Nonlinear Partial Differential Equations I

Winter term 2015/2016 Problem Sheet 04 (due Thursday 19.11.15)

Problem 1 (Brouwer's FPT, 3 points)

Recall that Brouwer's fixed point theorem states that a continuous map $T: \overline{B_1(0)} \subset \mathbb{R}^n \to \overline{B_1(0)}$ has a fixed point.

- 1. Use Brouwer's FPT to show that there exists no continuous map $\omega \colon \overline{B_1(0)} \to \partial B_1(0)$ such that $\omega(x) = x$ for all $x \in \partial B_1(0)$.
- 2. Use the following result from the lecture to prove Brouwer's FPT: If $g: \mathbb{R}^n \to \mathbb{R}^n$ is continuous and satisfies $g(x) \cdot x \geq 0$ for all $x \in \partial B_R(0)$ for some R > 0, then there exists $x_0 \in \overline{B_R(0)}$ such that $g(x_0) = 0$.

Problem 2 (Weak convergence and nonlinear functions, 6 points)

1. Let $f: \mathbb{R} \to \mathbb{R}$ be continuous and assume that

$$f(u_n) \stackrel{*}{\rightharpoonup} f(u)$$
 in $L^{\infty}(0,1)$ whenever $u_n \stackrel{*}{\rightharpoonup} u$ in $L^{\infty}(0,1)$.

Show that f is affine.

2. Find a continuous $f \colon \mathbb{R} \to \mathbb{R}$ such that for any $p \in \mathbb{R}$ there is a sequence $(u_n) \in L^{\infty}(0,1)$ such that $u_n \stackrel{*}{\to} 0$ and $f(u_n) \stackrel{*}{\to} p$.

Problem 3 (Variational inequalities with a monotone operator, 7 points)

Let V be a reflexive, separable Banach space and let $M \subset V$ be a nonempty, closed and convex set. Assume that $A: M \to V^*$ satisfies

• monotonicity:

$$\langle Au - Av, u - v \rangle \ge 0$$
 for all $u, v \in M$,

• hemi-continuity:

$$t \mapsto \langle A(tu + (1-t)v), w \rangle$$
 is continuous on [0,1] for $u, v \in M, w \in V$

• coerciveness: there is $u_0 \in M$ such that

$$\frac{\langle Au, u - u_0 \rangle}{\|u - u_0\|} \to \infty \qquad \text{as} \qquad \|u\| \to \infty, u \in M,$$

• boundedness:

A maps bounded sets into bounded sets.

We want to find a solution $u \in M$ of the variational inequality

$$\langle Au, u - v \rangle \le 0 \quad \text{for all } v \in M.$$
 (1)

Please turn over.

1. (Minty's trick) Show that for $u \in M$ and $u^* \in V^*$ we have

$$\langle Au - u^*, u - v \rangle \le 0$$
 for all $v \in M$

if and only if

$$\langle Av - u^*, u - v \rangle \le 0$$
 for all $v \in M$.

- 2. (Continuity) Let $(u_n) \subset M$, $u \in M$ and $u^* \in V^*$ such that $u_n \rightharpoonup u$ in V and $Au_n \stackrel{*}{\rightharpoonup} u^*$ in V^* . Show that
 - (a) $\langle u^*, u \rangle \leq \liminf_{n \to \infty} \langle Au_n, u_n \rangle$,
 - (b) if $\langle u^*, u \rangle = \liminf_{n \to \infty} \langle Au_n, u_n \rangle$ then $\langle Au u^*, u v \rangle \leq 0$ for all $v \in M$.
- 3. (Galerkin approximation) Assume that for any finite-dimensional subspace X of V the variational inequality

$$\langle Au, u - v \rangle \le 0$$
 for all $v \in X \cap M$

has a solution $u \in X \cap M$ provided that the latter is non-empty. Show that a solution to (1) exists.

Total: 16 points