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We consider a special case of an n-component lattice gas models on Z. These
consist of particles of types α ∈ {1, . . . , n} with at most one particle per site
evolving with nearest-neighbor jumps. Let ηα(j, t) = 1 if an α-particle is at site j
at time t and ηα(j, t) = 0 otherwise. We consider the case where the jumps rates
are local and translation-invariant. Assume that for any fixed ρ = (ρ1, . . . , ρn)
with ρi ∈ [0, 1] and

∑n
i=1 ρi ≤ 1, there exists an ergodic, translation-invariant

stationary measure µρ with Eµρ(ηα)(j, t) = ρα.
The main observable we study is the two-point function S = (Sα,β)1≤α,β≤n,

with

(1) Sα,β(j, t) = Eµρ (ηα(j, t)ηβ(0, 0))− ραρβ.

The nonlinear fluctuating hydrodynamic theory (NLFH) gives a prediction on the
large time behavior of the two-point function (see [7, 9, 11, 12, 13, 14] for related
papers). Denote by jα(ρ) be the expected infinitesimal current of α-particles under
µρ. Let C = CT =

∑

j S(j, t) =
∑

j S(j, 0) be the susceptibility matrix and define

the matrix A with components Aα,β(ρ) =
∂

∂ρβ
jα(ρ). It is known that AC = CAT

and assume C > 0 to avoid having components that do not evolve over time.
In order to see something meaningful one needs to consider appropriate linear

combinations of the types of particles, the so-called normal modes. More precisely,
one needs to find a matrix R such that

(2) RAR−1 = diag(v1, . . . , vn) and RCRT = 1.

Then the normal modes are given by ξ = Rη and vα is the speed of propagation
of the mode ξα. The two-point function of the normal modes is given by

(3) S#

α,β(j, t) = (RSRT )α,β(j, t) = Eµρ(ξα(j, t)ξβ(0, 0))− (Rρ)α(Rρ)β .

The prediction (as stated in [7]) is the following: assume that v1, . . . , vn are all
distinct, then there exists some (explicit) constants λ1, . . . , λn such that

(4) (λαt)
2/3S#

β,γ(vαt+ w(λαt)
2/3, t) ≃ δβ,αδγ,αfKPZ(w)

as t → ∞. Here, the scaling function fKPZ is the one of one-dimensional system [10]
and it is given by

(5) fKPZ(w) =
1

4

d2

dw2

∫

R

s2dFBR,w(s),

where FBR,w is the Baik-Rains distribution with parameter w [4].
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In our work [5] we consider a model with n = 2: a two-species totally asymmetric
simple exclusion process with first class particles η1 and second class particles η2.
The normal modes are given by

(6) ξ1(j, t) =
η1(j, t)

√

ρ1(1− ρ1)
, ξ2(j, t) =

η1(j, t) + η2(j, t)
√

(ρ1 + ρ2)(1 − ρ1 − ρ2)
,

and the speeds are v1 = 1− 2ρ1, v2 = 1− 2(ρ1 + ρ2).
Our main result is the following.

Theorem 1. Given a speed v, define

(7) S#
v (φ) = lim

t→∞
t−2/3

∑

w∈t−2/3Z

φ(w)t2/3S#(vt+ wt2/3, t)

for φ smooth test functions with compact support. Then we have the following
cases:
(a) if v /∈ {v1, v2},

S#
v (φ) =

(

0 0
0 0

)

,

(b) if v = v1, then

S#
v (φ) =

(

χ1

∫

R
φ(w)λ

−2/3
1 fKPZ(λ

−2/3
1 w)dw 0

0 0

)

with χ1 = ρ1(1− ρ1) and λ1 = 2
√
2χ1,

(c) if v = v2, then

S#
v (φ) =

(

0 0

0 χ2

∫

R
φ(w)λ

−2/3
2 fKPZ(λ

−2/3
2 w)dw

)

with χ2 = (ρ1 + ρ2)(1− ρ1 − ρ2) and λ2 = 2
√
2χ2.

The weak convergence of the diagonal terms was shown in [3] building on [8, 10].
In our paper [5] we prove that the off-diagonal terms vanishes in the large time
limit. A similar result for ASEP under double scaling limit has been obtained
in [1].

In order to prove our result, we derived a new identity [5, Proposition 1.2]

(8) S#
1,2(x̃+ i, t̃) + S#

2,1(x+ i, t) =
1

4
∆Cov

(

h1(x̃+ i, t̃), h1+2(x+ i, t)
)

,

where h1 (resp. h1+2) is the standard height function for first (resp. first plus
second) class particles and ∆ is the discrete Laplacian. Then the main steps are
the following:

(a) Suppose that Supp(φ) ⊂ [−L,L] and take x = v2t, i = wt2/3, x̃ = 2Lt2/3

and t̃ = 0. Using the properties of the stationary measure of the multi-

species TASEP, we first get an a-priori bound on S#
1,2(x̃+ i, t̃), so that we

need to consider only the second term.
(b) We perform summation by parts to move the discrete Laplacian to the

test function φ: it remains to control Cov
(

h1(x̃+ i, t̃), h1+2(x+ i, t)
)

.
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(c) Using the queuing representation of the stationary measure [2, 6], we see

that h1((2L + w)t2/3, 0) = h̃1((2L + w)t2/3, 0) + R((2L + w)t2/3) where

h̃1 is independent of h1+2 (thus the covariance is zero) and the remainder
term |R| ≪ t1/3. By Cauchy-Schwarz one finally control the covariance
between R and h1+2.
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