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Abstract

In the totally asymmetric simple exclusion process (TASEP) two pro-
cesses arise in the large time limit: the Airy1 and Airy2 processes. The
Airy2 process is an universal limit process occurring also in other models:
in a stochastic growth model on 1+1-dimensions, 2d last passage percola-
tion, equilibrium crystals, and in random matrix diffusion. The Airy1 and
Airy2 processes are defined and discussed in the context of the TASEP.
We also explain a geometric representation of the TASEP from which
the connection to growth models and directed last passage percolation is
immediate.

1 Introduction

In mathematics and physics, there are many situations where an observable
behaves, in an appropriate limit, as a Gaussian random variable. The most
famous example in mathematics is arguably the central limit theorem for the
sum of i.i.d. random variables provided the existence of more than two moments.
This is the simplest example of universality class and extends in some cases to
dependent random variables too.

The Gaussian is however not the only universality class. In the last decade
a lot of progress in understanding universality related to random matrix en-
sembles have been achieved. In 1994 Tracy and Widom determined the limit
distribution of the largest eigenvalue in the Gaussian Unitary Ensemble (GUE)
of random matrices [51], thus called GUE Tracy-Widom distribution, F2. Then,
in 1999 Baik, Deift, and Johansson proved that the same distribution asymp-
totically describes the longest increasing subsequence of a random permuta-
tion [3]. Johansson figured out that F2 occurs also in the shape fluctuation
in a point-to-point directed last passage percolation model [28]. The same
limit distribution arises in a stochastic growth model on a one-dimensional sub-
strate, the polynuclear growth model [40], in other corner growth models [24],
directed percolation [6, 8, 28], in vicious random walks [36], in non-colliding
Brownian motions [32], and in the totally asymmetric simple exclusion process
(TASEP) [4,28,37]. Concerning random matrices, it was meanwhile proven that
F2 occurs beyond the GUE ensemble [14, 48].
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A natural question in several of the models analyzed concerns the extension
to joint distributions. In random matrices, the extension is Dyson’s Brownian
Motion [15]. The process describing the evolution of the largest eigenvalue in
β = 2 Dyson’s Brownian Motion is, in the limit of large matrix dimension,
the Airy process (below referred as Airy2 process). This process was discov-
ered by Prähofer and Spohn in a growth model of a surface, the polynuclear
growth (PNG) model [42], where the Airy2 process describes the interface for
large growth time t. As expected, it arises also in discretized versions of the
model [27,29,45]. The PNG surface can be also related to an evolution of certain
Young tableaux, in terms of which the result has been extended by Borodin and
Olshanski [12]. Discrete versions of the PNG model are tightly linked with a
point-to-point directed polymer problem (or directed last passage percolation)
where again the Airy2 process is a limit process [29]. A different class of mod-
els where the Airy2 process arises are tiling models, the most studied one is
the Aztec diamond [30], which can be mapped to the six-vertex model at the
free-fermion point [22]. Finally, the Airy2 process occurs in equilibrium statis-
tical mechanics too. It describes the fluctuation of the border of a facet in the
3d-Ising corner model [20, 38], but the same result is expected to hold in much
more generality for short-range interactions crystals at low temperature [19],
see also [33] for related studies on the macroscopic shapes.

We have seen that the GUE Tracy-Widom distribution and the Airy2 pro-
cess appears in several models. How stable are they under change of initial
conditions or intrinsic symmetries of the model? While the scaling exponents
remain universal, the precise distribution depends on initial conditions or sym-
metries of the model. However, the results obtained so far indicate that the
limit distribution is still universal but one has to divide the universality class in
a few subclasses.

In classical random matrix theory, besides the GUE, there are the Gaus-
sian Orthogonal Ensemble (GOE) and the Gaussian Symplectic Ensemble
(GSE) [16]. They were introduced as an approximation to the real Hamilto-
nian of heavy nuclei and the different ensembles reflect the different intrinsic
symmetries of the system under consideration (e.g., the time-reversal symme-
try, which is broken by external magnetic fields). With the same scaling as for
GUE, Tracy and Widom obtained the limit distribution of the largest eigen-
values for GOE and GSE too [52, 54]. This is a clear example of the stronger
stability of the scaling exponent (in this case the fluctuation exponent) v.s. the
distribution functions. In the PNG model, the GOE Tracy-Widom distribution,
F1, occurs when the growth is on a flat substrate [5, 40]. The connection be-
tween the PNG model and the GOE ensemble actually goes beyond the largest
eigenvalue [17].

Since 2002, the question of the analogue of the Airy2 process in this setting
was open and, for some aspects, like in random matrix, is still open. In 2005
Sasamoto discovered a new process in the context of the TASEP [44], see [10]
for a complete derivation. This process is now called the Airy1 process and,
although has a similar mathematical structure as the Airy2 process, a lot of the
probabilistic interpretation that was present for the latter is lost (or, maybe,
not yet understood). The first generalization of the setting considered in [44]
has been carried out in [9]. The evidence of universality of the Airy1 process
is not yet as large as for the Airy2 process. The Airy1 process is expected
to occur in point-to-line directed last passage percolation, in the polynuclear
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growth model on a flat (not necessarily horizontal) substrate, and, possibly,
also in GOE Dyson’s Brownian Motion. Recently, a transition process from the
Airy1 to the Airy2 process has been discovered [11].

In this paper we first define the Airy1 and Airy2 processes and give their
known properties. Then we introduce the continuous time TASEP and explain
under which initial conditions the two Airy processes occurs. For the interested
reader on methods used in relation to the Airy2 process and related models, we
refer to a the lecture notes [31, 50], and the surveys [13, 18,26, 35, 49].

2 The Airy1 and Airy2 processes

In this section we define the two Airy processes and give the known properties.

Definition 2.1 (The Airy1 process). The Airy1 process A1 is the process with
m-point joint distributions at u1 < u2 < . . . < um given by the Fredholm deter-
minant

P
( m⋂

k=1

{A1(uk) ≤ sk}
)

= det(1− χsK1χs)L2({u1,...,um}×R) (2.1)

where χs(uk, x) = 1(x > sk) and the kernel K1 is a follows. Let
A1(x, y) = Ai(x + y) and H1 = −∆ with ∆ the one-dimensional Laplacian.
Then the K1 is defined by

K1(u, s; u′, s′) = −(e−(u′−u)H1)(s, s′)1(u < u′) + (euH1A1e
−u′H1)(s, s′). (2.2)

Definition 2.2 (The Airy2 process). The Airy2 process A2 is the process with
m-point joint distributions at u1 < u2 < . . . < um given by the Fredholm deter-
minant

P
( m⋂

k=1

{A2(uk) ≤ sk}
)

= det(1− χsK2χs)L2({u1,...,um}×R) (2.3)

where χs(uk, x) = 1(x > sk) and K2 is the extended Airy kernel. Let H2 be the
Airy operator

H2 = −
d2

dx2
+ x (2.4)

and A2 the (one-time) Airy kernel with entries

A2(x, y) =

∫

R+

dλAi(x + λ)Ai(y + λ). (2.5)

Then the define the kernel

K2(u, s; u′, s′) = −(e−(u′−u)H2)(s, s′)1(u < u′) + (euH2A2e
−u′H2)(s, s′). (2.6)

Explicit expressions

The explicit formulas of the K1 and K2 kernels are the following. For the Airy1

process, as shown in Appendix A of [10], one has

K1(u, s; u′, s′) = −
1√

4π(u′ − u)
exp

(
−

(s′ − s)2

4(u′ − u)

)
1(u < u′)

+Ai(s + s′ + (u′ − u)2) exp

(
(u′ − u)(s + s′) +

2

3
(u′ − u)3

)
, (2.7)
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with Ai the Airy function [1], while the kernel for the Airy2 process writes [29,42]

K2(u, s; u′, s′) =

{ ∫
R+

dλe(u′−u)λAi(x + λ)Ai(y + λ), u ≥ u′,

−
∫

R−

dλe(u′−u)λAi(x + λ)Ai(y + λ), u < u′.
(2.8)

One-point distributions

The Airy1 and Airy2 processes are stationary and their one-point distribution
functions are given in tems of the GOE and GUE Tracy-Widom distributions
of random matrices [51, 52]. Namely, as shown in [21],

P(A1(0) ≤ s) = F1(2s), (2.9)

and, for the Airy2 process [42],

P(A2(0) ≤ s) = F2(s). (2.10)

Spatial correlations

Some information on the spatial correlation have been already determined for
the Airy2 process. Locally it behaves like a diffusion and on a long distance the
spatial correlations have a slow polynomial decay. More precisely, define the
function g by

Var(A2(u) −A2(0)) = g(u). (2.11)

g grows linearly for small u and that the Airy process has long range correla-
tions [42]:

g(u) =

{
2u + O(u2) for |u| small,
g(∞) − 2u−2 + O(u−4) for |u| large.

(2.12)

with g(∞) = 1.6264 . . .. The coefficient 2 of the correlation’s decay is determined
in [2, 55]. For the Airy2 process a set of PDE’s [2] and ODE’s [53] have been
obtained. For local gaussian fluctuations, see [25].

For the Airy1 process such analysis is still missing, but it is expected that
the global behavior of g is the same, as indicated also from some preliminaly
numerical computations [44].

On the Fredholm determinants

The joint distributions for the Airy processes are given in terms of Fredholm
determinants. Are they really well defined? One way of considering the Fred-
holm determinants (2.1) and (2.3) is simply via their Fredholm series expansion,
namely

det(1− χsKχs)L2({u1,...,um}×R) (2.13)

=
∑

n≥0

(−1)n

n!

m∑

i1,...,in=1

∫

x1≥si1

dx1 · · ·

∫

xn≥sin

dxn det(K(uik
, xk; uil

, xl))1≤k,l≤n.

One can see that (2.13) is absolutely summable/integrable for the kernel K = K1

and K = K2. However, it is sometimes useful to consider the expressions
(2.1) and (2.3) as Fredholm determinant of an operator on the Hilbert space
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rate 1 rate 1

Figure 1: Dynamics of the TASEP. Particles jump with rate one on the right
site, but under the constraint that the site is empty.

H = L2({u1, . . . , um} × R). The Fredholm determinant is well defined for trace
class operators.

For (2.3) there is no problem, since K2 is trace class on H [51]. This is not
the case for K1. In fact, due to contribution of the diffusion part of the kernel,
K1 is not even Hilbert-Schmidt on H. However, as shown in Appendix A of [9],
there exists a conjugate operator of K1 that is trace class on H. With conjugate
operator we mean an operator K̃1 that leads to the same correlation functions
and Fredholm series expansion, i.e., such that

det(K̃1(uik
, xk; uil

, xl))1≤k,l≤n = det(K1(uik
, xk; uil

, xl))1≤k,l≤n (2.14)

holds. Equivalently, one can employ a weighted Hilbert space where K1 is trace
class.

3 The TASEP

The totally asymmetric simple exclusion process (TASEP) is an interacting
stochastic particle system. It consists on particles on Z with the exclusion con-
straint that at any given time t, every site j ∈ Z can be occupied at most
by one particle. Thus a configuration of the TASEP can be described by
η = {ηj , j ∈ Z|ηj ∈ {0, 1}}. ηj is called the occupation variable of site j, which
is defined by ηj = 1 if site j is occupied and ηj = 0 if site j is empty.

The dynamics of the TASEP is defined as follows. Particles jumps on the
neighboring right site with rate 1 provided that the site is empty, see Figure 1.
This means that jumps are independent of each other and are performed after an
exponential waiting time with mean 1, which starts from the time instant when
the right neighbor site is empty. More precisely, let f : Ω → R be a function
depending only on a finite number of ηj ’s. Then the backward generator of the
TASEP is given by

Lf(η) =
∑

j∈Z

ηj(1 − ηj+1)
(
f(ηj,j+1) − f(η)

)
. (3.1)

Here ηj,j+1 denotes the configuration η with the occupations at sites j and
j + 1 interchanged. The semigroup eLt is well-defined as acting on bounded and
continuous functions on Ω. eLt is the transition probability of the TASEP [34].

Observables

Since the dynamics does not interchange particles, they can be labelled by an
index k ∈ I, I ⊂ Z. We denote by xk(t) the positions of the particle k at time
t and use the right-left ordering, i.e., xk+1(t) ≤ xk(t), for all t. There are two

5



observables (quantity of interest) which are closely related: the position of given
particles and the integrated current at fixed locations.

The TASEP integrated current at position x and time t, J(x, t), is the num-
ber of particles which jumped from site x to site x + 1 during the time interval
[0, t]. Let us label by 1 the right-most particle starting at position x1(0) ≤ x.
Then J(x, t) and xs(t) are related by

P(J(x, t) ≥ s) = P(xs(t) ≥ x + 1). (3.2)

Below we consider as observable a given subset of particles. For some finite
I ⊂ Z, we explain in which scaling limit the joint distributions of

{xk(t), k ∈ I} (3.3)

are governed by the Airy processes.

Step initial conditions and Airy2 process

The Airy2 process appears in the step-initial condition, where the initial config-
uration is deterministic and defined by

xk(t = 0) = −k, k ∈ Z+. (3.4)

First consider the macroscopic behavior, around which one analyzes the fluctu-
ations. The macroscopic limit density u(ξ) is given by

u(ξ) =
d

dξ
lim

t→∞
t−1E

(
#(k : xk(t) ≥ ξt)

)
. (3.5)

It was proven by Rost [43] that the macroscopic density has a linearly decreasing
region, namely

u(ξ) =





1, ξ ≤ −1,
1 − (ξ + 1)/2, −1 ≤ ξ ≤ 1,
0, ξ ≥ 1.

(3.6)

The particles which build the bulk of the linear region are the one with
particles number αt, α ∈ (0, 1). By means of a growth model it is shown in [28]
that the fluctuations of their position is F2-distributed. Then, Johansson in [29]
proves a functional limit theorem in a discrete-time setting. The continuous-
time version of the result is the convergence of the rescaled particle positions to
the Airy2 process

lim
t→∞

x[t/4+u(t/2)2/3](t) + 2u(t/2)2/3 − u2(t/2)1/3

−(t/2)1/3
= A2(u). (3.7)

Alternating initial conditions and Airy1 process

The situation in which the Airy1 process was first discovered is the alternating
initial condition. It is the deterministic initial configuration given by

xk(t = 0) = −2k, k ∈ Z. (3.8)
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The macroscopic density is simply u(ξ) = 1/2 and particles moves with
average speed 1/4. For alternating initial condition, it was expected by univer-
sality that the one-point distribution was F1-distributed. It was the case for a
continuous version of a corresponding growth model [4, 40].

The extension to joint distribution remained for a while unsolved. The so-
lution came from a new approach. Starting from a determinantal formula by
Schütz [46] of the joint distribution of particle positions, Sasamoto [44] found
a clever way of rewriting the formula by Schütz. It results in a signed deter-
minantal point process on a larger set of variables. This is explained in details
in [10], where the pointwise convergence of kernel to K1 is also proven. The
finite-dimensional convergence to the Airy1 process has been obtained for a
discrete-time version of the TASEP in [9]. Its continuous-time analogue writes

lim
t→∞

x[t/4+ut2/3](t) + 2ut2/3

−t1/3
= A1(u). (3.9)

Stationary TASEP

Besides deterministic initial conditions, one can also consider the stationary
TASEP. The translation invariant measures for the stationary TASEP are the
Bernoulli-ρ measures, ρ ∈ [0, 1], i.e., P(ηk = 1) = ρ and the random variables
ηk’s are independent. Between other quantities, the one-point distribution func-
tion has been explicitly derived, both for the continuous time TASEP and the
discrete time TASEP with parallel update [4, 23, 41].

Universality and generalizations

By universality it is expected that the Airy1 process is the large time limit pro-
cess for a larger class of models. First of all, the Airy1 process should appear
for all deterministic and periodic initial conditions for the TASEP, and its dis-
crete time versions. It is also expected that the Airy processes occur in the
partially asymmetric simple exclusion process (PASEP), as soon as the drift is
non-zero. As it will be explained below, the TASEP can be reinterpreted as a
growth model belonging to the KPZ universality class. For model in this class of
universality, we expect that the Airy processes appears too. More precisely, the
Airy1 process for growth on a flat substrate and the Airy2 process for growth
leading a curved shape due to initial conditions. Some of these growth models
already studied are directly linked with directed last passage percolation. Thus,
we expect the Airy1, resp. Airy2, process to describe the process associated to
point-to-line, resp. point-to-point, directed last passage percolation.

As discussed briefly in the Introduction, the Airy2 process has been obtained
in several models, while the analysis deriving the Airy1 process is, up to now,
available in a few cases. In [9] the TASEP is analyzed for a larger set of initial
conditions and in the discrete-time TASEP with sequential update. This update
rule is as follows. At each time step particles are processed sequentially from
right to left, i.e., starting from right to left, if the site on the right of a particle
is empty, then this particle jumps there with probability p. This update rule
allows to shift blocks of particles to the right during one time-step.

More precisely, the initial configurations considered in [9] are deterministic
and periodic, where particles start from dZ for any d ≥ 2 fixed. It is proven

7



that the particle positions converges, properly rescaled, to the Airy1 process.
More precisely,

lim
t→∞

xn(u,t)(t) − µut2/3

−κt1/3
= A1(u), (3.10)

where the constants µ and κ are given by

κ =
(2(1 − p)p)1/3(d(d − 1))2/3

d − p
, µ = −κ2 2

d − 1
(3.11)

and the index of the particle n(u, t) by

n(u, t) =

[
p(d − 1)

d(d − p)
t −

µu

d
t2/3

]
. (3.12)

The convergence is in the sense of finite-dimensional distributions.
In discrete time, a second natural update rule is the parallel update. It

consists in first checking for all particles if they can jump (i.e., if their right-
neighbor is empty) and then, simultaneously and independently, these particles
jump to the right with probability p. Some progress in the parallel update has
been recently made in [39], but there are not yet results concerning the limit
processes. Other update rules can also be considered, see the review [47].

A natural extension of the TASEP is the partially asymmetric simple ex-
clusion process (PASEP). The scaling exponent have been determined also on
a rigorous level [7], but most of the methods applied for the TASEP do not
easily extend to the PASEP. Also in this model the Airy1 and Airy2 processes
are expected to occur as soon as the drift is non-zero.

A geometric representation

In this final part we present a geometric representation of the TASEP, from
which the reason why the Airy1 process should occur in the point-to-line last
passage directed percolation is apparent.

Growth model. Given a configuration of particles, one associates a height func-
tion h. Set the height at a given position, e.g., h(0) = 0. Then, the height
function at x ∈ Z is obtained as follows. The height differences are given by the
occupation variables of the TASEP, more precisely, h(x + 1) − h(x) = 1 − 2ηx.
Thus, starting from x = 0, one can define the height h(x), x ∈ Z. The extension
to x ∈ R is just by linear interpolation of the heights on Z. An example is shown
in Figure 2.

The dynamics of the TASEP is reflected in the height function picture by a
stochastic growth in the vertical direction. In fact, when a particle jumps from
x to x+1, in the height function a valley �� becomes a mountain �� and the
height at x + 1 is increases by two, see Figure 2. In this way, the TASEP can
be equivalently seen as a stochastic growth model of an interface.

The two types of initial conditions for the TASEP discussed above corre-
sponds to the so-called corner and flat growth. More precisely, step initial con-
ditions become growth starting from a corner-like initial surface, while periodic
initial conditions become growth from a flat (also tilted) initial configuration,
see Figure 3. With flat is it meant that the surface is flat after a coarse graining
of order one.
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x

h(x)

Figure 2: The interface (height line) associated with a TASEP configuration.

Figure 3: Interfaces associated with a step initial configuration (left) and two
periodic initial configurations (right).

Corner growth leads then to a macroscopic shape which is curved and the
large time limit process describing the surface is the Airy2 process, while growth
on a flat substrate keeps a macroscopically flat interface with fluctuations de-
scribed by the Airy1 process.

For discrete TASEP with parallel update, by setting space and time units
to p and letting p → 0, one obtains the (continuous time) polynuclear growth
(PNG) model [40, 42], a stochastic growth model in the KPZ class.

Directed last passage percolation. The TASEP can be mapped to last passage
percolation on Z2 with i.i.d. exponentially distributed random variables ω(m, n),
m, n ∈ Z. The precise connection is that ω(m, n) is the waiting time of particle
number n to jump from position m − n − 1 to m − n.

To explain it better, consider the step-initial condition, which, as we will
see, corresponds to point-to-point directed last passage percolation. The last
passage time G(m, n) is given by

G(m, n) = max
π:(1,1)→(m,n)

ℓ(π), ℓ(π) =
∑

(i,j)∈π

ω(i, j) (3.13)

where π : (1, 1) → (m, n) are up-right paths (concatenation of (0, 1) or (1, 0)
steps), going from (1, 1) to (m, n). If there are no up-right paths from (1, 1) to
(m, n), we set G(m, n) = 0. Then define the domain

Bt = {(m, n) ∈ Z2|G(m, n) ≤ t}. (3.14)

The border of this domain is directly connected with the TASEP as follows.
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To the step-initial configuration xk(0) = −k, k = 1, 2, . . ., we associate
the height line of Figure 3 and after a clockwise rotation of 45 degrees, one
obtain the line of Figure 4 (left). This line is the border of B0, denoted by
∂B0, which passes through the coordinates (xk(0) + k, k), k = 1, 2, . . .. Then,

1

k
x +k

k

x
2

x

x +k
k

k

Figure 4: TASEP with step-initial condition and directed percolation. Left is
the t = 0 configuration and right is the one at time t = ω(1, 1).

at time t = ω(1, 1), ∂Bt becomes the one of Figure 4 (right). This happens
exactly when the particle number 1 jumps from position −1 to position 0. The
correspondence actually extends for all t ≥ 0 and using the identity G(m, n) =
ω(m, n) + max{G(m− 1, n), G(m, n− 1)} one can see that G(m, n) is the time
needed for particle number n to reach site m − n.

Finally, periodic initial conditions become the point-to-line problem in last
passage percolation. More precisely, the π in (3.13) are all paths ending at (m, n)
and starting from a given line, e.g., the line is {(u,−u), u ∈ Z} for xk(0) = −2k,
k ∈ Z.
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