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1 Beyond Young
When trying to go beyond Young integral we face the fundamental problem that we cannot expect
the integral to be a continuous operations (recall our basic counterexample).

1.1 A general existence result: the para-integral

A natural question is that if it is always possible to find a function I( f , g) which satisfies

δI( f ,g)(s, t) = f (s)δg(s, t) +O(∣t − s∣α+β) (1)

with f ∈Cα and g ∈Cβ but with α +β <1.

Remark 1.

i. Uniqueness does not hold anymore since if I is a solution then Î = I +φ is also a solution
of (1) for any φ ∈Cα+β.

ii. Find such a function is equivalent to ask for a solution J( f , g) ∈ C2
α+β of

δJ( f ,g)(s, u, t) =δf (s, u) δg(u, t)

since then we can let δI( f , g) = fδg− J( f ,g).

iii. We can always consider

Js( f ,g)(s, t) = 1
2δf (s, t)δg(s, t)

for which we have

δJs( f , g) = δfδg +δgδf
2

and

‖Js( f ,g)‖α+β ⩽ ‖ f ‖α‖g‖β.

So in case f =g we can always take J( f , g) = Js( f ,g).
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iv. If we consider J1( f , g)(s, t) =− f (s)δg(s, t) we have

δJ1( f ,g)(s, u, t) =− f (s)δg(s, t) + f (s)δg(s,u) + f (u)δg(u, t) = δf (s,u)δg(u, t)

as required (indeed it differs from the iterated integral by the increment of a function).
However the regularity is not ok, indeed we have only

∣J1( f , g)(s, t)∣ ⩽‖ f ‖∞‖g‖β∣t − s∣β.

Another possibility is

J2( f , g)(s, t) =δf (s, t)g(t) = J1( f ,g)(s, t) + f (t)g(t) − f (s)g(s)

since it differs from the previous one by the increment of the function t ↦ f (t)g(t). Still
the regularity is not ok.

A decomposition of the functions f ,g into an infinite sequence of blocks living in different scales
will allow us to combine the observations contained in the Remark 1 (iv) to produce a map (in
general not unique) solving eq. (1).

Theorem 2. (Paraintegral) For any α,β >0 such that α+β <1 there exists a continuous map J≺:
Cα ×Cβ →C2

α+β such that

δJ≺( f ,g) (s,u, t) = δf (s,u) δg(u, t), s< u< t.

Proof. Let ρ: ℝ → ℝ+ smooth, compactly supported around 0 and of integral one. Let ρn(t) =
2n ρ(2n t) and fn=ρn∗ f −ρn−1∗ f for n⩾1 with f0=ρ0∗ f and a similar definiton for gn. With these
definitions we have f (t) =∑n fn(t). Direct estimates give that

∣ fn(t)∣≲ ‖ f ‖α2−nα, ∣∂tfn(t)∣≲ ‖ f ‖α2n−nα,

and similar estimates for gn where the constants depends only on ρ. These estimate also show that
the sum of the series converges uniformly in t. Now take the combination of J1 and J2 given by

J≺( f , g) = ∑
m⩽n

J1( fn, gm) + ∑
m>n

J2( fn,gm)

and note that

δJ≺( f ,g) = ∑
m⩽n

δJ1( fn,gm) + ∑
m>n

δJ2( fn, gm) = ∑
m⩽n

δfnδgm + ∑
m>n

δfnδgm =δf δg

as required. But now if 0< α+ β < 1 we can estimate

∣J1( fn, gm)(s, t)∣ ≲‖ f ‖α‖g‖β2−nα−mβ(1∧ 2m∣t − s∣),

∣J2( fn,gm)(s, t)∣≲ ‖ f ‖α‖g‖β2−nα−mβ(1∧ 2n∣t − s∣).
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so

∣J≺( f ,g)(s, t)∣≲ ‖ f ‖α‖g‖β∑
m⩽n

2−nα−mβ(1 ∧2m∣t − s∣) +‖ f ‖α‖g‖β∑
m>n

2−nα−mβ(1∧ 2n∣t − s∣)

≲‖ f ‖α‖g‖β∑
m

2−mα−mβ(1∧ 2m∣t − s∣) + ‖ f ‖α‖g‖β∑
n

2−nα−nβ(1 ∧2n∣t − s∣)

≲‖ f ‖α‖g‖β ∑
m:2m∣t−s∣>1

2−mα−mβ + ‖ f ‖α‖g‖β∣t − s∣ ∑
m:2m∣t−s∣⩽1

2m−mα−mβ ≲ ‖ f ‖α‖g‖β∣t − s∣α+β

which implies ‖J≺( f , g)‖α+β ≲ ‖ f ‖α‖g‖β. □

1.2 Some tools
Regularity of 2-increments.

Lemma 3. Let A:4 ×4 →V and

Qα, p(A) =[∑
n⩾0

2−2n ∑
k=0

2n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ A(di

n, di+1
n )

2−nα ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣p

]
1/p

.

Assume that δA =∑i Hi (finite sum). Then if αp >2 we have

sup
t,s∈4

∣A(s, t)∣
∣t − s∣α−2/p ⩽ CQα,p(A) +∑

i
sup

s<u<t∈4

∣Hi(s, u, t)∣
∣t − u∣ρi∣u− s∣σi

for any choice of ρi, σi > 0 such that ρi + σi ⩾ α− 2/ p.

Proof. Recall that A(a,b) = A(a,c) + A(c,d) + A(d,b) +δA(c,d,b) +δA(a,c,b). If t, s∈4 we have

A(s, t) = A(sℓ−, tℓ−) + ∑
k=ℓ+1

∞
A(t(k−1)−, tk−) + ∑

k=ℓ+1

∞
A(s(k−1)−, sk−)

+ ∑
k=ℓ+1

∞
δA(tk−, s(k−1)−, sk−) + ∑

k=ℓ+1

∞
δA(t(k−1)−, tk−, sk−)

where ℓ is the greatest integer which satisfies 2−ℓ−1 < ∣t − s∣ ⩽2−ℓ. Then

∣A(t(k−1)−, tk−)∣p ⩽ 2−kαp+2kQα,p(A)p

for all k ⩾ℓ and

∣δA(tk−, s(k−1)−, sk−)∣⩽ ∑
i

∣Hi(tk−, s(k−1)−, sk−)∣ ⩽∑
i

2−ℓσi2−kρiKi

where

Ki = sup
s<u<t∈4

∣Hi(s,u, t)∣
∣t −u∣ρi∣u − s∣σi

.
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If α >2/ p we have

∣A(s, t)∣⩽ Qα,p(A)[2−ℓα+2ℓ/p +2 ∑
k=ℓ+1

∞
2−kα+2k/p]+ ∑

i
Ki ∑

k=ℓ+1

∞
(2−ℓσi2−kρi +2−ℓρi2−kσi)

≲(Qα,p(A) + ∑
i

Ki)∣t − s∣α−2/p. □

To bound the martingale expectation, we will use the following Burkholder inequality:

Lemma 4. Let m be a continuous local martingale with m0 = 0. Then for all T ⩾0 and p >1,

E[sup
t⩽T

∣mt∣2 p] ⩽ Cp E[⟨m⟩T
p].

Proof. Start by assuming that m and ⟨m⟩ are bounded. Itô's formula yields

d∣mt∣2 p = (2 p)∣mt∣2 p−1 dmt + 1
2 (2 p) (2 p− 1)∣mt∣2 p−2 d⟨m⟩t,

and therefore

E[∣mT ∣2 p] = Cp E[∫0

T
∣ms∣2 p−2 d⟨m⟩s]⩽ Cp E[sup

t⩽T
∣mt∣2 p−2⟨m⟩T].

By Cauchy–Schwartz we get

E[∣mT ∣2 p] ⩽Cp E[sup
t⩽T

∣mt∣2 p](2 p−2)/2 pE[⟨m⟩T
p]1/p.

But now Doob's Lp inequality yields E[supt⩽T ∣mt∣2 p]⩽Cṕ E[∣mT ∣2 p], and this implies the claim in
the bounded case. The unbounded case can be treated with a localization argument. □

1.3 Stochastic integrals
Stochastic integrals provide another source of solutions to eq. (1). Let us fix a given filtered
probability space (Ω, ℱ,ℙ, (ℱt)t) in the following.

Lemma 5. Assume that M is a continuous martingale and h an adapted process. Assume that
<[‖h‖α

p], +∞ for any p⩾ 1 and that ∣d⟨M⟩t/dt∣ ⩽L. Let IItô(h,M) be the Itô integral

IItô(h,M)(t) =∫0

t
h(s)dM(s).

Then a.s.

δIItô(h,M)(s, t) − h(s)δM(s, t) =O(∣t − s∣α+β)

for any β <1/2.
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Proof. The hypothesis ∣d⟨M⟩t/dt∣ ⩽L and Lemma 4 readily give

<∣δM(s, t)∣2p ⩽CpLp∣t − s∣p

for all p⩾1. This implies <[Q1/2,2p(M)2p] <∞ for all p⩾1, giving <‖M‖1/2−1/p
2p <∞ for all p>2.

Let JItô(h, M)(s, t) =δIItô(h, M)(s, t) −h(s)δM(s, t) = ∫s
tδh(s,u)dM(u). Then

∣δJItô(h,M)(s, u, t)∣ = ∣δh(s, u)δM(u, t)∣ ⩽‖h‖α‖M‖β∣t −u∣β∣u − s∣α

for all β <1/2. Next, using again Lemma 4, we have

<∣JItô(h, M)(s, t)∣2p ⩽Cp <{[∫s

t
(δh(s, u))2d⟨M⟩u]

p

}⩽ Cp Lp<[‖h‖α
2p][∫s

t
∣u − s∣2αdu]

p

⩽Cp Lp<[‖h‖α
2p]∣t − s∣2p(α+1/2).

So we have that <[Qα+1/2,2p(JItô(h,M))2p]<∞ for all p⩾1. Using Lemma 3 we can conclude that
<‖JItô(h, M)‖α+β−1/p

2p <∞ for all p >1/(α+ β). □

1.4 Integration of closed 1-forms
Now consider x∈Cγ([0,1];ℝd) and φ:ℝd →ℝd such that ∇iφj −∇jφi =0. This means that the one
form ω =φi(x)dxi is closed: dω =∇jφi(x)dxj ∧dxi = 1

2(∇jφi(x) − ∇iφj(x))dxj ∧ dxi = 0. Then

−δ(φi(x)δxi) = δφi(x)δxi = ∇jφi(x)δxjδxi + C3
3γ

=1
2(∇jφi(x) + ∇iφj(x))δxjδxi +C3

3γ

=1
4(∇jφi(x) + ∇iφj(x))(δxjδxi +δxiδxj) +C3

3γ

=∇jφi(x)δSi, j +C3
3γ =δ(∇jφi(x)Si, j) + C3

3γ

with Si, j(s, t) = 1
2δxi(s, t)δxj(s, t). In other words

δ(φi(x)δxi + ∇jφi(x)Si, j) ∈ C3
3γ

which means that there exists a unique y such that

δy= φi(x)δxi + ∇jφi(x)Si, j + C2
3γ.

Let us call

y(t) =∫0

t
φi(x(s))dxi(s).

In ℝd the fact that ω is closed, implies that it is also exact: there exists ψ :ℝd →ℝ such that ω=dψ .
This means that φi =∇iψ . Now, Taylor expansion gives

δψ (x) = ∇iψ (x)δxi + ∇j∇iψSi, j +O(∣t − s∣3γ)
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so we can identify δy =δψ (x) and we have

ψ (x(t)) − ψ (x(0)) = ∫0

t
φi(x(s))dxi(s).

Valid until γ > 1/3. Similar results hold for any γ > 0. When d = 1 any one-form is exact so this
result allow to integrate an arbitrary function along an arbitrary Hölder path. When d > 1 the
closedness condition is non–trivial and only particular one–forms can be integrated, namely those
which are differentials of scalar functions.

2 Rough paths
In the following we will fix γ > 1/3 and an interval I ⊆ ℝ. All the Hölder spaces will considered
on this interval unless specified otherwise.

Definition 6. A γ-Hölder rough path A= (A1,A2) in ℝd is a pair

A1 ∈C2
γ(ℝd), A2 ∈ C2

2γ(ℝd ⊗ ℝd)

with A1 =δx for some x ∈Cγ(I; ℝd) and satisfying the Chen relation :

δA2(s, u, t) =A1(s, u)A1(u, t), s< u< t.

We say that A lies above x. We denote collectively (Xi)i=1,…,d and (Xi, j)i, j=1,…,d the components
of A1 and A2 with respect to the canonical basis of ℝd and ℝd ⊗ ℝd. We denote by Cγ(ℝd) the
space of the γ-Hölder rough paths in ℝd and we let

‖A‖Cγ = ‖A1‖γ + ‖A2‖2γ.

On Cγ we consider the distance dCγ(A, Ã) = ‖A − Ã‖Cγ. With Cx
γ(ℝd) ⊆ Cγ(ℝd) we denote the

subset of rough paths lying above a given x ∈Cγ(I; ℝd), the “fiber” at x.

i. The space of rough paths is not a linear space since the Chen relation is non–linear.

ii. We can interpret the data Xi, Xi, j as the given of the (abstract) iterated integrals

Xi(s, t) =∫s<u<t
dxi(u), Xi, j(s, t) = ∫s<u<v<t

dxi(u)dxj(v)

together with suitable regularity as elements in C2.

iii. When γ>1/2 there can be at most only one rough path above a given path x. It is given by

A1(s, t) = x(t) − x(s), A2(s, t) = ∫s

t
A1(s, u) ⊗ dux(u)

where the integral is understood in Young sense (or as a classical Lebesgue integral if
x ∈C1). This rough path is called the canonical lift of x.
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iv. Take γ <1/2. If A∈Cx
γ and φ∈C2γ(I;ℝd ⊗ ℝd) then Ã= (A1,A2 +δφ) is also an element

of Cx
γ and all of them have this form. In particular there are infinitely many rough paths

above the same path if γ <1/2 (or none). The fiber Cx
γ is an affine space with vector space

C2γ(I; ℝd ⊗ ℝd) and action (A, φ) ↦ (A1, A2 + δφ). Elements in C0
γ ≃ C2γ(I; ℝd ⊗ ℝd) are

called pure area rough paths.

Lemma 7. Let γ < 1/2, then Cx
γ is not empty.

Proof. Let x ∈ Cγ. Fix ρ < γ and consider a sequence (yn ∈ C1)n⩾1 such that x = ∑n yn in Cρ and
‖yn‖∞ + 2−n‖ẏn‖∞ ≲ 2−nγ‖x‖γ (such a sequence always exists). Let An

1 = ∑k⩽n δyk and define
recursively An

2 as

An+1
2 (s, t) =An

2(s, t) + An
1(s, t)yn+1(t) −yn+1(s)An

1(s, t) −yn+1(s)δyn+1(s, t)

then if δAn
2 =An

1An
1 we have also

δAn+1
2 (s, u, t) =An

1(s, u)An
1(u, t) +An

1(s, u)δyn+1(u, t) + δyn+1(s,u)An
1(u, t) + δyn+1(s, u)δyn+1(u, t)

=An+1
1 (s, u)An+1

1 (u, t).

Moreover

∣An+1
2 (s, t) −An

2(s, t)∣⩽ ∣An
1(s, t)yn+1(t)∣ + ∣yn+1(s)An

1(s, t)∣ + ∣yn+1(s)δyn+1(s, t)∣

≲‖x‖γ
22−γ(n+1)∣t − s∣2ρ2(2ρ−γ)n ≲ ‖x‖γ

2∣t − s∣2ρ2(2ρ−2γ)n

so the sequence (An
2)n converges in C2

2ρ to an element which we call A2 and such that δA2=A1A1.
We have

∣A2(s, t)∣⩽ ∑
n

∣An+1
2 (s, t) − An

2(s, t)∣

= ∑
n:2n∣t−s∣⩽1

∣An+1
2 (s, t) − An

2(s, t)∣ + ∑
n:2n∣t−s∣>1

∣An+1
2 (s, t) − An

2(s, t)∣

≲‖x‖γ
2 ∑
n:2n∣t−s∣⩽1

2n−2γn∣t − s∣+ ‖x‖γ ∑
n:2n∣t−s∣>1

2−γn∣t − s∣γ ≲ ‖x‖γ
2∣t − s∣2γ

Setting A =(A1, A2) we have A∈ Cx
γ as required.

□

When γ >1/2 rough paths satisfy an additional algebraic relation, called the shuffle relation:

Xi(s, t)Xj(s, t) =Xij(s, t) + Xji(s, t). (2)

Definition 8. We call weakly geometric rough paths satisfying the relation eq. (2) and denote
them collectively with Cwg

γ . Moreover we denote by Cg
γ the closure of C1 in Cγ and call them

geometric rough paths.
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If γ > 1/ 2 we have Cγ = Cwg
γ = Cg

γ . Since elements of C1 satisfy the shuffle relation, this will
remain valid also for all elements of Cg

γ so Cg
γ ⊆Cwg

γ ⊆Cγ for any γ. As far as the relation between
Cg

γ and Cwg
γ is concerned we have the following result

Theorem 9. For every A∈Cwg
γ there exists a sequence (An)n⩾1 in C1 such that An→A in Cρ for

any ρ <γ. In particular Cg
γ ⊆ Cwg

γ ⊆ Cg
ρ.

As a preliminary to a proof of this theorem let us discuss a particular case, the approximation
theory for pure area rough paths.

Theorem 10. Assume γ < 1/2 and let φ ∈ C2γ(I; ℝd ⊗a ℝd) then there exists xn ∈ C1 such that the
canonical lift An converges in Cρ to the pure area path A =(0, δφ) for any ρ< γ.

Proof. Let (φn)n a sequence in C1 converging to φ in C2ρ for some ρ < γ and such that ‖φ̇n‖∞ ≲
2n−nγ‖φ‖γ. Fix sufficiently large positive numbers (Lij)i, j=1,…,d all different one from the other and
let

xn
i (t) = 1

2∑
j

φ̇n
ij(t)2−Lij n/2sin(2Lij nt) + ∑

j
2−Ljin/2cos(2Lji nt).

By a long but direct estimation we can show that

‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖
‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖
‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖∫s

t
(xn

i (u) −xn
i (s))duxn

j (u) − 1
2∫s

t
(φ̇n

ji(u) − φ̇n
ij(u))du

‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖
‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖
‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖

C2
1−

→ 0

as n →∞. Moreover

1
2∫s

t
(φ̇n

ji(u) − φ̇n
ij(u))du→ δφij(s, t)

in C2
2ρ. Since xn → 0 in C1/2− the claim follows. In order to show the main estimate note that

∫s

t
(xn

i (u) −xn
i (s))duxn

j (u) =

=−∑
k,m ∫s

t
2−Lik n/22Lmjn/2[φ̇n

ik(u)sin(2Lik nu) − φ̇n
ik(s)sin(2Lik ns)]sin(2Lmj nu)du

+∑
k,m ∫s

t
2−Lik n/22Lmjn/2[φ̇n

jm(u)cos(2Lik nu) − φ̇n
jm(s)cos(2Lik ns)]cos(2Lmj nu)du

−∑
k,m ∫s

t
2−Lik n/22Lmjn/2[cos(2Lik nu) −cos(2Lik ns)]sin(2Lmj nu)du

+∑
k,m ∫s

t
2−Lik n/22Lmjn/2[φ̇n

ik(u)sin(2Lik nu) − φ̇n
ik(s)sin(2Lik ns)]φ̇n

jm(u)cos(2Lmj nu)du
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and that by trigonometric identities all the integrals contains oscillating factors with frequencies of
the form 2Lik n ±2Lmj n which are different from zero unless k = m. Moreover the only terms which
produce non-oscillating factors are those of the form sin－sin or cos－cos which are then linear in
φ̇n. Using integration by parts and the fact that the numbers L are large enough to beat the growth
of φ̇n all the oscillating terms can be shown to go to zero (one use also the fact that boundary terms
vanishes). The claim follows directly.

□

Proof. (of Thm. 9) The general case is similar to the pure area case. Let A∈Cwg,x
γ for some x∈Cγ.

Fix ρ <γ and consider a sequence (yn ∈ C1)n⩾1 such that x = ∑n yn in Cρ and ‖yn‖∞ + 2−n‖ẏn‖∞ ≲
2−nγ‖x‖γ (such a sequence always exists). Let y⩽n = ∑k⩽n yk and

xn
i (t) = y⩽n

i + 1
2∑

j
φ̇n

ij(t)2−Lij n/2sin(2Lij nt) + ∑
j

2−Ljin/2cos(2Lji nt).

(notations as in the previous theorem) where φn is for the moment an indeterminate sequence.
Using the same ideas as above we can show that

‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖
‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖
‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖∫s

t
(xn

i (u) −xn
i (s))duxn

j (u) −∫s

t
(y⩽n

i (u) − y⩽n
i (s))duy⩽n

j (u) − 1
2∫s

t
(φ̇n

ji(u) − φ̇n
ij(u))du

‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖
‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖
‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖

C2
1−

→0.

Now the point is that we can choose the sequence φ such that it cancels the contribution of the
antisymmetric part of ∫s

t (y⩽n
i (u) − y⩽n

i (s))duyn
j (u) and replaces it with an approximation (con-

verging in C2γ) of the antisymmetric part of A2. We leave the details to the reader. □

Weakly geometric rough paths can be approximated by lifts of smooth paths by loosing just a bit
regularity in the convergence statement. Approximation of general rough path is less clear. In
particular we cannot hope to approximate a general rough path with smooth canonical lifts since
the shuffle relation is not true in the limit. But as we will now see, this is the only obstruction.

Let A ∈Cγ and consider the defect in the shuffle relation

Dij(s, t) = Xi(s, t)Xj(s, t) − Xij(s, t) − Xji(s, t).

A simple computation shows that δDij =0, indeed:

δDij(s, u, t) =Xi(s, u)Xj(u, t) +Xj(s, u)Xi(u, t) −Xi(s, u)Xj(u, t) −Xj(s, u)Xi(u, t) =0.

Moreover D ∈ C2
2γ(ℝd ⊗s ℝd) where ℝd ⊗s ℝd denotes the symmetric tensor product. Then there

exists a function d ∈ C2γ(I; ℝd ⊗s ℝd) such that D = δd. We can define now Ag = (A1, A2 + δd /2)
and check that Ag ∈Cwg

γ :

Xg
i (s, t)Xg

j(s, t) =Xi(s, t)Xj(s, t) =Xij(s, t) + Xji(s, t) + Dij(s, t)

=Xij(s, t) + 1
2δdij(s, t) + Xji(s, t) + 1

2δdji(s, t) =Xg
ij(s, t) +Xg

ji(s, t).
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So to every rough path A ∈ Cx
γ lying above x we can associate a geometric rough path Ag ∈ Cg,x

γ

by modifying its the symmetric part of its second order component. Note that this projection
is not unique since there are a priori many weakly geometric rough paths above the same path,
differing one from the other by an antisymmetic increment in the second order component: indeed
Ãg =(Ag

1, Ag
2 + δφ) with φ∈ C2γ(I;ℝd ⊗a ℝd) is again in Cg,x

γ .

This construction shows the existence of an isomorphism of metric spaces :

Cγ(ℝd) ≃Cwg
γ (ℝd) ×C2γ(I; ℝd ⊗s ℝd).

(see Hairer–Kelly for a generalisation of these considerations)

3 Controlled paths

Definition 11. A pair (h, hX) where h ∈ Cγ([0, 1]; V) and hX ∈ Cγ([0, 1]; ℒ(ℝd; V)) is a path
controlled by x if

h♯(s, t) = δh(s, t) −hX(s)A1(s, t) ∈ C2
2γ(V).

We denote by IA
2γ(V) the linear space space of paths controlled by A and on IA

2γ we consider the
semi–norm

‖(h, hX)‖IA
2γ = ‖hX‖γ + ‖h♯‖2γ.

Given a rough path A and path (h, hX) ∈ IA
2γ(ℒ(ℝd; V)) controlled by A we can define a new

controlled path (z, zX) ∈ IA
2γ(V) by letting zX = h and z the unique solution to

δz(s, t) = h(s)A1(s, t) +hX(s)A2(s, t) + z♮(s, t)

with z♮ ∈C2
3γ(V). We call it the integral of h with respect to A.

Theorem 12. Given a rough path A and path (h, hX) ∈ IA
2γ(ℒ(ℝd; V)) controlled by A we can

define a new controlled path (z, zX) ∈ IA
2γ(V) by letting zX = h and z the unique solution to

δz(s, t) = h(s)A1(s, t) +hX(s)A2(s, t) + z♮(s, t)

with z♮ ∈C2
3γ(V). We call it the integral of h with respect to A and we have

‖z♮‖3γ ≲‖(h, hX)‖IA
2γ(1+ ‖A‖Cγ)

and

⟦(z, zX)⟧IA
2γ,τ ≲ ‖A‖Cγ,1(⟦hX⟧∞,τ + τγ⟦(h,hX)⟧IA

2γ,τ)
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Proof. Such a path is clearly unique and is well defined since if we let

A(s, t) =h(s)A1(s, t) + hX(s)A2(s, t)

we have

δA(s, u, t) =−δh(s, u)A1(u, t) −δhX(s, u)A2(u, t) +hX(s)δA2(s, u, t)

=−(δh(s, u) − hX(s)A1(s,u))A1(u, t) − δhX(s,u)A2(u, t) = −h♯(s,u)A1(u, t) − δhX(s,u)A2(u, t)

and by assumption δA ∈C3
3γ(V) so that we can apply the sewing map to obtain

z♮ =Λ(h♯A1 +δhXA2) ∈C2
3γ(V).

Then

⟦zX⟧γ,τ ⩽⟦hX⟧∞,τ‖A1‖γ,τ +⟦h♯⟧2γ,τ, ⟦z♯⟧2γ,τ ⩽⟦hX⟧∞,τ‖A2‖2γ,τ +τγ⟦z♮⟧3γ,τ

and the final bound follows. □

Lemma 13. Let ( f , f X) ∈ IA
2γ(V) and let φ ∈ C2(V ; W) then (φ( f ), φ( f )X) ∈ IA

2γ(W) where
φ( f )(t) =φ( f (t)) and φ( f )X =∇φ( f ) f X ∈Cγ(ℒ(ℝd; W)). Moreover

‖(φ( f ), φ( f )X)‖IA
2γ ≲ Cφ(1+ ‖( f , f X)‖IA

2γ)2.

Proof. Taylor expansion gives

δφ( f )(s, t) =∫0

1
dτ∇φ( f (s) + τδf (s, t))δf (s, t)

=∇φ( f (s))δf (s, t) + ∫0

1
(1 −τ)dτ∇2φ( f (s) +τδf (s, t))(δf (s, t) ⊗δf (s, t))

=∇φ( f (s))δf (s, t) +O(∣t − s∣2γ)

Using the controlled hypothesis on f we get

δφ( f )(s, t) = ∇φ( f (s)) f X(s)A1(s, t) +φ( f )♯(s, t)

where

φ( f )♯(s, t) = ∇φ( f (s)) f ♯(s, t) +∫0

1
(1− τ)dτ∇2φ( f (s) + τδf (s, t))(δf (s, t) ⊗ δf (s, t)).

Then we can let φ( f )X(s) =∇φ( f (s)) f X(s) and observe that

‖φ( f )♯‖2γ ≲‖∇φ‖∞‖ f ♯‖2γ +‖∇2φ‖∞‖ f ‖γ
2 ≲Cφ(1 +‖( f , f X)‖IA)2.

□
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