Sheet 3

rev 1 - 20160121

- Beyond Young
- Rough paths
- Controlled paths

1 Beyond Young

When trying to go beyond Young integral we face the fundamental problem that we cannot expect the integral to be a continuous operations (recall our basic counterexample).

1.1 A general existence result: the para-integral

A natural question is that if it is always possible to find a function I(f,g) which satisfies

$$\delta I(f,g)(s,t) = f(s)\delta g(s,t) + O(|t-s|^{\alpha+\beta})$$
(1)

with $f \in C^{\alpha}$ and $g \in C^{\beta}$ but with $\alpha + \beta < 1$.

Remark 1.

- i. Uniqueness does not hold anymore since if *I* is a solution then $\hat{I} = I + \varphi$ is also a solution of (1) for any $\varphi \in C^{\alpha+\beta}$.
- ii. Find such a function is equivalent to ask for a solution $J(f,g) \in C_2^{\alpha+\beta}$ of

$$\delta J(f,g)(s,u,t) = \delta f(s,u) \,\delta g(u,t)$$

since then we can let $\delta I(f,g) = f \delta g - J(f,g)$.

iii. We can always consider

$$J_{s}(f,g)(s,t) = \frac{1}{2}\delta f(s,t)\delta g(s,t)$$

for which we have

$$\delta J_s(f,g) = \frac{\delta f \delta g + \delta g \delta f}{2}$$

and

$$\|J_{s}(f,g)\|_{\alpha+\beta} \leq \|f\|_{\alpha}\|g\|_{\beta}.$$

So in case f = g we can always take $J(f,g) = J_s(f,g)$.

iv. If we consider $J_1(f,g)(s,t) = -f(s)\delta g(s,t)$ we have

$$\delta J_1(f,g)(s,u,t) = -f(s)\delta g(s,t) + f(s)\delta g(s,u) + f(u)\delta g(u,t) = \delta f(s,u)\delta g(u,t)$$

as required (indeed it differs from the iterated integral by the increment of a function). However the regularity is not ok, indeed we have only

$$|J_1(f,g)(s,t)| \leq ||f||_{\infty} ||g||_{\beta} |t-s|^{\beta}.$$

Another possibility is

$$J_2(f,g)(s,t) = \delta f(s,t)g(t) = J_1(f,g)(s,t) + f(t)g(t) - f(s)g(s)$$

since it differs from the previous one by the increment of the function $t \mapsto f(t)g(t)$. Still the regularity is not ok.

A decomposition of the functions f, g into an infinite sequence of blocks living in different scales will allow us to combine the observations contained in the Remark 1 (iv) to produce a map (in general not unique) solving eq. (1).

Theorem 2. (*Paraintegral*) For any $\alpha, \beta > 0$ such that $\alpha + \beta < 1$ there exists a continuous map $J_{<}$: $C^{\alpha} \times C^{\beta} \to C_2^{\alpha+\beta}$ such that

$$\delta J_{\prec}(f,g)(s,u,t) = \delta f(s,u) \,\delta g(u,t), \qquad s < u < t.$$

Proof. Let $\rho: \mathbb{R} \to \mathbb{R}_+$ smooth, compactly supported around 0 and of integral one. Let $\rho_n(t) = 2^n \rho(2^n t)$ and $f_n = \rho_n * f - \rho_{n-1} * f$ for $n \ge 1$ with $f_0 = \rho_0 * f$ and a similar definition for g_n . With these definitions we have $f(t) = \sum_n f_n(t)$. Direct estimates give that

$$|f_n(t)| \lesssim ||f||_{\alpha} 2^{-n\alpha}, \qquad |\partial_t f_n(t)| \lesssim ||f||_{\alpha} 2^{n-n\alpha},$$

and similar estimates for g_n where the constants depends only on ρ . These estimate also show that the sum of the series converges uniformly in *t*. Now take the combination of J_1 and J_2 given by

$$J_{\prec}(f,g) = \sum_{m \leqslant n} J_1(f_n, g_m) + \sum_{m > n} J_2(f_n, g_m)$$

and note that

$$\delta J_{\prec}(f,g) = \sum_{m \leqslant n} \delta J_1(f_n,g_m) + \sum_{m > n} \delta J_2(f_n,g_m) = \sum_{m \leqslant n} \delta f_n \delta g_m + \sum_{m > n} \delta f_n \delta g_m = \delta f \delta g$$

as required. But now if $0 < \alpha + \beta < 1$ we can estimate

$$|J_1(f_n, g_m)(s, t)| \lesssim ||f||_{\alpha} ||g||_{\beta} 2^{-n\alpha - m\beta} (1 \wedge 2^m |t - s|),$$

$$|J_2(f_n, g_m)(s, t)| \lesssim ||f||_{\alpha} ||g||_{\beta} 2^{-n\alpha - m\beta} (1 \wedge 2^n |t - s|).$$

$$\begin{split} |J_{\prec}(f,g)(s,t)| &\lesssim \|f\|_{\alpha} \|g\|_{\beta} \sum_{m \leqslant n} 2^{-n\alpha - m\beta} (1 \wedge 2^{m} |t - s|) + \|f\|_{\alpha} \|g\|_{\beta} \sum_{m > n} 2^{-n\alpha - m\beta} (1 \wedge 2^{n} |t - s|) \\ &\lesssim \|f\|_{\alpha} \|g\|_{\beta} \sum_{m} 2^{-m\alpha - m\beta} (1 \wedge 2^{m} |t - s|) + \|f\|_{\alpha} \|g\|_{\beta} \sum_{n} 2^{-n\alpha - n\beta} (1 \wedge 2^{n} |t - s|) \\ &\lesssim \|f\|_{\alpha} \|g\|_{\beta} \sum_{m: 2^{m} |t - s| > 1} 2^{-m\alpha - m\beta} + \|f\|_{\alpha} \|g\|_{\beta} |t - s| \sum_{m: 2^{m} |t - s| \leqslant 1} 2^{m - m\alpha - m\beta} \lesssim \|f\|_{\alpha} \|g\|_{\beta} |t - s|^{\alpha + \beta} \end{split}$$

which implies $||J_{\prec}(f,g)||_{\alpha+\beta} \leq ||f||_{\alpha} ||g||_{\beta}$.

1.2 Some tools

Regularity of 2-increments.

Lemma 3. Let $A: \mathbb{D} \times \mathbb{D} \to V$ and

$$Q_{\alpha,p}(A) = \left[\sum_{n \ge 0} 2^{-2n} \sum_{k=0}^{2^n - 1} \left| \frac{A(d_i^n, d_{i+1}^n)}{2^{-n\alpha}} \right|^p \right]^{1/p}.$$

Assume that $\delta A = \sum_{i} H_i$ (finite sum). Then if $\alpha p > 2$ we have

$$\sup_{t,s\in\mathbb{D}}\frac{|A(s,t)|}{|t-s|^{\alpha-2/p}} \le CQ_{\alpha,p}(A) + \sum_{i} \sup_{s< u < t\in\mathbb{D}}\frac{|H_{i}(s,u,t)|}{|t-u|^{\rho_{i}}|u-s|^{\sigma_{i}}}$$

for any choice of $\rho_i, \sigma_i > 0$ such that $\rho_i + \sigma_i \ge \alpha - 2/p$.

Proof. Recall that $A(a,b) = A(a,c) + A(c,d) + A(d,b) + \delta A(c,d,b) + \delta A(a,c,b)$. If $t, s \in \mathbb{D}$ we have

$$A(s,t) = A(s^{\ell-}, t^{\ell-}) + \sum_{k=\ell+1}^{\infty} A(t^{(k-1)-}, t^{k-}) + \sum_{k=\ell+1}^{\infty} A(s^{(k-1)-}, s^{k-}) + \sum_{k=\ell+1}^{\infty} \delta A(t^{k-}, s^{(k-1)-}, s^{k-}) + \sum_{k=\ell+1}^{\infty} \delta A(t^{(k-1)-}, t^{k-}, s^{k-})$$

where ℓ is the greatest integer which satisfies $2^{-\ell-1} < |t-s| \leq 2^{-\ell}$. Then

$$|A(t^{(k-1)-}, t^{k-})|^{p} \leq 2^{-k\alpha p + 2k} Q_{\alpha, p}(A)^{p}$$

for all $k \ge \ell$ and

$$|\delta A(t^{k-}, s^{(k-1)-}, s^{k-})| \leq \sum_{i} |H_i(t^{k-}, s^{(k-1)-}, s^{k-})| \leq \sum_{i} 2^{-\ell \sigma_i} 2^{-k\rho_i} K_i$$

where

$$K_i = \sup_{s < u < t \in \mathbb{D}} \frac{|H_i(s, u, t)|}{|t - u|^{\rho_i} |u - s|^{\sigma_i}}.$$

3

so

If $\alpha > 2/p$ we have

$$\begin{aligned} |A(s,t)| \leq Q_{\alpha,p}(A) \Bigg[2^{-\ell \alpha + 2\ell/p} + 2\sum_{k=\ell+1}^{\infty} 2^{-k\alpha + 2k/p} \Bigg] + \sum_{i} K_{i} \sum_{k=\ell+1}^{\infty} (2^{-\ell \sigma_{i}} 2^{-k\rho_{i}} + 2^{-\ell \rho_{i}} 2^{-k\sigma_{i}}) \\ \leq & \left(Q_{\alpha,p}(A) + \sum_{i} K_{i} \right) |t-s|^{\alpha - 2/p}. \end{aligned}$$

To bound the martingale expectation, we will use the following Burkholder inequality:

Lemma 4. Let *m* be a continuous local martingale with $m_0 = 0$. Then for all $T \ge 0$ and p > 1,

$$E[\sup_{t\leqslant T}|m_t|^{2p}]\leqslant C_p E[\langle m\rangle_T^p].$$

Proof. Start by assuming that *m* and $\langle m \rangle$ are bounded. Itô's formula yields

$$d|m_t|^{2p} = (2p)|m_t|^{2p-1} dm_t + \frac{1}{2}(2p)(2p-1)|m_t|^{2p-2} d\langle m \rangle_t,$$

and therefore

$$E[|m_T|^{2p}] = C_p E\left[\int_0^T |m_s|^{2p-2} \mathrm{d}\langle m \rangle_s\right] \leq C_p E[\sup_{t \leq T} |m_t|^{2p-2} \langle m \rangle_T].$$

By Cauchy-Schwartz we get

$$E[|m_T|^{2p}] \leq C_p E[\sup_{t \leq T} |m_t|^{2p}]^{(2p-2)/2p} E[\langle m \rangle_T^p]^{1/p}.$$

But now Doob's L^p inequality yields $E[\sup_{t \leq T} |m_t|^{2p}] \leq C'_p E[|m_T|^{2p}]$, and this implies the claim in the bounded case. The unbounded case can be treated with a localization argument.

1.3 Stochastic integrals

Stochastic integrals provide another source of solutions to eq. (1). Let us fix a given filtered probability space $(\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}_t)_t)$ in the following.

Lemma 5. Assume that *M* is a continuous martingale and *h* an adapted process. Assume that $\mathbb{E}[\|h\|_{\alpha}^{p}], +\infty$ for any $p \ge 1$ and that $|d\langle M \rangle_{t}/dt| \le L$. Let $I_{\text{Itô}}(h, M)$ be the Itô integral

$$I_{\text{Itô}}(h,M)(t) = \int_0^t h(s) \mathrm{d}M(s).$$

Then a.s.

$$\delta I_{\text{Itô}}(h,M)(s,t) - h(s)\delta M(s,t) = O(|t-s|^{\alpha+\beta})$$

for any $\beta < 1/2$.

Proof. The hypothesis $|d\langle M \rangle_t/dt| \leq L$ and Lemma 4 readily give

$$\mathbb{E}|\delta M(s,t)|^{2p} \leq C_p L^p |t-s|^p$$

for all $p \ge 1$. This implies $\mathbb{E}[Q_{1/2,2p}(M)^{2p}] < \infty$ for all $p \ge 1$, giving $\mathbb{E}||M||_{1/2-1/p}^{2p} < \infty$ for all p > 2. Let $J_{\text{Itô}}(h, M)(s, t) = \delta I_{\text{Itô}}(h, M)(s, t) - h(s)\delta M(s, t) = \int_{s}^{t} \delta h(s, u) dM(u)$. Then

$$|\delta J_{\mathrm{It\hat{o}}}(h,M)(s,u,t)| = |\delta h(s,u)\delta M(u,t)| \leq ||h||_{\alpha} ||M||_{\beta} |t-u|^{\beta} |u-s|^{\alpha}$$

for all $\beta < 1/2$. Next, using again Lemma 4, we have

$$\mathbb{E}|J_{\mathrm{Itô}}(h,M)(s,t)|^{2p} \leq C_p \mathbb{E}\left\{\left[\int_s^t (\delta h(s,u))^2 \mathrm{d}\langle M \rangle_u\right]^p\right\} \leq C_p L^p \mathbb{E}[\|h\|_{\alpha}^{2p}] \left[\int_s^t |u-s|^{2\alpha} \mathrm{d}u\right]^p$$
$$\leq C_p L^p \mathbb{E}[\|h\|_{\alpha}^{2p}]|t-s|^{2p(\alpha+1/2)}.$$

So we have that $\mathbb{E}[Q_{\alpha+1/2,2p}(J_{\mathrm{It}\hat{0}}(h,M))^{2p}] < \infty$ for all $p \ge 1$. Using Lemma 3 we can conclude that $\mathbb{E}\|J_{\mathrm{It}\hat{0}}(h,M)\|_{\alpha+\beta-1/p}^{2p} < \infty$ for all $p > 1/(\alpha+\beta)$.

1.4 Integration of closed 1-forms

Now consider $x \in C^{\gamma}([0,1]; \mathbb{R}^d)$ and $\varphi: \mathbb{R}^d \to \mathbb{R}^d$ such that $\nabla_i \varphi_j - \nabla_j \varphi_i = 0$. This means that the one form $\omega = \varphi_i(x) dx^i$ is closed: $d\omega = \nabla_j \varphi_i(x) dx^j \wedge dx^i = \frac{1}{2} (\nabla_j \varphi_i(x) - \nabla_i \varphi_j(x)) dx^j \wedge dx^i = 0$. Then

$$-\delta(\varphi_i(x)\delta x^i) = \delta\varphi_i(x)\delta x^i = \nabla_j\varphi_i(x)\delta x^j\delta x^i + C_3^{3\gamma}$$
$$= \frac{1}{2}(\nabla_j\varphi_i(x) + \nabla_i\varphi_j(x))\delta x^j\delta x^i + C_3^{3\gamma}$$
$$= \frac{1}{4}(\nabla_j\varphi_i(x) + \nabla_i\varphi_j(x))(\delta x^j\delta x^i + \delta x^i\delta x^j) + C_3^{3\gamma}$$
$$= \nabla_j\varphi_i(x)\delta S^{i,j} + C_3^{3\gamma} = \delta(\nabla_j\varphi_i(x)S^{i,j}) + C_3^{3\gamma}$$

with $S^{i,j}(s,t) = \frac{1}{2} \delta x^i(s,t) \delta x^j(s,t)$. In other words

$$\delta(\varphi_i(x)\delta x^i + \nabla_j \varphi_i(x)S^{i,j}) \in C_3^{3\gamma}$$

which means that there exists a unique y such that

$$\delta y = \varphi_i(x)\delta x^i + \nabla_j \varphi_i(x)S^{i,j} + C_2^{3\gamma}$$

Let us call

$$y(t) = \int_0^t \varphi_i(x(s)) \mathrm{d}x^i(s).$$

In \mathbb{R}^d the fact that ω is closed, implies that it is also exact: there exists $\psi: \mathbb{R}^d \to \mathbb{R}$ such that $\omega = d\psi$. This means that $\varphi_i = \nabla_i \psi$. Now, Taylor expansion gives

$$\delta \psi(x) = \nabla_i \psi(x) \delta x^i + \nabla_j \nabla_i \psi S^{i,j} + O(|t-s|^{3\gamma})$$

so we can identify $\delta y = \delta \psi(x)$ and we have

$$\psi(x(t)) - \psi(x(0)) = \int_0^t \varphi_i(x(s)) \mathrm{d}x^i(s).$$

Valid until $\gamma > 1/3$. Similar results hold for any $\gamma > 0$. When d = 1 any one-form is exact so this result allow to integrate an arbitrary function along an arbitrary Hölder path. When d > 1 the closedness condition is non-trivial and only particular one-forms can be integrated, namely those which are differentials of scalar functions.

2 Rough paths

In the following we will fix $\gamma > 1/3$ and an interval $I \subseteq \mathbb{R}$. All the Hölder spaces will considered on this interval unless specified otherwise.

Definition 6. A γ -Hölder rough path $\mathbb{X} = (\mathbb{X}^1, \mathbb{X}^2)$ in \mathbb{R}^d is a pair

$$\mathbb{X}^1 \in C_2^{\gamma}(\mathbb{R}^d), \qquad \mathbb{X}^2 \in C_2^{2\gamma}(\mathbb{R}^d \otimes \mathbb{R}^d)$$

with $\mathbb{X}^1 = \delta x$ for some $x \in C^{\gamma}(I; \mathbb{R}^d)$ and satisfying the Chen relation :

$$\delta \mathbb{X}^2(s, u, t) = \mathbb{X}^1(s, u) \mathbb{X}^1(u, t), \qquad s < u < t.$$

We say that \mathbb{X} lies above x. We denote collectively $(X^i)_{i=1,...,d}$ and $(X^{i,j})_{i,j=1,...,d}$ the components of \mathbb{X}^1 and \mathbb{X}^2 with respect to the canonical basis of \mathbb{R}^d and $\mathbb{R}^d \otimes \mathbb{R}^d$. We denote by $\mathcal{C}^{\gamma}(\mathbb{R}^d)$ the space of the γ -Hölder rough paths in \mathbb{R}^d and we let

$$\|X\|_{\mathscr{C}^{\gamma}} = \|X^1\|_{\gamma} + \|X^2\|_{2\gamma}.$$

On \mathscr{C}^{γ} we consider the distance $d_{\mathscr{C}^{\gamma}}(\mathbb{X}, \tilde{\mathbb{X}}) = \|\mathbb{X} - \tilde{\mathbb{X}}\|_{\mathscr{C}^{\gamma}}$. With $\mathscr{C}^{\gamma}_{x}(\mathbb{R}^{d}) \subseteq \mathscr{C}^{\gamma}(\mathbb{R}^{d})$ we denote the subset of rough paths lying above a given $x \in C^{\gamma}(I; \mathbb{R}^{d})$, the "fiber" at x.

- i. The space of rough paths is not a linear space since the Chen relation is non-linear.
- ii. We can interpret the data $X^i, X^{i,j}$ as the given of the (abstract) iterated integrals

$$X^{i}(s,t) = \int_{s < u < t} \mathrm{d}x^{i}(u), \qquad X^{i,j}(s,t) = \int_{s < u < v < t} \mathrm{d}x^{i}(u) \mathrm{d}x^{j}(v)$$

together with suitable regularity as elements in C_2 .

iii. When $\gamma > 1/2$ there can be at most only one rough path above a given path x. It is given by

$$\mathbb{X}^{1}(s,t) = x(t) - x(s), \qquad \mathbb{X}^{2}(s,t) = \int_{s}^{t} \mathbb{X}^{1}(s,u) \otimes \mathrm{d}_{u}x(u)$$

where the integral is understood in Young sense (or as a classical Lebesgue integral if $x \in C^1$). This rough path is called the *canonical lift* of *x*.

iv. Take $\gamma < 1/2$. If $\mathbb{X} \in \mathscr{C}_x^{\gamma}$ and $\varphi \in C^{2\gamma}(I; \mathbb{R}^d \otimes \mathbb{R}^d)$ then $\tilde{\mathbb{X}} = (\mathbb{X}^1, \mathbb{X}^2 + \delta \varphi)$ is also an element of \mathscr{C}_x^{γ} and all of them have this form. In particular there are infinitely many rough paths above the same path if $\gamma < 1/2$ (or none). The fiber \mathscr{C}_x^{γ} is an affine space with vector space $C^{2\gamma}(I; \mathbb{R}^d \otimes \mathbb{R}^d)$ and action $(\mathbb{X}, \varphi) \mapsto (\mathbb{X}^1, \mathbb{X}^2 + \delta \varphi)$. Elements in $\mathscr{C}_0^{\gamma} \simeq C^{2\gamma}(I; \mathbb{R}^d \otimes \mathbb{R}^d)$ are called *pure area* rough paths.

Lemma 7. Let $\gamma < 1/2$, then \mathscr{C}_x^{γ} is not empty.

Proof. Let $x \in C^{\gamma}$. Fix $\rho < \gamma$ and consider a sequence $(y_n \in C^1)_{n \ge 1}$ such that $x = \sum_n y_n$ in C^{ρ} and $||y_n||_{\infty} + 2^{-n} ||\dot{y}_n||_{\infty} \le 2^{-n\gamma} ||x||_{\gamma}$ (such a sequence always exists). Let $\mathbb{X}_n^1 = \sum_{k \le n} \delta y_k$ and define recursively \mathbb{X}_n^2 as

$$\mathbb{X}_{n+1}^{2}(s,t) = \mathbb{X}_{n}^{2}(s,t) + \mathbb{X}_{n}^{1}(s,t)y_{n+1}(t) - y_{n+1}(s)\mathbb{X}_{n}^{1}(s,t) - y_{n+1}(s)\delta y_{n+1}(s,t)$$

then if $\delta X_n^2 = X_n^1 X_n^1$ we have also

$$\delta \mathbb{X}_{n+1}^2(s, u, t) = \mathbb{X}_n^1(s, u) \mathbb{X}_n^1(u, t) + \mathbb{X}_n^1(s, u) \delta y_{n+1}(u, t) + \delta y_{n+1}(s, u) \mathbb{X}_n^1(u, t) + \delta y_{n+1}(s, u) \delta y_{n+1}(u, t)$$
$$= \mathbb{X}_{n+1}^1(s, u) \mathbb{X}_{n+1}^1(u, t).$$

Moreover

$$\begin{split} \|X_{n+1}^2(s,t) - X_n^2(s,t)\| &\leq \|X_n^1(s,t)y_{n+1}(t)\| + |y_{n+1}(s)X_n^1(s,t)| + |y_{n+1}(s)\delta y_{n+1}(s,t)| \\ &\leq \|x\|_Y^2 2^{-\gamma(n+1)} |t-s|^{2\rho} 2^{(2\rho-\gamma)n} \leq \|x\|_Y^2 |t-s|^{2\rho} 2^{(2\rho-2\gamma)n} \end{split}$$

so the sequence $(\mathbb{X}_n^2)_n$ converges in $C_2^{2\rho}$ to an element which we call \mathbb{X}^2 and such that $\delta \mathbb{X}^2 = \mathbb{X}^1 \mathbb{X}^1$. We have

$$\begin{split} |\mathbb{X}^{2}(s,t)| &\leq \sum_{n} |\mathbb{X}^{2}_{n+1}(s,t) - \mathbb{X}^{2}_{n}(s,t)| \\ &= \sum_{n:2^{n}|t-s| \leq 1} |\mathbb{X}^{2}_{n+1}(s,t) - \mathbb{X}^{2}_{n}(s,t)| + \sum_{n:2^{n}|t-s| > 1} |\mathbb{X}^{2}_{n+1}(s,t) - \mathbb{X}^{2}_{n}(s,t)| \\ &\leq ||x||_{\gamma}^{2} \sum_{n:2^{n}|t-s| \leq 1} 2^{n-2\gamma n} |t-s| + ||x||_{\gamma} \sum_{n:2^{n}|t-s| > 1} 2^{-\gamma n} |t-s|^{\gamma} \leq ||x||_{\gamma}^{2} |t-s|^{2\gamma} \end{split}$$

Setting $X = (X^1, X^2)$ we have $X \in \mathscr{C}_x^{\gamma}$ as required.

When $\gamma > 1/2$ rough paths satisfy an additional algebraic relation, called the shuffle relation:

$$X^{i}(s,t)X^{j}(s,t) = X^{ij}(s,t) + X^{ji}(s,t).$$
(2)

Definition 8. We call weakly geometric rough paths satisfying the relation eq. (2) and denote them collectively with $\mathcal{C}_{wg}^{\gamma}$. Moreover we denote by \mathcal{C}_{g}^{γ} the closure of \mathcal{C}^{1} in \mathcal{C}^{γ} and call them geometric rough paths.

If $\gamma > 1/2$ we have $\mathscr{C}^{\gamma} = \mathscr{C}^{\gamma}_{wg} = \mathscr{C}^{\gamma}_{g}$. Since elements of \mathscr{C}^{1} satisfy the shuffle relation, this will remain valid also for all elements of \mathscr{C}^{γ}_{g} so $\mathscr{C}^{\gamma}_{g} \subseteq \mathscr{C}^{\gamma}_{wg} \subseteq \mathscr{C}^{\gamma}$ for any γ . As far as the relation between \mathscr{C}^{γ}_{g} and $\mathscr{C}^{\gamma}_{wg}$ is concerned we have the following result

Theorem 9. For every $\mathbb{X} \in \mathscr{C}^{\gamma}_{wg}$ there exists a sequence $(\mathbb{X}_n)_{n \ge 1}$ in \mathscr{C}^1 such that $\mathbb{X}_n \to \mathbb{X}$ in \mathscr{C}^{ρ} for any $\rho < \gamma$. In particular $\mathscr{C}^{\gamma}_g \subseteq \mathscr{C}^{\rho}_{wg} \subseteq \mathscr{C}^{\rho}_g$.

As a preliminary to a proof of this theorem let us discuss a particular case, the approximation theory for pure area rough paths.

Theorem 10. Assume $\gamma < 1/2$ and let $\varphi \in C^{2\gamma}(I; \mathbb{R}^d \otimes_a \mathbb{R}^d)$ then there exists $x_n \in C^1$ such that the canonical lift \mathbb{X}_n converges in \mathscr{C}^ρ to the pure area path $\mathbb{X} = (0, \delta \varphi)$ for any $\rho < \gamma$.

Proof. Let $(\varphi_n)_n$ a sequence in C^1 converging to φ in $C^{2\rho}$ for some $\rho < \gamma$ and such that $\|\dot{\varphi}_n\|_{\infty} \leq 2^{n-n\gamma} \|\varphi\|_{\gamma}$. Fix sufficiently large positive numbers $(L_{ij})_{i,j=1,...,d}$ all different one from the other and let

$$x_n^i(t) = \frac{1}{2} \sum_j \dot{\varphi}_n^{ij}(t) 2^{-L_{ij}n/2} \sin(2^{L_{ij}n}t) + \sum_j 2^{-L_{ji}n/2} \cos(2^{L_{ji}n}t).$$

By a long but direct estimation we can show that

$$\left\|\int_{s}^{t} (x_{n}^{i}(u) - x_{n}^{i}(s)) \mathrm{d}_{u} x_{n}^{j}(u) - \frac{1}{2} \int_{s}^{t} (\dot{\varphi}_{n}^{ji}(u) - \dot{\varphi}_{n}^{ij}(u)) \mathrm{d}u\right\|_{C_{2}^{1-}} \to 0$$

as $n \to \infty$. Moreover

$$\frac{1}{2}\int_{s}^{t} (\dot{\varphi}_{n}^{ji}(u) - \dot{\varphi}_{n}^{ij}(u)) \mathrm{d}u \to \delta \varphi^{ij}(s,t)$$

in $C_2^{2\rho}$. Since $x_n \to 0$ in $C^{1/2-}$ the claim follows. In order to show the main estimate note that

$$\begin{split} & \int_{s}^{t} (x_{n}^{i}(u) - x_{n}^{i}(s)) d_{u} x_{n}^{j}(u) = \\ = & -\sum_{k,m} \int_{s}^{t} 2^{-L_{ik}n/2} 2^{L_{mj}n/2} [\dot{\varphi}_{n}^{ik}(u) \sin(2^{L_{ik}n}u) - \dot{\varphi}_{n}^{ik}(s) \sin(2^{L_{ik}n}s)] \sin(2^{L_{mj}n}u) du \\ & + \sum_{k,m} \int_{s}^{t} 2^{-L_{ik}n/2} 2^{L_{mj}n/2} [\dot{\varphi}_{n}^{jm}(u) \cos(2^{L_{ik}n}u) - \dot{\varphi}_{n}^{jm}(s) \cos(2^{L_{ik}n}s)] \cos(2^{L_{mj}n}u) du \\ & - \sum_{k,m} \int_{s}^{t} 2^{-L_{ik}n/2} 2^{L_{mj}n/2} [\cos(2^{L_{ik}n}u) - \cos(2^{L_{ik}n}s)] \sin(2^{L_{mj}n}u) du \\ & + \sum_{k,m} \int_{s}^{t} 2^{-L_{ik}n/2} 2^{L_{mj}n/2} [\dot{\varphi}_{n}^{ik}(u) \sin(2^{L_{ik}n}u) - \dot{\varphi}_{n}^{ik}(s) \sin(2^{L_{ik}n}s)] \dot{\varphi}_{n}^{jm}(u) \cos(2^{L_{mj}n}u) du \end{split}$$

and that by trigonometric identities all the integrals contains oscillating factors with frequencies of the form $2^{L_{ik}n} \pm 2^{L_{mj}n}$ which are different from zero unless k = m. Moreover the only terms which produce non-oscillating factors are those of the form $\sin - \sin \operatorname{or} \cos - \cos$ which are then linear in $\dot{\varphi}_n$. Using integration by parts and the fact that the numbers *L* are large enough to beat the growth of $\dot{\varphi}_n$ all the oscillating terms can be shown to go to zero (one use also the fact that boundary terms vanishes). The claim follows directly.

Proof. (of Thm. 9) The general case is similar to the pure area case. Let $\mathbb{X} \in \mathscr{C}_{\text{wg},x}^{\gamma}$ for some $x \in C^{\gamma}$. Fix $\rho < \gamma$ and consider a sequence $(y_n \in C^1)_{n \ge 1}$ such that $x = \sum_n y_n$ in C^{ρ} and $||y_n||_{\infty} + 2^{-n} ||\dot{y}_n||_{\infty} \le 2^{-n\gamma} ||x||_{\gamma}$ (such a sequence always exists). Let $y_{\le n} = \sum_{k \le n} y_k$ and

$$x_n^i(t) = y_{\leqslant n}^i + \frac{1}{2} \sum_j \dot{\varphi}_n^{ij}(t) 2^{-L_{ij}n/2} \sin(2^{L_{ij}n}t) + \sum_j 2^{-L_{jin}/2} \cos(2^{L_{ji}n}t).$$

(notations as in the previous theorem) where φ_n is for the moment an indeterminate sequence. Using the same ideas as above we can show that

$$\left\|\int_{s}^{t} (x_{n}^{i}(u) - x_{n}^{i}(s)) \mathrm{d}_{u} x_{n}^{j}(u) - \int_{s}^{t} (y_{\leq n}^{i}(u) - y_{\leq n}^{i}(s)) \mathrm{d}_{u} y_{\leq n}^{j}(u) - \frac{1}{2} \int_{s}^{t} (\dot{\varphi}_{n}^{ji}(u) - \dot{\varphi}_{n}^{ij}(u)) \mathrm{d}_{u} \right\|_{C_{2}^{1-}} \to 0.$$

Now the point is that we can choose the sequence φ such that it cancels the contribution of the antisymmetric part of $\int_s^t (y_{\leq n}^i(u) - y_{\leq n}^i(s)) d_u y_n^j(u)$ and replaces it with an approximation (converging in $C^{2\gamma}$) of the antisymmetric part of \mathbb{X}^2 . We leave the details to the reader.

Weakly geometric rough paths can be approximated by lifts of smooth paths by loosing just a bit regularity in the convergence statement. Approximation of general rough path is less clear. In particular we cannot hope to approximate a general rough path with smooth canonical lifts since the shuffle relation is not true in the limit. But as we will now see, this is the only obstruction.

Let $X \in \mathscr{C}^{\gamma}$ and consider the defect in the shuffle relation

$$D^{ij}(s,t) = X^{i}(s,t)X^{j}(s,t) - X^{ij}(s,t) - X^{ji}(s,t).$$

A simple computation shows that $\delta D^{ij} = 0$, indeed:

$$\delta D^{ij}(s, u, t) = X^{i}(s, u)X^{j}(u, t) + X^{j}(s, u)X^{i}(u, t) - X^{i}(s, u)X^{j}(u, t) - X^{j}(s, u)X^{i}(u, t) = 0.$$

Moreover $D \in C_2^{2\gamma}(\mathbb{R}^d \otimes_s \mathbb{R}^d)$ where $\mathbb{R}^d \otimes_s \mathbb{R}^d$ denotes the symmetric tensor product. Then there exists a function $d \in C^{2\gamma}(I; \mathbb{R}^d \otimes_s \mathbb{R}^d)$ such that $D = \delta d$. We can define now $\mathbb{X}_g = (\mathbb{X}^1, \mathbb{X}^2 + \delta d/2)$ and check that $\mathbb{X}_g \in \mathscr{C}_{wg}^{\gamma}$:

$$X_{g}^{i}(s,t)X_{g}^{j}(s,t) = X^{i}(s,t)X^{j}(s,t) = X^{ij}(s,t) + X^{ji}(s,t) + D^{ij}(s,t)$$
$$= X^{ij}(s,t) + \frac{1}{2}\delta d^{ij}(s,t) + X^{ji}(s,t) + \frac{1}{2}\delta d^{ji}(s,t) = X_{g}^{ij}(s,t) + X_{g}^{ji}(s,t).$$

So to every rough path $\mathbb{X} \in \mathscr{C}_x^{\gamma}$ lying above *x* we can associate a geometric rough path $\mathbb{X}_g \in \mathscr{C}_{g,x}^{\gamma}$ by modifying its the symmetric part of its second order component. Note that this projection is not unique since there are a priori many weakly geometric rough paths above the same path, differing one from the other by an antisymmetic increment in the second order component: indeed $\widetilde{\mathbb{X}}_g = (\mathbb{X}_g^1, \mathbb{X}_g^2 + \delta \varphi)$ with $\varphi \in C^{2\gamma}(I; \mathbb{R}^d \otimes_a \mathbb{R}^d)$ is again in $\mathscr{C}_{g,x}^{\gamma}$.

This construction shows the existence of an isomorphism of metric spaces :

$$\mathscr{C}^{\gamma}(\mathbb{R}^d) \simeq \mathscr{C}^{\gamma}_{wo}(\mathbb{R}^d) \times C^{2\gamma}(I; \mathbb{R}^d \otimes_s \mathbb{R}^d).$$

(see Hairer-Kelly for a generalisation of these considerations)

3 Controlled paths

Definition 11. A pair (h, h^X) where $h \in C^{\gamma}([0, 1]; V)$ and $h^X \in C^{\gamma}([0, 1]; \mathscr{L}(\mathbb{R}^d; V))$ is a path controlled by *x* if

$$h^{\sharp}(s,t) = \delta h(s,t) - h^{X}(s) \mathbb{X}^{1}(s,t) \in C_{2}^{2\gamma}(V).$$

We denote by $\mathscr{D}^{2\gamma}_{\mathbb{X}}(V)$ the linear space space of paths controlled by \mathbb{X} and on $\mathscr{D}^{2\gamma}_{\mathbb{X}}$ we consider the semi–norm

$$\|(h, h^X)\|_{\mathscr{D}^{2\gamma}} = \|h^X\|_{\gamma} + \|h^{\sharp}\|_{2\gamma}$$

Given a rough path X and path $(h, h^X) \in \mathscr{D}_X^{2\gamma}(\mathscr{L}(\mathbb{R}^d; V))$ controlled by X we can define a new controlled path $(z, z^X) \in \mathscr{D}_X^{2\gamma}(V)$ by letting $z^X = h$ and z the unique solution to

$$\delta z(s,t) = h(s) \mathbb{X}^1(s,t) + h^X(s) \mathbb{X}^2(s,t) + z^{\natural}(s,t)$$

with $z^{\natural} \in C_2^{3\gamma}(V)$. We call it the integral of *h* with respect to X.

Theorem 12. Given a rough path X and path $(h, h^X) \in \mathscr{D}_X^{2\gamma}(\mathscr{L}(\mathbb{R}^d; V))$ controlled by X we can define a new controlled path $(z, z^X) \in \mathscr{D}_X^{2\gamma}(V)$ by letting $z^X = h$ and z the unique solution to

$$\delta z(s,t) = h(s) \mathbb{X}^1(s,t) + h^X(s) \mathbb{X}^2(s,t) + z^{\natural}(s,t)$$

with $z^{\natural} \in C_2^{3\gamma}(V)$. We call it the integral of h with respect to X and we have

$$\|z^{\natural}\|_{3\gamma} \lesssim \|(h, h^X)\|_{\mathscr{D}^{2\gamma}_{\mathbb{X}}}(1+\|\mathbb{X}\|_{\mathscr{C}^{\gamma}})$$

and

$$\left[\left[(z, z^X) \right] _{\mathscr{D}_{\mathbb{X}}^{2\gamma}, \tau} \lesssim \left\| \mathbb{X} \right\| _{\mathscr{C}^{\gamma}, 1} (\left[\left[h^X \right] \right] _{\infty, \tau} + \tau^{\gamma} \left[\left[(h, h^X) \right] \right] _{\mathscr{D}_{\mathbb{X}}^{2\gamma}, \tau})$$

Proof. Such a path is clearly unique and is well defined since if we let

$$A(s,t) = h(s) \mathbb{X}^{1}(s,t) + h^{X}(s) \mathbb{X}^{2}(s,t)$$

we have

$$\delta A(s, u, t) = -\delta h(s, u) \mathbb{X}^{1}(u, t) - \delta h^{X}(s, u) \mathbb{X}^{2}(u, t) + h^{X}(s) \delta \mathbb{X}^{2}(s, u, t)$$

$$= -(\delta h(s, u) - h^{X}(s) \mathbb{X}^{1}(s, u)) \mathbb{X}^{1}(u, t) - \delta h^{X}(s, u) \mathbb{X}^{2}(u, t) = -h^{\sharp}(s, u) \mathbb{X}^{1}(u, t) - \delta h^{X}(s, u) \mathbb{X}^{2}(u, t)$$

and by assumption $\delta A \in C_3^{3\gamma}(V)$ so that we can apply the sewing map to obtain

$$z^{\natural} = \Lambda(h^{\sharp} \mathbb{X}^1 + \delta h^X \mathbb{X}^2) \in C_2^{3\gamma}(V).$$

Then

$$[[z^{X}]]_{\gamma,\tau} \leq [[h^{X}]]_{\infty,\tau} ||X^{1}||_{\gamma,\tau} + [[h^{\sharp}]]_{2\gamma,\tau}, \qquad [[z^{\sharp}]]_{2\gamma,\tau} \leq [[h^{X}]]_{\infty,\tau} ||X^{2}||_{2\gamma,\tau} + \tau^{\gamma} [[z^{\natural}]]_{3\gamma,\tau}$$

and the final bound follows.

Lemma 13. Let $(f, f^X) \in \mathcal{D}_{\mathbb{X}}^{2\gamma}(V)$ and let $\varphi \in C^2(V; W)$ then $(\varphi(f), \varphi(f)^X) \in \mathcal{D}_{\mathbb{X}}^{2\gamma}(W)$ where $\varphi(f)(t) = \varphi(f(t))$ and $\varphi(f)^X = \nabla \varphi(f) f^X \in C^{\gamma}(\mathcal{L}(\mathbb{R}^d; W))$. Moreover

$$\|(\varphi(f),\varphi(f)^X)\|_{\mathscr{D}^{2\gamma}_{\mathbb{X}}} \lesssim C_{\varphi} (1+\|(f,f^X)\|_{\mathscr{D}^{2\gamma}_{\mathbb{X}}})^2.$$

Proof. Taylor expansion gives

$$\begin{split} \delta\varphi(f)(s,t) &= \int_0^1 \mathrm{d}\tau \nabla\varphi(f(s) + \tau \delta f(s,t)) \delta f(s,t) \\ &= \nabla\varphi(f(s)) \delta f(s,t) + \int_0^1 (1-\tau) \mathrm{d}\tau \nabla^2 \varphi(f(s) + \tau \delta f(s,t)) (\delta f(s,t) \otimes \delta f(s,t)) \\ &= \nabla\varphi(f(s)) \delta f(s,t) + O(|t-s|^{2\gamma}) \end{split}$$

Using the controlled hypothesis on f we get

$$\delta\varphi(f)(s,t) = \nabla\varphi(f(s))f^X(s) \mathbb{X}^1(s,t) + \varphi(f)^{\sharp}(s,t)$$

where

$$\varphi(f)^{\sharp}(s,t) = \nabla \varphi(f(s)) f^{\sharp}(s,t) + \int_0^1 (1-\tau) \mathrm{d}\tau \nabla^2 \varphi(f(s) + \tau \delta f(s,t)) (\delta f(s,t) \otimes \delta f(s,t)).$$

Then we can let $\varphi(f)^X(s) = \nabla \varphi(f(s)) f^X(s)$ and observe that

$$\|\varphi(f)^{\sharp}\|_{2\gamma} \lesssim \|\nabla\varphi\|_{\infty} \|f^{\sharp}\|_{2\gamma} + \|\nabla^{2}\varphi\|_{\infty} \|f\|_{\gamma}^{2} \lesssim C_{\varphi}(1 + \|(f, f^{X})\|_{\mathscr{D}_{X}})^{2}.$$