Lemma).

Let H be a real Hilbert space, $F : H \to \mathbb{R}$ a linear and continuous functional, and let $B : H \times H \to \mathbb{R}$ be a symmetric, bounded and coercive bilinear form:

 $B(u,v) \le C \|u\| \|v\|, \qquad B(u,u) \ge \alpha \|u\|^2 \qquad \text{for every } u, v \in H.$

Let (H_n) be a sequence of finite dimensional subspaces such that $H_n \subset H_{n+1}$ for every n and $\overline{\bigcup_{n=1}^{\infty} H_n} = H$.

a) Show that for every n the equation

$$B(u, v) = F(v)$$
 for every $v \in H_n$

has a unique solution $u_n \in H_n$. Moreover, show that the sequence $(u_n)_n$ converges weakly in H to the unique solution u to

$$B(u, v) = F(v)$$
 for every $v \in H$.

b) Prove the following estimate for the error between the real solution u and the approximate solution u_n :

$$||u_n - u|| \le \frac{C}{\alpha} \inf\{||u - v_n|| : v_n \in H_n\}$$

 $(u_n \text{ is, up to a constant, as close to } u \text{ as the best approximation in } H_n).$ Hint: show that $u_n - u$ is orthogonal to H_n with respect to B.

Problem 2 (Exponential decay).

Let $\Omega \subset \mathbb{R}^n$ be open and bounded with smooth boundary, $g \in H^1_0(\Omega)$. Assume that u is a smooth solution to

$$\begin{cases} u_t - \Delta u = 0 & \text{in } \Omega \times (0, \infty), \\ u = 0 & \text{on } \partial \Omega \times [0, \infty), \\ u = g & \text{on } \Omega \times \{0\}. \end{cases}$$

Prove the exponential decay estimate

$$||u(\cdot,t)||_{L^2(\Omega)} \le e^{-\lambda_1 t} ||g||_{L^2(\Omega)},$$

where $\lambda_1 > 0$ is the principal eigenvalue of $-\Delta$ in Ω (with zero boundary conditions).

Problem 3 (A nonlinear parabolic equation).

Let $\Omega \subset \mathbb{R}^n$ be open and bounded with smooth boundary, $g \in H_0^1(\Omega)$ and $f : \mathbb{R} \to \mathbb{R}$ Lipschitz continuous. Consider the initial/boundary value problem

$$\begin{cases} u_t - \Delta u = f(u) & \text{in } \Omega \times (0, T), \\ u = 0 & \text{on } \partial \Omega \times (0, T), \\ u = g & \text{on } \Omega \times \{0\}. \end{cases}$$

Show that a weak solution exists for every T > 0. Hint: used the linear theory discussed in class, combined with Banach's fixed point theorem.