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For stochastic growth models in the Kardar-Parisi-Zhang (KPZ) universality
class over a one-dimensional substrate the height fluctuations “always” broaden
as t1/3. On the other hand the full probability density function depends on the
choice of the initial data. As well known, for a flat initial surface, h(x, t = 0) = 0,
the large t fluctuations of h(0, t) are distributed according to GOE Tracy-Widom
distribution [5, 18, 22]. In contrast, if the height profile is macroscopically curved,
then GOE has to be replaced by GUE [2,3, 7, 13, 16, 20, 21].

If as a surface growth model we consider the one-dimensional KPZ equation,

∂th = 1
2 (∂xh)

2 + 1
2∂

2
xh+ ξ

with ξ(x, t) normalized space-time white noise, then the time-stationary initial
data are

h(x, 0) = B(x)

with B(x) a two-sided Brownian motion. As shown in [6] (for other KPZ models,
see [1, 4, 12, 15]),

h(0, t) ≃ − 1
24 t+ (t/2)1/3ξBR

for large t and the random amplitude ξBR is Baik-Rains distributed [4]. Recently,
Quastel and Remenik [19] identified a large domain of attraction for GOE Tracy-
Widom distribution. Roughly speaking, for a macroscopically flat initial profile,
if it satisfies |h(x, 0)− h(0, 0)| ≃ |x|1/2 for large |x| is the borderline below which
the height fluctuations are GOE Tracy-Widom distributed.

We consider translation invariant random initial data, for which height differ-
ences typically grow as |x|1/2. More precisely, for the totally asymmetric simple
exclusion process, TASEP, with initial slopes ηj(t = 0) = ηj ∈ {0, 1}, we allow
initial conditions such that {ηj |j ∈ Z} is a stationary stochastic process satisfying
the functional central limit theorem

lim
ℓ→∞

1√
ℓ

[γxℓ]
∑

j=0

(

ηj − 〈η0〉
)

= σB(x)

for some σ ≥ 0. Here γ is a scaling constant set by the fact that σ = 1 corre-
sponds to stationary initial condition. We show that for each σ there is a distinct
distribution function F (σ)(s).

Denote by ρ the expected density of particles and j the expected (infinitesimal)
current of particles. Then if j′(ρ) = 0 holds, the time correlations are relevant
around the origin and the height fluctuations, as obtained from ηj(t), are governed

by F (σ)(s) in the large t limit. If j′(ρ) 6= 0, then correlations spread at a non-zero
velocity and F (σ)(s) will be observed after properly centering (see e.g. [12] in the
σ = 1 case).

1



For the TASEP we prove that the limiting distribution is determined through
a variational formula,

F (σ)(s) = P

(

sup
x∈R

{
√
2σB(x) +A2(x) − x2} ≤ s

)

,

where A2(x) is the Airy process and is independent of the two-sided Brownian
motion B(x). The proof employs several non-trivial results obtained only recently,
the most important ones being tightness [9] for the point-to-point process with
ending points on horizontal lines, and the one-point slow-decorrelation [10]. Finally
one also needs to know the convergence of the finite-dimensional distributions [8].
These ingredients can be used to obtain a functional slow-decorrelation result,
see [11] for the discrete time counterpart. Interestingly, this latter result then
implies tightness of the point-to-point process along generic lines, which is a result
not covered by the elegant and soft arguments of [9].

As already proved in [17], F (0)(s) = FGOE(2
2/3s), with FGOE the GOE Tracy-

Widom distribution. Our result indirectly implies that F (1)(s) equals the Baik-
Rains distribution. The only other explicit solution corresponds formally to the
limit σ → ∞, which reads (after scaling s with σ4/3)

P

(

sup
x∈R

{B(x)− x2} ≤ s
)

.

An explicit representation is provided in [14]. Its probability density vanishes for
s < 0 and decays as a stretched exponential with power 3

2 for s → ∞.
For all other values of σ we have to rely on Monte Carlo simulations, see Figure 1

for a plot of the densities of F (σ) for some values of σ.
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Figure 1. Probability densities of F (σ)(s) with σ =
√

α/(1− α)
from TASEP simulation until time tmax = 103 and
106 runs. The different plots corresponds to the values
α = 0, 0.05, 0.1, 0.15, 0.20, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.54, 0.58, 0.62.
The left-most black line is the exact rescaled GOE distribution
(σ = 0), which overlaps with α = 0 from the simulations. The
black line in the middle is the stationary case (σ = 1).
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