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1 Beyond Young

When trying to go beyond Young integral we face the fundamental problem that we cannot expect
the integral to be a continuous operations (recall our basic counterexample).

1.1 A general existence result: the para-integral

A natural question is that if it is always possible to find a function I(f, g) which satisfies

SI(f,8)(s,1) = f(5)8g(s,1) + O(It — 5|*F) )

with f € C® and g C” but with a+ < 1.

Remark 1.

1.

il.

1il.

Uniqueness does not hold anymore since if / is a solution then I=I+ @ is also a solution
of (1) for any g € C**P,

Find such a function is equivalent to ask for a solution J(f,g) € C5 P of

SJ(f,8)(s, u,1)=56f (s, u) 5g(u, 1)
since then we can let 5I(f, g)=fog—J(f,g).

We can always consider

T(f 86, =53 (5,181
for which we have
s, = DB 88
and

(s Dlla+p< 11 f lallgll p-

So in case f =g we can always take J(f, g)=Js(f,g).



iv. If we consider Ji(f, g)(s, 1) =—f(s)6g(s,t) we have

0J1(f,8)(s,u, 1) ==f(5)bg(s, 1) + f (5)0g (s, u) + f (u)bg(u, 1) = &f (5, u)5g (u, 1)

as required (indeed it differs from the iterated integral by the increment of a function).
However the regularity is not ok, indeed we have only

W1(f, &) 6D N fllollglllt = 1P
Another possibility is
Jo(f,8)(s,1)=6f (5,)8(1) =J1(f, &)(s, 1) + f(1)g(1) — f (5)8(5)

since it differs from the previous one by the increment of the function ¢ — f(#)g(z). Still
the regularity is not ok.

A decomposition of the functions f, g into an infinite sequence of blocks living in different scales
will allow us to combine the observations contained in the Remark 1 (iv) to produce a map (in
general not unique) solving eq. (1).

Theorem 2. (Paraintegral) For any a,# >0 such that a+ f <1 there exists a continuous map J<:
C*x CP - C&*P such that

oJ<(f,g) (s,u,t)=0f (s,u) 6g(u,1), s<u<t.

Proof. Let p: R - Ry smooth, compactly supported around O and of integral one. Let p,(t) =
2" p(2"t) and f=pu* f —pu—1* f for n>1 with fo=po+* f and a similar definiton for g,,. With these
definitions we have ()= Zn fu(t). Direct estimates give that

OIS A 27" 1oL S L 2"

and similar estimates for g, where the constants depends only on p. These estimate also show that
the sum of the series converges uniformly in . Now take the combination of J; and J> given by

J<f,2)= Y Iifgm)+ Y Jo(fon &m)

m<n m>n

and note that

8I«(fs8)= ), 81i(fungm)+ Y, 8afungm)= ), 8id8m+ ), 8idgm=0fd8

m<n m>n m<n m>n

as required. But now if 0<a+ f <1 we can estimate

1 (s gm) (5, DI S I fllallgll g2~ (1 A2 2~ s1),

W2 8m)(5, DI S I f lallgll g2~ (1 A 2% = s1).



SO

IV<(f.8)(s,. DI S IIfIIaIIgIIﬁZ 27BN e =)+ IIfIIaIIgII/sZ 27BN e~ s))

m<n m>n

Sl llallglls Y, 27 P A A2 e =D+ 1 Fllallglls Y 27" (1 A2"1 = s])
m n

Slfllallglls Z 27 || fllallgllple =] Z 2= S\ fllallgllle = 517
m:2™M|t—s|>1 m:2"|t—s|<1
which implies [[J<(f, la+s S |1 f llallgllp- O

1.2 Some tools

Regularity of 2-increments.

Lemma 3. Let A:DXD— Vand

n=0

O p(A) = 1222" \A("f’i“) ]

Assume that 5A =)} H; (finite sum). Then if ap>2 we have

A(s, t
qup JAG0L
1seb |t —s|*7P

|Hi(s,u,1)|

< e Al
<CQup( M)+, sup o me

i s<u<teD
for any choice of p;,0;>0 such that p;+o; 2> a—2/p.

Proof. Recall that A(a,b)=A(a,c)+ A(c,d)+ A(d,b) +5A(c,d,b)+6A(a,c,b). If t,s€D we have

Als,=AG1)+ Y1 A7)+ Y AR, 60

k=£+1 k=C+1

o0 o0
+ Z SA(t%=, s*k=D= k=) 4 z SA(t*=D= k= k=)
k=C+1 k=£+1

where Z is the greatest integer which satisfies 277! < |t — 5| <27¢. Then

|A@*= D=, )P g27rarthg, ()P

for all k> and

A 54D 5y < B A st D ko) < Y 2 rea ek,
i i

where

|Hi(s,u,1)]|

s<u<teD



If a>2/p we have

|A(S, t)l < Qa,p(A) [2—fa+2f/p+2 Z 2—ka+2k/p] + Z K; Z (2—f6,-2—kp,-+2—fp,-2—ka,-)
k=C+1 i k=¢+1

s(ga,p<A>+ ¥ K,->|r—s|“-2’f’. O

To bound the martingale expectation, we will use the following Burkholder inequality:

Lemma 4. Let m be a continuous local martingale with my=0. Then for all T >0 and p> 1,

E[sup |m,|*P1< C, E[(m)¥].

<T

Proof. Start by assuming that m and (m) are bounded. It6's formula yields

- 1 -
dim*P= Q2 p)lmi*P~" dmy+ 5 (2 p) 2 p= Dlm > =2 d{m):,

and therefore

T
E[|mr|*") =C,,E[ / |ms|2p-2d<m>s] < CpE[sup [m,[*P~*(m)r].
0

t<T

By Cauchy—Schwartz we get

E[|lmr|*"1< C, E[sup |[m,|>P]@P=22PE[(m)R]V/P.
t<T

But now Doob's L? inequality yields E[sup;<r |mt|2p] <C,E [|mT|2P], and this implies the claim in
the bounded case. The unbounded case can be treated with a localization argument. O

1.3 Stochastic integrals

Stochastic integrals provide another source of solutions to eq. (1). Let us fix a given filtered
probability space (2, F#,P, (¥);) in the following.

Lemma 5. Assume that M is a continuous martingale and h an adapted process. Assume that
E[||A]|2], +oo for any p>1 and that |d{M),/dt| < L. Let Iys(h, M) be the It6 integral
t
Io(h, M)(1) = / h(s)dM(s).
0
Then a.s.
Sluo(h, M)(s, 1) — h(s)SM(s, 1) = O(|t — 5|**F)

for any f<1/2.



Proof. The hypothesis |[d{M),/dt| <L and Lemma 4 readily give
E|6M(s,1)|*P < CpLP|t — s|P

for all p>1. This implies [E[Ql/z,zp(M)%’] <oo forall p>1, giving [E||M||?fz_1/p< oo forall p>2.
Let Jis(h, M)(s,t) = 0lys(h, M)(s,t) — h(s)OM (s, t) = f;éh(s, u)dM(u). Then

|6J16Ch, M)(s, 4, £)| = |5h(s, )M (u, )] < || 2| || M| plt — ]|t — 5|

for all #<1/2. Next, using again Lemma 4, we have

t P t )4
/ <5h<s,u>>2d<M>u] }schP[E[nhniP] [ / |u—s|2“du]

<C, LPE[|| 1|27t — s|2Pe+ 12,

EIJItﬁ(h’M)(S’ t)IZ[) < Cp [E{

So we have that E[Qq+1/2,2p(J1e(h, M ))2P] < oo for all p=1. Using Lemma 3 we can conclude that
Elluo(h M)l 1y <o for all p>1/(a+p). O

1.4 Integration of closed 1-forms

Now consider xe C7([0, 1];R?) and @: R4 - R such that Vip;i—Vjp;i=0. This means that the one
form o= @;(x)dx’ is closed: do=V jp;(x)dx’ Adx'= %(V #i(x) = Vip(x))dx/ Adx'=0. Then

—8(pi(0)5x") = 8i(x)dx = V jepi(x)5x/ 5 + €37
=2 (Vi) + Vi ()6 + C
=%(V 10i(X) + Vigp(x))(8x95x1 + 8xix7) + CF
=V jpi(x)55" + C3 = 5(V jopi(x)S™) + C37
with S%/(s, 1) = %5xi(s, 1)6x/(s, ). In other words
S(pix)Sx + Vjpi(x)SHh e €3
which means that there exists a unique y such that

8y= @05 + V jpi(x)S™ + C3'

Let us call

V()= A #i(x(5))dxi(s).

In R the fact that w is closed, implies that it is also exact: there exists y: R? — R such that o =dy.
This means that ;= V. Now, Taylor expansion gives

Sy (x) =V (x)8x + V,;V ayS™ + O(|t — 57)



so we can identify dy =y (x) and we have
w(x() —w(x(0)) = A Pix(5))dx'(s).

Valid until y > 1/3. Similar results hold for any y > 0. When d =1 any one-form is exact so this
result allow to integrate an arbitrary function along an arbitrary Holder path. When d > 1 the
closedness condition is non—trivial and only particular one—forms can be integrated, namely those
which are differentials of scalar functions.

2 Rough paths

In the following we will fix y > 1/3 and an interval / CR. All the Holder spaces will considered
on this interval unless specified otherwise.

Definition 6. A y-Holder rough path X=(X',X?) in R? is a pair
X'eCyRY), X2eCy(RIQRY)
with X' = 6x for some x € C'(I;RY) and satisfying the Chen relation :
SXs,u,)=X(s, X w, 1),  s<u<t.
We say that X lies above x. We denote collectively (XDi=1....qand (X"’j),', j=1,...,d the components

of X! and X?* with respect to the canonical basis of R? and R? @ R%. We denote by €"(RY) the
space of the y-Hélder rough paths in R and we let

.....

IXTlgr = 11+ 112

On 6" we consider the distance dgr(X, >‘~<) =X - §{||qgr. With %’;(Rd) C €"(RY) we denote the
subset of rough paths lying above a given x € C'(I;R?), the “fiber” at x.

i. The space of rough paths is not a linear space since the Chen relation is non-linear.

ii. We can interpret the data X?, X/ as the given of the (abstract) iterated integrals

Xi(s,t)= dxi(u),  Xb(s, )= dx‘(u)dx/(v)

s<u<t s<u<v<t
together with suitable regularity as elements in Cs.

iii. When y>1/2 there can be at most only one rough path above a given path x. It is given by

X, )=x(t) = x(s),  X3(s,1)= / X, u) @ dx(u)

where the integral is understood in Young sense (or as a classical Lebesgue integral if
x€C"). This rough path is called the canonical lift of x.



iv. Take y<1/2. If X€®” and p € C¥(I;RY® R?) then X = (X!, X2+ 8p) is also an element
of €7 and all of them have this form. In particular there are infinitely many rough paths
above the same path if y < 1/2 (or none). The fiber €, is an affine space with vector space
C?(I; R @ R?) and action (X, ¢) ~ (X!, X> + 6¢). Elements in €}~ C?(I;R? @ R?) are
called pure area rough paths.

Lemma 7. Let y<1/2, then €, is not empty.

Proof. Let x € C7. Fix p <y and consider a sequence (y, € C'),> such that x = Y., ynin C” and
Iynllo + 27" [Vulleo S 27" ||x]|, (such a sequence always exists). Let X} = st” Oyx and define
recursively X2 as

X105, 1) = XG0, 1)+ X8, )Yns 1(8) = Y 1)XA(8, 1) = Y 1()SYn 15, 1)
then if 5X2=X}X! we have also
S 105,10, 8) = X5, )X, ) + XS, U)SYa 1(tt, 1) + Vg 1 (8, U)Xty 1) + 8Yg 1 (S, 1U)SY41 (2, 1)
=108, 1) X1 (11, 1),
Moreover
G105, 1) = X (s, D] < IXAS DYna 1 (O] + Y 1 (XS, D] + [Yng 188V 15, D)

Sl 2270 D — 52022005 |2l — 5222020

so the sequence X2, converges in C%p to an element which we call X2 and such that §X?=X"X.
We have

X5, 01 < Y XG5, 1) = Xis, 1)
n

= ) KaaGn=Xas0l+ Y PG ) =G0l

n:2"t—s|<1 n:2"t—s|>1

2 -2 - 2 2
SIkllz D 22 e—sl+lxll, YT 27— sl S lxllFle— s I

n:2"t—s|<1 n:2"t—s|>1

Setting X = (X!, X?) we have X e " as required.

When y > 1/2 rough paths satisfy an additional algebraic relation, called the shuffle relation:

Xi(s,0)X/(s,6) =X(s, 1)+ X/ (s, 1). (2)

Definition 8. We call weakly geometric rough paths satisfying the relation eq. (2) and denote
them collectively with %Cvg. Moreover we denote by %’;, the closure of €' in €" and call them
geometric rough paths.



If y > 1/2 we have €7 = ‘g’;g = %g. Since elements of €' satisfy the shuffle relation, this will
remain valid also for all elements of %g SO ‘gg - “gz’vg C @7 for any y. As far as the relation between
@ and G, is concerned we have the following result

Theorem 9. For every X € ‘gng there exists a sequence (X)n>1 in € such that X, — X in €* for
any p<y. In particular €3 C €%, C C,.

As a preliminary to a proof of this theorem let us discuss a particular case, the approximation
theory for pure area rough paths.

Theorem 10. Assume y < 1/2 and let ¢ € C*'(I;R¢ @, R?) then there exists x,€ C" such that the
canonical lift X, converges in 6” to the pure area path X =(0,6¢) for any p<y.

Proof. Let (¢,), a sequence in C! converging to ¢ in C?” for some p <y and such that [|§,]lc <
2" |||, Fix sufficiently large positive numbers (L;j); j=1,... ¢ all different one from the other and
let

xh(t) = %Z @271 22" + )" 27 eos (25,
J J

By a long but direct estimation we can show that

-0
cl-

t . T g
/ () = 3 )~ 5 / (@)= @) du

as n— oo. Moreover
1/ . . y
> / (¢, () — @y} (w))du — 5¢p" (s, 1)
N
in C3*. Since x,— 0 in C/2~ the claim follows. In order to show the main estimate note that

/ (e (0) = (5)) (1) =

t
= / 2~Lunl29Lnin 2] ik(yy)sin(2L ) — pik(s)sin(2L#s)]sin(25m ") du
S

t . .
+Z / Lkl 2L 2 gy m (1) o5 (2L M) — ™ (5)cos (2L ) cos(2Lm M) du
ko 7S

t
—Z / 2~ Lunl2pLmnl2[ cog(2Likny) — cos(2Likns) sin(25  w)du
S

t .
+> / 2 ~Lawnt2pLnin 2 6yik(1y)sin(2L#) — @ik(s)sin(2L"s) 1™ (u)cos(2Li M) du
k,m

N



and that by trigonometric identities all the integrals contains oscillating factors with frequencies of
the form 2L#” +2Lmi™ wwhich are different from zero unless k=m. Moreover the only terms which
produce non-oscillating factors are those of the form sin — sin or cos — cos which are then linear in
@,- Using integration by parts and the fact that the numbers L are large enough to beat the growth
of ¢, all the oscillating terms can be shown to go to zero (one use also the fact that boundary terms
vanishes). The claim follows directly.

O

Proof. (of Thm. 9) The general case is similar to the pure area case. Let X € %Cvg’x

Fix p <y and consider a sequence (y, € C'),>1 such that x= Y., Ynin C7 and [|yulleo + 27" Vullo S
27"|x||, (such a sequence always exists). Lety<,=Y, vk and

for some xe C”.

X =y, + %Z @027 Eim 2gin(2Ling) + Z 2~ Lin2cog(2Liiny).
j j

(notations as in the previous theorem) where ¢, is for the moment an indeterminate sequence.
Using the same ideas as above we can show that

—-0.
ci-

t . r ) . ro ..
[ 0 =0 [ 0=yt~ [ @l g

Now the point is that we can choose the sequence ¢ such that it cancels the contribution of the
antisymmetric part of fs l(y’gn(u) - y"@(s))duyfl(u) and replaces it with an approximation (con-
verging in C?") of the antisymmetric part of X?. We leave the details to the reader. O

Weakly geometric rough paths can be approximated by lifts of smooth paths by loosing just a bit
regularity in the convergence statement. Approximation of general rough path is less clear. In
particular we cannot hope to approximate a general rough path with smooth canonical lifts since
the shuffle relation is not true in the limit. But as we will now see, this is the only obstruction.

Let X €@ and consider the defect in the shuffle relation
Di(s,t)=X(s,0)X/(s,1) — X"(s,1) — X7 (s,1).
A simple computation shows that 5DY =0, indeed:
SDY(s,u,t) =X'(s, )X/ (u, 1) + X/ (s, )X (u, 1) — X'(s, w) X/ (u, 1) — X/ (5, u)X'(u, 1) = 0.

Moreover D € C%y([R{d ®;R?) where R? ®,R¢ denotes the symmetric tensor product. Then there
exists a function d € C?"(I; R4 ®,R%) such that D=5d. We can define now Xg= X!, X2 +6d/2)
and check that X, € G7,:

X (s, r)Xg;(s, 1 =Xi(s, DX/ (s,1) =X"(s, 1)+ X/(s, 1)+ DY (s, 1)

=XU(s,1)+ %5(1"7(& 1)+ X7(s,0) + %&lﬁ(s, =X (s.0)+ X (s.1).



So to every rough path X € %7, lying above x we can associate a geometric rough path X, € %};,x
by modifying its the symmetric part of its second order component. Note that this projection
is not unique since there are a priori many weakly geometric rough paths above the same path,
differing one from the other by an antisymmetic increment in the second order component: indeed

>‘~<g = (X4, X2+ ¢) with g € C*(I;R?®,RY) is again in G
This construction shows the existence of an isomorphism of metric spaces :
G(RY) = G (RY) X CH(I; R Q;RY).

(see Hairer—Kelly for a generalisation of these considerations)

3 Controlled paths

Definition 11. A pair (h, hX) where h € C7([0, 11; V) and WX € C7([0, 1]; ZREV)) isa path
controlled by x if

(s, 1) =6h(s, 1) — KX(s)X (s, 1) € CX/ (V).

We denote by giy(V) the linear space space of paths controlled by X and on 9%5 we consider the
semi—norm

G ) g2r = R 1y + 11A#lL 2.
Given a rough path X and path (h, h¥) € 9%5’(56([%1; V)) controlled by X we can define a new
controlled path (z,z¥) € QQ(V) by letting z¥=h and z the unique solution to
82(s, 1) = h(s)X(s,0) + KX ($)X%(s, 1) + 2%(s, 1)

with z7e C;”(V). We call it the integral of & with respect to X.

Theorem 12. Given a rough path X and path (h, hX) € 9%(3 (R%; V)) controlled by X we can
define a new controlled path (z,7X) € 9%{(V} by letting z* =h and z the unique solution to

82(s, 1) =h(s)X (5, 1) + ¥ ()X(s,0) + 2(5,1)
with 2% e CSY(V). We call it the integral of h with respect to X and we have

1271137 S G B 21+ 11X ller)

and

1z 2 g2 , S IXllgr 1 ([ N oo+ 7 10 20 )

10



Proof. Such a path is clearly unique and is well defined since if we let

A(s, ) =h()X (s, 1) + ¥ ()X%(s, 1)
we have

SA(s, u, 1) =—8h(s, u)X (u, 1) — 5hX (s, u)X*(u, 1) + KX (s)6X3(s, u, 1)
=—(Sh(s,u) — KX ()X (s, u) X (u, 1) — ShX (s, u)X3(u, 1) = —h¥(s, )X (u, 1) — ShX (5, u) X3(u, 1)
and by assumption 6A € C;'Y(V) so that we can apply the sewing map to obtain

A= AR + KX e G (V).
Then

120, < DT oo cX e+ 1A 2yes (270270 < 1A ] 0, 1Ny e+ 77 [ 35,

and the final bound follows. 1

Lemma 13. Let (f, fX) € @2 (V) and let ¢ € CX(V; W) then (p(f), p(f)) € DI (W) where
oD =p(f(1)) and p(f)* =Vo(f)f¥ € CUZL(REW)). Moreover

@, @2 S Co (LN O )

Proof. Taylor expansion gives

1
So(f)(s.1)= A 4oV (f(5) + 75 (5,18 (5.1)

1
=Vo(f(s)of (s. 1)+ A (1 =2)deV2(f(5) + 78 (5, D) (5, 1) ® 5 (5,1))

=V (f()5f(s,1)+ Ot — s|*)

Using the controlled hypothesis on f we get

Sp(f)(s,1)=Vp(f()N X)X (s,8) + (s, 1)

where

1
(s, )= Vo(f(s))ffs.0)+ /O (1 =2)deV2p(f () + 2 (5, D)(Of (5,1) @ Ff (5, 1))

Then we can let p(f)*(s)= Vo (f(s))fX(s) and observe that

() ll2y SUIV@lloll 2y + VRNl F1I2 S Co(1+ I Ol )%

11
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