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We considers the simplest non-reversible interacting stochastic particle system,
namely the totally asymmetric simple exclusion process (TASEP) on Z. Despite its
simplicity, this model is full of interesting features. In TASEP, particles indepen-
dently try to jump to their right neighbor site at a constant rate and jumps occur
if the exclusion constraint is satisfied: no site can be occupied by more than one
particle. Under hydrodynamic scaling, the particle density solves the deterministic
Burgers equation (see e.g. [18, 1]). This model belongs to the Kardar-Parisi-Zhang
(KPZ) universality class [16] (see [5] for a recent review).

We are interested in the fluctuations around the macroscopic behavior given in
terms of the solution of the Burgers equation and we focus on the fluctuations of
particles’ positions. Depending on the initial condition, the deterministic solution
may have parts of constant and decreasing density, as well as a discontinuity, also
referred to as shock. The fluctuations of the shock location have attracted a lot
of attention.

For TASEP product Bernoulli measures are the only translation invariant sta-
tionary measures [17]. In the first works one considered initial configurations to
have a shock at the origin, with Bernoulli measures with density ρ (resp. λ) at its
left (resp. right), with ρ < λ. The shock location is often identified by the posi-
tion of a second class particle. In this case, the shock fluctuations are Gaussian
in the scale t1/2 [9, 10, 14]. Microscopic information on the shock are available
too [7, 11, 8, 3]. The origin of the t1/2 fluctuations lies in the randomness of the
initial conditions, since fluctuations coming from the dynamics grow only as t1/3.
If the initial randomness is only at one side of the shock, a similar picture still
holds. For example, in [4] one considers the initial condition is Bernoulli-ρ to the
right and periodic with density 1/2 to the left of the origin. When ρ > 1/2 there is
a shock with Gaussian fluctuations in the scale t1/2. In that work, the fluctuations
of the shock position are derived from the ones of the particle positions. The result
fits in with the heuristic argument in [19] (Section 5). The Gaussian form of the
distribution function is not robust (see for instance Remark 17 in [4]).

In the paper [12] we study the fluctuation laws around a shock occurring without
initial randomness are analyzed. In that case, one heuristically expects that the
shock fluctuations, but also tagged particles fluctuations, live only on a scale of
order t1/3, see [2] for a physical argument. We find that the distribution function
of a particle position (and also of tagged particles) is a product of two other
distribution functions. The reason of the product form of the distribution function
is that (1) at the shock two characteristics merge and (2) along the characteristics
decorrelation is slow [13, 6].

More precisely, if we look at the history of a particle close to the shock at
time t, it has non-trivial correlations with a region of width O(t2/3) around the
characteristics, see Figure 1. At the shock the two characteristics come together
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Figure 1. Illustration of the characteristics for TASEP. E is the
shock location, where two characteristics merges (the thick lines).
The gray region is of order tν for some 2/3 < ν < 1. Due to
the slow decorrelation along characteritics, at large time t the
fluctuations at E originates from the ones at Eℓ and Er.

with a positive angle so that at time t − tν , 2/3 < ν < 1, their distance will be
farther away than O(t2/3) (as proven for the step-initial condition situation by
Johansson in [15]). This implies that the fluctuations built up along the two
characteristics before time t− tν will be (asymptotically) independent. But if we
stay on a characteristic, then the dynamical fluctuations created between time
t − tν and time t are only o(t1/3), which are irrelevant with respect to the total
fluctuations present at time t− tν that are of order t1/3 (this is also known as the
slow-decorrelation phenomenon [13, 6]).

To generate a shock between two regions of constant density, we consider the
initial condition where 2Z is fully occupied and where the jump rates of particles
starting to the left (resp. right) of the origin is equal to 1 (resp. α < 1). We prove
in Corollary 1.5 of [12] the following result.

Theorem. Let xn(0) = −2n for n ∈ Z. For α < 1 let µ = 4
2−α and v = − 1−α

2 .

Then it holds

(1) lim
t→∞

P

(

xt/µ+ξt1/3(t) ≥ vt− st1/3
)

= F1

(

s− 2ξ

σ1

)

F1

(

s− 2ξ/(2− α)

σ2

)

,

with σ1 = 1
2 and σ2 = α1/3(2−2α+α2)1/3

2(2−α)2/3
. F1 is the GOE Tracy-Widom distribution

function [20].

As one can see from (1) the shock moves with speed v. When ξ is very large we
are in the region before the shock, where the density of particle is 1/2. Indeed, by
replacing s → s+2ξ and taking the ξ → ∞ limit, then (1) converges to F1(s/σ1).
Similarly, when −ξ is very large we are already in the shock, where the density of
particles in (2−α)/2. Indeed, by replacing s → s+2ξ/(2−α) and taking ξ → −∞,
then (1) converges to F1(s/σ2). This is the reason why we call this situation a
F1–F1 shock.
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Actually, in [12] we describe also other shock situations (see Corollaries 1.6
and 1.7 therein). Further, for the proof it is convenient (not strictly necessary) to
look at the problem from a last passage percolation point of view. In [12] we first
determine the analogue results for that model and in a second time relate this to
the TASEP picture.
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[3] V. Belitsky and G.M. Schütz, Microscopic structure of shocks and antishocks in the ASEP

conditioned on low current, J. Stat. Phys. 152 (2013), 93–111.
[4] A. Borodin, P.L. Ferrari, and T. Sasamoto, Two speed TASEP, J. Stat. Phys. 137 (2009),

936–977.
[5] I. Corwin, The Kardar-Parisi-Zhang equation and universality class, arXiv:1106.1596

(2011).
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