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Zusammenfassung

In dieser Dissertation betrachten wir zwei Modelle deristisgthen Mechanik, eines im
Nichtgleichgewicht und das andere im Gleichgewicht. Diebedung zwischen den Mo-
dellen liegt in den mathematischen Methoden, die fur ihreekduchung benutzt werden.

Als erstes betrachten wir d&olynukleare Wachstumsmod@iNG) in einer Raum-
dimension, das der KPZ-Universalitatsklasse angehotewdPZ fur Kardar, Parisi und
Zhang steht. Fir Wachstumsmodelle erwartet man, dass d8sgiWachstumszeitdie
statistischen Eigenschaften nur von qualitativen Eigeaten der Dynamik und von Sym-
metrien abhangen, aber nicht von den Details des Modell®NiG-Modell skalieren die
Hohenfluktuationen fiir grosse Wachstumszaitie t'/® und die Korrelationslange wie
t2/3. Prahofer und Spohn haben bewiesen, dass die statistiEdpemschaften einer trop-
fenformigen Oberflache vom Airy-Prozess beschrieben werBéeses Ergebnis wurde
durch die Erweiterung der Oberflache zu einen Multi-layexelél erhalten. In dieser Dis-
sertation betrachten wir den translationsinvarianteth diad bestimmen den asymptoti-
schen Punktprozess an einer festen Stelle. Wir beweisas, dlaser Punktprozess der
Skalierung von Eigenwerten am Rand des Spektrums einerlZufaiix des Gausschen
Orthogonalen Ensembles (GOE) entspricht.

Zweitens betrachten wir ein vereinfachtes Modell einerstétiecke: die3D-Ising-
Eckeflr tiefe Temperaturen. Die Ecke besteht aus drei Faceatterdurch eine gerundete
Flache verbunden sind, siehe Abbildjng 1.1 in der Einlgjt\Wdir analysieren die Begren-
zungslinie einer der Facetten. Wenn die Kristallecke gipesthe Ausdehnung der Lange
L hat, dann haben die Fluktuationen der Begrenzungslinie dieg@nordnund./?, und
die longitudinalen Korrelationen skalieren wie/?. Wir beweisen, dass die richtig skalier-
te Begrenzungslinie vom Airy-Prozess gut beschrieben \Bies. ist auch der Fall fir das
“terrace-ledge-kink’-Modell (TLK) und deshalb erwarteirydass der Airy-Prozess die
Facettenbegrenzungen fir die Modelle beschreibt, die deretsalitatsklasse mit kurz-
reichweitigen Wechselwirkungen angehéren.

Obwohl die zwei Modelle physikalisch sehr unterschiedi@®ysteme beschreiben,
werden fur ihre Untersuchung &hnliche mathematische Miethdenutzt. Beide Model-
le kbnnen auf eine Menge von sich nicht Uberkreukenden hiateggebildet werden, die
man auch als Trajektorien von Fermionen interpretieremk&ir diese Linien definiert
man einen Punktprozess. Fur die 3D-Ising-Ecke besteht emem erweiterten deter-
minantischen Punktprozess, dessen Kern gegen den eterit®iry-Kern konvergiert.
Der Airy-Kern erscheint auch in der Randskalierung von DgsBrownscher Bewegung
fur GUE-Zufallsmatrizen. Der Prozess fur das PNG-Modelkeis Pfaffscher Punktpro-
zess (an einer festen Stelle) und sexR-Matrixkern konvergiert gegen den der GOE-
Zufallsmatrizen. In der Dissertation diskutieren wir awald Verbindung zu einigen ande-
ren Modellen: das Problem der langsten steigenden Tedlfplgerichtete Polymere, “last
passage percolation”, der total asymmetrische Aussqtrozssss, zufallige Parkettierun-
gen und 3D-Young-Diagramme.
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Abstract

In this thesis we consider two models, the first belonginga-aquilibrium and the sec-
ond one to equilibrium statistical mechanics. The two medeé connected the mathe-
matical methods used to their analysis.

The first model analyzed is th@olynuclear growth modglPNG) in one dimension,
which belongs to the KPZ (Kardar-Parisi-Zhang) univetgaliass. For growth processes,
when the growth time is large, the statistical properties of the surface are eepeto
depend only on qualitative properties of the dynamics andgynmetries, but not on
the details of the models. In the case of the PNG, for larg&virdime ¢ the surface
height fluctuations scale @§* and the spatial correlation length #*. For boundary
conditions inducing a droplet shaped surface, it was shoyRrihofer and Spohn that
the statistics of the surface is described by the Airy precd#is result was obtained by
extending the surface line to a multi-layer model. In thissik we consider the space-
translation invariant case and determine the limit poiotpss of the multi-layer model at
fixed position. The process coincides with the edge scalieipenvalues of the Gaussian
orthogonal ensemble (GOE) of random matrices.

The second model we study is tB®-Ising cornerat zero temperature. The corner
of the crystal is composed by three facets (flat pieces) amdided piece interpolating
between them, see Figure]1.1 in the Introduction for antitt®n. We analyze the border
line between the rounded and a flat piece. When the cornertdeteds large, say of linear
length L, the fluctuations of the border line are of orde¥® and the spatial correlation
length scales a&?/3. We prove that the (properly rescaled) border line is wedlcdi®ed
by the Airy process. This is also the case for the terracgdddnk (TLK) model, a simple
model used to describe surfaces close to the high symmetss. &fe expect that the Airy
process describes the border of the facets in the classfatsumodels with short range
interactions.

Although the two models describe physically very differepstems, the mathemat-
ical methods employed for their investigation are similBoth models can be mapped
into some non-intersecting line ensembles, which can adswidwed as trajectories of
fermions. One can associate some point processes to thenkeenbles. For the 3D-Ising
corner it is an extended determinantal point process, wkes®l converges to the ex-
tended Airy kernel. The Airy kernel appears also in the edgdirsg of Dyson’s Brownian
motion for GUE random matrices. The process for the PNG isa#i&fh point process (at
fixed position) and theé x 2 matrix kernel converges to the one of GOE random matrices.
In the thesis we also discuss the connection with some otbdels: the longest increas-
ing subsequence problem, directed polymers, last passagelation, totally asymmetric
exclusion process, random tiling, 3D-Young diagrams, addectly, Gaussian ensembles
of random matrices.



Versione abbreviata

Premessa: la versione italiana dell'abstract € rivoltaet@bfe “comune” e non propria-
mente ai fisici /0 matematici. A quest’ultimi si consiglidebgere la versione inglese e
I'introduzione, dove il lavoro € presentato in modo piu dgliato.

In questo lavoro di dottorato studiamo due problemi di mem@astatistica, il pri-
mo riguarda un modello di crescita (fuori equilibrio) e ikeado descrive un sistema in
equilibrio (termodinamico).

Innanzitutto abbiamo considerato un modello che descaidscita di una “superfi-
cie” su di un substrato unidimensionale, dunque la superéiaina linea. Si pensi ad un
materiale poroso fine, ad esempio un foglio di carta, cheeviersso a contatto con un
liquido. Con il passar del tempo il bordo tra la parte bagnataetia asciutta cresce global-
mente in modo regolare, pur presentando alcune irregalantaltre parole, se prendiamo
due campioni diversi per fare lo stesso esperimento e dasgova linea che delimita la
parte bagnata dopo un lasso di tempo uguale, vedremo piddtdesnze, fluttuazioni.
Nel nostro modello, chiamatmodello di crescita polinuclerebbiamo posto I'attenzione
sulle proprieta statistiche della superficie in crescitene le fluttuazione sopraccitate.

Il secondo & un modello semplificato di un angolo di un cristadhiamato3D-Ising
corner. L'angolo consiste in tre facce lisce e una parta arrotandage le interpola, vedi
Figura[1.ll a paginfl 2 dell'introduzione. Abbiamo posto latreattenzione sulla linea
che separa la regione arrotondata da una delle facce lis¢gu8rdata da lontano” questa
linea ha una forma ben definita, ma facendo un ingrandimest@ccorge che il dettaglio
dipende dal campione preso in considerazione. Infatti mostelle fluttuazioni, le quali,
assieme ad altre proprieta statistiche, sono state studiguesto lavoro.

Apparentemente i due modelli non hanno un granché in comumeffetti dal pun-
to di vista fisico i sistemi presi in considerazione sono malitversi. L'unica analogia
immediata & che studiamo in entrambi i casi interfacce ‘iaméthsionali”, cioé delle Ii-
nee. Ciononostante una connessione esiste ed é dovuta sdliztge matematica dei
due sistemi. Infatti, entrambi possono essere descrittirdasieme di linee che non si
intersecano. A loro volta queste linee sono reinterpretaiee traiettorie di particelle su
una linea retta, le quali non vengono mai in contatto tra th.ld_a conseguenza e che
caratteristiche simili possono essere riscontrate nenuekelli analizzati. Ad esempio, le
proprieta statistiche che abbiamo riscontrato nel “3D¢gsiorner” sono le stesse prece-
dentemente trovate da Prahofer e Spohn nel modello di tagsaiinucleare nel caso in
cui I'interfaccia prende la forma di una goccia.
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Chapter 1

Introduction

The title of the thesis refers to two subjects. The fgbape fluctuations of crystal facets
belongs to equilibrium statistical mechanics. The studigstem is a crystal and we are
interested in the fluctuations of the flat pieces of the setfaalled facets. The second,
surface growth in one dimensiprs part of non-equilibrium statistical mechanics. One
considers a surface which grows above a one-dimensionatratd due to deposition of
atoms. The two physical systems described are very diffensth at first sight there is no
reason why they should share common features. However, agvdscover and explain

in great detail in our work, the two problems are linked toleather.

A crystal in equilibrium at very low temperature consistsestially of facets (flat
pieces) which are connected forming sharp angles. When theet@ture is increased,
the facets become smaller and are interpolated by some edwsufaces of the crystal,
and eventually all the facets have disappeared. On the btret, if the temperature is
above somd’, the crystal melts. The shape of the crystal is determinedéysurface
free energy, and the solid-liquid transition by the totakfenergy. We just introduced the
term facetto designate an intuitive quantity, but due to thermal flattans it might not
be always a well defined object. For a surface with a fixed tatean, the free energy
per unit length of a step in the surface decreases as the tetupeis increased, and
vanishes above some temperatiie In the latter case, there is no longer any mechanism
preventing the formation of extra steps, and the surfacerbes rough. Ty is called
roughening temperature and depends on the orientatioe alitiace. For high-symmetry
surfaces, e.d.100) or (11 1) for a cubic lattice, the roughening temperature is largenth
the melting temperaturé), for most materials. The situation changes for the surfaces
whose orientations are close to a high-symmetry one, ceaibithl surfaces. For example,
consider the surfac@ 0 1) and their vicinal surfaced 1 n) for largen. They consist of a
succession of0 0 1) terraces separated by steps. Those steps that are not bdistarace
have to pay an energy for each atom of the step. Whenis small enough, a vicinal
surface can be rough already at fairly low temperature coetpaithT),, i.e.,Tr < T);.

To the reader interested in the physical background we stifgefurther details the book
Physics of Crystal Growthy Pimpinelli and Villain [7B].
We are interested in the statistics of the facets’ bordetisaniemperature range where
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Figure 1.1: Crystal corner viewed from th@11) direction.

they live on a mesoscopic scale, large with respect to theaiatecale, but small with
respect to the macroscopic one. Therefore we consider tatopes not too small but
also (considerably) less thdry, since abovel'’; the facets are no longer recognizable.
In this temperature range, the facets are macroscopicatlafid well localized, but on a
microscopic scale irregularities still occur due to therfhectuations. This happens also
close to the borders of the facets, which are then not unyqiefined. Nevertheless one
can define a coarse-grained border of the facets, becauseethdarities are relevant only
on the atomic scale. Depending on the material and on thé¢ daientations, the facets
are smooth up to some hundreds of kelvins, thus also at romypetature. Figurg 1.1 is a
computer-generated image of the model we actually studyctlled the 3D-Ising corner.
The facets are perfectly flat and their borders are easitygmizable.

We consider large crystals at equilibrium with fixed numbkeatemsN. This is the
fixed volume constraint, under which there is a Gibbs measutae possible crystal con-
figurations. The equilibrium crystal shape is the expectexps under the measure. It is
determined by minimizing the surface free energy under tierwe constraint. The for-
mation of facets with a specific orientation depends on tleeggnof interactions between
the atoms and the structure of the crystal. Since we areestent in the statistical proper-
ties of the (coarse-grained) border of the facets induceatdibbs measure, we consider
N sufficiently large so that the border fluctuations are in @&@rmediate scale between the
atomic distance and the macroscopic one. WhNebecomes very large, the width of the
fluctuations is expected to become independent of the dathihe microscopic model
and depend only on some qualitative properties, like whiekigeinteractions have short of
long range. This is universality hypothesis. The modelsivishow the same fluctuations



are said to be in the same universality class. For exammantidel studied in this thesis
belongs to the class of models with short range interactions

Growth processes belong to non-equilibrium statisticatma@ics, whose aim is to ex-
plain the macroscopic and mesoscopic properties from (sjnmpicroscopic laws. There
are different types of growth to be distinguished. A solith ggow in a solution (or in
a vapor) and the growth depends on the concentration (oreopdttial pressure) of the
atoms of the growing solid. Another way of growth, put at attwse in laboratories, is
molecular beam epitaxy (MBE). It consists of ejecting singfiems (or molecules) onto
the surface under ultra-high vacuum conditions. What happenhe atoms when they
reach the surface? At very low temperature they essensttii to the location where
they arrive. At higher temperatures the atoms diffuse fohdexon the surface until meet
a preexisting step and stay there, or they meet anothessttifjtatom and stick together
forming a dimer. The mobility of a dimer is much reduced anteotatoms attach to it
forming a growing island. If the temperature is high enowghall clusters are not stable
and break up time and again. Therefore the atoms diffusé theff meet a preexisting
step. Another phenomenon which can occur when a crystabigg by deposition are
instabilities. For example, a diffusing atom reaching tbarxary of an island has a ten-
dency to be reflected and thus remains on the island. In thes églands grow only when
atoms moving on a lower level attach to it. This creates aaserfvhich resembles to an
ensemble of steep mountains with deep valleys. Instasldan occur also in growth from
a liquid, mainly for two-dimensional systems, in which c#se shape is not convex but
lots of spikes appear. Growth occurs also in the atmosphkezemvater molecules form
hailstones or snow flakes. Let us finally note that growth @sses can include also other
phenomena, like the spread of a liquid in a porous mediumrevie growing quantity is
the wetted region, or even the spread of a fire line in a forélsé border of the surface
can be one or two dimensional, or even have (on a certain)stélactal dimension. To
the reader interested in the physical background we sugfyesiooksPhysics of Crystal
Growth by Pimpinelli and Villain [78],Fractal Concepts in Surface Growtly Barabasi
and Stanley[[15], antslands, Mounds and Atoniy Michely and Krug [[68].

In our work we consider a surface growth model on a one dins@asisubstrate. We
are interested in statistical properties of the growindese for large growth times. They
are expected to be independent on the details of the modelegehd uniquely on quali-
tative properties like conservation laws and symmetrieégfpmenon of universality). In
particular, one can try to find the scale invariant quargtjtibat is, those showing the same
guantitative law under the appropriate rescaling of spacktiene. A growth is said to
be local if the new material added to the surface dependsamlgcal properties of the
surface. A smoothening mechanism prevents the surface froducing, for example,
spikes. This is the case of local diffusion of atoms from tightio the low parts of the
surface. When growth is local and has a smoothening mechathengrowing cluster
has a well defined interface and on the macroscopic levetatsty is deterministic, thus
it has a macroscopic limit shape. The fluctuations with respethe mean macroscopic
shape are relevant only on a mesoscopic level. This is theredidsle we are mainly in-
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terested in. The most studied class of local growth modetd?i& universality class. In
one dimension, it is characterized by the extra requirertieitthe speed of growth as a
function of the slope of the tangent surface has a non-zexatire. The KPZ model was
introduced by Kardar, Parisi, and Zhang where they destribeandom surface growth
by a stochastic differential equation. It is the simplestapn for the dynamics of an
interface which includes irreversibility, nonlinearitgndomness, and locality. It contains
a Laplacian term which smoothes the surface and contrastsabrioise term, and a non-
linear term, the square of the surface gradient, which expaime hills laterally. In our
thesis we study a model in the KPZ universality class in ongedision.

Now that the class of models are explained we can come batietquestion of the
similarities between growth in one dimension and bordeet®of equilibrium crystals.
On a macroscopic level, that is for large growth titha one dimensional growing surface
having a limit shape can be parameterized by a single-vahegght function. This is
also the case of the border of a facet at equilibrium. In themgle of Figurd I]1 we
fix the coordinate axis so that the facets are in the surfadéds (@0 1), (010), (100)
directions meeting at the origin. Then the boundary of (th@1) facet is a curve in the
xy-plane described as a height function. The distance to tiggnascales ad. if the
missing volume of the corner scalesias On a microscopic scale we still can describe the
growing surface and the border of the facet by a height fonafiwe do a coarse graining.
Therefore both models can be described in a similar way. Gfsen this does not yet mean
that the models have any relevant statistical property mmon. For KPZ growth in one
dimension, the height fluctuation above a fixed positionesca$!/? and the height at two
different points are correlated on a distance of ordér. This is exactly what happens
for the case of the 3D-Ising corner too, where the rolé isftaken over byl.. Moreover,
in the growth model we consider, when initial conditionsateea growing droplet, the
height profile is described by an Airy process. This procéss describes the border
of the facet in the 3D-Ising corner! The reason of these airtigés lies in the underlying
mathematical description of the two models. In fact both et®dan be mapped into some
non-intersecting line ensembles having the same matheshatructure.

Finally a note on the structure of the thesis. Instead ofistaimmediately from the
study of the above models, we first introduce directed pofgtmEhe reason is that directed
polymers are directly connected to the models, they ararthéoketween them. We begin
by describing the problem of the longest length of directelymers in a Poisson point
process. This model is directly related to the longest eireg subsequence in a random
permutation. We also present a discrete analogue, thatésted polymers o?. This is
made in the first part of Chapter 2. The second part is devotie teurface growth model
we study: the polynuclear growth (PNG) model. It it knowntttiee height of the surface
is the same as the longest length of directed polymers os&omints. The PNG droplet
is obtained when the surface grows above a single spreaslargdi An important result
of Préahofer and Spohn on the PNG droplet is that the fluctnsiod the surface height are
described by the Airy process. We also present a discresgoveof the PNG model and



shortly discuss the question of universality. In the thiedtpf Chapter 2 we consider the
model of a crystal which we actually study: the 3D-Ising @rThe border of the facets
can be expressed via the lengths of some directed polyme#8.oDur new result is that
the fluctuations of the facet boundary are described by tihe gxbcess. With this result
we then discuss the question of universality of the fluctuetiof the facet borders.

Chapter 3 is devoted to the explanation of the point proces$ésh occur in our
analysis. First we review the concept of point processel pairticular focus on deter-
minantal and Pfaffian ones. Secondly we introduce the Gamssisembles of random
matrices, whose eigenvalues are point processes. Ofydartinterest are point processes
of top eigenvalues when the size of the matrices goes to tyfiand the distribution of
the largest eigenvalue. These point processes are alsoritied ones of our models.
Dyson’s Brownian motion describes an evolution of the eigéres of the Gaussian en-
sembles. Starting from it we then discuss the generalizatidhe point processes when
they are subject to an evolution. In the last part of the @drape go back to the PNG and
3D-Ising corner models. We explain how they are mapped tessehof non-intersecting
line ensembles. The position of the lines form an extendéu poocess. For the 3D-Ising
corner they are an extended determinantal point processisTalso the case for the PNG
droplet and is the reason why both models are described bgitiigorocess. Also the
evolution of the largest eigenvalue in Dyson’s Brownian miotior hermitian matrices is
described by the Airy process. If the constraint that théaser grows only above one
island is suppressed, then the surface is statisticalhslkaion invariant. This is called
the flat PNG and only its one-point distribution is known. Hp&ace correlations are not
yet known, but the conjecture is that it is the same as theugwal of the largest eigen-
value for Dyson’s Brownian motion in the case of symmetricnoas. For fixed position,
the line ensemble of the flat PNG is a point process. Our naveing is that this point
process, in the limit of large growth time, is the same as tietgprocess for fixed time of
the eigenvalues of Dyson’s Brownian motion for symmetricnioas, in the limit of large
matrix size. This is a step towards the just explained coajec

Chapter 4 contains our new result on the flat PNG as well asgtsaus derivation.
Similarly, in Chapter 5 we present our new result on the 3Dgsiorner model and analyze
it. In the Appendix we include various results completing thiscussions of Chapters 2
and 3.






Chapter 2

From directed polymers to polynuclear
growth model and 3D-Ising corner

2.1 Directed polymers and longest increasing subse-
quence

To describe the problem considered in this section we firgé ha introduce the Pois-
son process. Then we define the directed polymers on Poissots pgive some known
results and connections with other problems, in particwitly the longest increasing sub-
sequence.

2.1.1 The Poisson process

Consider a Borel seb of R? which can either be bounded or unbounded. The Poisson
process orD is a point proces§, F, P) defined as follows. Let be a countable config-
uration of points inD. For any compact subsé&t of D, denote the number of points of

in B byn(B)(w). Then

Q = {w|n(B)(w) < oo,V compactB C D} (2.1)

is the set of all locally finite configurations of pointsZin Let F be thes-algebra of events
on{.

Definition 2.1. APoisson process intensityo > 0 in D is given by setting the probability
[P such that, for all compacB C D,

k
P({n(B) = k) = U2 eom ox
and events on disjoints subsetdbére independent: for ath € N, k1, ..., %, € N, and

Bi,...,B, CD,if B;NB; =0fori # j, then

P(ﬂ{”(Bz) = kz}) = HP({W(Bz) = ki}). (2.3)
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More generally one can fix a locally integrable intensity D — R,. Then the
Poisson process with densityx) is defined as before up to the following modification of

@2). Let
o(B) = |B|"" / dwo(z). (2.4)
B

then (Z.P) is replaced by

P({n(B) = k}) = ¢ 2®)5(B)* k. (2.5)

2.1.2 Directed polymers on Poisson points
Point-to-point problem

We introduce a partial ordering as follows. Forz,y € R? we say thatr < v if both
coordinates of are strictly less than those gf Consider a Poisson process with intensity
oin R2.

Definition 2.2. A directed polymer on Poisson poirdgtarting at.S and ending atF is a
piecewise linear path connectingS < ¢; < ... < ) < E, ¢; € w Poisson points. The
lengthi(7) of the directed polymer is the number of Poisson points visitedshy

We denote bylI(S, F')(w) the set of directed polymers froi to £. The maximal
length ofr € 11(S, E)(w) is

L(S,E)(w) = nenr(nse,%(w) (). (2.6)

A directed polymer of maximal length is also calledximizerand the set of maximizers
is denoted byi1,,.<(S, F)(w). This is thepoint-to-pointsetting because both initial and
final points are fixed. Figure 2.1 is a realization of the Rmigsrocess with intensity in
the squaré0, 15]2. The highest and lowest maximizers are visualized.

Some questions one would like to answer are:

a) What it the distribution of the maximal length?
b) How does this distribution depend on the relative posgiof S and £?
c) Where are typically located the points of the maximizers?

The answer to question b) is simple. Take as starting poiat (0,0) and the two
following end-points,E;, = (¢,t) and By = (vyt,7~'t) for somey > 1. Denote byR;,
resp.R,, the rectangle with opposite corne¥sand E';, resp.F,. Consider the bijective
mapping® : R? — R? defined by®(z,y) = (yx,7 'y). ® preserves the distribution on
points and®(R;) = R,. Moreover, a directed polymer iR; is mapped into a directed
polymer in R,. Consequently the distribution @f(.S, E') depends only on the area of the
rectangle with opposite cornefsand E. Therefore we conside¥ = (0,0), £ = (t,1),
and denote the maximal length Byt) = L(S, E).



2.1 Directed polymers and longest increasing subsequence

¢ ey

o
e .

Figure 2.1: A realization of Poisson points with density= 1 in the square of edge-
length15. The highest and lowest directed polymers of maximal length are shown.

* .
e .

Figure 2.2: Realization of Figurg¢ 21 transformed Bywith v = 1.25.

Question a), in thé — oo limit, was settled by Baik, Deift, and Johansson in their
already famous papef Jl10]. Their result reads

lim P(% < s) = Fy(s) 2.7)

whereF}, is the GUE Tracy-Widom distributiori JIPO]. In other words farget
L(t) ~ 2t + t'3¢qup (2.8)

with {cur @ random variablé’-distributed. Thdength fluctuation exponent/s in (Z.8)
is denoted by.

Question c) has an answer in terms of ttaasversal fluctuation exponefitiefined as
follows. Denote byC.,(¢) the cylinder of widtht” around the segmef, 0) — (¢, 1),

Cy(t) ={(z,y) e R0 <z +y <2t |y— x| < V20} (2.9)
Consider the set of configuratioassuch that all the maximizers are contained’if(t),

A () = {w € Qr C C(t) for all 7 € M () (w)} (2.10)
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wherell,.«(t)(w) = Hmax((0,0), (¢,¢))(w). Thenf is defined by
¢ = inf{y > 0 litrginf]P(Aw(t)) =1} (2.12)

Johansson provek ]44] that for this modek 2/3. Since¢ > 1/2, the directed polymers
aresuperdiffusive
The previous results; = 1/3 and¢ = 2/3, implies that the scaling identity

x=2-1 (2.12)

holds for this model.[(2.]2) is expected to hold in any dinemsfor a large class of re-
lated models, like growing surfaces, first and directedgassage percolation. We discuss
it further in sectior] Z.1]5 for directed last passage petemt onZ<. An heuristic argu-
ment leading to the scaling relation (2.12) is the followiridhe length of a typical path
from (0,0) to (z,y) is ~ 2,/zy. Hence, a maximal path froifd), 0) to (¢,¢) that passes
through(t(a — 0),t(a +9)), 0 < a < 1, § small, is shorter by the amount

Qt\/(a—l—é)(a—5)+2t\/(1—a—5)(1—a+5)—2t2%ja) (2.13)

which should be of the same order of the fluctuatiohs Therefores? ~ tX—!, and
o~ 15 ~ txFD/2

Point-to-line problem

A modification of the problem consists in considering theodelirected polymers starting
from (0, 0) and ending in the segment of lii¢ = {(z,y) € R%|z +y = 2t}. Thisis
called thepoint-to-lineproblem. The fluctuation exponent is sfjli= 1/3, but the fluctua-
tion of the maximal lengthl,(¢), is governed by the GOE Tracy-Widom distributi¢n [[L01]
Fl(S),

% < 2*2/%) = Fi(s), (2.14)
thatis,L,(t) ~ 2t +27%/3t'/3¢q0g for larget, with (qor a random variablé’ -distributed.
This result follows from related problen{s[13] 77]: the lestincreasing subsequence, see
Section 2.1]3, and the polynuclear growth model which isudised in Sectioh 2.2.

For the point-to-line problem, some other questions afige. first we discuss is about
the (non-)unigueness of the end-point of the maximizers. s@en the set of directed
polymers of maximal length from) = (0,0) to U;, denoted byil,,..(O, U;). For any
7 € nax (O, Uy), denote byE (m) € U, the closest point ofY, to the last Poisson point of
7. The question is to know whether typically the directed pudys of maximal length ends
in a unique point or not. Denote hieg(w) the number of such points. Some numerical
studies indicates thdkg has a distribution which is not reduced to a point mass. Fgela
2

P(deg(w) = k) ~ (¢ —1)¢", k>1, (2.15)
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Figure 2.3: Probability distributiondeg for ¢ = 25, 50, 100 over10® runs for each, and
the fit obtained fog = 0.574.

with ¢ = 0.574+0.005, i.e.,[E(deg) ~ 2.35+0.03, see Figur¢ 2} 3. We run a simulation up
tot = 1000 but only over10? runs. The average value of end points was aBobi- 0.1.
We then made the simulation foe= 25, 50, 100 for 10° runs, and the fit of these results is
g = 0.574 + 0.005, which means that the average numbex.# + 0.03.

SinceE(r) is typically not unique, we investigate a second randomatde: the max-
imal distance between thE(r)'s. Let 7, resp.7m_, be inIl,..(O,U;) such that the
distanced(t) = |E(n;) — E(n_)| is maximal. The simulations for = 25,50, 100 over
10° runs show the following behaviors.

1) There is a frequency aof = 42.6% + 0.5% that the end point is unique, i.e., that 0.
Therefore the distribution of has the formud(x) + p;(z).

2) For small distanceg;, has a limit behavior without needing to be rescaled,isee
Figure[2Z.14, but whed is increaseg, shows the-dependence, see FigUyre]A.6 in Appen-
dix A.8.

3) The density, extends over an intervél(¢*/?) and then has (super-)exponential cutoff.
Define the rescaled density(¢) = pi(z = £t2/3)t2/3. If we plot ¢ — t1/3p,.(€) then we
have a good collapse of the functions for different values sée Figuref 2.5 add A.7.

Now consider the distribution af, = d/t*/3. The above results imply that it has a
delta peak at the origin plus a density For larget, the contributions of small distance,
2), much smaller thad(¢2/3), sum up with the frequency and create the delta peak at
zero,a,5(¢). For the density, defing(¢) = lim,_.. t'/3p,(£). For larget, the probability
measure. of the rescaled distancg is

p(€) == ad(€) + 7P f(€). (2.16)

z — f(§) is a continuous function which has a polynomial decay at #griming and is
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Figure 2.4: Probability density of the distribution of the distan¢éor t = 25, 50, 100
and smalld. The fit is best fot = 50,100 and isp = 2.2d(1 + 16d?)~!.
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Figure 2.5: Rescaled probability density of the distribution of the distatider ¢t =
25, 50, 100.

followed by a (super-)exponential decay which becomes mapo close to¢ = 1. Our
data do not permit to obtain the precise power-law decaythayt indicate that is should
be~ &1,

The normalization condition implies, ~ 1 — t~1/3 fm f(&€)d€. Thus the weight of
the distribution is concentrated in the central peak extmpa fraction of order /3. A
measure of the forn{ (2]16) for the rescaled distaficenplies that the moments of the
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distancel are given by
E(d*) = *PE(dy) = t#2 | f(e)erde (2.17)
R+

for £ > 1. The simulations fot = 25, 50, 100 leads to
E(d)/t/? ~ 0.55, Var(d*)/t ~ 0.23. (2.18)

We also made simulations also for larger values, afp to¢ = 1000, but with only 1000
runs. The results agree with (2/17) apd (R.18), see Table A.1

A second question concerns the position of the branchingrettd polymers. Con-
sider for all pointsF € U, the set of directed polymers of maximal length fram= (0, 0)
to E, . (O, E). Take two end pointg€”; and E» on U, such thatEy, — F| ~ t¥,
0 < v < 1. We say that two directed polymers and, intersect atr € R? if z is a
Poisson point visited by both; andw,. Then the problem of last branching of directed
polymers is the following. Define the set

I(El,EQ)(W) = {i[f € w]EIm I~ Hmax<07 El),ﬂ'g € Hmax(Oa Eg),l' € T N 7'('2} (219)

and letJ(E,, E,) be the closest element &f £y, F») to U,. ThenJ(FE4, E») is called
the last branching poinof directed polymers with end-points ifi; and F£,. We would
like to know something about the random variablg”,, F,). One would expect that the
branching is governed by the transverse expoéhtlf » = 2/3, the last branching point
should have a distance of orddrom U, with some distribution, on that scale, not reduced
to a point mass. On the other hand/if> 2/3 the branching will be close to the root and
if v < 2/3 the branching will be close t0;. We give a partial answer to this problem
in [BQ], where we prove the following estimates for the positof J(Ey, Es).

Theorem 2.3.LetE; = (¢,t) and E, = E; 4+ yt¥(—1,1) withy € R fixed.
i) For v > 2/3, there exists &'(y) < oo such that for allo > 5/3 — v,

lim P{d(0, J(Fy, E2)) < C(u)i7}) = 1. 220

i) For v <2/3 andforally < 2v —1/3 one has

lim P({d(J(Ey. E), U) < #}) = 0. (2.21)

In particular for v = 2/3, one can choose any < 1.

Figure[Z.p shows the set of maximizers fr¢im0) to (a part of)U, for a realization
with ¢t = 2000.
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Figure 2.6: Set of all maximizers from the origin to the ling,. The sample uses
~ 8- 10° Poisson points, which in our units correspond te 2000 andoe = 2. Only
the sectior|0, 1] x [-1/6,1/6] is shown. The picture is rotated ef45 degrees.

2.1.3 Directed polymers and longest increasing subsequences

As we will explain, the directed polymers on Poisson poistdasely related to the follow-
ing combinatorial problem. Le$y denote the permutation group of the $ét..., N}.
For each permutation € Sy the sequencéo(1),...,0(N)) has an increasing subse-
quence of lengtlt, (ny,...,ng), if 1 < n; <ny < ... < n, < N. Denote byLy(0)
the length of the longest increasing subsequence for thraysationos. The problem of
finding the asymptotic law fof. 5 for uniform distribution onSy is also called Ulam’s
problem (1961). Ulam conjecturef J106] on the basis of Mddélo simulations that
asymptoticallyE(Ly) ~ ¢/N, that is the limitc = limy_.. N~/2E(Ly) exists. Some
other numerical analysis by Baer and Brogk [9] suggested 2. The proof of the ex-
istence ofc was obtained by Hammersley J39]. Then Logan and Shgdp [@ijeprthat

¢ > 2, and Vershik and Kero [IP8] showed that= 2, thus settling Ulam’s problem.
Other proofs are due to Aldous and Diacorfis [5], Seppalajf8h and Johanssot J¢1].
The proofs in[[6L} 108] use Young tableaux representatembglow, where an asymptotic
analysis is carried out fdixedlarge N. Another approach is used by Hammersley[irj [39],
where he considers the length of the permutation to be Rodistributed with mean value
N. This point of view is equivalent to the directed polymersRmisson points. The sub-
sequent workg ], 89, #1] are also in this framework. For nuetails, see the review by
Diaconis and Aldoud]6].

The next step is to analyze the fluctuations. Some Monte Cianlalation of Odlyzko
and Rains (1993), see al§o[68], indicated that asymptbtidair(Ly) ~ coN/? with
co ~ 0.819, and alsoE(Ly) ~ 2v/N + ¢, N'/6 with ¢, ~ —1.758. The final answer is
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given by Baik, Deift and Johanssdn]10]. They proved that

lim P(Ly <2VN +sN'%) = Fy(s), seR (2.22)
where F; is the GUE Tracy-Widom distribution. From this result it liss thatc, =
0.8132...andc¢; = —1.7711.... To obtain [2.22) they use the Poissonized version of
the problem. Instead of fixing the length of the permutatimng/, they consider the set
S = U,>0S, and assign the probability V&V /k! that a permutation is i5,. They
first prove that[(2.32) holds for this problem, and secondijam the result via a de-
Poissonization method, consisting in bounding from abaek@elow the distribution of
Ly in terms of the Poissonized one.

The problem of the longest increasing subsequence of leNgthequivalent to the
problem of finding the longest directed polymer fr@gth0) to (¢,¢) when N points are
distributed uniformly in the squaré, t]?, and the directed polymers on Poisson points is
the Poissonized version. In statistical physics the probhth fixed NV corresponds to
the canonical ensemble, the one with Poisson distributegtheto the grand canonical
ensemble, and th&¥ — oo limit is the thermodynamical limit.

2.1.4 Young tableaux and increasing subsequences

On a more combinatorial point of view, the longest incregsubsequence can be seen
via the Young tableaux associated to a permutation. The ¢dableaux are defined
as follows. Take a partitiolh = (A, Ag,..., A\x) Of an integerN, i.e., satisfying
M> > >1 ande:1 Ai = N. A Young tableau oShape\ = (A, Ao, ...) IS

a diagram withk rows and); cells for rowi, i = 1,..., k, where the cells are occupied
by the numberd, 2, ..., NV increasingly in each row and column (or, by symmetry, de-
creasingly). The Robinson-Schensted correspondendajscéionbetween permutations
o € Sy andpairs of Young tableauxX® (o), Q(c)) with N cells and the same shape. The
algorithm leading tqP (o), Q(0)) is the following [88]:

P-tableau: fori = 1to NV:

Placeo (i) in the top row of theP-tableau as follows: a) i#(:) is higher than
all numbers in the first row of th@-tableau, then append to the right of them,
b) otherwise put it at the place of the smallest higher elg¢raéthe first row

of P.

If an element was replaced in royy take it and apply the same procedure in
row j + 1.

O-tableau: forz = 1to N:

Placei in the position where a number appeared the first time atistethe
P-tableau.
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As an illustration we show the construction of the Young ¢abix for the permutation
o=(6,2,51,4,8,7,3), whose shape is = (3,3,1,1).

|1 2 3 4 5 6 7 8
Pl6]2 625151414814 7|137
6 2 2 5125 2 5 8|2 4 8

6 6 6 6 )

6
Q|11 2121212 |12¢6]126|128F6
3 2 35|35 35 713 57

4 4 4 4 4

8

The shapes of the Young tableaBXc) and Q(o) are the same by construction. In par-
ticular, the length of the longest increasing subsequeheeeguals the length of the first

row [G]
LN<0') = )\1(0’). (223)

Thus a way to determine the asymptotic behaviof.gfis via the analysis of the length
of the first row on Young tableaux. The measure)omduced by the uniform measure
on Sy is thePlancherelmeasure: let, denote the number of Young tableaux of shape
then

_4
ZMGYN di

with Y denoting the set of partitions éf, ..., N}.

Finally we discuss the interpretation of alfs. Consider a Poisson process|int|>
andw a configuration withV points. Let(z;,y;),7 = 1,..., N, be the points o, where
the index is defined by the rule < z;,,, and the permutation € Sy bY Yo (i) < Yo(it1)-
Clearly the length of the longest increasing subsequenee 6f; (o), equals the length
of the longest directed polymer frof0, 0) to (¢, ¢) for the configurationv, which is the
A1 of P(o). The interpretation of the othey;’s follows from a theorem of Greene. Let
o € Sy and\ = (A, ..., \,) beathe shape (o). Let, fork < m, ax(c) be the length
of the longest subsequencemtonsisting oft: disjoint increasing subsequences. Greene
proves [3p] that

In terms of directed polymer§ (2]25) means thats the maximal sum of the lengths of
k non-intersecting directed polymers frafy, 0) to (¢,¢), where non-intersecting means
without common Poisson points.
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2.1.5 Discrete analogous of directed polymers

We describe a discrete analogousZof the directed polymers problem, because it leads
to a discrete analogous of the polynuclear growth modeldised in Sectiop 3.2. Itis also
linked with the totally asymmetric exclusion process, TASE

Letw(s,7), (i,j) € Z% be independent geometrically distributed random varigble

P(w(i,j) =k) = (1 —q)¢", keZ, (2.26)

with ¢ € (0,1). The directed polymers frortd, 0) to (M, N) is the set of up/right paths
7 from (0,0) to (M, N), i.e., sequences of points, jx), £ = 0,..., M + N, of sites
in 7% with (io, jo) = (0,0), (inrsn,jmin) = (M, N), and (ixs1, jx1) — (ik, Ja) €
{(1,0),(0,1)}. We denote byil,, n the set of directed polymers fro(0, 0) to (M, N).
The length of the directed polymer is defined by the sum ofuhiej) visited by the
directed polymer, and we are interested in the length ofahgdst directed polymers in
I v given by

Ly = max w(, j). (2.27)

TEUMN G Der

I3/ denote the set of directed polymerslin, y of maximal length. This model was
considered by Johansson [n][43], where he obtained thexfinigpresults. For the asymp-
totic expected value of the length of directed polymers lowga that, for each € (0, 1)
andy > 1,

1 1+ /79)?
m(v,q) = lim NE<L[WN]7N) = g -1

2.28
lim L (2.28)

[-] denotes the integer part. The fluctuations around the mdaa age described by the
GUE Tracy-Widom distributiorf;, as follows. For each € (0,1) andy > 1, ands € R,

write
1/6,,—1/6

7(7.0) = (WA VDT VD (2.29)
then
lim P(Lynn < m(v,¢)N + o(fy,q)Nl/‘gs) = Fy(s). (2.30)

N—oo

A generalization of this model consists in taking, ), (i,j) € 7% be independent
geometrically distributed random variables with

P(w(i,j) = k) = (1 — a;b;)(a:ib;)*, keN (2.31)

with the a;'s and theb,’s in [0, 1). The 3D-Ising corner problem introduced in Section 2.3
will be closely related to this generalization.
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Question of universality

Consider the more general case of directed polymers wherei.therandom variables
w(i,j) are positiveand have a distributio¥” (not reduced to a point mass) satisfying
E(w) < oo andVar(w) < co. The random variable

L}(V = LN,N — CL)(N, N) (232)

is superadditive, i.el},,,, > Ly + Lj,. The subadditive ergodic theorem ensures the
existence of the limit

*

lim []/\][V = 1(0) (2.33)

N—oo
with probability one, from which follows thdimy ... N"'Ly x = 1(0) too. Similarly,
we can consider the end-poift«) = (N — [N tan(a)], N + [N tan(«)]), with « the
angle to the diagonal (the straight line passing®y) and(N, NV)). Then for someu(«),
limy_ N "' Lp) = p(e) a.s. too. As for the directed polymers on Poisson points, we
define the length fluctuation exponepnt such that
. InVar(Lp(a))

R T (2:34
and the lateral fluctuation exponeftas follows. LetC’, be the cylinder of widthV” with
axis passing by0, 0) and P(«). Then

§o = inf{y > 0|P(r € IIp{5 N C,) =1} (2.35)

There are quantities, like the functigri«), that depend on the distributiafi. But
other gquantities like the exponergsand y are expected to be independent of the details
of F, i.e., to beuniversalwithin a class of models. It is known that the scaling relatio
Xo = 2§, — 1is not always satisfied ifi”(«v) = 0. From scaling theory and the results
of some solvable models it is known that in dimension two thersal exponents are
¢ = 2/3 andy = 1/3. Assume the condition that’ exists and

i (a) # 0. (2.36)
Then the conjecture is that, if (2]36) is satisfied, then= 2¢, — 1 holds with y, =
x = 1/3 and¢, = ¢ = 2/3 independent ofv. In the above model[ (Z.B6) does not hold
for a = +x/4, but this is a point wherd (2.36) does not apply siptedoes not exist.
Fora = +£7/4, £ = 0 because the directed polymers can not fluctuate laterakyl,at
andy = 1/2 since the length is a sum of i.i.d. random variables. It isaieér if the
condition of finite second moment is enough or if one needssoime the existence of
exponential moments. Even in the discrete model studiesleatiwere is not a rigorous
proof of ¢ = 2/3. The strategy used to proge= 2/3 for the Poisson cas§¢ [44] can be
easily adapted to the discrete case, but a large deviationags for one of the tails is
missing.

Several attempts of proving the scaling relatipn (2.22)- 1 = y, have been made
over the past years with some partial but rigorous resuiesptost relevant can be found
in [69,[60,[74]. In these papers some of the rigorous resultsvve modified versions af
andy.
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Figure 2.7: Directed polymers and TASEP. The bold line passes by the poiriég,ahe
black dots aréDs, and the numbers are thei, j). The right shows how the jump of a
particle is reflected bys;.

Poisson points and TASEP limits

There are two limits which are of particular interest:

a) Theg — 0 limit leads to the Poisson points case as follows. Defihe- ¢1/0/q
and take the limity; — 0 with ¢ fixed. Thenm(vy,q)N — /o7t, ando(v,q)N'/? —
(yv/7ot)2. In particular, foro = 1 andy = 1, m(v,q)N — 2t ando(y, q)N'/? — ¢1/3,
compare with equatiorf (2.7). The picture of Poisson poirith Wtensity ¢ is directly
obtained in they — 0 limit if, for fixed ¢, the lattice spacing i§/q/ o

b) The second limitig — 1, which leads to the totally asymmetric exclusion process,
TASEP [43,[7B]. Let us calL(i, j) the waiting time from(0, 0) to (4, j), and define the
domain

Dy={(i+3,j+3) € (N+1)L,j) <t} (2.37)

Now rotate the picture byt /4, denote byl the image of the lattic&? and byD, the
one of D,. Letk = ¢ — j and B; the lowest set of points id which are aboveD,, see
figure[Z.}. At each time, we associate a set of random variables(t), k € Z} to each
bond(B;(k), B;(k+1)) by settingn,.(t) = 1if Bi(k+1)— B,(k) = (1,—1) andn,(t) = 0
if By(k+ 1) — Bi(k) = (1,1). ni(t) represents the state of the sktgeit is 1 if there is
a particle att at timet and zero if it is empty. Fot = —1, the initial configuration of
particles isy,(t) = 1 for k < 0 andn,(t) = 0for £ > 0. If at timet a particle occupies site
k and is followed by an empty space, at time 1 it will be at sitek + 1 with probability
1 — ¢. Moreover each particle jumps independently. This is tseréite time TASEP with
geometrical distributed waiting times. Now consider ¢the» 1 limit. Let the unit time
interval bel —¢. Then the waiting time (¢, j) = (1—q¢)w(4, j) is in the limit exponentially
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Figure 2.8: Graphical construction generating the surface height from the Poisson
points.

distributed. In fact,

P(r(i,j) <s) = P(w(i, j) =1)
teINN[0,s/(1—q)]

- Plw(i, ) = /(1 — q)) = /0 cldt. (2.38)

t'e(1—q)NNI0,s]

2.2 Polynuclear growth model (PNG)

The first model we consider which is related with the diregtelymers on Poisson points
is the polynuclear growth model (PNG) in one spatial dimemsi

2.2.1 Polynuclear growth model and Poisson points

The PNG model il +1 dimension is a growth model for a one dimensional surfacéhvh
at timet and positionz is described by a height function— h(x,t) € Z. Itis a local
random growth model. Space and time are continuous and tghathe discrete (given
in “atomic units”). First we consider the case of flat init@ndition(x,0) = 0 for all

x € R, the case of non-flat initial condition is discussed latéx.&F1" > 0, then for each
configuration of Poisson points € €2 we define the height functioh(z, t)(w), (z,t) €

R x [0,77, by the following graphical construction. Because of flatithiconditions, we
seth(z,0)(w) = 0 and we callnucleation eventthe points ofw. Each nucleation event
generates two lines, with slopel and—1 along its forward light cone. A line ends upon
crossing another line. In Figufe P.8 the dots are the nuoleatents and the lines follow
the forward light cones. The heightz, t)(w) is then the number of lines crossed along the
straight path fron{z, 0) to (x,t). Sincew is locally finite, it follows thatr — h(z,t)(w),

t € [0,7], is locally bounded and the number of discontinuities isllydfinite.
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The interpretation of the graphical construction in terrha growing surface is the
following. The surface height at positiane R and timet > 0 is h(x,t) € Z. The initial
condition ish(z,0) = 0 for all z € R. For fixed timet, consider the height profile —
h(z,t). We say that there is an up-step (of height one) #th(z,t) = lim,, h(y,t) + 1
and a down-step (of height one) aif hA(xz,t) = lim,, h(y,t) + 1. A nucleation event
which occurs at positiom and timet is a creation of a pair of up- and down-stepredt
timet. The up-steps move to the left with unit speed and the doepssio the right with
unit speed. When a pair of up- and down-step meet, they simptgen In Figuré 2|8 the
dots are the nucleation events, the lines with slepgresp.+1) are the positions of the
up-steps (resp. down-steps). In the case that the initillsiprofile is not flat, the surface
height at some later timeis obtained similarly. The only difference is the followingo
the lines generated by the Poisson points we need to addaaddiines starting from the

= 0 axis with slope—1, resp.+1, if initially at x there is an up-step, resp. a down-step.
Moreover, the number of lines crossed along the straiglt fsat (z,0) to (z, ) is the
height differencéi(x,t) — h(z,0). Varying the density on Poisson pointsn the space,
different geometries are obtained, see below.

2.2.2 Longest directed polymers and surface height

We explain the connection between the longest directedpaly on Poisson points and
the surface height.

The PNG droplet

The PNG droplet is obtained when the density of Poisson pagtonstant (here we
choosep = 2) in the forward light cone of the origin and zero outside,, ifer (z,t) €
R x Ry

2 i 2] <1,
ofz,t) —{ 0 if 2] >t (2:39)

and the initial height profile is flak(x,0) = 0 for x € R. The height above the origin at
timet, h(0,t), equals the number of times that we enter in a light cone whefollows
any path from(0,0) to (0, ¢) with “speed” between-1 and+1, i.e., with absolute slope
bigger than one in thér, t) graph. Notice thak (0, ¢) depends only on the Poisson points
in the diamond{ (2, )| |'| < ¢, |2'| < t — t'}. In particular, consider the paths which
enter in the light cones only at the nucleation points antidbasists in straight segments
between these points. These path arepbmt-to-pointdirected polymers of maximal
length rotated byr/4, see Figurd 2]9. Therefofg0,¢) equals the length of the longest
directed polymer front0, 0) to (¢/+/2,t/+/2) on Poisson points wititensity two which,
by rescaling, is equal to the lengihit) of the longest directed polymer froff, 0) to (¢, t)

on Poisson points wititensity one Thus by [2.]J7) the asymptotic behavior/gi, ) is

lim P (h(0,t) < 2t +t'/3s) = Fy(s), (2.40)

t—o00
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h(0,t)
(t/V2,t/V?2)

(0,0)

Figure 2.9: Height and directed polymers for the droplet geometry

with F, the GUE Tracy-Widom distribution. By invariance of the dilet polymers and
Poisson process under the mapping R? — R?,

B(x,t) = (T — Ty Wy (2.41)
it follows that, for fixedr € (-1, 1),
1tlim P(h(tt,t) < 2tv/1 — 12 4 t13(1 — 72)1/8s) = Fy(s). (2.42)

For this model also the spatial correlations are known. @emsihe height func-
tion at timeT, » — h(z,T). For largeT the fluctuations scales &'/ and it turns
out that the spatial correlations scales7&s®. The limit shape of the PNG droplet,
limr .. T h(7T,T), is2y/1 — 72. Then the rescaled surface height is given by

£ hEE(&) = T V3 (R(ETY?) — (2T — 2 T%)). (2.43)
In [BT] it is proven that, in the sense of finite dimensionatdbution,
Jim h7() = A(€) (2.44)

where A is the Airy process whose precise definition and properties are given in Sec-
tion B.3.3.

Recently Borodin and Olshanski showgd [19] that the Airy pssaiescribes the space-
time correlations along angpace-likgandlight-like) path in the droplet geometry. They
work with Young diagrams. To each poifit,v) € R%, they consider the random Young
diagram (the shape of Young tableauxju, v) obtained by RSK correspondence. Then
for each space-like path iR2 they construct a Markov chain which describes the evo-
lution of the Young diagranY. The case: + v = T is the one analyzed by Prahofer
and Spohn[[81]. The case = const correspond to the terrace-ledge-kink (TLK) model
which was used, together with the 3D-Ising model, to deteeminiversality for the fluc-
tuations of a crystal around the equilibrium shape, see@d2i3.4 and[[29]. Fotime-like
paths no result is known. The major difficulty lies on the latkhe Markov property.
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(t/V2,t/V?2)
1(0, 1) ‘71

(t/V2.~1/v/2)

Figure 2.10: Height and directed polymers for the flat geometry

The flat PNG

With flat PNG we mean the surface obtained when the densitgiséBn points is constant
in R x R, (as before we choose = 2). In this case, since no other constraint is fixed,
the surface heighit(z, t) is statistically translation-invariant, thus we considet 0. The
heighth (0, t) depends only on the Poisson points in the intersection ddlckwards light
cone of(0,¢) andR x R, namely in the triangld (z/, )|t > 0, |2'| <t —t'}. h(0,1)
is the number of times that any path frdm¢) to thet = 0 axis “speed” between1 and
+1 exits a light cone. In particular, consider the paths théttar light cones only at the
nucleation points and that consist in straight segmentsdeat these points. Let us apply
a rotation ofr /4, see Figurg¢ 2.10. Then the rotated paths aretiet-to-line (or better
line-to-point) directed polymers of maximal length on Bois points with intensity two.
Rescaling to intensity one, we obtaii0,t) = L,(t) where L,(t) is the one of [2.14).
Thus for large,

lim P(h(0,t) < 2t +/327%/35) = [y (s), (2.45)

T—o0

with F; the GOE Tracy-Widom distribution.
For this model the spatial correlations are still unknowm[P8] we do a first step in
the understanding of it. We will explain it extensively incBien[3.4 and Chaptéf 4.

2.2.3 Discrete time version of the polynuclear growth model

We now consider a discrete time version of the polynucleawgr model. It is closely
related to the discrete version of the directed polymersdhiced in Sectiop 2.1.5. Here
the space iZ and the time i&N. We consider only flat initial conditions, i.éi.(xz, —1) = 0
for all x € Z. The discrete PNG model is defined by

h(xz,t) = max{h(x — 1,t — 1), h(x,t — 1), h(x + 1,t — 1)} + &(x,t), (2.46)

fort > 0, wherew(z,t) € Z., (z,t) € Z x N, are independent random variables.
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Figure 2.11: Z2 and the latticeC (bold lines).z = i — j andt = i + j.

Remark: One could also considefz,0) = 0 for all z € Z and start nucleations at
timet = 1, or nucleate only at semi-integer timiis+ %

The discrete PNG can be seen directly in the framework of dmtimuous PNG as
follows. Consider continuous space-time with nucleatioosuaring independently only
in (z,t) € Z x N. The important difference is that the nucleations genestaes of height
w(z,t) and not only of unit height. Therefore the picture of Figlirg§ Bas to be also
slightly modified. Each nucleation generaiér, ¢) lines which follow the forward light
cone. Moreover, the lines merge as follows. Let us considet n: if at some point in
space-timen lines with slope+1 meetn lines of slope—1, them first lines merge and
the remaining: — m lines with slope—1 continue.

Of particular interest is the case wherer,t) = 0 if = — ¢ is odd, in which case there
is a direct correspondence to the directed polymex(s:, ) is therefore non zero in the
lattice £ (rotated byr/4), see Figuré 2.11. We denote its verticesiby (x + ¢)/2 and
j = (t —z)/2. Denote alsav(i,j) = @w(i — j,i + j). We discuss the two geometries
already considered in the continuum.

The discrete PNG droplet

For the droplet geometry, the extra condition to be imposed(i,t) = 0 if |z| > ¢,
meaning thatv(i, j) = 0 fori < 0 orj < 0. The heighth(x,t), for  — ¢ even, is equal
to the length of the longest directed polymer frémo0) to ((x + ¢)/2, (t — x)/2) on the
lattice £. Some results are known in the case that j) is a geometric random variable
with parameter;b;, i.e., P(w(i,j) = k) = (1 — a;b;)(a;b;)*, k € Z.. In particular for
a;=b;=,/q,0<q<14>0,

h(x,t) = Liatiy/2,(t-2)/2 (2.47)

with L the one defined in[(Z.R7). A poifiyN|,N), v > 1, N € N, in the lat-
tice £, corresponds tdx,t) = ([(v — 1)NJ, [(v + 1)N]). We want to knowh (771, T)
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with 7 € (—1,1). By symmetry consider < [0,1), takey = (1 — 7)/(1 + 7) and
N=T(1-71)/2=T/(1+~). Then

_m(yg) 1 (L+7A9)°
W) = () = 1+7( 1) (2.48)
with m(~, ¢) given in (2.2B). Define also
i _ove) gy 2/ 2/

with o (v, q) given in (Z.2P). Then the asymptotics bfz,t) follows from (2.3D) and
writes
lim P(h([rT),T) < u(t,q)T + &(1,q)Ts) = Fy(s). (2.50)

T—o00

Moreover, for largel’, the height is described by the Airy procedsas proven by Johans-
son in [46]. He shows that, far = 0, the proces§r given by

& i T3 (W(ERaT™, T) = (1,q)T) (2.51)

converges tod(¢) — €2 asT — oo, Wherer; = 2120 (1, ¢) "' andky = 230 (1,¢) "1 (1 +
Va)(1 —/q)~". The convergence is in the weak*-topology of probabilityaseres on
C([—M, M]) for an arbitrarily fixedM > 0, that is, for anyf € C([—M, M]), one has
limg—oo [, dzhe(2) f(2) = [, dz(A€) — &)/ (2).

In the limit ¢ — 0 and with lattice spacing/q/ o, the continuum version of the PNG
droplet is recoveredy(the Poisson points intensity), and in the limit— 1 with unit time
equall — ¢, the TASEP is obtained, see Sectjon 2.1.5.

Discrete flat PNG

The connection with discrete directed polymers Zhimplies that heighti(z,t), for
x — t even, is equal to the length of the longest directed polymamfthe set (line)
{(i,7) € Lli+j=0}to((x +1)/2,(t —x)/2) on the latticeL.

2.2.4 Recent developments on 1D polynuclear growth model

It is in [[77] that Prahofer and Spohn obtained the one-pasttidution function for the
surface height in both the PNG droplet and the flat PNG gea@setTheir results are
achieved by identifying the surface height with the longéstcted polymers, for which
Baik and Rains already analyzed the asymptofick [1B3, 12]. ®im-glistribution of the
height profile is obtained iff [B1] using a multilayer genization of the PNG, see Sec-
tion [3.4, which is also used in our analysis. The idea of thétilayer comes from the
work of Johansson on the Aztec diamond] [45], where a rhorshaped (checkerboard)
table is tiled with dominos, see Figure 2.12. On the tiling @an introduce a set of lines



26 From directed polymers to polynuclear growth model and By corner

North
[ | \ | \V
| —‘/*77— :*f North
| /‘H N N —
WestE J TR \ *ﬂ East WestB B East
= \V — \ﬁ - —
AR A ANINEY South
1 A LS
e e e

South

Figure 2.12: A dominos tiling for an Aztec diamond with0 dominos. The border line
between the regular and the North regular tiling is the center of the top line.

with initial and final points in the lower half diamond as show the figure. The only rule
is the following. In vertical dominos the lines have slopé or —1 and in the horizontal
ones the lines can only be horizontal. The dominos are @ikedsnto four types, North,
South, East, and West, depending on how the lines fill thera.rnBmes are so chosen be-
cause for large tables, close to the North, South, East, arsl ¥érners there is a regular
tiling of the corresponding dominos. In the central regibe tiling is “disordered”. The
border line between the regular and the disordered regidessribed by the Airy process
as proven in[[47].

More recently Sasamoto and Imamura study the (discretejlhgplet PNG geometry,
which consists in allowing nucleations only in positivendz < ¢ [EQ]. They prove that
the rescaled height is GUE distributed away from the 0 axis and there is a transition
to GSE atr = 0. If extra nucleations are added at the origin with intensity 0, the
distribution abover = 0 has a transition foy = 1. Fory < 1itis still GSE, fory = 1itis
GOE distributed, and foy > 1 the fluctuations become Gaussian because the contribution
of the nucleation at the origin dominates. The one-poirtridistion asymptotics follows
from [13,[12] too.

A modification of the PNG droplet consists in adding sourd¢¢se@aboundaries, which
means that extra nucleations with fixed (linear) densityanda._ are independently added
in the forward light cone of the origin, i.e., ifx,¢) such thafxz| = ¢. This model was
introduced by Prahofer and Spolin|[f7, 78]. Then Baik and Raialyzed it in details[[T]1]
with the following results. For. small, the effects coming from the edges are small and
the fluctuations are still GUE distributed. On the other hahd, > 1 ora_ > 1, then
the boundary effects are dominant the fluctuations becomesstn. The cases where
ay = 1 and/ora_ = 1 are also studied and other statistics arise. Of particotarest is
whena a_ = 1for 1 —a. = O(T~/?), in which case the PNG growth is stationary and
has a flat limit shape.
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2.2.5 Universality

The PNG model explained above is in tfie+ 1)-dimensional KPZ universality class.
We do not enter into details, which can be found, togethdn seime discussion of higher
dimensional cases, in the thesis of Michael Prah¢fér [76jpBrs 2 and 3, see al4o]79].

KPZ equation

The(d+1)-dimensional KPZ equation was introduced by Kardar, Paaigl Zhang in[[48]

as a continuum description of@dimensional stochastic surface growth, which is para-
meterized by a height function(z, ¢), z € R, relative to a substrate. The KPZ equation
writes

Oph(xz,t) = vo + vAh(z,t) + IA(Vh(z,1))* + n(z, t). (2.52)

v IS a deterministic growth which can be eliminated by chagde frame of the observer.
The Laplace termvAh(z,t), v # 0, represents the surface tension, smooths the surface
and contrasts the noise terfi, t) which is assumed to be local. The surface hills expand
laterally if the non-linear term = 0.

KPZ universality class

Now let us restrict tod = 1. The conditions for a surface growth model on a one-
dimensional substrate to be in the KPZ universality clasgtze following:

1) the evolution is local, i.e.h(x,t + dt) depends on the values éfy,t) only for

ly — x| S O(di),

2) the randomness is local, i.@(z, t) andn(y, t) are not correlated in time and for same
time they are correlated onlyfif — z| < C for someC > 0 fixed,

3) let v(u) be the growth velocity of the stationary surfakg(z,t) with fixed slope

u = 0,h, then the KPZ condition is” (u) # 0.

Some explanation on 3) are needed. Assume that a growth meoha given, like
the PNG rules. For a finite system of sizeimpose chiral boundary conditions (periodic
up to a vertical shift) such that the surface grows with fixeeamslope:. The height
process is also required to be ergodic, i.e., the mean ofdises ofh(z,t) on the state
space for a fixed timeand the mean over the evolution for fixedgree in the large time
limit. In the thermodynamic limit/. — oo, one expects to have a unique limiting process,
h.(z,t), whose gradient is stationary in space and time. If thisesctise, them = v(u)
denotes the growth velocity &f,(z, ).

Condition 3) is the same as the condition on the curvafurég)2r8the last passage
percolation, where one can define a growing randonBget = {x € Z?| L, < t}. Then
the mean speed of growth @f(¢) in the directiona is v(a) = 1/u(«), from which the
equivalence of the two conditions.
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The PNG model is in the KPZ universality class

The first two conditions are satisfied, becaus$e, ¢ + dt) depends only ot(y,¢) with
ly — x| < dt, and the noise is a Poisson process in space-time, thus emtyplincorre-
lated. Thus one need to verify condition 3).

Let x — h,(z,0) be a two-sided random walk of mean slopei.e., the up-steps
and down-steps, are two independent Poisson processBsvath densitiesp, andp_
satisfying the conditiop, — p_ = u. Moreover, the nucleations have to be counterbal-
anced by the annihilation, so in a time interda) oLdt = 2p,p_Ldt, i.e.,pip_ = %Q,
with o = 2 is the space-time density of nucleations. Next one veriff the PNG evo-
lution does not modify the up- and down-steps processes.|aghestep is to determine
v(u) = OE(hy,(x,t)). In an intervald¢, each up- and down-step movesdsf thus the
area undeh,(z,t) is typically increased byp, + p_)Ldt. The annihilation and the nu-
cleation contributions compensate in average. Thasp, + p_, and, using the previous
relations withu andp, the velocity is given by

v(u) = V4 + u? (2.53)

Thus condition 3) is satisfied which indicates that the PN@@hes in the KPZ universal-
ity class.

2.3 3D-Ising model at zero temperature

The second model we consider that belongs to the same frarkiebe 3D-Ising corner
at zero temperature. First we explain the model, secondlghee the correspondence of
the Ising corner with a particular case of the (discretegated polymers, and finally we
explain our results. The detailed analysis is then carrigdroChaptef]s.

2.3.1 The model

As a very common phenomenon, crystals are faceted at satficlew temperatures with
facets joined through rounded pieces. Of course, on theiaterale the crystal surface
must be stepped. These steps meander through thermal fiaogiaOn a facet the steps
are regularly arranged except for small errors, whereasronraded piece the steps have
more freedom to fluctuate. Our aim is to understand the petep statistics, where the
step bordering the crystal facet is of particular inter&stgain some insight we will study
a simplified statistical mechanics model of a cubic crystalequilibrium shape has three
facets, each consisting of a part of one of the coordinateeglaThe facets do not touch
each other and there is an interpolating rounded piece,igeeeifL.1 in the Introduction.
For this model the step statistics will be analyzed in grestitl In section 2.3]4 we
explain how our results relate to the predictions of uni@eoperties of crystals with
short range step-step interactions.
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Let us first explain our model for the corner of a crystal. Thgstal is assumed to
be simple cubic with lattic&?. We use lattice gas language and associate to each site
x € 72, the occupation variable, = 0,1 with 1 standing for siter occupied by an atom
ando for sitex empty. Up to a chemical potential the binding energy of thefigoiration
nis

H(n)=J > (n,—ny)* J>0. (2.54)
lz—y|=1

We consider very low temperatures, meaning that all allogaedigurations have the same

energy, i.e., the same number of broken bonds. To define pyppee introduce the
reference configuration™ in which only the octan¥? is occupied,

wf | 1 forzeZd,
Mo = { 0 forze 73\ 72 (2.55)
n is an allowed configuration if for a sufficiently large baxone has
n, =n forallz € Z% \ A andH(n) — H(n™") = 0. (2.56)

The set of allowed configurations is denoted(by By constructiorf is countable. To
favor a crystal corner, we introduce the fugagjty) < ¢ < 1, and assign to each € 2
the weight

q"' ™, (2.57)

whereV (n) is the number of atoms removed frowif!, i.e.

Vin)= Y (1-ny). (2.58)

3
xGZJr

A configurationn € 2 can uniquely be represented by a height functicover Z2..
For the column ati, j) € 72, all sites belowh(, j), excludingh(i, j), are empty and all
sites abové(i, j) are filled.n € Q if and only if

h(i+1,7) <h(i,5), h(,j+1)<h(i,j), h(i,j)— 0for(i,j) — co. (2.59)

By abuse of notation, the set of height functions satisfyfAa&9g) is also denoted b§.
Forh € QletV(h) = Z(m’)e%i h(i, j) be the volume irZ? belowh. Then the weight

for the heighth is ¢ ™.

There is an alternative way to describe configurations 2, which we just mention
for completeness, but will not use later on. One builds tlystet out of unit cubes and
projects its surface along tti¢11)-direction, which results in a tiling of the plari#? with
lozenges (rhombi) oriented alofig27 /3, and4x /3. With the orientation of Figurg Z.L3
there are three sectors of the plane corresponding to tlae pogled with —7/6 < 0 <
/2, /2 <0 < Trw/6,Tr/6 < 6 < 117/6. n € Q if and only if the tiling in each sector
becomes regular sufficiently far away from the origin.
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Figure 2.13: (a) The(111)-projection of a configuration € . In each of the three sec-
tors the tiling becomes regular far away from the origin. (b) The corredipg perfect
matching on the honeycomb lattice.

Instead of tilings, if preferred, one can also think of cawvgrthe dual honeycomb
lattice by dimers such that every site is covered. In compdience this is called perfect
matching. Equivalently, to have a more statistical meatsgfiavor, one can consider the
fully frustrated antiferromagnetic Ising model on a triatag lattice, i.e., for an allowed
spin configuration every triangle must have exactly two spiithe same sign. Erasing all
bonds connecting equal sign spins yields a lozenge tilind véce versa.

2.3.2 3D-Ising corner and directed polymers

Our main goal is to describe the line bordering the facet aeddunded part of the crys-
tal corner. We are therefore interested in the line h(0,i), ¢ € Z,. We now give the
connection between the 3D-Ising corner and the generalizg®.3]) of the directed poly-
mers onZ2 introduced in Sectioff 2-1.5. Consider independent randarahblasw (i, j),
(¢,7) € 72, geometrically distributed with mean valge?*!, ¢ € (0,1) as above:

P(w(i,j) = k) = (1= ¢ keZ,. (2.60)

Denote byL(i, j) the length of the longest directed polymer fr@in;j) to (oo, co). This
quantity is well defined becauge< 1. In fact, consider the random variabl¢m) =

>irj>mw(i, 7). Then

— 0, m — oo. (2.61)
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Therefore when a directed polymer goes to infinity, with @doibty one it only passes
a finite number of site$i, j) with w(i,j) > 0. By symmetryL(i, j) is also the maxi-
mal length of directed polymers from infinity 1@, 7), i.e., with down-left steps. From
Section[2.2]3 we know the relation between directed polgnaed PNG growth. The
connection between directed polymers and 3D-Ising comer i

h(i,0) = L(3,0), h(0,i) = L(0,4), (2.62)

for i € Z, in law. On the other hand, there is not a simple connectiowdet L(i, ),

i,7 > 0, and the height&i(i, j). The best way to explain this correspondence is via
a multilayer extension of the PNG. It is introduced in Setf®4 and in Sectiof 3.4.2
we will derive the correspondence of the whole 3D-Young diats with the directed
polymers (via PNG growth) described above.

2.3.3 Bulk and edge scaling

The step statistics is studied in the limgit— 1, which means that the typical missing
volume from the corner is large, sin@V (h)) ~ 2{(3)(1 — ¢)~3, ¢ the Riemann’s zeta
function. Thus it is convenient to set

1
q:l—?, T — . (2.63)

Let hy denote the random height function distributed according to

1
— exp[In(1 — )V (hy)] (2.64)
Zr
relative to the counting measure On Z; the normalizing partition function. For large
the heights ar€@ (7). Thus one expects a limit shape on the sdaldn fact, as proved

in [2Q, 69, .
lim ThT([uT], [vT]) = hya(u,v) (2.65)

T—o00

in probability. Here(u,v) € R and[-] denotes the integer part. L& = {(u,v) €
R2,e"%/2+¢e7/2 > 1}. OnD, h,, is strictly decreasing in both coordinates adng, > 0,
whereas,,, = 0on lRi\D. The analytic form oh,,, is given in Sectiof 5 3. If denotes
the distance t&D = {(u,v) € R%,e %2 + ¢~*/2 = 1}, it follows thath,,, vanishes as
r3/2. This is the Pokrovsky-Talapov lay]75].

Our interest here is to zoom to the atomic scale. There aralyntwo interesting
limits. The first is the to focus in the bulk of the 3D-Ising ner, i.e., in the rounded
part. Consider a macroscopic pojat v) € D and the local height statistids ([uT] +
i, WT] + j),(i,5) € Z*}. Inthe limit T — oo, locally the height profile is planar and
one expects that the height statistics corresponds to amatiting of the plane with the
three types of lozenges from Figdre 2.13, such that theveltaiction of lozenges yields
the average slop®h,,.(u,v). This property will be proven in Sectidn 5.3 and we refer
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Figure 2.14: Zoom to the facet edge in Figufe]1.1.

to it aslocal equilibrium asT — oo, locally one has a translation invariant, spatially
ergodic Gibbs measure for the lozenges with their chemizi@ials determined through
Vhp,(u, v).

An even more intriguing limit is to zoom to the facet edge, ethmeans to take
(u,v) € 9D, see Figurd 2.14. Since the step density vanisheé¥Dattypically there
will be only a few steps in focus. Thus it is more natural tosidar directly the crystal
step bordering the facet. By symmetry we can choose the beteprying in the2 — 3
plane. Then the border step is given as the graph of the aumcti

t s bp(t) = hp(0,), teN. (2.66)

From (2.5P) we havér(t + 1) < by(t) andlim,_., br(t) = 0. For largeT’, br is O(T),
and there is a limiting shape according to

Jim T br([7T)) = boo(T), (2.67)
where
boo(T) = —2In(1 — ™%, 7> 0. (2.68)

(2.68) tells us only the rough location of the step. For thep statistics the relevant
quantity is the size of the fluctuations &f([77]) — Tb. (7). As will be shown they are

of orderT''/3 which is very different from steps inside the rounded pietéhe crystal
which are allowed to fluctuate only &s7" [B3]. On a more refined level one would like
to understand correlations, e.g., the joint height stasistt two pointg and¢’. They have

a systematic part correspondingfté.. (7). Relative to it the correlation length along the
border step scales d8/3, which reflects that on short distances the border step liikiks

a Brownian motion. Thusé,, has to be expanded including the curvature term and the
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correct scaling for the border step is
Ap(s) = T‘l/S{bT([TT+sT2/3])— (boo ()T + b (7)sT*3 + 107 (7)s2T/3) } (2.69)

Herer > 0 is a fixed macroscopic reference point and R with s7%/3 the longitudinal
distance.s — Ar(s) is regarded as a stochastic process.itn Chaptefs we prove the
convergence

lim Ap(s) =k A(sk/2) (2.70)

T—o00

in the sense of convergence of finite dimensional distrilmsti The limit processA(s)
is the stationary Airy process. Its scale is determined leyltital curvature vias =

2.3.4 Universality of shape fluctuations of crystal shapes

Equilibrium crystal shapes typically consist of varioud fizcets connected by rounded
surfaces. For a microscopically flat facet there must be amiatledge bordering the
facet. This border step could be blurred because of therrwtagions, but is clearly
visible at sufficiently low temperatures [97, §7] 66]. Whitethe interior of the rounded
piece of the crystal the step line density is of order one erstfale of the lattice constant, it
decays to zero as the edge of a high symmetry facet is apprdalfir denotes the distance
from the facet edge, according to Pokrovsky-Talagoy [78]gtep line density vanishes
as./r. Thus there is a lot of space for the border ledge to meandsharp contrast to
steps in the rounded part which are so confined by their neighthat they fluctuate only
logarithmically [98]. Now we discuss the statistics of bardedge fluctuations. In the
3D-Ising corner model, the border ledgehis

In this section we follow the outline of our papé¢r]29]. Five¢ present the terrace-
ledge-kink (TLK) model and obtain a form for the universabf the border ledge fluctua-
tions. In the TLK model spatial translation invariance ipmsed, therefore it might seem
somewhat artificial, we therefore compare the result wié8id-1sing corner analyzing the
consequences of (2]70). By universality we expect our résuie valid for short-range
step-step crystal interactions. To obtain the form whiabpprly distinguishes between
model-dependent and universal properties we have to redyfew notions from the ther-
modynamics of equilibrium crystal shapé€k [3].

TLK model

We first consider the terrace-ledge-kink (TLK) model, whgdrves as a description of
a vicinal surface, i.e., a crystal cut at a small angle nadatd a high symmetry crystal
plane. The surface is made up of an array of ledges which oavd#age run in parallel
and are separated by terraces. The ledges are not perfieatbhs and meander through
kink excitations, only constrained not to touch a neighbgtedge. One can think of these
ledges also as discrete random walks constrained not te,ares with a purely entropic
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Figure 2.15: Top lines for a TLK model with volume constraint.

repulsion. Such a line ensemble is very closely related tsoD Brownian motion, in
which the random walks are replaced by continuum Browniarianst As discussed in
[A9, [23], the location of the steps at fixed random walk tinfeve the same distribution
as the eigenvalues of a GUE = 2) random matrix. On this basis it is expected that
the ledge-ledge distance is governed by the GUE level spdBBJ. This prediction is
verified experimentally[[26], however with deviations frgin= 2 which are attributed to
long range elastic forces mediated through the bulk of thistat and not included in the
TLK model.

If in the TLK model one retains the lattice structure in thansverse direction and
makes the continuum approximation in the direction alomgéldlges, then the ledges can
be regarded as the world lines of free fermions in space-meRR [[L03]. The world
lines are piecewise constant and have jumps of only onedaspacing. Consequently
the transfer matrix has a nearest neighbor hopping termrenBduli exclusion principle
guarantees entropic repulsion in the sense that ledgest coesd.

The TLK model, in the version as just explained, has no fatle¢ crystalline surface
has a constant average slope. Slope variations can be edftmough avolume con-
straint For this purpose we introduce the “occupation” variabigs), [j| < N, [t| < T,
in the surface patch-N, —N +1, ..., N| x [T, T: n;(t) = 1 if there is some ledge pass-
ing through(j,¢), andn;(t) = 0 otherwise. In these variables, up to an overall constant,
the crystal volume is given by

T N

A, :/ dt > jn(t) (2.71)

and volume constraint means to have an ensemble of ledgeas WieeactionA, is kept
fixed.

Without volume constraint the transfer matrix is generdiga free fermion Hamil-
tonian with nearest neighbor hopping [109]. Imposing théum® constraint grand-
canonically adds to the fermionic action the tekm' A, with a suitable Lagrange mul-
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tiplier \—!. Thereby the nearest neighbor hopping Hamiltonian is mexlifd

Hy = Z ( —ajaj — aj a5 + 2aia; + %aja]). (2.72)

je.

aj, resp.a;, is the annihilation, resp. creation, operator at lattite € Z. They satisfy
the anticommutation relations:;, a}} = d;;, {a;; a;} = 0 = {a;, a}}. In (E.72) we have
taken already the limifV — oo. The transfer matrix ig—*##, + > 0, and in the limit
T — oo one has to compute the ground state expectation&/forA macroscopic facet
emerges a3 — oco. In Figure[2.1p we display a typical ledge configuration fog TLK
model with volume constraint. There is no further ledge &bthe one shown and for
j — —oo ledges are perfectly flat and densely packed.

Since a ledge corresponds to a fermionic world line, the ageerstep density
Ex(n;(t)) = pa(y) is independent ot and given byE,(n;(t)) = Ex(aja;) with [,
on the right denoting the ground state expectationfpr By the linear potential i (2.72)
steps are suppressed for largeHence the average surface heigmt) at(j,t), relative
to the high symmetry plane, equals

h(t) = =) Ealm(1)). (2.73)
k=j

Ex(aja;) can be computed in terms of the Bessel functigfx) of integer orderj and its
derivativeL;(z) = %j(t) with the result[[8L]

pa(5) = Balajay) = MLj—11an (2A) Jipap (2X) = Lo (20) Ji142x(22)) - (2.74)

wherel[-] denotes the integer part. For larj¢he height}(t) is of order)\. Therefore we
rescale the lattice spacing bby\. Then the macroscopic equilibrium crystal shape defined

by

heq('l", t) = /\hm Ailh[)\r]()\t) (275)
IS given by
r forr < -2
heq(r —2,t) = ¢ L(rarccos(r/2) —v4—1?) for —2<r <2, (2.76)
0 for r > 2.

Thus under volume constraint the TLK model has two facets,with slopel, the other
one with slopd), joined by a rounded piece. The upper facet edge is located-ab. It
has zero curvature. Expanding neas 0 results inheq(r, t) = —2Z(—r)%?2, consistent
with the Pokrovsky-Talapov law.

With the exact resulf{ (2.74) it becomes possible to refinegkelution. The appropri-
ate step size i&'/* lattice constants. For the step dengityj) = E,(a}a;) close tor = 0
one finds

lim AY3p\(\Y3z) = —zAi(x)? + Al ()2, (2.77)

A—00
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Ai the Airy function. [2.7]7) has the asymptotics

1
—/|z| for z — —o0, (2.78)
s

b (a2
Sro exp(—4z*/2/3) for x — oo.

Our real interest are the border ledge fluctuations. Cleadyborder ledge is the top
fermionic world line which we denote by (¢). b, (t) takes integer values and is piecewise
constant with unit size kinks. Since, at fixedhe steps in the bulk have approximately the
same statistics as a GUE random matrix, one would expedttatansverse fluctuations
of the border ledge equal those of the largest eigenvaludeelth, using the fermionic
transfer matrix combined with an asymptotic analygi$ [8ik finds that

w = A3y (A 3) (2.79)

converges to the Airy process in the— oo limit. Therefore the one-point distribution is
the GUE Tracy-Widom distributiofty,

Jim P(b,(0) < A3s) = Fy(s), seR. (2.80)
In our context an experimentally more accessible quansitthe ledge wandering
E((bA(t) — bx(0))?). In the limit of large\ it has been computed ifi[81] with the re-
sult
Var (by(£) — bA(0)) =~ A/3g(A2/3¢). (2.81)

Thus the transverse fluctuations are on the sk#fe In particular, for smalk the scaling
function g(s) is linear ins, g(s) ~ 2|s|, indicating that for small, on the scalé/?, sepa-
rations the border ledge has random walk statistics. Ontther dlandy(s) saturates for
large s, g(s) ~ g(oo) — 2/s?, reflecting that the border ledge fluctuations are stationar
(on the scale\?’?). For more details on the Airy process, see Sedfion]3.3.3.

An alternative proof of the convergence pf(2.79) to the Adrgcess follows from the
recent work [IR]. Their proof involves Markov dynamics onuvig diagrams.

Thermodynamics

The border ledge of the TLK model and the 3D Ising corner haeestime scaling be-
havior, which suggests the scaling to hold in greater gdiber&o obtain the form which
properly distinguishes between model-dependent and tsaivproperties we have to rely
on a few notions from the thermodynamics of equilibrium tashapes[]3]. Let us denote
by h(z, y) the height of a vicinal surface relative to the high symmetfgrence plane. We
find it convenient to measurein number of atomic layers, whereasy are measured in a
suitable macroscopic unit. Thiasis dimensionless angl y have the dimensiofiength).
Further letkgT f(u) be the surface free energy per unit projected area dependitige
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Figure 2.16: The original coordinate axis is— y and the tangential one ig — e5. The
crystal lies in the region with negative

local slopeu = Vh. Below the roughening transitiofihas a cone ai = 0 and for small
u behaves as

f(w) 2= y(0)|u] + B(O)uf’ (2.82)

with ¢ the polar angle ofa [B7, [I0F]. Theline stiffnessy is defined throughy(9) =
~v(6) ++"(0). As argued in[[4], for short range surface models the Ganssiavature of
the equilibrium crystal shape has a universal jump acrastattet edge, which implies the
relation

F(0)B(#) = =*/6. (2.83)

Let us denote bw? the Legendre transform of. If [ dxdyf(Vh(z,y)) is minimized
under the constraint of fixed volume, then the resulting lézrium surface is given by
h(z,y) = Lf({~1x, 7 1y), wherel is the Lagrange multiplier adjusted so to give the cor-
rect volume [B].: is convex downwards and has a convex facet lying initheplane. The
facet boundary is determined by#) alone. Close to the facet eddes —§7pTd3/2 with

d the normal distance to the facet edge, which definesPtheovsky-Talapov coefficient
~vpr. Under Legendre transformation the anglbecomes the angle between thaxis
and the outher normal to the facet and, correspondingly, the local curvature,, and
the distance of a point on the edge to the origin are parametrized throbghangled.

The relationship betweepand B implies, see Appendik A.1,
Vorko = 207212, (2.84)

We return to the border ledge fluctuations close to a giveirealygFor this purpose it
is convenient to use a preferred axis coordinate systeme,, see Figur¢ 2.16, centered
at r(6p) with the e;-axis tangential and the,-axis along the inner normal to the facet.
In this frame, we denote by, = b(x;) the fluctuating border step, whefe,, z,) are
the coordinate of the points in — ;. ThenE(b(z2)) = 1. (6y)x3, in approximation.
For sufficiently smalljz,|, still large on the scale of the latticé(z,) is like a random
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walk and Vafb(z;) — b(0)) = o |z4|, which defines the local wandering coefficierit.
Following [B] it is natural to equate , (¢)? with the inverse stiffnes$(6)~!. This implies

ot = kit k1= 727123T,L0i/2 (2.85)

valid for any point on the facet edge.

The general scaling form is obtained now by using the TLK nh@debenchmark.
Locally the border ledge performs a random walk with neamegghbor hopping rate,
see [2.72), thus? = 2. From (2.7p) the PT coefficient igpr = 1/7+/¢ in our units.
Using these two as model-dependent parameters yieldsahegtorm

Var (b(z1) — b(0)) ~ (WVPT’L)_4/39((WVPT’L)‘l/?’Uixl/Q). (2.86)

Of course, througH (2.84),(2185), any other pair of modmdahdent parameter can be
used to reexpresE (2]86).

3D-Ising corner model

Within the volume-constrained TLK model we arrived at areresting prediction for the
border ledge fluctuations. This can be compared with thdtrethe 3D-Ising corner,
where we prove that the border ledge is described by the Aggss too. Then from
(-70) it follows, for largeT’,

Var (byp(7T +t) — by(7T)) =~ k2T g(kT~Y3t/2) (2.87)

with x = {/2b"_ (7). As we have seen, tha@11)-projection of the 3D-Ising corner gives
a lozenge tiling. The free-energy of the lozenge tiling is tbgarithm of the partition
function computed in[[I11], 16] using Kasteleyn's methpd] [F&rom this it follows that

the “natural” limit shape ig/(0, y) = — In(1 —e~¥), which is the half of the one computed
by the parametef’, compare with[(2.88). Thus the first relation is
¢ =2T. (2.88)

Then explicit computations leads to
kK, = (2T)7 o7,
or = 2 (1)1 + bV (1)) 32, (2.89)
ers = (2 () AT A (4 b ()

The termsl + ¥/_(7)? come from the particular orientation of the — ¢, axis, see[(A]9)
in Appendix[A.1.

2.3.5 On general macroscopic facets

In this section we discuss the macroscopic equilibriumtahghapes, one of which is the
limit shape of the 3D-Ising corner. The macroscopic shapehviminimize the surface
free energy can be determined by the Wulff construction.afoore extended description

see [7B].
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The surface tension

First we define the surface tensien Consider a macroscopic three-dimensional crystal
and a planél with normal directionu. To break the crystal into two parts along the plane
IT and create two surfaces of ardaa workW (u) is needed. The surface tensiofu)
is the surface free energy per unit area, which is then giyem(h) = W(u)/2A in the
limit of large crystals. Lek be the surface of a crystal, the total free energ¥. aé given

by
F= / odS (2.90)
>

wheredS is the surface elemen{. (2]90) assumes already that thmlds/grge (negligible
border effects) and incompressible.

Equilibrium crystal shape

Equilibrium crystal shapes results from the minimizatiéthe surface free energy. Given
the surface tensioan, there is a geometrical construction which leads to theuepn-
vex crystal shape minimizing the surface free energy (updtobal scaling fixed by the
volume), the

Wulff construction: Fix the origin O, and for each directiom define the
point H on the spherical plot af given byOH = o(u)u. Construct the plane
I1, passing byH and orthogonal ta. Then surface crystal shape is the inner
envelope of all the plands,.

Facets in equilibrium crystal shapes appear only when thfaitension has non-
differentiable points/lines.

Random surfaces and random tilings

Now we consider a particular class of random surfaces, tke wich can be mapped to
random tilings. One example is the 3D-Ising corner desdrdd@ove. The surface tension
can also be computed by microscopic models, the free enanigyg b- In Z with Z the
partition function. For the 3D-Ising corner, the limit sleayas obtained already i ]16]
using the mapping to the random tiling explained above, fbictvthe free energy was
known [1I1]. Moreover, in[[30] a law of large numbers is prnovier the microscopic
model and shown that the limit shape obtained by the Wulfstriction agrees using the
free energy-In Z.

A first variation of the rhombus tiling of Figufe 2]13 consist giving different weights
to the orientations of the rhombi. In this case a new fétshows up with normal direction
(1,1,1) as proven by Blote, Hilhorst, and Nienhuis [n][17]. The bordethe facetF
shows the Pokrovsky-Talapov law too.

Recently Kenyon, Okounkov, and Sheffie]d][53] studied randanfaces which arise
as height functions of random tilings on weighted, bipafattices with periodic boundary
conditions. Among others, they shows (Theorem 5.5 ih [38]) inside any of the rounded
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pieces the second derivative has constant determinarg.r@ilt would imply that[(2.82)
holds for these models too, thus also the PT-law.

Airy process: an open question

Consider for example the facét Macroscopically it is flat, but on a microscopic scale
some irregularities exist. The border line between the dedmpart and the facét is not
uniquely defined. One can define it as the border of the firstosaopic island without
including eventual spikes on the atomic scale. Therefguepisome coarse graining of
order one, the different possible definitions should agfe®em the argument explained
above, the Pokrovsky-Talapov law should hold for all theefadike F'. Therefore we can
conjecture that the border line of these facets are alsaidedcby the Airy process, but
the question remains open.



Chapter 3

Line ensembles and point processes

In this chapter we first introduce the notion of point procasd two of its classes, the
determinantal and the Pfaffian point processes. Then wadmne Gaussian ensem-
bles of random matrix theory. Their eigenvalues form sonterd@nantal/Pfaffian point
processes. An edge scaling at the border of the spectrurgeflues leads to some lim-
iting point processes which show up in our results on the §ibgl corner and on the flat
PNG. The eigenvalues of the Gaussian ensembles can be gumsitams of particles sub-
jected to some random evolution. This is known as Dyson’s Brawmotion and leads
to a natural extension of the determinantal point procesthd last part of the chapter we
turn back to our models and we map them to some non-intengdatie ensembles. In the
subsequent two chapters we study the point processes dbfirtiee positions of the lines.

3.1 Point processes

3.1.1 Determinantal point processes
Definitions

A point process is a measurable mapping from a probabiligcepo a measurable
space[[64]. First let us construct the probability spacendde by X a one-particle space,
which we take to b&¢, Z<, or some subset of them. LEtbe the space of finite or count-
able configurations of particles ik, where the particles are ordered in some natural way
andeach configuratiorf = (z;), z; € X, i € Z (or N if d > 1) is locally finitg i.e.,

for every compacB C X, the number ofe; € B, denotedn(B)(¢), is finite. Next we
define thes-algebra onl” via the cylinder sets. For any bounded Borel Bet- X and
n>0,C8 ={¢ el n(B)(&) =n}is acylinder set. Then we defife as thes-algebra
generated by all cylinder sets and denotdba probability measure ofi’, F).

Secondly we define the measurable space gbtfiret measures_et 3(X) be the Borel
o-algebra ofX. A point measure oX is a positive measure on the spacéX, 5(.X))
which is a locally finite sum of Dirac measures, i.e., foe X, v(z) = >, ., d(z — ;)
with z; € X, I C N, and for any bounded subsBtC X, z; € B for a finite number of
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i € I. Then denote by/,(X) the space of point measures defined¥and M, (X) the
o-algebra generated by the applications- v(f) of M,(X) to N U {oo} obtained when

f spanB(X).

Definition 3.1. A point process; on X is a measurable mapping froffi’, 7, P) into
(M,(X), M,(X)). The probability law of this point process is the imagéPaby 7.

Moments of random variables (observables) can be expréstedns of correlation
functions which are defined as follows.

Definition 3.2. Let 1 be a reference measure on. Then-point correlation functiorof
point process ofil’, F, IP) is a locally integrable functiop™ : X™ — R, such that:

a) if u is absolutely continuous with respect to the Lebesgue meas$or any disjoint
infinitesimally small subsefs;, z; + dz;|,i =1,...,n,

P({n([zy,z; +de;)) =10 =1,...,n}) = p™(21,...,z0)pu(dzy) ... p(dz,), (3.1)

wherep(dx) denotegu([z, z + dx]).
b) if 1 is supported on a discrete sets of points: for any distinab{sa, . . ., z,, of X,

P({n(z;)=1,i=1,...,n}) = p™(z1, ..., x)u(z1) ... plzn). (3.2)

Obviously then-point correlation functions have to be symmetric in theguements.
The first question is to know whether thepoint correlation functions defines uniquely
the point process or not. A first sufficient condition foundRwelle, chapters 4.7 and 7
in [B7], writesp™ (21, ..., x,) < ¢" a.s. for some > 0 uniformlyin (z1, ..., z,). Lenard
studied the problem again and obtained a weaker conditienus.define, fod C X,

1
mi = o p W (. ) () .. dp(). (3.3)
- J Ak

If for all boundedmneasurable subsgt C X
> (mih) M = o0, (3.4)
k=

1

then the point process is uniquely defingd [E8, 91].
Sincem;! < mP if A C B, then to verify [3}4) it is enough to analyze the behavior of
mi} for large A. In particular, forX = R it is enough to checK(3.4) fad = [— M, M]
for all M € R. Remark also that no uniformity if/ is required. In terms of correlation
functions, if
P (21, @) < 0P as. (3.5)

for somec > 0, then [3.}) is satisfied. There is a stronger condition tRa) (out easy
to verify in some concrete situation [58], naméiy inf;_...(m;)~*/* > 0 for every
boundedA C X.
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The second question analyzed by Lendrd [59] is to know undechwconditions a
set of locally integrable functions, : X™ — R, are correlation functions of some point
process. The first condition is tlsgmmetry condition

Pr(T1s - Tn) = pp(Toqr), - - Ta(m)) (3.6)

for all permutatioro € S,,, which is obviously necessary. To state the second conglitio
we first have to introduce a few definitions. We denotédbthe space ofinite sequences
of points inX: K = (J,., X" whereX" denotes the empty sequence. A suli$et K is
compact if and only if it is of the fornfl = U, H, with H, ¢ X™ compact andn > 0
finite. Consider any real valued functighon K with compact support and denote lfy
the restriction off to X*. Define a real functio$ f onT" by

SHEO =D D fulwi, .. 2. (3.7)

k>0 1.2y,

The sum ovek is finite becausg is of compact support. Theositivity conditionis the
following. If f : K — R is a bounded measurable function such tttat) () > 0 for all
¢ €T, then

E(Sf) =Y [ ful@,..,m)pal@r,. .., zp)dp(a) - dp(z) >0 (3.8)

k
k>0 Y X

holds if p,, are correlation functiong, being the reference measure &n

Correlation functions are important in the computation gfeoted values of observ-
ables. Some random variables of interest are often cltledr statisticsand are of the
form

Z F(:) (3.9)

for some real functiorf. Define the function, = 1 — e/. Then

B (e (Y 5(00)) = E(Hu—u(xm):i(—m( > lﬁ[uw)

j n=0 1< <jin k=1

= i(_nll)nE( > f[U(xjk)) (3.10)

n=0 ]1¢7£JVL k=1
_ i D" @)™ (s )ﬁu(x-)
0 n' n K P b 7
n= 7j=1

An interesting class of point processes which will be comd in the rest of the
section are the determinantal point processes, also deltedonicsince the probability
that two points are at the same position is zero.
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Definition 3.3. A point process is calledeterminantaif the n-point correlation functions
are given by

p(n)(l'l, e ,ZEn) = Det(K(:vl, xj))lgi,jgn (311)
whereK (z, y) is a kernel of an integral operatadk : L?(X, u) — L*(X, 1), non-negative
and locally trace class.

The positivity is required because thepoint correlation functions are positive, and
locally trace class because each configuration is localitefiFor a determinantal point

process,[(3.11) if (3.]10) leads to
B([I0-uw)) = Y5 [ pettionaicon [T uted'ute)

n

j n=0 j=1
= Det(l — uk)2(x 0 (3.12)
where for eachy € L?(X, ),
(uK)gl(x) = /X u(2)K (2, y)o(y)duly). (3.13)

The last determinant irf (3]12) is callédedholm determinanof the operaton /X on the
spacel?(X, 1), see also Appendik A.2. Note thafs in (8:12) can be replaced by the
symmetrized:'/2 Ku'/?, where withu'/? we mean the multiplication operator byz)'/2.

A special but important observable which can be computed FAgedholm determinant
is thehole probability For a subseB of X the probability that it is empty is

P({n(B) = 0}) = E(Hu - XB<xj>>) = Det(l — K,y (3.14)
J
In particular for a determinantal point processliror Z which has dast particlewhose
position is denoted by,,..., the distribution ofr,,,, writes
P(#max < t) = P(n((t,00)) = 0) = Det(1 — K) r2(t,00),0)- (3.15)

The next question is to know whether a given point proces®terchinantal or not.
Borodin (Prop. 2.2 of[[18], see also Tracy and Widom for the Gld&e [102]) determined
the following class of determinantal point process.

Theorem 3.4.If we have a measure of the form

1
- Det(p; (@) ju=t...x Det(¥;(2r))jp=1... vd¥ (), (3.16)
N
then it is a determinantal process with kernel

N

Ky(w,y) =Y di(@)[Aij05(y) (3.17)

ij=1
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where
A = [Ai,j]i,jzl ..... N, Az’,j = w](t)wl(t)d/ﬁ(t) (318)

Unfortunately, although an explicit formula is given, itnet always easy (feasible) to
invert the matrixA asN — oo. A particular case is wheA = 1 in a particular basis. In
this case the kerndt' y (z, y) becomes of simple form and the limiting distribution can be
analyzed.

Some important kernels: sine and Airy kernel

Letz, 2’ € R, thesine kernels defined by

sin(om(z — 2'))

Sy(x,z") = , (3.19)

m(x —a)

with o the density of points. By rescaling,can be always be set to one, but we prefer to
keep the parameter in general. Thiey kernelwrites

Ai(x) Ai'(2) — Ai(z) Ai(z")

r—x

Az, 2") =

(3.20)

whereAi(z) is the Airy function [1]. In some models appears tfiscrete sine kernel
which means only that, 2’ € Z.

In Section3.2]2 we will see that the asymptotics in the biilthe spectrum of GUE
random matrices leads to the sine kernel, and in the edgeeo$pghctrum to the Airy
kernel.

3.1.2 Pfaffian point processes

A generalization of determinantal point process areRfadfian point processesirst we
define the Pfaffian. Letl = [A; ;]; j=1,. 2y be anantisymmetrianatrix, then its Pfaffian

-----

is defined by
N
Pf(A) = Z (_1)IU| HA021'71702¢7 (321)
O'GSQN =1
02;—1<02;
whereS,y is the set of all permutations ¢fl, ..., 2N}. Notice that the Pfaffian depends

only on the upper triangular part gf. For an antisymmetric matrix the identiBf(A)? =
Det(A) holds.

Definition 3.5. A point process i®faffianif the n-point correlation functionare given by
P(n)(wh s @) = PEHK (25, 25)]i =1, (3.22)

whereK (z,y) is a2 x 2 antisymmetric matrix kernel.
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With the notation[ K (z;, z;)]; j=1
matrix blocksK (z;, x]) of size2 X 2.

.....

measurable spacé,, . . ., foy complex-valued functlons QX ands(:n y) be anantlsym-
metric kerneland define by
1

p(x1,. .., Tan) = Zon Det[f;(zk)]jk=1,. 28 Ptle(x, x)]jk=1.. 2N (3.23)

the density of 2 N-dimensional probability distribution o 2" with respect tq.*?", the
product measure generated foyThe normalization constant is given by

where the matrix\/ = [M; ;]; j=1

-----

M;; = / Fi(@)e(z, ) £ () du()dpu(y). (3.25)

The point process with measurg (3.23) is Pfaffian with theésgmmetric kernel

K(x,y) given by
Kir oy — ((Eriley) Kis(z,y) 3.26
(l}y) - K2,1<55;y) K272(56,y) ’ ( l )

where
Kia(z,y) Z?,]Jyzlfi(if)M'_'lfj()
Kis(z,y) = ijgv y file) M jsi (5fy)(y)
Koi(z,y) = Z?JJV (e fi)(@) M5 f(y),
Kyp(r,y) = —ela, y)+2” 1(6f)( )M (efi) (),

provided thatl/ is invertible, and e f;)(z) = [ e(z,y) fi(y)du(y). MM means thej, ;)
component of the inverse of the mattM Note the order of indices iijil. Similarly

to the determinantal processes, the linear statistics affi&fi processes is given by the
Fredholm Pfaffian of the kerné{. Letu = 1 — e/, then

z,

(3.27)

IEN(eXp (Z f(a;j))) - EN<ﬁ<1 - u(a;j))) = Pf(J — Ku) = \/Det(L + JKu)
’ = (3.28)

with the matrix kernelJ(z,y) = 0., < _01 é ) For Fredholm Pfaffian see Appen-
dix A.2.

Finally notice that the determinantal point processesrasieided in the Pfaffian ones.

. . _ £ Ko

In fact if K is of the formK = K, 0

determinantal with kernek. In fact,Pf(J + K) = Det(1 + Kj) in this case[[32].

, then for arbitrarye the point process is
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3.2 Random matrices

3.2.1 Classical Gaussian random matrix ensembles

In this section we explain some results on the classical S§anisandom matrix ensembles
which are linked with our problems. Of particular interestdur work are the edge statis-
tics of the eigenvalues, which lead to the Tracy-Widom distions [I0B]. The standard
reference on classical random matrices is Mehta’s bpdk [6BE reader interested in a
shorter discussion on random matrices in physics can {éfd fer more recent reviews

see for exampld [T L, 772].

Gaussian Orthogonal, Unitary, Symplectic Ensembles

Usually the spectrum of an hamiltonian contains both cantmn and discrete part. If we
are interested in the discrete spectrum we restrict theeHikpace to a finite subspace
where the hamiltonian is represented as a hermitian matviereover, if there exists
some constants of motion, then the matrix is decomposedbiottks. Consider one of
these blocks, say & x N hermitian matrixH. If the only constraints are space-time
symmetries, then there are three important cases of randainces [Z}]

- ¢ = 1: if the system is invariant with respect to time-inversiom dhe total angular
momentum is integer or the system is rotational invaridr@ntthe matrixd can be
takenreal symmetric Since it can be diagonalized by an orthogonal transfoonati
the corresponding random matrix ensemble is cadi¢idogonal

- B = 2: if the system is not invariant with respect to time-invers(for example,
systems with external magnetic field), then the matfixs complex hermitian It
can be diagonalized by an unitary transformation, so théaammatrix ensemble is
calledunitary.

- (0 = 4: if the system is invariant with respect to time-inversian With half-integer
total angular momentum, then the matfikis real quaternionic It can be diago-
nalized by a symplectic unitary transformation and the oamanatrix ensemble is
calledsymplectiqsee Appendix’A]3).

The meaning ofs will be clear at the level of the distribution of eigenvalueEhe
eigenvalues are real for all these three ensembles. ThacdhSaussian ensembles are
obtained setting the probability distribution on matriess

p(H)dH = %e Te(H*)/2N q F (3.29)
wheredH is the Lebesgue product measure on the independent elenfeAtsand 7’

Is the normalization. The ensembles of random matricesiradataare calledsaussian
Orthogonal(GOE), Unitary (GUE), andSymplectidGSE)Ensemblesor 5 = 1, 3 = 2,

andg = 4 respectively.
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Remark: the factot /2N in (B.29) is somewhat unusual, but it turns out to be conve-
nient for the comparison with the results on the PNG and thdsgiy corner.

The distribution [(3.29) is also recovered by taking the petelent elements df as
Gaussian random variables with mean zero and variahéer the diagonal termsy/2
for the non-diagonal terms (since'l( H?) they appears twice).

Another way to obtain[(3.29) is to maximize the functionaittepy” [L4]

S() =~ [ p(H) Inp(H)AH (3.30)

under the conditiofi(Tr(H?)/2N) = in, wheren = N + 3N (N — 1) is the number of
independent elements of the matfik see also Appendix A.4. This is the same method
used to derive the canonical and grand-canonical measustatistical mechanics.

Distribution of eigenvalues

One interesting quantity of random matrices is the distidouof eigenvalues, because
they are the energy of the system with HamiltonfanThe probability distribution[(3.29)
depends only on the eigenvalues of the matrices, refledtiegequirement tha{ (3.29)
has to be independent of the choice of the basis used to besk& physical system. This
means that(3.29) is invariant under the symmetry group grthogonal groug: = O(N)
for GOE, unitary groug- = U(N) for GUE, and unitary symplectic grodp = USp(2N)
for GSE.

We can diagonalizé] by a transformation of the grou@, H = gAg~! for some
g € G,with A; ; = \;0, j, A; the eigenvalues afl. The infinitesimal transformation is

§H = g6H'g™, 6H' =6\ +[g7'6g, A, (3.31)

which implies that the jacobian of the change of variablenfrd to H’ is one. On the
other hand,
6Hi,,j = 5)\1517] + 59%]()\1 — )‘j)7 5Q — g_1597 (332)

then the jacobian fron#!’ to (A, g) is given by[ [, .y [A; — \i|?. The variations{2
can be described by parameterizing the gréypand give as volume element the Haar
measurelG. It then follows thatl i = |Ax(\)[?dA\dG, with d\ =[]+, d\,, and
Av(A) =DetN N = [ v—M). (3.33)
1<i<j<N
An(N) is called the Vandermonde determinant. Finally integoptiner the symmetry
groupG, the joint probability distribution of the eigenvalues is

N
1 2
Pon(A, oA ddy = —— Ay ] ey, (3.34)
’ Zp,N ey
with Zg  the normalization constant.
Now we review some results on the distribution of eigenva@inghe N — oo limit.
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Wigner semi-circle law

Denote byps v(A\) the expected density of eigenvaluesiat For large N this density
vanishes outside the intervgt2 N, 2N] and has a semi-circle shape (if the eigenvalues
are rescaled bgN). This is theWigner semi-circle lawand in our setting writes

ps ) = ~ V(T = OZNP). (3.35)
for large N, wherez, = max{0, z}.

In [B3] the global fluctuations properties of the eigenvalues is studied. &se ¢or
general confining potentidl (z) (in the Gaussian ensembl&gz) = z%/2N) so that the
weight on random matrices is ™)) and for all 3 is studied. In our setting the result
is the following. For continuous functiofi: [—1, 1] — R which increases at most as the

potentialV/,

N 2N
InE (5555052 / s N FO/2N) — B(f) (3.36)

—2N

asN — oo whereB(f) is an explicit quadratic functional of. Remark that no factor
1/+/N is needed.

Fluctuations in the bulk for GUE

In a recent preprint, Gustavsson considers the distributidhek-th largest eigenvalue of
GUE [38]. He proves that it — oo asN — oo (and by symmetryN — k — oo t00),
then it converges to a normal distribution when properlgcatesd. First considek such
that \; is in the bulk. Letk = k(N) be chosen such th&/N — a € (0,1) asN — cc.
Lett be the value such thaty (\;) = 2Nt. Then, for largeV,

N\
A >~ 2Nt —_ 3.37
cants () e 337)

with ¢ a random variable with normal distributia¥ (0, 1). Next he considereél such
thatk — oo asN — oo but withk /N — 0, thus still close to the edge. Then, for larye

A_p 2N<1 _ (Si)2/3(k/N)2/3) + ( 2k )1/25 (3.38)
A 42 (12m)23 (/N ) ¢ '

He also determines a convergence of the joint-distributioictions ofm eigenvalues.

Largest eigenvalue: Tracy-Widom distributions

The Wigner semi-circle law tells us that the largest eigkrevay ..., is located close to
2N. Tracy and Widom study the distribution 8§ .« in the limit N — cofor g =1,2,4
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Figure 3.1: Probability densities of the Tracy-Widom distributions generated u§ihg [80]

with the following result [I00[ 101], see also their revieaper [10B]. LetF; n(t) =
Psnv(Anvmax < t), thenFp(s) defined by

Fy(s) = lim_ Fsn(2N + sNY3) (3.39)

exists forg = 1,2, 4. For3 = 2, itis given by

Fy(s) = exp < - /:o(x - s)qQ(x)dx) (3.40)

whereg is the unique solution of the Painlevé Il equatigh= sq + 2¢* satisfying the
asymptotic conditiony(s) ~ Ai(s) for s — oo. F; is called theGUE Tracy-Widom
distribution For = 1 the GOE Tracy-Widom distributioreads

Fi(s) =exp ( — %/:o q(az)dx) Fy(s)1/? (3.41)

and for( = 4 the GSE Tracy-Widom distributioreads
Fy(s/V/2) = cosh (%/ q(x)dx) Fy(s)2. (3.42)

Remark: F;(s) can also be rewritten as a Fredholm determinant of the Aigratpr, see
SectioN3.2]2, and’ (s), Fy(s) as Fredholm Pfaffians, see Sectjon 3.2.3.
Some characteristics of these distributions are repontéuei following table.
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G| Mean | Variance| Skewness Kurtosis
1|-1.20653| 1.6078 0.293 0.165
2 |-1.77109| 0.8132 0.224 0.094
4 | -2.30688| 0.5177 0.166 0.049

We remind that, if y is a random variable, then the skewness is defined by

E((x — E(x))®)/BE((x — E(x))?)*? and measures the degree of asymmetry of the dis-

tribution of y. The kurtosis is defined b¥((x — E(x))*)/E((x — E(x))?)? — 3 and

measures the degree to which a distribution is flat or pedked¢rmal distribution i%).
Moreover the tails of the distributions are, for— —oo,

In(F{(r)) = —lef’, W(F) =~ ol (Fya) = — 5 V3P, (3.43)

and forz — oo,

In(F{(z)) ~ —%x‘g/z, In(Fy(z)) ~ —%x?’/Q, In(Fy(z)) ~ —;(ﬁz)?’ﬂ. (3.44)

3.2.2 GUE eigenvalues: a determinantal process

Consider the case @f x N hermitian matrices and 1&f(x) be aneven degrepolynomial
with positive leading coefficient. Define a measure on randaatrices by

1
— e VMg (3.45)

ZN
with dM = TV, dM;; [Ti<;oj<y dREM; ; dImDM; ;. The GUE ensemble is recovered
by settingV'(z) = 2%/2N. The same procedure used for the GUE case leads to the
distribution of eigenvalues

N

1 2 -V(x5)
Z—NAN()\) ]]:]1 e ;. (3.46)

We denote by y the point process of the eigenvalues. . ., Ay of the random matri-
ces, i.e.,

N
(v(x) =) dx—2), zeR. (3.47)

In particular the point process of x N GUE random matrices is denoted {yV".

(n is a determinantal point process. For GUE random matricissishan old re-
sult of Gaudin, Mehta, and Dyson, see Chapter 5[of [62]. h&t), £ = 0,1,...
be the orthogonal polynomials with respect to the weight®)dz, normalized as
Jg pi(x)p;(z)e”V®dz = §; ;. Then the eigenvalue process is determinantal with cor-

relation kernel
N-1

Kn(w,y) =Y prla)pr(y)e 2 VETV0D, (3.48)
k=0



52 Line ensembles and point processes

Using the Christoffel-Darboux formul@]99], (3]48) can berigten as

Kn(z,y) = u;\/]: pN(x)pN—1(yx) :ZN—I(IE)pNQJ)6—%(V(m)+V(y))' (3.49)

whereuy is the leading coefficient gf;.. (3.48) can be recovered by Theorgm 3.4 as fol-
lows. Let the reference measyiebe the Lebesque measure. Consider the vector space
Wy with basisB; = {goj( ) Yi(z) = 27 e V@/2 5 =1, ... N}, and with the scalar
product(g, f) = f]R x)dz. After a change of baS|s (Gram -Schmidt orthonormal-
ization) one obtains an orthonormal bagis = {b;(z),7 = 1,...,N}. If we denote
by M the matrix with elementd/; , = ¢;(x), then the measurg (3]16) ix:t(M)d"V z
Let S be the basis transformation matrix froBy to B, and M be the matrix with en-
tries M, ;. = b;(x;). ThenM = S~'M and then the measurg (3.16)st M Det SdV .
Det S is a number which can be included in the normalization dnd 1 in the basis of
theb;(z) = p;_1(z)e”V@/?s,

Random matrices are therefore connected with orthogonghpoiials, which are also
linked among others to the corner growth model, the PNG étppbn-colliding random
processes. For a review on these connections[ske [54].

GUE kernel and its asymptotics

For GUE random matrice(x) = z2/2N and the kerneK y is theHermite kernebiven
by

N—-1
Ki(y) = Y pu(@)prly)e v/ (3.50)
k=0
_ NPN(ﬁ)PN—l(y) — pn—1(7)pn (Y) o~ (#*+y?)/AN

r—y

wherepy(z) = (2nN)~Y/4(28k!)~1/2pl (2 /+/2N) with the (standard) Hermite polynomi-
als
H 2 dk .1.2 3 51
pi(e) = ' e, (3.51)
See Appendix Al5 for more details on Hermite polynomials.

First we focus in the bulk of the spectrum. The density of migéues close t@Na,
la] < 1,isu(a) = £v/1 — a?. The asymptotics of the Hermite polynomials (A.43) with
z = 2Na+t/u(a) leads toy Npy_p(z)e /4N ~ 7=12gin(agN + nt + ah) /(a) for
large N, with o a constantgy, = Z — arcsin(a), andy(a) = (1 — a*)'/*. Applying this
with 4 = 0 andh = 1 to the kernel[(3.50) we conclude that in the bulk the Hermitekl
converges to the sine kernel,

/

lim —— K& (2Na +——2Na+ za)) = 5 (t, 1), (3.52)

o

t
u(a)’
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foranya € (—1,1).
Now we focus at the edge of the spectrami. Since the fluctuations of the largest
eigenvalues are of ordé¥'/3, the edge scaling of the point proce$s’® is

IaCC(€) = NY3CIUE(2N + EN'3). (3.53)
Thus the kernel of the determinantal point procgl$s” reads
KRVP(E,€) = NYPKR (2N + NP 2N + ¢N2). (3.54)

From the asymptotid (A-42) we obtain,_,(v)e /4N ~ N=1/3 Ai (¢ + N~V3(h — 1))
for large N, wherex = 2N + ¢N'/3. Using this forh = 0 andh = 1 we obtain that the
limit of (B.54) asN — oo is the Airy kernel [3.20),

lim K§UR(E €) = A, €). (3.55)

From the asymptotics at the edge of the spectrum, the TradpwWdistributionF;(s) is
given also by

FQ(S) = Det(IL — A)Lz((t,oo),da:) (356)
with A the Airy kernel. To be precise, the convergence[of {3.55¢i0k0 above is uni-
formly for &, ¢ is a bounded set. To obtaih (3.56) one need some uniform bfmrnd

¢ — oo too. This follows from the super-exponential decaypaf j,(x)e /4N for
larger than the last maximum.

3.2.3 GOE and GSE eigenvalues: Pfaffian processes

In this section we consider the point processes of the GOEGBIE eigenvalues which
are Pfaffian point processgs][92]. For example, in the GOE tas distribution of the
eigenvalues is given by (3]23) wif)(z) = 27~ ande(x, y) = sgn(z — y). Here we want

to describe the edge scaling of the GOE and GSE point pra&eshe weight ise~" (@)
instead ofe==*/2V_ with V an even degree polynomial with positive leading coefficient
then, by [3.23){(3.27), the GOE and GSE eigenvalues até®#iifian point processes for

a different kernel.

GOE random matrices

We denote by {°F the point process of the eigenvalugs ..., \y of a N x N GOE
random matrix, i.e.,

NOP(@) =) dx—)), z€R. (3.57)
At the edge of the spectrur@ )V, the eigenvalues are ordéf'/? apart, see[(3.89). The
edge rescaled point process is then given by

nNOF(€) = NYBCGOP(2N + N3, (3.58)
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and for f a test function of compact support,

N

HSOR(f) = /R AEFESORE) = 3 F (N — 2N) /N3, (3.59)

J=1

We denote by)“©F the limit of {°F asN — oo.
The limit point process;GOE is characterized by its correlation functions as follows.

Let us denote by)GOE(gl, ..., &,) then-point correlation functions aof“°F, i.e., the joint
density of having eigenvalues &t ..., ¢&,. Then
PE}H())E(&, o &n) = PEGOO"(&, ) ijmt,n (3.60)

wherePf is the Pfaffian and:“©F is the2 x 2 antisymmetric matrix kernel with elements
G (@) = [ AAAIG +NATG+A) ~ (6 < &) (3.561)
0

GEP6 &) = [ draitG + N A+ + 5 AIG) [ i - ),
0 0

GSPR(€, &) = —GI%(&, &)

65566 = 7 [ [ duaie — N aie — )~ (6 < &)

Ai is the Airy function [1] and the notatiof¢; < &) means that the previous term is
repeated witht; and¢, interchanged. The GOE kernel was studied[in J101]. It is not
uniquely defined, for example the one reported[in [32, 40kdifslightly from the one
written here, but they are equivalent because they yieldadn@e point process. The point
process;“©F is uniquely determined by its correlation functions, see discussion in
Section3.1]1.

Finally let us remark that; can be written in terms of a Fredholm Pfaffian. First we
consider theV x N matrices.

Fun() = E( (1_1[5,00)@_2N>/N1/3>>) (3.62)

i=1

where GSOF is the kernel of the rescaled point procegs®®. Then Fi(¢) =
limy_ F1 n(€) is given by

’I’L

A = Y[ et G B89

n=0

= Pf(J — GY9F) = \/Det(1 4 JGGOE)
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where J is the matrix kernel/(z,y) = 0., ( _01 (1) ) The Fredholm Pfaffian and
determinant are on the measurable sgagex), dz), i.e.,
Pf(J — GUOF) = ZO n! oo d§; ---d¢, Pt [GGOE(fkafl)]kl 1., (3.64)
and
Det(1 — K9°F) = Z o / dg---dg, ). Det Lol () |
n= © J(Goo)n i1 yin€{1,2}
(3.65)

with K¢OF = — JGUOE,

Remark: One can also consider insteadof(1 — K “°F) the determinanDet(1 —
KCOE) with KGOF the operator with kernelKGOF, KGOF s not trace-class on
L*((¢,00),dz) & L*((£,00),dx) because it is not even Hilbert-Schmidt. Neverthe-
less it is possible to make sense of it as follow# S©F is Hilbert-Schmidt in the
spacel?((§, 00),0dz) @& L*((£,00), 0 'dx) wheref is any positive weight function with
0-! € L'(¢, 00),dz) which grows at most polynomially at— oo. MoreoverTr (/& SOF)
the sum of the diagonal terms is absolutely integrable. Themodified Fredholm deter-
minant is defined bet(1 — KGOF) = ¢~ Tr(K ") Do, (1 — KCOF) with Det, the regu-
larized determinanf]34]. This is made [nJ105] where thetyalty prove theV — oo con-
vergence of the kernel and of the modified Fredholm detemmjih@ading thus to(3.65).

GSE random matrices

As for GOE, we denote by{°F the point process of the eigenvalugs. .., \y of N x N
GSE random matrices, i.e.,

NE@) =) dx-)), zeR (3.66)
7=1
The edge rescaled point process is then given by
NV (€) = N3P (2N + ¢N'3), (3.67)

andn“5E is the limit of n{°F asN — oo.
The limit point processvGSE is characterized by its correlation functions as follows.

Let us denote b)oGSE(fl, ..., &,) then-point correlation functions of ““F, i.e., the joint
density of having eigenvalues &t . .., &,. Then
pGSE(gl» .. 7571) - Pf[GGSE’TW(fia gj)]i,jzl ..... n (368)

wherePf is the Pfaffian and:“>®T™W is a2 x 2 antisymmetric matrix kernel with elements

GBIV (e, 65) = 2Y1G98 (¢, /V/2,6/V2), 4,5 € {1,2}, (3.69)
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where
GEE@e) = [0 [ anaila NG -G o) @T0)
0 A
GEF(e &) = [ ANAI(G N Al + ) - 3 AiE) [ dAAiG + ),
0 0
GE" (6, 6) = G (6, 6)
CP(E) — 1 [ MAG-NATE-N - (6~ &)

We have chosen to write“S%™W s terms of G%SF to keep more evident the analogies
and differences with the GOE kernel. The kerG&F® is the one of the point process with
last particle distribution given by (s/v/2). The GSE kernel was studied {nJ101].

3.3 Extended determinantal point processes

3.3.1 Dyson’s Brownian motion

Dyson [23] noticed that the distribution of eigenvalue84} is identical to thequilibrium
probability distribution of thepositionsof N point charges, free to move iR under the
forces deriving from the potenti&l” at inverse temperaturé with

N
1
i=1

1<i<j<N

In the attempt to interpret the Coulomb gas as a dynamicagésyBtyson considered the

positions of the particles in Brownian motion subjected ititeraction forces-VU and

a frictional forcef (which fixes the rate of diffusion, or equivalently, the tiswale).
Letpn(xy,...,zN;t) be the time-dependent probability density of finding theipkes

at positionse; at timet. py satisfies the Smoluckowski equation

oy =[18%n B8 (0U
'ﬁ_zhmfﬁwimm (3.72)

=1

which has as unique stationary solutign (3.34) (we fixed twameters of[[23] ag =
2/3 anda®* = BN). In other words, the seftry, ..., zy} satisfies the set of stochastic
differential equations

1 B 1
da;(t) = (— —a;(t) +§Zﬁ)dt+dbj(t), j=1,.,N, (3.73)

with {b;(t), j = 1,..., N} a collection of NV independent standard Brownian motions. We
refer to thestationary process of (3.73) as Dyson’s Brownian matidote that fors > 1
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the process is well defined because there is no crossing @igkavalues, as proved by
Rogers and Sh{]$6].

Moreover, Dyson showed that in term of random matrices, ithisquivalent to the
evolution of the eigenvalues when the= N + {N(N — 1) independent elements of
M, {M,,n = 1,...,n}, evolve as independent Ornstein-Uhlenbeck processese Mor
precisely, letP(A, ..., M,;t) denote the time-dependent probability density of ilig
then

oP [k, 0°P 1 0
E:z; {?ué?Mﬁ "N o, (M, P)} (3.74)

with x,, = 1if M, is a diagonal term and, = 1/2 otherwise.
Let M (0) be the initial condition of a matrix evolving according {0(8). Then the
matrix distribution at time is given by

1 —n
Z_N(l — )7 exp <—

Tr(M — qM(0))?
2N(1—¢?)

P(M(t) = M)dM = ) dM (3.75)
with ¢ = exp(—t/2N).

For 5 = 2 Dyson’s Brownian motion, the properly rescaled largestmigkie con-
verges to the Airy process in thé — oo limit, see Sectiof 3.3.3.

Finally we remark that it is connected with the Calogero-8d#dnd model in one
dimension [9B]. It describes a system/éfparticles moving oR, whose Hamiltonian is

AL —2
Hcsz_kzﬁxi+ﬁ(ﬂ2 ) 11
=1

1<k<I<N

+w Zxk (3.76)

(k—CCz

Set the external potential strength.as- 1/2/N. The ground stat@, has energy, = wn,
n= N+ 3N(N — 1) and is given, without normalization, by

Qo(xy,...,2N) e COWNRE H |z, —x1]5/2. (3.77)
1<k<I<N

The connection with Dyson’s Brownian motion is via the groistdte transformation
as follows. LetX; = (z1(t),...,zn(t)) € RY be an Ito diffusion with infinitesimal
generatotl given by

Lf == (HQf), H=35(H® - Ey), (3.78)

for f € C2(RY). Some simple computations leads to

N

162 B 1 1
L= Z 2 81‘ * Z IJ 7 ; T, — T ~oN" (3.79)

1#]
L is the generator of a diffusioX; which satisfies (see Chapter 7 pf][70])
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with A(X;); = a(z;(t)) anddB; an N-dimensional standard Brownian motion, which is
identical to [3.7B).

The careful reader has probably noticed that the system Matiiltonian [3.76) is
not well defined as soon as no domain is specified. Notice beatiamiltonian is the
same forg and2 — (3, thus considepp > 1. Let us discuss the casé = 2. Defining
the half-distance between the particles ¥y= (z, — z1)/2 and the center of mass by
Y = (21 + 2)/2. One hasi$® = Hcy + Hp with

1 9? 10> B(B-2)
Hey = —=-0 L ou2y2 [ — 2 22 X2, 3.81
M= Togyr TS b= o T e T (3:81)

The minimal domain off/5® consists in smooth functions vanishingX&t= 0. In this
case, forg > 3 there is an unique self-adjoint extension because Both 0 and the

X = oo are in the limit point case, see Appendix to X.I pf][84]. Thegnd state wave
function is (3-7]7) (the solution wit < —1 is notin L?(R)). For3 € [1,3), X = oo

is still in the limit point case, buX' = 0 is in the circle case, thus there exists a one-
parameter family of self-adjoint extensions, but only foptof theme="#2" is a positive
kernel (see[[34] for a discussion of the singularity:?). The ground states are given by
B.77) with3 and2 — 3. In particular for3 = 1 there is only one-selfadjoint extension
with positive transition kernel. A similar situation appg& Dyson’s Brownian motion in

a circle [95]. For generaN we do not know rigorous results, but it is expected the same
situation of before but with thg > 3 replaced by > 2 + 2/N.

3.3.2 Extended point process
Definition

Consider a point processz, 0) describing for example particles in a potential. Itis natur
to considern(z,0) = > .0(x — x;(0)) as the point process at tinte= 0 and let the
particles evolve in time according to some prescribed dycsy, i.e.,x(t) = D4(x(0))

with z(t) = (z1(t), z2(t),...). For each timg > 0 definen(x,t) = >, d(x — x;(t)).

We say that)(z,t), t € [0,7] with T" € R,, is anextended point processfor each
fixedt € [0,T] n(z,t) is a point process. We thus exclude situations where there ca
be somewhere a condensation durjigl’] of infinitely many particles. Otherwise the
position of the particles would not be anymore a point pre@dter some time.

Remark: The evolution is not restricted to continuous tinteg discrete time evolution
are allowed.

An example of an extended point process is Dyson’s Browniatiamo As we shall
see below, for? = 2 its space-timecorrelations are given by a determinantal form with
a space-time kernel. The process is then calddnded determinantal point processd
the kernel is thextended kernel
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Extended Hermite kernel

Now we restrict to Dyson’s Brownian motion with= 2. (8.7%) can be straightforwardly
generalized to multi-time distributions, the so-calledltirmatrix model. Let)/; be the
matrix at timet;. Let0 = ¢y < t; < ... < t,, andg; = exp(—(t;41 —t;)/2N). Then the
multi-time measure reads

1 TY(M(?)) = ( Tr(Mj4 — quj)2>
exp [ — exp | — dM,...dM,,. 3.82
N P ( 2N E) P 2N(1—¢2) ° (3.82)

For this multi-matrix model the joint-distribution of thégenvalues reads (see e [g.][27])

N m—1
1
Z—AN()‘O)AN()\m) H e~ (@0 jam—1AT, ;) H Det [eﬁk*kﬂ’mu‘] A
k=0

Nm i=1

m

Taw

k=0
(3.83)
where), = (\;), 7 =1,..., N, are the eigenvalues of the mati%,, k = 0,...,m,

A
(1 —qp)2N’ (1—-g)N

We consider fixed initial and final eigenvalues (or matricee)that the Vandermonde de-
terminants in[(3.83) can be absorbed by the normalizatiostemt. For the same reason,
we can replacey, anda,, 1 by 79 = ag — 1/4N and~,,_1 = «a,,_1 — 1/4N without
changing the distribution. In this case it is knowWn][27] ttfe joint probability distribu-
tions of eigenvalues have a determinantal form. To obtarkdrnel, a more useful form
of (B.83) is the following. Define

i B 1 B 1 - q(t)

. —

(3.84)

and

— (' —t)(A24+N?) LB —t) AN — '
By (A, ) :{ e e Valt —t)/x fort >t (3.86)

0 fort’ <t.

®, + is the transition function from time to time¢'. Then the joint-distribution of the

eigenvalues\;;, k=1,..., m—1,9=1,..., N, is given by
1 m—1
—— ] Det [@tkml(m, M| A A (3.87)
Nym k=0 LI= Lo

with Ao and),, fixed, andZ},; ,, another normalization constant.

The following result of Johansson gives an explicit formidathe kernel of the ex-
tended determinantal point process with joint-distribot{3.87). For two transition func-
tionsp and+ their convolutionis defined by

(o %) (z,y) = / (@, 2z, 4)du(2). (3.88)

R
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Define, fortg < t; < ... < t,,,

gk Lk Oy Nx,y), 1<
gpti,tj (:L"y) = { égptz,thtl gpt]fl,t])< y) P i (389)

The form (3.8p) is chosen such thy, ;, (1, 23) = [ P, 1, (21, T2) Pry 1, (T2, 73)dw. It

is not necessarily to include the normalization constgnt(t’ — ¢)/m, but it simplifies
some computations.

Theorem 3.6(Johanssor{[46])Consider a measure with joint density of the form

m—1

1
Z LT Detler by (@ita), 2 (txe)ij=1,..v- (3.90)

k=0

If the configurations at time, and timet,,, i.e., ¥ = z;(t,) andz" = x(t,,) fori =
1,..., N, arefixed, then the measurg (3]90) has determinantal correlatiortions with
extended kernel

N
K(l‘, t; l‘/, t/) = —QOt,t'(I, CU/) + Z Pt tm (*T? xr)[Ail]i,ﬂpto,t«x?ﬂ ZC/> (391)
Q=1

whereA = (@1, (20, 27)]; j=1....N-

The only problem in using Theorejm B.6 is that one needs tatitive matrix A, and this
is not always a simple task.

Applying this theorem to the transition functidnone obtains the kernel for Dyson’s
Brownian motions = 2

Kn(z,t; 2, 1)) = Soiy N gy ()py(y)em AN > (3.92)
R — 3 e RN (g (y)em EHAN <y |

wherepy () = pll(x/v2N)(v2rN2kk!)~/2. The Hermite polynomialg}!(x) are given

in Appendix[AJ%. Since Dyson’s Brownian motion is stationaf§.92) is obtained in
the limitt, — —oc andt,, — oo. For the asymptotic analysis is convenient to mod-
ify slightly the form of the kernel. We will use the kernel deftd by KL(x, t; 2/ ') =

e~ (=2 Ky (x,t; 2’ ') which gives the same correlation functions. It is called ¢ike
tended Hermite kerneind reads

Z;::lfN ek(t_t/)/mpzwk($)pN+k(y)€_(x2+y2)/4N, t>1t

. ZZ‘;O ek(t—t/)/QNpN+k(x)pN+k (y)e_(x2+y2)/4N, t <t

For more details on the derivation ¢f (3.92) see Appehdix A.6

Ki(z, t;2',t) = { (3.93)
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Extended Airy kernel
An important extended kernel is the extended Airy kernelndefiby

f?oo dX A=) Ai(u — \) Ai(u/ — \) fors > ',

, (3.94)
— [T A e Ai(u — A) Ai(u — A) fors < s

Alu, s;u',s') = {

In particular fors = s’ (8.94) is equal to[(3.20).
In the limit of large N, K converges in the edge scaling limit to the extended Airy

kernel. The edge scaling is the following. Let= 2sN?/3, z = 2N + uN'3, and
similarly rescale’ andz’. Then the edge-rescaled extended Hermite kernel conviarges
the extended Airy kernel,

lim NY3KE(2N +uNY3 2sN?3,2N + /N3 25/ N*3) = A(u, s;u',s").  (3.95)

N—oo

For the convergence, see Appenfdix]A.7.

Extended GUE point process and its asymptotics

The extended GUE point process is the process which des@®imon’s Brownian motion
with 5 = 2. Let the eigenvalue, (¢), ..., Ay (t) evolve according t[(3.¥3) and having
the stationary distribution at= 0. The extended GUE point process is defined by

N

N ) =) 6N () — o) (3.96)

j=1
and has the kerndl (3]193). The edge scalingpf® is
nSVE (u, s) = NY3CGUE(2N 4 2 N3 2uN?/?). (3.97)

In the sense of finite-dimensional distribution§" (u, s) has a limit asV — oo, which
we denote by)SVE(u, s). (3:9%) implies that the kernel af U (u, s) is the Airy kernel.

3.3.3 Airy process

The Airy process is the limiting process of the edge-restiamgest eigenvalue of Dyson’s
Brownian motion withG = 2. Let \;(¢) < ... < Ay(t) the eigenvalues of GUE random
matrices of Dyson’s Brownian motion. The largest eigenvalyeconverges to the Airy
process

A(s) = lim N~Y3(\y(2sN*3) — 2N) (3.98)

N—oo

in the sense of joint distributions.
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The Airy process is defined by its finite-dimensional disttibn [81,[4T]. For given
a,...,a, € Rands; < ... < s, € R, we definef on A = {s1,...,s,} X R by

f(sjv (I}) = X(aj,oo) (ZL‘) Then
IP('A'(SI) <ap,... JA(Sn) < an) = Det(ﬂ - fl/QAf1/2>L2(A,d"m)

with A the extended Airy kernel.

The Airy process was first introduced by Préhofer and Spohtheir work on the
PNG droplet [B]L]. They proved thad(¢) is almost surely continuous, stationarytn
and invariant under time-reversal. Its single time distiidn is given by the GUE Tracy-
Widom distribution. In particular, for fixed

P(A(t) >vy) =~ e V43 fory — oo,
~ e W12 fory — —oo. (3.99)

s
P

Thus the Airy process is localized. Define the functiooy
Var(A(t) — A(0)) = g(t). (3.100)

From [8]] we know thay grows linearly for smalt and that the Airy process has long
range correlations:

[ 204+ 0(?) for |¢t| small,
9(t) = { g(oo) — 272+ O(t™) for |¢| large. (3.101)
with g(co) = 1.6264.... The coefficient2 of the correlation’s decay is determined

in [B, LI0]. The Airy process has been recently investigated a set of PDE'{]2] and
ODE'’s [104] describing it are determined.

3.4 Description of the systems via line ensembles

Although physically the polynuclear growth model and thel3Idg corner at zero temper-
ature are not connected, we have analyzed them using thersathematical framework.

The two systems are mapped to two different sets of nonsetting line ensembles. The
lines can be seen as the trajectories of particles which caaatupy simultaneously the
same position (state), thus they are fermions. The idea®htapping was already suc-
cessfully applied by Johansson to the Aztec diamond proffi& and by Prahofer and

Spohn to the PNG dropldt]81].

3.4.1 Line ensemble for the polynuclear growth model

The surface height at timg, = — h(z,T'), does not contain anymore the information of
the position of the Poisson points, because when two islaretge, we lose information.
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Figure 3.2: RSK construction up to time=T..

Therefore the measure induced by the Poisson process oattbkhgights is not easy to
describe. A way of recording the lost information is to extéhe model to a multilayer
model. This is achieved using the Robinson-Schensted-KiRB¥) construction.

We first recall briefly the construction of the PNG surfacegheii(z,t) of Sec-
tion2.2.1. Leth(z,0) = 0 forall z € R and fix aT’ > 0. Letw € Q be a configuration
of Poisson points ifR x [0, 7"]. Each Poisson point is a nucleation event which generate
two lines, with slopet1 and—1 along its forward light cone. A line ends upon crossing
another line. Thek(z,t)(w), (z,t) € R x [0,7], is the number of lines crossed along
the straight path fronr, 0) to (z, ¢). This construction is the levélof the RSK construc-
tion, which leads to a set of height functiohgz,t)(w), (z,t) € R x [0,T], £ < 0 as
follows. Att = 0 we seth,(z,0) = ¢ with ¢ = 0,—1, ..., where/ denotes the level’s
height. The top height is defined lhy(z, t)(w) = h(z,t)(w). The meeting points of the
forward light cones generated by the pointsuadre called th@nnihilation eventsf level
0. h_1(x,t)(w) is constructed ak,(z, t)(w) but the nucleation events for levell are the
annihilation events of leve) andh_;(z,t)(w) + 1 equals the number of lines for level
—1 crossed from(z, 0) to (z,t). In Figure[3.R the nucleation events of level are the
empty dots, whose forward light cones are the dotted linegirfg the annihilation events
of level j as the nucleation events for level- 1, the set of height function’s,(x, t)(w) is
defined for all¢ < 0. By construction, the number of lines of levellong the path from
(x,0) to (z,t) is greater than the one of level- 1, for all 7 < 0. Therefore

hj(i[f,t) 2 hj,1<l',t) +1 (3102)

forallz e R,t € [0,7],j <0.
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Figure 3.3: Line ensemble fot = T for the point configuration of Figule 3.2.

Non-intersecting line ensembles fot = T’

The RSK construction gives us the set of height functibhs ¢ < 0}. If we want to
look at the PNG height at fixed time, say= T', we consider the set of height functions
z — h(z,T), ¢ < 0. By BIOR){hi(-,T),¢ < 0} is a set of non-intersecting line
ensemble withe — ho(x, T) the surface profile at tim&'. Figure[3:B shows this line
ensemble for the Poisson points of Figliré 3.2.

Non-intersecting line ensembles for other space-time cuts

In some situations, as in our work on the flat PNG, it can be enient to analyze a line
ensemble which corresponds to another cut in the space-@mesider a continuous and
piecewise differentiable path : I — R x [0,7], I C R an interval. Then the line
ensemble corresponding t9 denoted by{ H,,¢ < 0}, is given by H,(s) = h(7y(s)),

s € I,¢ <0. Itis a non-intersecting line ensemble becausg of (3.102).

Discrete multilayer PNG

The multilayer generalization of the discrete PNG growtd @2 is similar to the continu-
ous one. Asin Sectidn Z.2.3 we consider the caset) = 0 for x—t odd. The nucleations
for the ™ level are simply the(z, ). When two islands of level + 1 merge a{x, t), we
record the lost of information in the nucleation of le¥el,(x,t). The multilayer growth
then writes

he(z,t) = max{he(x — 1,t — 1), he(x,t — 1), he(x + 1,t — 1)} + we(z,t), (3.103)
where

Ldo(l’,t) = (IJ(ZE,t),
we(z,t) = min{lhp1(z —1,t —1) — hpoy(z,t — 1)]4, (3.104)
[he+1(l’ + 1,t— 1) — hg+1(l’,t — 1)]+}, for ¢ S —1,
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-2-10 1 2

Figure 3.4: Line ensembles for nucleatiods (8.10%). Each height is represented by
a histogram of width one. The grey patterns indicated the new nucleationke last
figure the nucleation for level 1 comes from the dashed region.

wherer, = max{0, z}. In Figure[3.# we show the line ensemble for nucleationsrgine

(0,0) =
(=
(=

Remark: If one prefers the framework with continuous spavestthen the line ensembles
of Figure[3:4 are the ones taken at times 1, ¢ = 2, andt = 2

Ez Ez &

, o(1,1) =3, (3.105)
, ©(0,2) =2, @(2,2)=1.

17)
2,2)

3.4.2 Line ensemble for 3D-Ising corner

We have seen in Sectign 2]3.1 that the allowed configuratidheo3D-Ising corner are
the 3D-Young diagrams. In view of Figufe 2113, it is natucatépresenh in terms of its
level lines or, equivalently, the gradient lines as drawifrigure[3.b5(a). In Figurg 3.5(b)
the underlying lattice is distorted in such a way that thedgmat lines become “trajecto-
ries” on a square lattice. It is this latter representatidmctv will be used in the sequel.
Clearly, the surface statistics can be reconstructed frenstiitistics of the line ensemble.
More importantly, the border line between rounded and2the3 facet is given directly
by the top linehg (i), i > 0. As first noticed by Okounkov and Reshetikhin][69] the oc-
cupation number field corresponding to the line ensemblegfrE[3.5 has determinantal
correlations. In Sectiop §.2 we rederive their resultsgiie fermionic framework, which
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(b)

Figure 3.5: The gradient lines for the tiling of Figufe 2]13: (a) on tHé&1)-projection,
(b) as function of.

IS a convenient starting point for our asymptotic analy$Me could have chosen to de-
scribe the 3D-Young diagrams with the level lines. In thisecawve would have obtained
the border line in thé — 2 plane directly, but by symmetry they are equivalent.

The gradient lines of Figufe 3.5 are defined through

t=j—i, het)=h(j) +L35), (3.106)

where
(i, j) = —(i+j—li—jl)/2 (3.107)

labels the line(s, j) € Z2. h, is increasing fot < 0 and decreasing far> 0,

he(t) < he(t+1), <0, he(t) = he(t +1), >0, (3.108)
with the asymptotic condition
thin he(t) = ¢. (3.109)

By construction the gradient lines satisfy the non-crossmstraint
hgfl(f;) < h@(t — 1), t <0, hgfl(t) < hg(t + 1), t>0. (3110)

Height configurationsh are mapped one-to-one to gradient lines satisfying (8,108)
(8.109), and[(3.110).

We extendh, to piecewise constant functions @h such that the jumps are at mid-
points, i.e., at points o¥. + % For a given linehy, lett,; < ... <ty < 0 be the
left jump times with jump heights, i, ..., s and letd <ty < ... < L@ +ne)
be the right jump times with jump heightss, . ¢)11, - - ., —Se k) 1n(e)- The volume of the
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3D-Young diagram is simply given by the sum of the area belosvlinesr; (of course
with respect to the basis levg), that is

k(£)+n(£)
Vh) = > syltel. (3.111)

j=1
Thus from [2.5]7),[(2.38) follows that the weight for the lic@nfiguration{/,},—o 1, iS

k(£)+n(0)

I exp [ln(l - 1/T)( > Sg,j\tg,ﬂ)]. (3.112)

ez j=1

Connection with directed polymers

In Section[2.3]2 we anticipated that there is a connectidwéd®n a discrete model of
directed polymers and the 3D-Ising corner. Now all the mtioeeded to explain it are
introduced. The directed polymers areh and generated by independent random vari-
ablesw(i, j), (i,j) € 722, geometrically distributed with mean valg&”*!, ¢ € (0,1).
The role of the growth tim& — oo is now taken over by — 1. Let us denote by. (i, j)
the length of the longest directed polymer fr¢m;j) € Z2 to the infinity. Then we want
to show that

h(i,0) = L(i,0), h(0,7) = L(0,7), >0 (3.113)

in law.

It would be natural to do the PNG growth starting from the eniand as in the discrete
PNG growth explained above. But this does not give us thesstatiof theL (i, 0) all at
the same time. Instead we do the backwards PNG growth, whevdlgstarts from the
infinity and come back to the origin. Since we want to fit in tlevous framework of
PNG growth, we invert the time axis. Thus we define —(j + ¢)/2, which then goes
from —oo to 0. Moreover, denote = (; — i)/2 and considef(z,t) = w(i,j) for x — ¢
even,|z| < —t, andw(z,t) = 0 otherwise. We apply the discrete PNG growth dynamics
(B-I03) with initial conditiongi(x, —oo) = ¢ for all z € 7Z, ¢ < 0. The dynamics runs up
tot = 0, see Figurg¢ 3|6 for an illustration.

Consider the set of line ensemblél,(j),j € Z,¢ < 0} associated to the path ex-
pressed in théx, t) coordinate axis by

vyl — LXV_
ko— (k,—|k|). (3.114)

The correspondence between PNG and directed polymersesipli,:) = Ho(7)
and L(i,0) = Ho(—i) for i > 0. Thus we need to see thak(+i) = h(0,+i). This
is obtained by proving that the gradient lines of the 3Dgstorner and the set of line
ensembleg Hy, ¢ < 0} are indeed identical. First let us check that the condit{@aE08),

(B-109), and[(3.110) are exactly satisfied{dy,, ¢ < 0}. (B.109) holds by definition of
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growth

EERvd

=1
A

Figure 3.6: (Backwards) PNG growth and 3D-Ising cornefi,j) € Zi andz =
(G —i)/2t=—(i+j)/2

our initial conditions. For[(3.108) consider 0, the casé > 0 is analogous.[(3.1D8) is
the only constraint between the heights of a level-line beea

Hg(Z) = hg(l,’b) = max{hg(i — 1,2 — 1), hg(l,’t — 1),hg<l + 1,2 — 1)} + (:J(Z,Z)
> hy(i—1,i—1) = Hy(i—1). (3.115)

The third condition [(3.170) reflects the non-intersectiogstraint of the PNG growth,
he(i,) > he—1(i,1), which implies

Hy_1 (i) = ho_1(i, 1) < he(i,i) < he(i — 1,i — 1) = Hy(i — 1). (3.116)

Next we show that the distribution of the gradient line enislerand{ /#,, ¢ < 0} coincide.
A given configuration of line§ H,(i), ¢ < 0,7 € Z} carries the weight

[T g+vetian, (3.117)

1,50

Consider the extension ¢, (t),¢ < 0} fromt¢ € Ztot € R defined by settindd,(t) =
H,(t) for t € Z and with jumps only aZ + 1. In term of RSK lines, eacky, j) € Z%
generates (i, j) pair of lines. Each RSK line originated @t j) € Z?3 which moves in the
(0,—1) direction (with slope-1 in PNG picture) generates an up-jumptat —(i + 3)

in some level line and each line moving in thel, 0) direction leads to a down-jump at
=7+ % in some level line. The weight of a couple of lines coming frany) € 72 is
¢/ and can be divided by assigning the weight'/? to each up-jump at= —(i + 3)
and the weight’*!/? to each down-jump at= j + 1. It then follows

Y li+i+Dwif) =) /}R (Hy(z) — O)de = > > (Hy(i)— 1),  (3.118)

i,j>0 £<0 ¢<0 i€

which is the same weight of the line ensembles for the 3Dglsiorner configurations
(B.112). Therefore the set of line ensemblég, ¢ < 0} is identical to the gradient lines
of the 3D-Ising corner.



Chapter 4

Analysis of the flat PNG line ensemble

This chapter is devoted to our result on the flat PNG mddél. [E8kt we formulate our
main result and then we prove it.

4.1 Formulation of the result

We consider the line ensemble introduced in sedfion]3.4.thioflat PNG model at time
t =T. Itis statistically translation invariant. Define the pgmmocess or¥, describing the
line ensemble at fixed position, say= 0, by

aat, | 1 ifaline passes a0, j),
() = { 0 ifnoline passes &0, j). (4.1)

The largestj such that(**(j) = 1 is the PNG height and from the Baik and Rains re-
sult [L3] we know that it fluctuates onA!/? scale aroun®7". The edge rescaled point
process is defined as follows. For any smooth test fungtiohcompact support,

et ( Z () £ (G — 2T /(T3272/%)), (4.2)

JEZ

where the factoR=2/3 is the same as iff (Z}45). Notice that [n {4.2) there is no ptefa
to the sum. The reason is that close1q the points of ** are orderT’/? apart and;i
remains a point process in the limit — oo. n#* has a last patrticle, i.epi*(¢) = 0 for
all £ large enough, and even in tleé— oo limit has a finite density which increases as
V=€ as¢ — —oo. Consequently the sum if (1.2) is effectively finite.

As our main result we prove that the point procg$s$ converges weakly to the point
procesg;“°F asT — oo.

Theorem 4.1. For anym € N and smooth test functions of compact supgort. ., f,.,

i ET(Hnﬂ“ ) - E(ﬁnGOEm)). (4.3)
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£ refers to expectation with respect to the Poisson proceasung . The expected
value on the r.h.s. of (4.3) is computed via the correlatiorcfions [3.60).

The result of Theorerh 4.1 is a first step towards a conjectarthe self-similar sta-
tistics of the PNG with flat initial conditions. The startiofpservation is that, as for the
PNG, also to random matrices one can introduce a line ensamhblnatural way. This is
the Dyson’s Brownian motion, see Sect[on 3.3.1. The heigttissicsz +— h(z,t) for the
PNGdropletis linked to the Airy process by

lim T‘1/3<h(TT2/3, T) — 2,/ — (TT2/3)2) = A(7), (4.4)

where the term subtracted fromis the asymptotic shape of the droplgf][81]. To obtain
this result, Prahofer and Spohn consider the line ensentitéen@d by RSK and define
a point process likgd (4.1) but extended to space-time. Itdstarminantal point process
and in the edge scaling it converges,/as— oo, to the point process associated with the
extended Airy kernel. Thus they prove not only that the tog Iconverges to the Airy
process, but also that the top lines converges to the top eihByson’s Brownian motion
with G = 2.

One can extengd{°F of (B:58) to space-time as i (3]97), i.e., define

N
nSOF (u, 5) = NY3COB (2N 4+ 2NV 2uNY3),  (OF(x,t) = 25(/\j(t) —x) (4.5)

j=1

where({°F is the extended point process of Dyson’s Brownian motion With 1. The
conjecture is that, under edge scaling, the progessh(x,T') for flat PNG is in distribu-
tion identical to the largest eigenvalue of Dyson’s Browmaotion with5 = 1. The result

of Theorenf 4]1 makes this conjecture more plausible. Ini@chow know that, not only
h(0,T) in the limit T — oo and properly rescaled is GOE Tracy-Widom distributed, but
also that the complete point procegs' converges to the edge scaling of Dyson’s Brown-
ian motion with3 = 1 for fixed time. Fors = 1 Dyson’s Brownian motion one expects
that under edge scaling the full stochastic process hadta Muare explicitly, one focuses
at the space-time poiri2.V, 0), rescales space by a factst/?, time by N2/3, and expects
that the statistics of the lines has a limit fdf — oo. It could be that this limit is again
Pfaffian with suitably extended kernel. But even fox= 1 Dyson’s Brownian motion this
structure has not been unravelled.

The outline of the remainder of the chapter is the followilmgsectior4.R we introduce
an auxiliary point process; ™, from which¢f#* can be recovered,”™ derives from the
end-points of a line ensemble with a relatively simple distiion. In sectiori 4]3 we obtain
a formula for then-point correlation functions of ™. They are given by Pfaffians of a
2 x 2 matrix kernel. In sectiof 4.4 we derive an explicit expressdf the kernel and in
section[4.b we analyze its edge scaling. Finally in sedti@nwé first prove the same as
Theoren{4]1 for the edge scaling@f™, and secondly using it we can prove Theoifen 4.1.
Appendix[4.A contains some bounds used in the asymptotiysina
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Figure 4.1: A configuration with three Poisson points in the triangle and their sym-
metric images with respect to the= 0 axis. The pathy is the bold line. On the right we
draw the top lines of the line ensemble associated 7;(s), j < 0,s € [0,TV2]}.

4.2 Line ensemble

4.2.1 Line ensemble for the symmetry

The line ensemble for flat PNG generated by RSK at time 7' is not easy to analyze
because there are non-local constraints on the line coafigus. Instead, we start consid-
ering the point procesg™. First remark that this point process depends only on the&®oi
in the triangleA, = {(z,t) € R x R4|t € [0,T],|z| < T —t}. We then consider the
Poisson points only i\ ;. and add their symmetric images with respect totthe0 axis,
whichareinA_ = {(z,t) € RxR_|(z, —t) € A, }. We denote by;"" the point process
at(0,7") obtained by RSK construction using the Poisson points aridshemetric im-
ages, see Figufe 3.1. To stugly™ we consider alifferent line ensembleet us consider
the path in space-time defined bys) = (T — s/v/2,5/v/2), s € [0, T+/2], and construct
the line ensemblg H;(s),j < 0,s € [0,7+/2]}, as follows. The initial conditions are
H;(0) = j since the height a@t= 0 is zero everywhere. Every times thatrosses a RSK
line corresponding to a nucleation event of leyel{; has an up-jump. Then the point
procesg, Y™ is given by the point§ H,;(Tv/2),j < 0}. In Propositior{ 4]3 we show that
fat can be recovered b§?™, in fact we prove that;(0,T) = 1(H;(TV2) + j).

Next we have to determine the allowed line configurations thed distribution in-
duced by the Poisson points. This is obtained as follows. kfeepthat theparticle-hole
transformation on the line ensemd&;(s), j < 0,s € [0,7+/2]} is equivalent to a par-
ticular change of symmetry in the position of the nucleatwants, and we connect with
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*—
*—

L
L

LA

Figure 4.2: Line ensembles fos = (245163) andg = (361542). For the even
levels,/ = 0, —2, we use the solid lines and for the odd levdls; —1, —3, the dashed
lines. The line ensemble &f(o) corresponds to the line ensemBlE;(s),j < 0,s €

[0, Tv/2]} of Figure[4.1L.

the half-droplet PNG problem studied by Sasamoto and Imarfzdy.

Young tableaux

Leto = (0(1),...,0(2N)) be a permutation of1, ...,2N} which indicate the order in
which the Poisson points are placed in the diamandJ A _. More precisely, letz;, ¢;)
be the positions of the points with the index 1,..., N such that; + z; is increasing
with ¢, ando is the permutation such that;) — ;) is increasing in too. Let us construct
the line ensembles along the patfis0) — (0,7)) and(—7,0) — (0,7"). The relative
position of the steps on the line ensembles are encoded ivioilveg tableauxS (o) and
T(c) constructed using Schensted's algorithm. If e step occurs in linéd;, then in
the Young tableau there iskain row j, see Figur¢ 4]2.

In our case the points are symmetric with respect to thetaxi®) and we refer to it
as the symmetng. In the case studied ifi J40], the points are symmetric wiipeet to
the axiszr = 0 and we call it the symmetryr. Consider a configuration of points with
symmetryN and leto be the corresponding permutation. The RSK constructionslead
to the line ensembles &f(c) and S(o) as shown in the left part of Figufe #.2. If we
apply the axis symmetry with respect o+ ¢ = 0, then we obtain a configuration of
points shown in the right part of Figufe #.2. The points hawe the symmetryz and
the corresponding permutationis obtained simply by reversing the orderafthat is, if
o= (o(1),...,0(2N)) thens(j) = o(2N + 1 — j). By Schensted’s theorerh [88],

S(5) = S(a)t,. (4.6)

Moreover, the positions of the steps in the line ensembleg ©f and.S(5) occurs at the
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Figure 4.3: Particle (solid) and hole (dashed) line ensembles for the example of Fig-
ure[4.2. The particle line ensemble is the one associatedS¥ith, and the hole line
ensemble is the one of(5) reflected with respect to the lige= 1/2. The pairing rule

is shown by the brackets.

same positions, but of course in different line levels. Fédd.2 shows an example with
o = (24516 3), for which the Young tableaux are

(1356
S(U)(2§ ) S(5) =T(5) =
6

35)

At the level of line ensemble we can apply the particle-hdedformation, which means
that a configuration of lines is replaced by the one with juajpthe same positions and
the horizontal lines occupy the previous empty spaces,@grsim Figure[43. Let us start
with the line ensemble corresponding$gc), then the Young tableau for thele line
ensemblas given byS(c)t. In fact, the information encoded ifi(o) tell us that the;j™"
particle has jumps at (relative) positiéi{o);,, £ > 1, for j > 1. On the other hand,
the ' hole has jumps where the particles have thi&ijump. Therefore the particle-hole
transformation is equivalent to the symmetry transforovati — .

S Ot W

Particle-hole transformation

Allowed line configurations and measure

Sasamoto and Imamura J40] study the half-droplet geometr?NG, where nucleation
events occurs symmetrically with respectte- 0, i.e., with theia symmetry. In particular,
they prove that the point processimat 0 converges to the point process of eigenvalues of
the Gaussian Symplectic Ensemble (GSE). Its correlatioatfons have the same Pfaffian
structure as GOE but with a different kernel. In a way the éneemble they study is the
hole line ensemble described above, thus their edge sdatinges at the top holes, i.e., in
the region where the lowest particles are excited. Notiaettie change of focus between
particles and holes changes the statistics from GSE to G@Is. differs from the case



74 Analysis of the flat PNG line ensemble

of the PNG droplet[J[§1] where for both holes and particlesalige statistics is GUE.
Although the result of[[40] cannot be applied directly to symmetry, some properties
derived there will be of use.

From [40] we know that for the symmetiy a hole line configuration is allowed if:
a) the lines do not intersect, b) have only down-jumps, cy seisfy thepairing rule:
HY'(TV2) = HY (T?2) for all j > 1. This implies that for the symmetny a line
configuration{ H;} is allowed if: a) the lines do not intersect, b) have only upyps, c)
H;(T+/2) — H;(0) is evenfor eachj < 0. Moreover, there is a one-to-one correspondence
between allowed configurations and nucleation events. Tbleapility measure for the
line ensemble turns out to have a simple structure. Consmies®h points with intensity
o and symmetnyN. Each Poisson poiriz,¢) € A, has a probability dzd¢ of being in
[,z + dx] x [t,t + dt]. In the corresponding line ensemble this weight is carrietiio
jumps, therefore the measure induced by the points on adinBguration{ ,} is given
by /o™ "7} times the uniform measure.

4.2.2 Flat PNG and line ensemble fo symmetry

The correspondence between the point pro¢g$sand(;’™ is as follows. Let us consider
a permutatiom with Young tableawb (o) of shape;, As, ..., \y). Let, fork < m, ax(o)
be the length of the longest subsequence consistikgladjoint increasing subsequences.

Theorem 4.2(Greene[[36]) Forall k = 1,...,m,
ak(U):A1+---+)\k. (47)

The geometric interpretation is the following. Letbe the permutation which corre-
sponds to some configuration of Poisson point&\in U A_. Thena, is the maximal
sum of the lengths af non-intersecting (without common points) directed polysrfeom
(0,=T)to (0,7).

Proposition 4.3. Let 7w be a Poisson point configuration i, and let the corresponding
Young tableauS(7) have shapé\, \s,...,\,,). Let7 be the configuration of points
on A, U A_ with symmetryN which is identical tor in A,. ThenS(7) has shape
(A, A2y Am) = (21,20, 200).

Proof. To prove the proposition is enough to prove thgir) = 2a,(7) fork =1,...,m.

i) ar(7) > 2ax(m): it is obvious since we can choose thalirected polymers o by
completing the ones om by symmetry.

i) ax(7) < 2ax(7): assume it to be false. Then there existdirected polymers in\ ,
andk in A_ such that the total length is strictly greater ti2an (7). This implies that at
least one (by symmetry both) of the setskoflirected polymers has total length strictly
greater that, (7). But this is in contradiction with the definition afy (), therefore
ak(fr) S 2ak(7T). O
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Since\,_; = h;(0,T) — j and\,_; = H,;(T/2) — j, it follows from this proposition
that

hi(0,T) = L(H;(TV?2) + j) (4.8)

forall j <O0.

4.3 Correlation functions

Non-intersecting lines can be viewed as trajectories ahiens in discrete spacé and
continuous timé0, T'v/2]. Let us start with a finite number of fermiorsy, which implies
that only the information in the fir&N levels in the RSK construction is retained. For any
configuration, the number of non perfectly flat lines, is aogly bounded by the number
of Poisson points id\ .. On the other hand for fixéfl, the probability of having a number
of Poisson points greater tharv decreases exponentially fast frlarge. First we derive
an exact formula for the-point correlation function for finitéV, and then take the limit
N — oo so that, for any fixed’, each line configuration contains all the information of
the Poisson points. Finally we consider the asymptoticdoyd?.

Leta} anday, j € Z, be the creation and annihilation operator for the fermam ()
be the state without fermions. The initial state is then igilrg

0

)= [ «10). (4.9)
j=—2N+1
and the final state is
0
Q)= D> ] @i, 10) (4.10)
neCy j=—2N+1
whereCy = {{no,...,n—ant+1}|n; > nj_1,n; > 0}. Let us define the up-jump operator
as
o= iy, (4.11)
kEeZ

which when applied offf2;,,) is actually a finite sum. Then the evolution from the initial
state(t = 0) to the final ongt = T'v/2) is given by the transfer operator

exp(Tay), T =+/20T =2T. (4.12)

The linear statistics, i.e., for a bounded functipnZ — R, is

0 Qsn (1= aZay eTen Qi
Br( ] 1 gtey) = Slthesl SWGICTE g g

j=—2N+1 <Qﬁn| HyeZ el |Qin>
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where thez!”, j € {—2N +1,...,0} are the position of the fermions at tirfie/2. Let

us denote by™ (x4, ..., x,) then-point correlation function of ;™. Then
0 0_1)n n
IEN,T( IT a- g(fﬂ?“))) =>. 1 > Aom) [ o). @14
j=—2N+1 n>0 L1,y n €L 7j=1

For finite N, p™ = 0 for n > 2N.

Proposition 4.4. Let us define the matrik with entries
1
(x —1)!

with © the Heaviside function, the antisymmetric matriesnd A

b, = T°7'0(z — i), (4.15)

_ Lisgn(z —y)(=1)" 1 = sgn(z — y)(=1)

Sy = 5 5 sgn(x —y), (4.16)
A= @,8,,P,, =[S0 (4.17)
T, YEZ
Then then-point correlation function, fon € {0,...,2N}, are given by
P (xy, ... x) = P[K (x5, Ti)liiem (4.18)

whereK is a2 x 2 matrix kernel K (z, y) = ( Kra(z,y) - Koo y) ),With

K2,1('ruy) K2,2(5€7Z/)

Kl,l(% ?/) = - Z?,j:—QN—H (I)g,xAi_,j (I);,y
Kip(m,y) = =30 oy ®LA @S, = —Kau(y, x) (4.19)
Kon(z,y) = =0 ona (@84, .
FKoo(m,y) = St =30 oy @80 A;} (@5,
When N — oo, (BI3) becomes a Fredholm PfaffiaRf(J — Kg) =
v/Det(1 — J-1Kg), whereJ = _01 (1) , see Section 8 of [82]. In this case, we

consider bounded functionswith support bounded from below, so that the sun{in (4.14)
is well defined. From the point of view of operators, the daeieant has to be though as
defined through the modified determinant like in the case®f3DE case, see discussion
atthe end of Sectign 3.2.3. Finally, note thais invertible becausBet(A) is the partition
function of the line ensemble.

Proof. Since itis often used, we denote the ordered set{ —2N +1,...,0}, and instead

.....
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{zfin}), n € Cy as glven in [(4.70), be the weight of fermlons starting fronsipons
{a} = (2}")ies, 2" = i, and ending afzfi"} = (2I")c;, 2™ = j 4 2n;. The non-
intersection constralnt implief J49] that the weight canebpressed via determinants,

w({z™} — {3"}) = Detpy i jer (4.20)
with ) ~
Pij = <@’aj+2nj€Ta1aﬂ®> = [eTal}
Taking into account the even/odd initial position of thenfigans, [4.2D) can be rewritten
as

(4.21)

j42n,i Djtom, i-

0

w{z™} — {2")) = Det[® ( : )]Z’jEIA H e(:pg;l)o(:vg; 1) (4.22)
with 1+ (=1)* 1—(=1)*
e(x) = — o(z) = — (4.23)

Let us denote by(z_on+1, - - -, 7o) the probability that the set of end pon{tsﬁ“,j =
—2N + 1,...,0} coincide with the se{r_oni1,.-.,20}. We want to show that this
probability can be written as a determinant times a Pfaffgince ther;’s do not have to
be ordered, letr be the permutation of -2V + 1,...,0} such thatr,;) < z¢41), that
iS, Tr(iy = zim i € I. Moreover, define the matriX = [=, ;] jer by setting=; ; = 8 r ()
Then

(@ (28 ]i jer = [®i(z;)]i jer - (4.24)
Now let us show that

0

H e(:tg;l)o(xgj ) = Pf[S fin ﬁn]wel (4.25)

=—N+1

Since x?n <z, the components,j (i < j) of the r.h.s. matrix are given by
o(z")e(z™). The Pfaffian of a matrid/ = [M; j]; je; is

0
Pf(M) = Z (_1)‘0‘ H M0'21',—170'2i7 (426)
o i=—N+1
02i—-1<02;
where the sum is on the permutationf {—2N + 1,...,0} with oy, 1 < 09. The

identity permutation gives already I.h.s. ¢ (4.25). Thus krave to show that all other
terms cancels pairwise. Take a permutaticsuch that (2 — 1) < 0(2j — 1) < 0(2i) <
0(27) and define the permutatiorf by settingo’(2j) = o(2i), 0’(2i) = o(2j), and
o'(k) = o(k) otherwise. The term of the Pfaffian coming fremando’ are identical up
to a minus sign becauge 1)l = —(—1)I?l. Moreover, the only permutation for which
0(2i—1) <0o(2j —1) < 0(2i) < o(2j) can not be satisfied for somigj is the identity.
Consequently[(4.25) holds.
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Finally, define the matrbdG = =*[S], , ]ijer . Replacing the definition of we
obtainG = [S'4, aulijer- Then

P ons, . x0) = w({z™} — {23"}) (4.27)
0
= Det[®;(«)ijer [] ela5))o(adr)
Jj=—N+1

= Det[@z (Ij)]i,jél Det(E) Pf(Et [S:tpi,xj}i,jGI E)
= Det[®;(x;)ijer PSS, o lijer

TiyTj

where we used the property of PfaffiaR§(='T=) = Pf(T) Det(Z), see e.g.[[96], and

Det(Z) = (—1)I.
The probability [4.2]7) is of the fornj (323) with
e(x,y) =S,,, filz) =Ty (4.28)
from which follows that
Mij=—Aij, (efi)(@) = —[SPlay, (4.29)

and the kernel is given by

/ _ _Kl,l(xay) Kl,Q(x7y)
K'(z,y) = ( Koi(z,y) —Kao(z,y) > : (4.30)

But K and K’ are two equivalent kernels (they give the same correlatioitfons) since

K' =U'KUwithU =i ( (1) _01 ) andPf[U'KU| = Det[U] Pf[K]. We useK instead
of K’ uniquely because another derivation of the kernel gdvend we already carried
out the analysis. ]

4.4 Kernel for finite T

In this section we compute the components of the kernel givgh.19). At this stage we
take the limitN — oo. The justification of this limit is in the end of this sectiofhe first
step is to find the inverse of the mattik First we extendd to be defined for all, j € Z
by using [4.1]7) to all, j. Let us divide/*(Z) = (*(Z%) ® (*(Z_), whereZ? = {1,2,...}
andZ_ = {0,—1,...}. The inverse ofd in (#-I9) is the one in the subspaC¢Z ). Let
us denote by”_ the projector or%_ and P, the one or¥’, .

Lemma 4.5. The inverse ofA in subspacef?(Z_), which can be expressed as
P (P_AP_+ P,)"'P_,is given by

[A iy = [a_je T pe T _ g~ Taap o~Toag ), (4.31)

Where[al]m = (S/L"jJrl andOé,l = Ckli.
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Proof. First we rewriteA as a sum of a Toeplitz matrix plus the remainder. d.ebe the
matrix with [a]; ; = 0;; S anda, = 1 — .. Then

S = Z o2y, — Z oy, (4.32)
k>0 k>0

It is then easy to see that, fof(x) an even polynomial of arbitrarily high order

Ve(asi)ae = aVe(awr),  Velazi)a, = aoVe(ax) (4.33)
and forV,(z) an odd polynomial of arbitrarily high order
Volazr)ae = aoVo(axtr), Vi(asi)a, = acVo(axr). (4.34)
HenceA can be written as
A =exp(Ta_;) Z(a%kﬂao — a**+a,)(cosh(Tay ) + sinh(Tay)). (4.35)
k>0

We pull the last factor in[(4.35) in front of the sum using tleenenutation relationd (4.83)
and (4.3#), and, after some algebraic manipulations, waimbt

A=M+R (4.36)

whereM = 10/(Q — @)@, R = }(Q + Q") (a0 — a), With @ = 3, af**" and
® = exp(Tay).

Let B = [® Y (a_P. — P_a;)®~!. We want to prove that it is the inverse df
in the subspacé*(Z_). First notice thatB,; = 0if ¢« > 1 or j > 1, which implies
[A-B);; =[P-AP_ - BJ; j fori, j <0. Therefore, for, j <0,

[A-Blij = [(M + R) - [0 ']'Up® '], (4.37)
with
UO == Oé_l.P_ — P_Oél, (438)
and, expanding/ + R, we have
4Bl = [ 850, ) (o )],

— |:6Ta1 Ule—Ta1i|

[Tt T ] (4.39)
Z’] 7/7‘7

wherelU; = 3(Q — Q")Uy andU, = (Q + Q")(a, — a.)Up. The components of these
matrices are given by

1 1+ _1 n
Uil = 5n,m1[n<01+§5m705gn(n—1)%,
1. 1+ (-1~
Vel = 55’”’0#’ (4.40)

and a simple algebraic computation leads thefdte B]; ; = ¢, ; for 4,5 < 0. Finally,
sinceA andB are antisymmetrid,B - A}, ; = [A"- B'];; = [A- B];; = ¢, ; too. Therefore
B is the inverse ofd in the subspacé(Z._). O
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The second step is to find an explicit expression for the ksrakements. Using the
fact that{A~'], ; of Lemma[4.b is zero foi > 1 or j > 1, we can extend the sum over all
1,j € Z and obtain

Kl,l(xvy) = _[@A—lq)t]%y’
Kis(x, = —K , ),
12(z, ) 2.1(Y, 7) (4.41)
KQJ((L‘,y) = —[S(I)A_lq)t]%y,
KZQ(I,y) = Si,y - [S@A_lq)tst]x’y.

Putl = e¢T™e-Te-1 We write S as in (:3R), use the commutation relatiops (4.33) and
(B.34), and after some straightforward algebra obtain

Ky = —Wl,v,
Koy = —W'(SUy — U)W — 00, V', (4.42)
Kyy = St—f—SKil,

whereU, is given by [4.40), and

[Uo]n,m = <5n,m71 - 5m,n71)1[n,m§0}
11+ (—1)"
SUy = Uil,,, = 5%5%0. (4.43)

Using these relations we obtain the kernel elements, whiehsammed up in the
following

Lemma 4.6.
K(z,y) = G(x,y) + R(x,y), (4.44)
with
Rl,l(xvy) = 07
G
RLQ(‘KRy) = - 9 JJ:+1(2T)a
—1)= .
R2,1(137?J) = %%H@T),
1
Roa(z,y) = —S(z,y)+ 1 sgn(r —y)
—1)* - (=1 .
m>1 n>1
and
Gra(@,y) = = Jopne1 2T yen(2T) + Y Jysns1 (27) T (2T), (4.46)

n>1 n>1
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. - 1

Crafe) = 3 Jewn 1) pa(27) = Je ) <mz Ipana2T) = 3. @47
1

Gaa(,y) ;Jm 2T Jy4n(2T) 4 Jyi1 (27) (;me (2T — 5), (4.48)

Gaa(x,y) Z Z Tutom(2T) Ty son41(2T) Z Z Jorom1 (2T) Ty s0n (27)

m>1n>m n>1 m>n
1 -1 |
_5 Z Jx+2m<2T) + 5 Z Jy+2n(2T) - Z sgn(a: - y)> (449)
m>1 n>1

whereJ,,,(t) denotes the th order Bessel function.

Remark: this result could also be deduced starting from Ge&iof [82]. Now we
justify the N — oo limit. Let us first explain the idea. Denote the séts- {—2N +

,0andL = {—N +1,...,0}. We consider the kernel’s elements fary > 0.
For (i,j) € I*\ L?, the inverse ofA for finite N differs from the inverse folV = oo
only by O(e=#N) with . = u(T) > 0. On the other hand, the contribution £_(, )
coming from (i, j) € (I \ L)? are exponentially small isv. Therefore, replacing the
inverse ofA for finite N with the inverse obtained in Lemnja .5 we introduce only an
error exponentially small iv. The dependence of the kernel's elements\ois only via
the extension of the sums ih (4.19), which limit is the one weBw&d in Lemmd 4]6.

In what follows we denote byl y the2N x 2N matrix (4.1F) and byA the N = oo
one.

Lemma 4.7. If we replace[A'];; by A;jl in the kernel's elementg (4]19), then for

large enough, the error made &(e*") for some constant = p(7) > 0. The error is
uniform forz,y > 0.

Proof. Here we use some results of Appenflix 4JA.1. First, we defiepenhtrix B by

setting, B;; = A;} for (i,j) € I x L, andB;; = —AZ}y,\_; oys1_; fOr (i,4) €
X ([ \ L) S|nce[AN]1,] = _[AN]72N+171',72N+17]" by @) fOHOWS that
AyB=1-C (4.50)

for some matri>xC with ||C|| = max; ; |C; ;| < O(e #2"). Therefore, forV large enough,

Ay'=B(1+D), D=) c* (4.51)

k>1

with ||D|| < O(e™#2%) too. Thus, replacingly' with B we introduce an error in the
kernel's elements aD(NQe‘“QN)

If we replaceB; ; with A also in(i,j) € L x (I'\ L) we introduce an error of
O(N2e=#N), with py = mln{ul,u2/2} This is achieved using (4.706) fox j + N/2,
and (4.10¢) otherwise.
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The final step is to show, using only the antisymmetryigf that the contribution of
K coming from(z, j) € (I'\ L)* are also exponentially small iN. For (i, ) € (I \ L)?,
it is easy to see that, uniformly in y > 0,

®,;, = Oe ™M) (4.52)
(S®),; = O(e‘“lN) for odd .,
(S®),; = sinh(T ) + O(e ") for evenz and even,
(8®),; = cosh(T)+ O(e~™™), for evenz and odd.

Therefore, the contributions fdk; ;, K 2, andK,; areO(N?e~#V) because they con-
tain at least a factap (e—+17) coming from®, ; or <I>t For K, » there are terms without

O(e~ N ) and containing onlyinh (7)) and/orcosh( ) These terms cancel exactly be-
causedy' is antisymmetric. Consequently, we can simply repl&ge with Aw also in
(4,7) € (I'\ L)*> up to an erroO(N?e ), O

4.5 Edge scaling and asymptotics of the kernel

In this section we define the edge scaling of the kernel, deogome bounds on them
which will be used in the proofs of Sectipn]4.6, and compugirth — oo limit.
The edge scaling of the kernel is defined by
Grin(6,&) = TPGL([2T + 617, 2T + &T7)
G;fi%e(gl 52) = Tl/gGk([QT + £1T1/3]’ [QT + §2T1/3])7 k= (17 2)7 (27 1)
Grsa(6,6) = Goa([2T + &1V [2T + &T7), (4.53)
and similarly forR1 (&, &).

Next we compute some bounds on the kernel’'s elements sughviinen possible, they
are rapidly decreasing f@g, & > 1.

Lemma 4.8. Write

|1, x <0 14 x|, x <0
() = { exp(—xz/2), >0 () = { exp(—z/2), >0’ (4.54)

Os(z) = { i&@m igg . (4.55)

Then there is a positive constafitsuch that for largel”

IRFS(6, &) < CQ(&),
IR (6.6)] < CQ(&), (4.56)
IRF55(6,&6)] < C(u(&) + (&),
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and
GF55 (6. 8)] < CD(&)N0(&),
G5, (61,6)] < 091<51><1+Q2<52>>, (4.57)
G (61,6)] < C(E) 1+ 0u(£1)),
|G£ﬁ§,ez( &) < O+ (&) + Q&) + Qi(§) (&)

Proof. We use Lemm@ 4.13 and Lemina 4.14 to obtain the above estimate.
1) The bounds ohR55% (&1, &)| and| R555 (&1, &)| are implied by LemmaZ]L3.
2) Bound on| R85 (&1, &)

1

edge 5 7-
|R755(6,6)] < 173 Z | o+ @arsenyis 2T + (§1 < &) (4.58)
MeN/T1/3
and
> WpiremreyisCDI< D Vi arsenyive (2T (4.59)
MEN/T/3 MeN/T1/3
Foré, <0,

@< Y Veramm@Dl+ Y apeams @D (4.60)

ME(¢24N/T1/3)N[E2,0] MeN/T1/3

By (4.108) the first term is bounded by a constant tinfies- |¢;|) and by [4.109) the
second term by a constant. Fgr> 0,

(E59) < Z | Tt s (27)] (4.61)

Meéy+N/TL/3

which, by (4.10p), is bounded by a constant times(—&,/2). Therefore

> Wprrusenyis D) < C (&), (4.62)

MeN/T1/3

for a constant’, from which follows the d~esired bound.
3) Bound onG55, (&1, &)|. Let us define/, (t) = Jyy1(t) — Ju(t). Then

ede - ™ T
GE (6 6) = T 3" T ranis T Do e angis (2T)
MeN/T1/3

— (& < &). (4.63)
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For largeT, the sums are very close integrals and this time we use battma$4.1B and
Lemma[4.1}4, obtaining

’G?I%%,el(flaééﬂ < C/OO dMQo(M + &)U (M + &)
0
< C/ dMQl(M—l-&)Ql(M—i—&) (464)
0

for a constanC' > 0. It is then easy to see that r.h.s. pf (4.64) is bounded asvisl|
for & <& < 0byC(1+ |6])2 for& <0 < &by C(1 + |&1])* exp(—&,/2), and for
0 < & < & by Cexp(—£1/2) exp(—£2/2), for some other constaiit > 0. Therefore
(GFE (€ )] < ODa(61)22(60).

4) Bound on G5 (61, &),

GGT%%Z(&,&) = Z J[2T+(§1+M)T1/3]<2T) (Tl/SJ[2T+(§2+M)T1/3]<2T))

MeN/T1/3

. - ~ 1
_Tl/SJ[2T+(§1+M)T1/3+1}(QT)( Z J[2T+(§1+2M)T1/3—1](2T> - 5)

MeN/T1/3

In the first sum, the term witk, is bounded by a constant and remaining sum was already
estimated in[(4.62). The second term is bounded by a corgteer,(&; )2 (&2). Using
Qo(&1) < (&) we conclude thallG555 (&1, &)| < C (&) (1 + Qa(&)).

5) Bound on|G515, (&1, &)|. The bound is the same as 16555 (&1, &)

6) Bound on|Ger;§fQ(§1, &)|. The terms with the double sums are estimated applying twice
(B62) and are then bounded by (&) (&2). The two terms with only one sum are
bounded by, (&) and; (&) respectively, and the signum function by4. Therefore,

for some constant’ > 0, G555 (&1, &) < C(1+ (&) + (&) + (&)U (&)). O

Finally we compute the pointwise limits of th&’s since they remains in the weak
convergence.

Lemma 4.9. For any fixed,, &,

lim G5 (&1, &) = GFO8(&, &), (4.65)

T—o00

where theG{°F’s are the ones in[(3.61).

Proof. Let us conside¢, & fixed. In the proof of Lemmds 4.8, we have already obtained
uniform bounds irl” for G‘;‘?i‘s(gl, &>), so that dominated convergence applies. To obtain
the limits we use[(4.133), i.e.,

m T3 J ey (2T) = Ai(8), (4.66)

T—o00
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and
lim T2/3(‘][2T+§T1/3+1](2T) - J[2T+£T1/3}(2T)) = Ai'(§). (4.67)

T—o0

The limit of G35, (&1, &) follows from (@53).
The limit of G315, (&1, &) leads to

/OOO ANAL(E + A) Ai(& + A) — %Ai(gl) ( /Ooo ANAi(& + A) — 1) (4.68)

which equalsz{9" since [ dAAi(& + A) — 1 = — [T dXAi(& — A).
The limit of G315, (&1, &) is obtained identically.
Finally, the limit of G555 (&1, &) is given by

; /0 a\ A A Ai(Ey + 0 Al + 1) — (6 &) (4.69)

1

_ 1/000 dAAi(E + ) +i/ooo i+ )~ (e~ ).

which can be written in a more compact form. Sinfead\ Ai()\) = 1,

/OO dANAI(&E + ) = /Oo dA /Oo dp A& + ) Ai(&s + p), (4.70)
0 0 —00
and the signum can be expressed as an integr&l(@f + \) Ai(& + p)

—sgn6 =) = [ A [ deAiE N AiG + s . @7
In fact

r.h.s. of(£77) = /]R d)\/]R dp Ai(N) Ai(p) sgn(A — p+¢) = b(¢) (4.72)

with ¢ = & — &. For( = 0 it is zero by symmetry. Then considér- 0, the cas€ < 0
follows by symmetry. By completeness of the Airy functions,

W) _ [ Ait) Ailn — ) =
- /R dpe Ai(e) Aip — ) = 5(0). (4.73)
Then using[(4.70) andi (4]71) we obtain the result. H

Remark that the GOE kernel in ]40] differs slightly from thesomritten here, but they
are equivalent in the sense that they give the same coaelffatinctions.

For the residual terms the limit does not exist, but existh@even/odd positions. In
particular

: -1 [~ :
lim Z Jofieti/spom (2T) = —/O dNAI(E+ ). (4.74)

T—o00 2
m>1
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4.6 Proof of Theorem#:1l

In this section we first prove the weak convergence of the eeggaled point process of
n?™ to n®°F in the T — oo limit. Secondly, using the equivalence of the point process
2™ and¢flat, we prove Theorern 4.1.

Theorem 4.10.Let us define the rescaled point process

" () =D f((w = 2) /T G™ () (4.75)

<Y/

with T = /20T = 2T and f a smooth test function of compact support. In the limit
T — oo it converges weakly to the GOE point process, i.e., foralt N, andf,..., f,
smooth test functions of compact support,

lim ET(Hnsym ‘ ) = E(lﬁnGOEUk)) (4.76)

where the GOE kernel is given(in 3]61.

Proof. Let f1,.. ., f,, be smooth test functions of compact support ﬁmd) = fi((x —
2T)/T*/3), then

1 . .
= T3 Z fi(@1) - fo(@m) PEL(2s, 25)]i j=1,...m 4.77)
T T ,enny T EZL
T3 0 _ 5
whereX = ( 01 ) andL(z,y) = (XKX")(z,y),i.e.,Li1(z,y) = T2/3K171(9:,y),

Li(z,y) = T'PK(x,y), for k = (1,2),(2,1), and Ly s(x,y) = Kaa(z,y). Moreover,
we define the edge scaling for the kernel elements as

L% (&1, &) = Le([2T + & T, [2T + &T?)). (4.78)

In what follows we denote by; = (z; — 2T)/T"/3. To simplify the notations we consider
T € N, butthe same proof can be carried out without this conditieplacing for example
Z)TY3 by (Z — 2T)/T"? in @79). Then

ET(Hnsym k) Tm/3 Z fl fl fm(grn) Pf{Ledge@zagJ)]u 1., (4-79)

€1, km€LJT/3
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Let us denote’ = [¢,7/3]/T"/3 the “integer” discretization of;. Then

ET(H”S”“ 0) = [ déseeedgn el n(€h) PHLE €L, st

Using the definition in[(4.33) we have
L (61, &) = Grif (61, &) + B (6, &), (4.81)

therefore [[4.80) consists in one term with ordlfﬁie plus other terms which contain at
least oneR; .

First consider the contribution where or@ége occur. LetM; > 0 be the smallest
number such thaf;(z) = 0if |z| > My, forall j = 1,...,m. We bound the product of
the f;’s by

FAGIE < H [ filloo L i—nrs 01,1 (€5) (4.82)

and, in the same way as in Lemfma4.12 but Wﬁﬁ,?ereplaced by?%dge we conclude that
this is uniformly integrable iff". We then apply dominated convergence and take the limit
inside the integral obtaining

lim A&y d&n fi(&]) -+ (€D PIGTE(E], ) ij=1,m

T—o0 Rm™

= [ A6 i) ) PHCG e (489

Next we have to show that whenever soRfége are present their contribution vanish
in the limit T — oo. In (3.80) we have to compute the Pfaffianfof defined by

Ly((n+1)/2,(1+1)/2), nodd!odd
_ ) L dge (n+1)/2,1/2), n odd [ even
Frin) = L%{( /2,(1+1)/2), n evenl odd (4.84)
Le:rgez( /2,1/2), n evenl even

for 1 <n <1< 2m,with L5%(a,b) = L5 (&, &). The Pfaffian off; is given by

Pf(Er) = Z (=) Br(01,02) - Br(Gam-—1,09m)- (4.85)

UESQm
02i—1<02;4

Now we have to check that the product of residual terms doesardain twice the term
(—1)* for the samer. This is implied by Lemm& 4.11.
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Let us decompose the sum in (4.79) ir® sums, depending on yvheth@ffl/?’ is
even or odd. Denot& = [£,7"/3/2]2/T"/3 and¢&? = ([&,TY/3/2]2 + 1) /T3 the “even”
and “odd” discretizations of;. Then

o [ e A€ Ful€) PHLTE 6
sl—{oe}

.....

(4.86)
With this subdivision, each term in the Pfaffian convergeaatuase to a well defined limit.
Moreover all the2™ integrals, mcludmg’}edge’s and/orRe‘ige’s are uniformly bounded in
T. By dominated convergence we can take the limit |nS|de tregynals.

Each time that there is B5%55(&, &), or RS (&;,&), the integral withs; = o and
the one withs; = e only differs by sign, therefore they cancel each other. Baok
that appearsReT‘:%fQ(gi,fj), the part including coming from the-1)* and the one with
(—1)% simplifies in the same way. Finally we consider the secont tie one including
the S and signum function. The sum ef = {o0,e} ands; = {o, e} of the terms with
—S(&T1/3,6,T-1/3) equals minus the ones withsgn((¢; — &;)T~/3). Consequently
all the terms including at least one tinﬂéﬁfe have a contribution which vanishes in the
T — oo limit. O

Lemma 4.11. The following products do not appear in (4.85):

(a)L?,jgeQ (75, )ngi (zr, i), (b) L?Figez (zi,x )LETZ%ez (zk, mj)>
(C)Lergez (i, @ )Lergel (i, 21),  (d)Ly55(ws x5) Lps (24, 2r) (4.87)
(e)Lyis(@i, x) L5 (w5, wy).

Proof. We prove it by reductio ab absurdum. We assume that the pragypear and we
obtain a contradiction. (a) appears if there exist same b andc < d with a, b, d even
andc odd, all different, such that= a/2, j = 0/2, k = (¢ + 1)/2,i = d/2. But this is
not possible sincé # a. (b) appears if there exist some< b andc < d with a, b, d even
andc odd, all different, such that= a/2, j = b/2, k = (¢ + 1)/2, j = d/2. But this is
not possible sincé # b. (c) appears if there exist some< b andc < d with a, b, c even
andd odd, all different, such that= «a/2, j = b/2,i = ¢/2, k = (d 4+ 1)/2. But this is
not possible since # a. (d) appears if there exist some< b andc < d with a, b, c even
andd odd, all different, such that= a/2, j = b/2, j = ¢/2, k = (d + 1)/2. But this is
not possible since # b. (e) appears if there exist some< b andc < d with b, c even and
a,d odd, all different, such that= (a +1)/2,j =b/2, j = ¢/2, k = (d + 1)/2. But this
is not possible since # b. O

Lemma 4.12. There exists a constant > 0 such that
B (103" (1o agoe) ™) < C7eM™2(m)/2 (4.88)

uniformly inT".
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Proof. The m-point correlation functiomp™ (&4, ..., &,,) is a sum of product OK;?I?GS
which contains twice everg,’s, i = 1,...,m, and only inK??,?ethe two argument can be

the same. From Lemnja #.8, for afiy &, € R,

K5 (6,6)] < Cexp(—61/2) exp(—6/2) (4.89)
K7f5(n &) < Coxp(~6/2)
K7si(én &)l < Coxp(=6/2)
K556, &) < C.
For negativet we could replacexp(—¢,/2) by (1 + |&)? where appears, but for our
purpose this is not needed.
All the products inp™(&y, . .., €,,) contain at least onexp(—¢;/2) for eachi. In fact,
this holds if: K555(&1, &) is not multiplied byR 755 (€5, &), K7505 (&, &), Koot (61, 63),
;dzgei(é’z,ﬁg) and if K:‘idf”“;(gl,gg) is not multiplied bng"gﬁ(@,gg) This is already

proven in Lemm& 4.11.
Consequently,

B (" as)") = [ A6 a6 )

(VAN VAN VANR VAN

< (amy( /[_M )cexp(—g/z)dg)mzzmcmeMm/2(2m)m/2 (4.90)

uniformly in 7. The term(2m)™? comes from the fact that the absolute value of a de-
terminant of an x n matrix with entries of absolute value not exceeding bounded by
n"/? (Hadamard bound). Finally resetting the constan®'as/2 the lemma is proved. [J

To prove Theorem 4.1 we use Theorgm #.10, Propodifidn 4Bl ammg4.7]2.

Proof of Theoreni 4. 1.et us denote by, j < 0, the position of thej*" element of¢f&
andz>"™", j < 0, the position of thg™ element of(sym Then defing; » and&>)" by

wj = 2T + &pTP27%8 o™ = 4T + $(2T)Y2. (4.91)

By Propositior[ 413z, — j = 3(2"™ — j), which |mpI|es

__ #Sym J
€j7T — fj,T + (2T)1/3 . (492)
Let f1,..., f,, be test functions of compact support and denoté/lgy> 0 the minimal

value such thaf;(z) = 0if |x| > My, j=1,...,m. Then

113T<1_[77ﬁat ) = ET(Hka & +i/( 2T)1/5)) (4.93)

k=1 <0

1> LA + i/ (21)')).

1eeyim <0 k=1
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We bound thef,’s by their supremum times;_,;, 1, as in (4.8), then

r.h.s. of (£93 |<ET(HZH[ YAl +¢/<2T>1/3>)H||fj||oo, (4.94)

7=1 <0

and, sincel |y, a1 (§7 + i/ (2T)Y3) < L_pgy 00 (67 + 1/ (2T)3) < Tag; 00 (6,
it follows that

th.s. of (L3 |<ET(Hnsym sty [T 1l (4.95)
j=1

which is uniformly bounded if" from LemmdﬂZ Therefore by Fubini’s theorem,

IET(Hnﬂat ) Z lET<ka (€™ 4+ ir( 2T)1/3)>. (4.96)

Moreover, fi (€7 + in/(2T)3) = fu(&7) + fi(&ir)in/(2T)'3 for somed;, 1 €
&7 + i /(2T)1/3 &7 Therefore [4.96) equals

Z ET(ka Zf’?) ET(Hn fk) (4.97)

plus2™ — 1 terms which contains somg(&;, )i/ (27)"/3. Finally we have to show that
these terms vanish &5 — oo. First we bound the}'s and thef,’s by || ||« and|| f||o
times1_y, v, - Therefore each of the™ — 1 terms is bounded by a

T\J|/3H”fk||°0H||fk||oo Z 1_[|Z/l~c|]ET(1_[11 [—M;,00) sz> (4.98)

kel keJ 11,eim <0 kEJ

wherel and.J are subset of1,...,m} with TUJ = {1,...,m} and.J is non-empty. Let
Jo = min{iy, ..., 4, }, then

ET(Hn 9 (E25)) = Br (Lo, 0 €17

= Pr (&fﬁ > Mf) < Pr (n?m<ﬂ[—Mf,oo)) > jo) (4.99)
< ET(|"7;¥m(]1[—Mf,oo))|3m> _ O(CHmeMssm/2(3m)smi2)
- [jof*™ N ITi L ? ’
since|jo| > |ix] for all £ + 1,...,m. From (4.9P) it follows that[(4.98) is uniformly
bounded inT" and vanishes a$ — oo. We have then proved that, for afl, ..., f..

smooth test functions of compact support,

lim ET(Hnﬂat fi ) = lim ET(Hnsym 3 ) - ]E(ﬁnGOE(fk)>, (4.100)
k=1

the last equality being Theorem 4].10.
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4.A  Appendices

4.A.1 Bounds on the inverse ofd

Let us denote the finite matris by Ay and its inverse byl . FortheN = oo case we use
the notationsd andA~"'. Letus denotd = {—2N +1,...,0}andL = {—N +1,...,0}.

Using (4.3p) we have

Tk i Tl_‘ . 1 o
Al <14 = ZZ =1+ ¢ (4.101)
k‘>2 l>] _Z l_]) 2

To obtain some properties af !, we first estimatée*f’a-lP_e*T"‘l]m.

Farp T 1) (D)
Ta_lpi Tan i = ( 4,102
P DN (=[N (=] (102
max{%,j }<k<0
Tﬂ(_:f)li—jl Z T%(_T)lz‘—j\
AU Gt e R [}
Tﬂ(_f)li—j\
= (=1)i ]\[Il |<2T) Z Y]
{>—max{i,j} l<l + |Z B ‘7’)

wherel} is the modified Bessel functiohof orderk. From (4.I0R) andl + |i — j|)! >
I")i — j|! follows

[li—il [li—il .
- T T of

[l P i) < o@T) gy < e (4.103)
which implies
Tli—il . - .
45| < 2™ < a@)err O, (4.104)
i —j

for some constants, p, > 0.
The remainder sum iff (4.7002) is exponentially smal-imax{s, j}. In fact, forn =

- HlaX{'i, ]}’
HeiTa_l P,eiTal]i,j — (—1)|i7j|[|i—j\(2f)|

Fli—il el ol i
L I Iy(2T)e (4.105)
i — gt ()2 = i — !

I>n

for some constani;, > 0. Thus, for all(¢, j) such thaimax{i, j} < —N/2,

‘A P — lim A7 | € co(T)e mN/2 (4.106)

m—00
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for some constant, > 0, that is, in this regioMA~! is exponentially close to a Toepliz
matrix.

Forj € L, using [4.101) and (4.1p4), we obtain

[AvAT =15 = ) AuA) < cs(T)e =N (4.107)

I<—2N

with ¢3 > 0 a constant.

4.A.2 Some bounds and relation on Bessel functions
Lemma4.13.For N > 0,

’T1/3J[2T+NT1/3](2T)‘ < exp(—N/2)O(1) (4.108)

uniformly inT" > T for some constarif,.
For N < 0 it follows from a result of Landay[3$7], se€ (4.134), that

T3 Ty s (2T)] < C (4.109)
uniformly in’T" for a constantC' > 0.

Proof. To obtain the bound we use 9.3.35gf [1], i.e., fog [0, 1],

1/4 i n2/3 i/ n2/3
Ju(nz) = (1 £2> [%(1 +O(n2) + %0(1)] (4.110)
where o 23
C(z) = (3/2) [m(l + V1= 2%) —In(z) — V1 22} . (4.111)

Inour casep = 2T+ NT'/? andz = (14¢)~' withe = JNT~%3 > 0. This implies that

z € [0,1]. In this interval the functior((z) is positive and decreasing. The prefactor is
estimated using((z(¢))(1 — z(e)?)7'27%% < 1 + e for all e > 0. Moreover, forz > 0,
Ai(z) < Ai(xz/2) and| Ai'(x)| < Ai(z/2). Therefore

T3 Ty s (2T)] < (14 22) 74 Ai(n?3¢/2) (1 + O(T /%)) (4.112)

where we also use®T")'/* < n'/3. Next we bound[(4.1]2) separately fdr < 17%/3
andN > 17%/3,

Case 10 < N < 1723 In this case < 1 and, fore € [0,1/3], {(z(¢)) > ¢ holds.
Replacingn by 27" in the Airy function we have an upper bound since it is a desinga
function, consequently

T3 T s (2T)] < 2A1(N27%) (1 4+ O(T3)). (4.113)
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Finally it is easy to verify tha? Ai(N2~%/3) < exp(—N/2), and obtain the bound of the
lemma.

Case 2)N > 17%3. In this case > 1 andz(¢) < 1. In this interval((z) > 1(In(8¢))*/?
from which follows

T3 Ty s (2T)| < (NT723)V4 AL (L(nIn(ANT?#))*#) O(1).  (4.114)

Forz > 0, Ai(z) < exp(—22*?), andN > 17?3 implies N = 4NT-2/3 > 2. Conse-
quently,

T g g @T)]| < KV exp(—aT(1+ N/8)0(1)
< exp(—eT) exp(—2¢,TN)NY*O(1) (4.115)

with ¢; = In(2)/3, ¢ = ¢1/16. ForT > 10 andN > 2, NV4exp(—c,TN) < 1, and
exp(—cTN) < exp(—N/2) for T large enough. These two last inequalities imply

\T1/3J[2T+NT1/3](2T)| <exp(—c1T) exp(—N/2)O(1) (4.116)
for T" large enough, and the lemma is proved. O

Lemma4.14.For all N > 0,
Dry = |T2/3(J[2T+NT1/3+1](2T) - J[2T+NT1/3](2T))’ <exp(—N/2)0(1) (4.117)

uniformly inT > T, for some constarit;.
For N <0, there is a constant’ > 0 such that

Dy n < C(1+|NJ) (4.118)
uniformly inT > 1.

Proof. First we considerN > 0. Let N/ = N + T3, then we have to subtract
Jiorsnr1/3(21) 10 Jigpy pogass (277). In term ofe = LNT~?/3 the difference is/(2T).
Let us define

4¢(2(¢)

1/4
C"(g):(l——z@e)?) (L4+2)75 ple) = (1+2)2%(()),  (4.119)

and

1) = g AT (4.120)

With these notations,

Torerin(21) = )+ ot Al2T)p(e)0(T )

" (2qT(§3/3 AT((2T)*Pp(e)O(T ), (4.121)
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Now we boundDr y as follows.

Case 1) Let us conside¥ € [0,37%%]. The second and the third terms are simply
bounded by their absolute value. Then

Denl < TP|f(e+ 50) — 1(6)

2/3 Q) oy B
I max o AT p@IOT ) @122)

T2/3 4@) | Aoy T3,
+ xe{;ral-%i(/w} (2T)1/3| FET) p()]|O )

The first term is bounded by

1 1

2/3 N 2/3 / _
TP\t o) — O < TR swp 7@ (4.123)
where
i 2/3
@) < i@ PPNy )] AT @)@, (@4124)

(2T)173

We are considering the case &f € [0, $7%/%], which corresponds te € [0,1/4]. The
functionsg, ¢/, andq - p’ behave modestly in this interval. They satisfy

q(x) € [1.22,1.26], |¢'(x)| € [0.14,0.17], |q(z)p'(z)| € [1.3,1.6] (4.125)

for x € [0,1/4]. The Airy function and its derivative are bounded as in LenffiEs.
Therefore
|Drn| < exp(—N/2)(1+ O(T~%3)). (4.126)

Case 2) Let us considéf > 17%/3. This case is simpler. We apply {4:116) and obtain the
bound

|[Drv| < T2 exp(—eiT) exp(—N/2)O(1) < exp(—N/2)O(1) (4.127)

for T' large enough.
Secondly we conside¥ < 0. For|N| > T'/3, using [4.134) we obtain

|Drn| < esTH3 < 3| N (4.128)

for some constant; > 0. Next we considefN| < T'/3. SinceN is negative; > 1 and
(#.110) holds with((z) given by [1]

2/3

C(z) = —(3/2)%3 [\/ 22 — 1 —arccos(1/z)| . (4.129)
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Recall that: = (1 + ¢)~' ande = LNT2/3. |e| < 1T'/3 is very close to zero. The

estimate follows the same outline as for the case 1) foripesk. TakeT > 1, then
1

e €[—35,0]and

g(e) € [1.25,1.37], |¢(e)] € [0.16,0.25), |q(e)p'(c)] € [1.5,3.1]. (4.130)

The difference is that now the Airy function in not rapidlyadeasing sincey(c) < 0
and its derivative is even increasing. We use some simplaed®y Ai(z)| < 1 and
| Al (z)| <1+ |z| for all z, with the result

|Drn| < ea(1+ N1+ O(T%3)) (4.131)

for a constant, > 0. ]

Some relations involving Bessel functions

Here we give some relation on Bessel functipgn [1] which arelusdehe work. Bessel
functionsJ, are defined via the generating function by

exp (3z2(t —1/t)) = Y t*J(2), (t#0). (4.132)

keZ

Then
1. forn € N, J_,(2) = (—=1)"J.(2),
2. Jo(2) + 230 Ja(2) = 1,
3. J§(2) 422 sy Ji(2) =
4. forn > 1, 52 (~ 1) J(2) Joni(2) + 2555 Ju(2) Fann(2) = 0.

Moreover the limit
lim 7"/ J[2T+£T1/3](2T) Ai(€) (4.133)

T—o0

holds. A useful result of Landa(i [67] is the following:

| Jo(x)] < clz|7Y3, ¢=0.785...foralln € Z. (4.134)






Chapter 5

Analysis of the 3D Ising corner line
ensemble

This chapter is devoted to our results on the 3D-Ising cdBir Our main and new result
is that the line bordering a flat facet and the rounded paim ihye thermodynamic limit,

described by an Airy process. The precise statement of tlre nesult is explained in the
next section. The other results are precisely stated indhregponding sections.

5.1 Formulation of the main result

The line ensemble explained in Sect[on 2.3 can be thougld wbald lines of “fermions”
is discrete spacej, € 7, and discrete timel € 7. It is then natural to introduce the
(extended) point process of occupation variablgg,t), by

... | 1 ifthereisaline passing &j,?),
n(;t) = { 0 otherwise. (5.1)

As explained in Sectiop 5.2, is an extended determinantal point process. In the thermo-
dynamic limit,q = 1 — 1/T — 1, we focus at two different regions of the crystal corner.
In Sectio 51 we focus in the rounded part of the 3D-Isingnegrwhich corresponds to
the bulk of the line ensemble, i.e., where the density ofliseaway both fron and1. In
this case the kernel of the point proceds an extension of the sine kernel in the— oo
limit.

Secondly we focus at the edge, where the density of lineskasi This is discussed
in Section[55 where we prove that, properly rescaled, theekef , converges to the
extended Airy kernel. In Sectidn 2.B.3 we denotedpft) = h(0, ) the line bordering
the2 — 3 facet and the rounded piece, and by

beo(r) = lim T ([rT]) = —2(1 — e 7/?) (5.2)
its limit shape. Then we defined the edge scaling;oby (£.69), i.e.,
Ar(s) = T—1/3{bT([TT + ST]) = (boo (7)T + by (1) ST + L1 (r)$2T/3) } (5.3)
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The convergence oﬁdge to the extended Airy point process implies that the bordep st

statistics, properly scaled as- converges to the Airy process. The result is also used in
our discussion on the universality of the border step fluaina, see Sectidn 2.3.4.

Theorem 5.1. Let Ar(s) be the border step rescaled as |n {5.3) and&&) be the Airy
process. Then for any., s;,a; € R,i=1,...,m, the limit

lim PT(Q{AT@-) <a}) - P(é{msmm <all) 64

T—o00

with x = /20" (7) holds.

With Theoren{5]1 we prove that the stochastic progess Ar(s) converges, ag —
o0, to s — K. A(sk/2) in the sense of finite dimensional distributions. Probatidally,
it would be natural to lift this theorem to the weak convergeof path measures. The
missing piece is the tightness for the sequence of stochasicessd(s). We have not
attempted to fill this gap. The interested reader is refeiwdd{], where tightness for the
edge scaling of the Aztec diamond is proved.
Theoren5]1 will be proven in Sectipn p.6. This chapter enitls an appendix on fermi-
onic correlations which are applied to show thais an extended determinantal point
process.

5.2 Extended determinantal point process

5.2.1 Fermions

The basic tool is the transfer matrix fromto ¢t + 1, ¢t € Z. A fermion is created
(resp. annihilated) at the positigne Z by the operator; (resp.a;). The CAR alge-
bra{a},a;,j € 7} overZ is defined by the anticommutation relations

{ai,a;} =0, {af,aj} =0, {ai,a;} =0, (5.5)

fori, j € 7. First we consider < —1, in which case only up-steps can occur. To each unit
up-step at time we assign the weight; = ¢/*+'/2/ which satisfy [3:172). The rule is that
in a jJump from: to j, 7 > 4, one creates additional particles at sitesvithi +1 < m < j
and annihilates particles at siteswith : < m < j — 1. E.g. if a fermionic world line
jumps from—1 to 3, one creates particles at positidng, 2, 3, and annihilates the particles
at—1,0, 1, 2. This rule ensures the non-crossing constraint (3.1 10esif two fermionic
world lines would intersect, a fermion is created twice & $hhme position, which leads
to a zero contribution. The corresponding rule applielsto0 with the difference that the
jumps are downwards only.
Let us define the operators
b= ap, . (5.6)

kez
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The transfer matrix fromto ¢ + 1 is a sum of thex-step transitiong’, as

Ttt+1)=14+¢T+¢@To+...+ ¢ To+ ..., (5.7)
where 1)
T, = o Z hy e Qe Qg g - - Oy - (5.8)
By ko

The(—1)" prefactor results from the left ordering of thganda}’s.
We would like to reexpress, in terms of products of thg’s only. Forn,m > 0 the
commutators are

bnay, = apby, + agp,, bpap = apby, — ap—p, [bn,bn] =0, [b_p,b_n] =0. (5.9)

These relations lead to

d;
T.= > H( ) % (5.10)

di,..., dpn>1 j=1
d1+2da+...=n

The Schur polynomial$p, (y) }x=o are polynomials such that
P (Ztkyk) =Y W, y=u,1, .., (5.11)
k>1 >0

and given explicitly by

! Ij
ny)= > H? (5.12)

Z1,ry 21 g=1

xr1+2x0+...=1

Comparing with [[5.7]1) yields

T(t,t+1 Z%ﬂ—exp(th > (5.13)

>0 k>1

We conclude that the transfer matrix is given by

~ b

T(t,t+1) = Rli1/21 2k 5.14

(t,t+1) =exp (Z q - (5.14)

k>1
fort e 7Z_ ={-1,-2,...}, and, by the same reasoning,
~ b_y
T(t,t+1) = ex k<t+1/2>—) 5.15
( ) = exp (;q - (5.15)

forteZ,.
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~

T(t,t + 1) is quadratic in the fermion operators. Hence it is the secprathtization
of a one-particle operator acting 6f. For easier reading second quantization is merely
indicated by a “”, i.e., for A acting of/, we setA = I'(A) as its second quantization.

From (5.14), [5.15) we read off

qk\t+1/2\
T(t,t+1) =exp (Z ’ ak> (5.16)
k>1
fort € Z_,and
k(t+1/2)
T(t,t+1) =exp (Z ’ oz_k> (5.17)
E>1
for t € 7., with matrices, defined through
1 i =k,
[agi; = { 0 otherwise. (5.18)

T(t,t + 1) are invertible with thé,-norms

[t+1/2]
el < e (1)
» g1/
[Tt t+1)7 < exp (W) (5.19)

For the state at = +oo all sites inZ_ U {0} are filled, those itZ.. \ {0} are empty,
which, together with the transfer matricgs (5.1f), (b.1&edmines the Green’s functions
of an imaginary time (Euclidean) Fermi field. It is inhomogens in space-time and
uniquely given through the two-point functidn;(¢)a;(¢')). To compute it correctly one
has to employ the standard finite volume approximation. Vét festrict all world lines
to lie in the spatial interval— M, M|. Thereby the transfer matrix depends &hin the
sense that all creation and annihilation operators witexnd| > M are set equal to zero.
The state at-oo is (1,...,1,0,...,0)" which is2M + 1 long with the lastl at site0. The
projector on this state is approximated through

exp|BNu] (5.20)

in the limit 8 — oo with Ny, = 320__ aza, — XM | aja,. We first compute the equal
time Green'’s function through

(a;(to)a;(to))r = (5.21)

L to—1
1 - . .
= lim lim lim Tr (eBNM HtTM(t, t+1)aja; Ht Tt t+ 1)),

M—o00 L—o00 3—00
h B.M,L t=to t=—L

where the trace is over the antisymmetric Fock sp#Cewith one-particle space
(o([—-M, ..., M]). The products are time-ordered increasingly from righefg Wwhich is



5.2 Extended determinantal point process 101

indicated by the superscripat the product symbdl]. Z; 5 1, is the normalizing partition
function, which is defined through the same trace with; replaced byl. As explained

in Appendix[5.A.L, [[5.91) can be expressed in terms of omégh@operators as the limit
M, L, — oo of

to—1 L —1q-1
(az (to)a;(to)) 0L = []1 + ( [T Zut t+ 0P T Tt + 1)) ] . (5.22)
t=—L t=tg Jst
Let P, + P_ = 1in ¢, with P, the projection ont&., \ {0} and let
[e’e] to—1
eronllo) = TTT(t,t +1), %) = TT T(t,t+1 (5.23)
t=to t=—00
and
mm 0 to e’}
it = ] T(t t+1), @ = T[ T(tt+1). (5.24)
t=—o00 t=max(0,t0)

By (B-19) the infinite products are well-defined, as are theieises. Th&'(t,t + 1)’s
commute and no time-ordering is required. Hence

min(0,tp)— T\t+1/2|
q
Gilto) = ) Z = _ m(to)on,
t=—o0 r>1 r>1
o qr(t+1/2)
Gl(to) = Z Z r Oy = Z Vr(tﬂ)a—r (525)
t=max(0,tp) r=1 r>1
with /2~ min(0,to) /2, max(0,0)
qr q—rmm o qr qrmax o
) =194 )= (5.26)
(o) r(l—q) (o r(1—q)

In (6.22) we take limits as indicated ip (5]21). Then
(a;-‘(tg)aj (to))7 = [eGIeﬁ(tO)P_(P_eGright(tO)eGleft(tO)P_ + P+>_1P_6Gright(t0)]ji‘ (5.27)

Let
-1 o)
= ][] Tt.t+1), S =][Tt+1). (5.28)
t=—00 t=0
TheneCrian(to) o Getlto) — G+eG- — G-¢G+ and, decomposing = P_l,® P, (,, we have
¢ |a o G, | ad ¢
e _{cb}’ e _[Ob’ . (5.29)
Thus

(aa")™t

P_(P. Cright(to) Grett(to) p p+)*1p7 — [ 0

o O
1

(5.30)
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and, since
—1 n—1 N—1,./(p\—1
G a 0 ¢, _ | (@)™ —(a)7 )

€ - |: _b—lca—l b—l :| ) € - [ 0 (b/ —1 ) (531)

we obtain
e 9t P_e 9 = P_(P_¢Crmto)Cenlt) p L p y=1p_ (5.32)

Therefore
<az_k (to)aj (t0>>T _ [eG'eﬂ(t0)67G+P7€’G— eGright(tO)]ji ’ (5.33)

which rewrites as

{aj(to)a;(to))r = [eGT(to)—Gi(to)P_e—(GT(to)—Gl(to))]ji ) (5.34)

The Fermi field depends dfithroughg = 1 — 1/T'. For this reason we keep the ind€x
Using the anticommutation relatior{s {5.5) jn ($.21) we indiagely obtain

{a(to)a; (to))r = [QGT(to)*GL(to)PJre*(GT(to)*Gl(to))} o (5.35)

]7Z

Thus our final result for the equal time correlations reads

* G -G -G G
(a; (to)aj(to))r = Y [eF10=CLb)]  [e=Grlo)tCilio)]
<0

(a;(to)al(to))r = Z[eGT(to)*Gi(to)Ll[e*GT(toHGL(to)Li' (5.36)

>0

To extend [5.36) to unequal times we have to go through the dianit procedure as
before. Since the argument is in essence unchanged, theseneed to repeat. We define
the propagator from to b, a < b, through

b-1
oGlab) _ HT(t,t +1), e =1, 0ba) = ~Clab) (5.37)

t=a

Using the identity
G—G(O,to)ameG(O,to) — Z [eG(O,to)}
keZ

m,k
for t > ¢/, the full two-point function is given by

(a5 (B)ag () = Y [¢HO-GOREOD]
1<0

(N (4 _ G1(0)—G, (0)+G(0,t) —G1(0)+G | (0)~G(0,¢))
<aj(t)aj,(t N7 [6 } ‘l[e }
]7
>0

[e—GT(O)JrGL(O)—G(Uat)} 7

j/’l l?]

(5.39)

Li"”
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5.2.2 Correlation functions

Moments of the random fieldl(j, ¢) introduced above can be expressed through fermionic
correlations. We consider first equal time correlationse Basic identity is

E(ipmw):<§@ﬂmwﬁ, (5.40)

T

whereE is the expectation with respect to the normalized welgB@®). If {ji, ..., j.}
are distinct, then, as explained in Appenflix 5]A.2, the fenit expectation is determi-
nantal and

Er ( H N t)) = Det(Rr(jk, ; Ji, 1) )1<k1<n, (5.41)
k=1
with

Ry(i,t; 5, t) = {a; (t)a; (1)) 7. (5.42)

If coinciding arguments are admitted, th¢n (.41) stilldsolvith the convention

L (af(t)a;(t))r fori < j,
; = : . A4

Rrtid) = { (e 6, = —wowy sy O

(5.40) is easily extended to unequal time correlations usetonsider disjoint space-
time points(ji, t1), . . ., (jn, t,) Ordered increasingly as < t, < ... < t,. Then the basic
identity is

Er ( H n(Jk; tk)) = (aj (tn)a;, (tn) - aj (t1)ag (t))r- (5.44)
k=1
Using (5.3B) the left hand side equals
Z H [e‘G(O’tQ)]quq [eG(O’tq)Lqu(aznaln S ay, A )7 (5.45)
k1yeokn g=1
I1yeyln
Let us set (B )y /
N a;taj/t T fort >t
Re(3,65,8) = { ~ayp (a3 (8)) 5 for t < v (5.46)

Then the unequal time correlations are given by

Er ( 117G, tk)) = Det(Rr(Jk tis Jis 1) )1<hi<n- (5.47)
k=1

The identity (5.4]7) has been derived from left to right. Ora cead it also from right
to left. ThenRr is the defining kernel, resp. Green'’s function, which is cd&®d to be
given and [5.47) defines the moments of some determinarsteésiime random field over
7 x 7.. Of course Ry cannot be chosen arbitrarily, since the right hand side.dffjamust
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be moments of a probability measure. For determinantalamanfields over the space
coordinate only, compare with (5]41), proper conditiongredefining kernel have been
studied in detail[[91[ 90]. The space-time variant is les§ wederstood, seq [46] for a
discussion.

The determinantal property is preserved under limits. Tihwsugh bulk and edge
scaling further determinantal space-time random fieldsbgilencountered below. One of
them is ovelZ x Z with equal-time given through the sine-kernel. The othewvsrZ x R
with equal-time given through the Airy kernel.

5.3 Limit shape

On the macroscopic scale, in the linfit— oo, the random field(j, ¢) becomes deter-
ministic with a profile given by

1 for ¢ <b_(7),
p(¢,7) =< Larccos (cosh(r/2) — e <HI/2/2)  for b (7) < ( < buo(T), (5.48)
0 for (> by(7),
with
b (1) = —2In(1 + e 12), boo(r) = —2In(1 — e 17V/2), (5.49)

More precisely, for all continuous test functiofis R? — R with compact support
Tim Z FGIT.TG8) = [ dcdrp(¢m) (¢ (5.50)

almost surely. [(5.50) assumes more spatial averaging tbaded. In fact, it suffices to
choose a test function whose support on the scale of thedativerges a3’ — oo and to
properly normalize.

As a consequence df (5]50) the linfit (3.65) holtls, can be read off fron{ (5.48) and
is given in parametric form through

_J o for (u,v) € R \ D,
o) = Y e+l o o) <, (551
wherer = v — v and wheré& (u, v) is the unique solutiog of the equation
1 C ! /
§<u+v—|f|>=/( (1 p(¢ A — ¢ (5.52)

in the interval[b__(7), bs(7)]. While the limit (5.50) has been established by Okounkov
and Reshetikhin[§9], compare also with Secfion 5.4, thetexee of the limit shape has
been proved before by Cerf and Keny$n|[20]. Insteadl of {2164}, used the fixed volume
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constraintl/ (h) = 2¢r(3)T3, resp.V (k) < 2(r(3)T?, with (g the Riemann zeta function.
They write the limit shapé), as a set olR?, in the parametric representation

So =1{2(f(a,b,¢) —Ina, f(a,b,c) —Inb, f(a,b,c) —Inc)|a,b,c> 0} (5.53)

1 2m 2m ) )
fla,b,¢) = — / du/ dvIn(a + be™ + ce™). (5.54)
A2 Jo 0

Herea, b, c denote the weights for the three orientations of the lozemgel f (a, b, ¢) is
the corresponding free energy per unit area for the lozalgg of the plane. As expected
from the equivalence of ensembles, the shapes givelh by)(&rill (5.58) are identical.
This can be seen as follows. Let= (z1, 22, 23) represent a point on the limit shape.
We comparez; — z; andzz — z; (resp.z3 — z3) for zo > 2z, (resp.z; < z) for the
parametrizationg (5.51) and (5.53). Thisleadste 1,b = e /2, c = e~%/2 for 2z, > z
andtob = 1,a = e I"/2, ¢ = e=/2 for 2, < 2. Since [G.54) is symmetric in, b, ¢, one
verifies that indeed

/ C (1= p(¢,m))d¢ =2f(1, e T2 e7¢/2) + (. (5.55)

2In(1+4e=I71/2)

According to [5.5]1) ima = 0 onR% \ D. Close to the edge the height vanishes with
the power3 /2. E.g. in the directior = v — u one has

2
hma(r, T) =~ 3 cosh(r/4)r121/43/2 (5.56)

with r the distance to the edge. TR power is known as Pokrovsky-Talapov law][75].

A limit shape theorem is a law of large numbers. It is avadaddso for related tiling
models. A famous case is the Aztec diamond [21]. Cohn, LamnsdrPaopp [2R] consider
the 3D-Young diagrams constrained to the baX x SN x yN with «, 5,7 ~ O(1)
and compute the limit shape 85 — oc. In the line-ensemble representation their model
corresponds tg = 1 with the boundary conditions that at= —aN, SN all lattices sites
are occupied except for those in the interMaly N]. [B3] computed the line density and
from it the limit shape. Two or higher order point function® aot studied. From our
representation we see that higher order correlation fonstare determinantal even in this
case. However the computation of the two-point function @ercomplicated, since one
cannot rely any more on an expression like (b.34). For aflfstrther limit shape theorems
we refer to the survey [p1].

The limit shape can be determined through minimizing the@mpate macroscopic
free energy functional. The input is the microscopic swef@nsion at given slopéh. For
example in thé111)-frame the surface tensien,1)(Vh) is given by [5.54), where, b, ¢
are defined through the prescribed surfaceMilt. o1y has been computed i [50, 111,
fl§]. Correspondingly there is a surface tension in(tlig )-frame, denoted by 1) (V).



106 Analysis of the 3D Ising corner line ensemble

To obtain the free energf§ for some macroscopic height profileover a bounded
domainj3, one argues thdt is made up of little planar pieces, each one of them having
the surface tension at the corresponding local slope. Addmyields

F(h) :/Bdudv ooy (Vh(u,v)). (5.57)

In our case we havB = R?, h is decreasing in both variables such thét, v) = 0 for
(u,v) — oo, andV'(h) = [, dudv h(u,v). The minimizer ofF, under these constraints
andV (h) = 2(r(3), is hma from (6.51). Equivalently one could minimiz&(h) + V (h).

Probabilistically,7(h) + V' (h) can be viewed as a large deviation functional in the
sense that in the limil' — oo, with respect to the normalized probabiligy '¢" "),

Pr (T hp([uT], [vT]) ~ h) = O (e—T2<f<h>+V<h>-f<hma>—V<hma>>) (5.58)

for given macroscopic height profile[2Q].

Expanding[(5.38) to quadratic orderdh = h — hn, Yields a heuristic formula for the
covariance of the Gaussian shape fluctuations. In spistdtaéportional tq —9> — 92) !,
hence like a massless Gaussian field. This implies in péaticilnat on the macroscopic
scale shape fluctuations are small, of oraé€r only. Gaussian fluctuations are proved for
the Aztec diamond inJ45] and for domino tilings of a Tempwgale polyomino in [GR].

The limit shape theorenj (548) implies that also the bortkp has a deterministic
limit. We state a result, which is stronger than what coulddbduced from[(5.48) and
which follows by the transfer matrix techniques to be expddiin Sectioi 5]5.

Theorem 5.2. Let by be the border step as defined [n (2.66). Then for &ny0, ¢ > 0,
0 <u_ <uy <ooonehas

lim P (|77 bp([uT]) = boo(u)] > T2/ u_ <u < uy) =0. (5.59)

T—o00

5.4 Bulk scaling, local equilibrium

For local equilibrium we zoom to a poiy, 79)7 with b (10) < (o < bo(70) at average
densityp = p(¢o, 70), Wwhich means to consider the random field

™ (4, t) = n([GT] + 4, [roT] + 1) (5.60)

with (j,t) € 7Z* and| ] denoting the integer part. Properly speaking we should keep
the reference point¢y, 7o) in our notation. Since it is fixed throughout, we suppress it
for simplicity. In the limit7T — oo, n2(j,¢) becomes stationary. Then at fixgdone

has to fill the Fermi states up to the densityvhich implies that;>(j,¢), ¢ fixed, is

a determinantal point process @nas defined through the discrete sine-kernel. Only at
7o = 0, the inhomogeneity of the underlyingfield can still be seen, which, of course, is
an artifact of our coordinate system. In tfiel 1)-projection the liner, = 0 would be just
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like any other local slope with a corresponding stationasgrithution of lozenges. The
casery = 0 can also be treated. For simplicity we omit it and require- 0.
Let us define the kernél(j,¢; j/,t') by

S(y,t;5',t) = sgn(t —t) /I(dk: exp [ik(j' — j) + (' —t)In(1 — e"T‘)‘/Qe_ik)} (5.61)

2’/T t,t/)

for o > 0 and

S(j,t;:7,t) = sgu(t = ') /I(dk‘ exp [ik(j' — j) — (' —t)In(1 — e7I™/2e®)] (5.62)

27T t,tl)
for ry < 0, where

n | [=mp,mpl, ift >,
I(t,t) = { [7p, 2m — mpl, if t < ¥,

andsgn(t —t') = 1,if t > ¢/, andsgn(t — t') = —1, if t < t'. In particular at equal times

S(i,t;j,t) = W) (5.63)

which is the sine-kernelS depends on the reference pofg§, 7o). In the particular case
of equal times the dependence is only through the local tensi

Theorem 5.3.1n the sense of convergence of local distributions we have

Jim (G, t) = 17" (4, 0). (5.64)

For 7, > 0, n°"°(j4,t) is the determinantal space-time random field with definingnéder
(6.61) and forry < 0 the one with the kerne[ (5.62).

Remark: Theorem[5]3 is identical to Theorem 2 §f][69]. We use here tegml rep-
resentation for the defining kern&l which differs somewhat from the one ¢f[69] and
which turns out to be convenient in the context of the edgbkrera

Proof. We consider the casg > 0 only, sincer, < 0 follows by symmetry. Let us set
Br(j,t;5',t") = e/ Ry ([T ) + j, [r0T] + & [GT] + 7, [00T] + '), (5.65)
where Ry is defined in[(5.46) ang(j) = j || T In(l — 1/7)/2. The determinant in

(6.47) does not change under similarity transformatiopairticular not under multiplying
by es(w)=9(w)  Therefore

ET(Hnbmk Tk th > = Det(Br(Jr, t; Ji, ) )1<ki<m (5.66)
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and we need to prove that pointwise
71im Br(j, t;5',t) = S(j,t; 5, t). (5.67)
First considert > t'. Forr, > 0 we takeT large enough so that7 + ¢' > 0 (this
simplifies (5.7R) below). Using (5.47) we obtain

Br(j, t;j',t) = e/W)=90) (5.68)
G (10T)—G | (ToTH+t G| (roT+t")—Gq (10T
X Z[e 1(10T)=G (70 )]§0T+jl[e L (T +t)=G1 (7o )]

<0

LGoT+j""

An explicit expression for the matrix elements of the twoApdunctions can be found
using the translation invariance of the one-particle ojgesa In Fourier representation
they are given by

[exp (Zarar)] = / exp(—ik(n —m)) exp ( > o k) dk  (5.69)

reZ nm TEZ

for 0. € R. Then using[(5.89) and changihgto —{, we have

Br(j,t;5',t) = / e BT ppaht) —ik(CoT+7) ikl
l>0 -
e e RT o= pa(K ') ik (T +5") ik
X 5 dk Pq oT+5") o : (570)
n -
where ,
qT ikr T — —ikr
"<k):(1_‘1)2ﬁ(6k — g/ k) (5.71)
r>1 r q
and /2
Z q 11 —q" rTO/(l—q)e—ikT. (5.72)
- q

To study the asymptotic of mtegrals ds (5.70) we considercttmplexk plane and
regard the integration i (5]70) as being along the realftv@ —7 to 7. Such a line inte-
gral can be deformed to another péathwith the same endpoints. The complex integration
alongC' will be denoted bny dk---. In the particular case when the path is on the real

line, say fromu to b, the integral will be denoted bﬁf dk - --.

Let us consider the following four pathg = —7 — 7, &(p) = —7 +ip — 7 + ip,
& = -1 — —7m+ip,andés = 7+ ip — 7w with 0 < p < 75. The factors in[(5.70) are
integrals along,. Their integration contour can be deformed frégo &; o &; o &5 without
changing the integrals, since the integrands are holonmrptoreover the integrals ofy
and¢s cancel exactly because of periodicity of the integrands.thaesform the integral
in k into the integral alond; (#) and the one irk’ into the integral alond; (0 + ¢), with
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0 <e<landd = —7yT'In(1 — 1/7)/2. 6 is chosen such that the exponentially large
function in7" passes through the critical point@ft’). Consequently we have

9(i") ' /
Br(j,t;5,t") = / dk;’/ dkel@ T iCoT (K ~F)
51(9 51 0+6

w e¥a(kt)—pq(K't") ik /—kj)(l It k)) ) (5.73)

AsT — oo we obtain

o(k) =2y e_TQ sin((k — iro/2)r) + O(L/T). (5.74)

Therefore the terms that increase or decrease expongitidl in (5.73) are£(k) and
—FE(K'), where

6—7"7-0/2

Ek) =2 in((k —i19/2)r) — i(ok. 5.75
() Z 5 sin((k —in/2)r) — iG (5.75)
The critical points off (k) are
e—Co+70/2
+ k. +i10/2, k.= arccos <Cosh(7'0/2) - T) € R. (5.76)

ForIm(k) = 79/2, Re(E(k)) = (o70/2, the analysis oRe(E(k)) for k close to the line
Im(k) = 79/2 shows that, foRe(E(k)) € [—m, —k.]Ulk., ], it decreases when increasing
Im(k) and, forRe(E(k)) € [—k., k], it decreases when decreasing k).

Next we transform the integral into a sum of three terms, thst fivo vanish as
T — oo and the third one gives the final result, see Fidure 5.1. We ffigvk'dk - - - =
[y, dk'dk---+ [ dK'dk---+ [, dk'dk---, where the integrand is the one §f (3.73). Let
us compute the three integrals separately. For the integratong/s, first we integrate
out k taking the residuum dt = £’. Then changing the variable to= k£’ — i6 we obtain

ke
/ AR — / dzePalz i) —py(=Hib ) iz ) (5.77)
I 2m J g,

The asymptotic ofp,(z + i0,t) is

o(z,t) = lin} 0g(z +1i0,t) = —tIn(1 — e ™/2e). (5.78)
qH

The integrals alond; and/, are treated in the same way. Let us estimate, e.g., the one
alongI,. First we integrate ik. The integral| [dk---], [
the two arcs of circle of radiusaround the critical points (see Figyre]5.1), is bounded by
O (e~*"/(£T)) for somea > 0. O (e~*"/T) comes from integrating”®” andO (1/2)
because the minimum ¢k — £’| equalss. The integration through the two arcs around
the critical points is bounded kg (¢*” /(¢T))) for somea’ > 0, because the integrand is
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Im Im
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o - 0 ‘ =" el
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‘ d T ;
;Re < :
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Figure 5.1: Deformation of integration paths. The original integral, aldpgis de-
formed to the sum of integrals alodg, 15, and/s. & is integrated along the dashed lines
andk’ along the solid lines. The full dots are the critical pointsr¢f).

at most of0 (e*<T /£) for somea’ > 0 and the length of the path of integratior(¥1 /7).
We choose therefore= 1/T, so that| [ dk---| < O(1). The integration irk’ gives an

extra-factorO(1/7"), and

lim [ dk'dk---=0. (5.79)
T—o0 I
Summarizing for > ¢/, we have proved that,
1 P AN P S
. R A AN p(z,t—t") Jiz(4'—7)
jll_rgo BT(]7t7] 7t) o \/_pﬂ_ dze € ) (580)

wherep = k./m andy(z,t) as given in[(5.48). In particular far= ¢/, o(z,t — t') = 0,
which implies [5.68). The cage< ¢’ is treated in a similar way, leading to

; ; ; 1 2meem zt—t") iz(5'—j
Th_l[roloBT(],t;j’,t’) = —%/m dze?:1=1) i), (5.81)

Therefore

T—oo

lim ]ET(HTZ%UII(Ukatk)) = Det(S(k, t: 71, 1) )1<ki<m
k=1

- Eb(Hnsme(jk,tk)). (5.82)
k=1
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The proof forry < 0 is identical. [

(6.80), [5.8]1) define a space-time homogeneous Fermi fiblgsi€ally it corresponds
to fermions on the lattic& in their ground state at densityand with kinetic energy

Ekln(k) — ln(l _ e—|7’g\/2—ikzsgn7’g). (583)

Exin i1s complex reflecting that the fermions have a drift.

The moments[(5.82) define a probability measBgeon the lozenge tilings of the
plane, where the relative fraction of their type dependsherréference pointy, 7o). Py
is a Gibbs measure in the sense that its conditional expatsagatisfy the DLR equations.
We refer to [3B] of how DLR equations are adjusted in the caraésurface modelsPy, is
translation invariant with a definite fraction of each tygdozenges P, is even spatially
mixing, since truncated correlations decay to zero. Ondavexpect tha,, is the unique
Gibbs measure with these properties. A proof would reqhiat the same limit measure
P, is obtained when other boundary conditions are imposedxed fiozenge chemical
potentials. To our knowledge, only for the surface modedigtiin [33] such a uniqueness
property has been established.

5.5 Edge scaling

For the edge scaling one zooms at a macroscopic point lyiagtixon the border of the
facet, i.e., at(y, 70)T with (o = b (70). For simplicity we set, > 0. 7, < 0 follows by
symmetry. Since at the edge the step density is zero, on@l@mnsider a scale coarser
than the one for the bulk scaling in Section] 5.4. From ourystfdthe PNG droplet we
know already that the longitudinal scale7i$/® and the transversal scalelid/?. On that
scale the curvature éf,, cannot be neglected. Therefore the correct referencegaiat

t(s) = [rT + sT%3, (5.84)
§(r,8) = [beo(T0)T + b (70) ST + L0 (70) > T3 + r T3],

Note that(r, s) € R%. The discrete lattice disappears under edge scaling. latlurgviate

a =  byo(rg) = —2In(1 —e /2,
ay = —bo(n) = e™/(1—eTP?), (5.85)
as = W (1) = e /%/2(1 —eT0/%)2,

Then the edge-scaled random field reads
1y (r, s) = TPn([onT — apsT?? + Jags®T3 + 0T [T + sT*?]).  (5.86)

The prefactofl'/? is the volume element forT/3. Properly speaking we should keep the
reference timey. Since it is fixed throughout, we suppress it in our notation.

SinceneTdge is determinantal, so must be its limit. For the PNG dropledamedge
scaling the limit is the Airy random field and, by universglin our model the steps close
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to the facet edge should have the same statistics in thedimit oco. The Airy field is
determinantal in space-time with Green’s function

KA (1 g0/ 6) = sgn(s’ — s) / AN O (s — )M Ai(r — X) Ai(r’ — \), (5.87)
R

where the step functiofi(s) = 0, if s < 0, andf(s) = 1, if s > 0. The Airy field is
stationary in time. In particular, the equal time correlati are given through the Airy
kernel

0
KAY (50 5) = / dAAi(r — X)) Ai(r' — N) (5.88)

= L (Ai) TG — AL AT().

r—r!

Theorem 5.4. Under edge scaling[(5.86) the correlation functions have fibllowing

limit,
Tim ET(gn;dgem,sk)) = E(H (w7t (%,gsk))) (5.89)

k=1

uniformly forr; in a bounded set. Here = {/2b” (7). In particular for the process
nE(f,s) = [daf(z)n;®(z,s), smeared over continuous test functighs R — R
with compact support, one has

T—o0

im 075°(f,5) = [ o) (o, 5w 2) (5.90)
in the sense of the convergence of joint finite-dimensioisatiloutions.

To prove Theorenp 5.4 one only has to establish that under scijng [5.46) con-
verges to[(5.87). We define the rescaled ketnel[5.46) as

6_9(7"75)

Kr(r,s;0',s") = T Rr(j(r,s),t(s);4 (', ), 4(s) (5.91)

=905

whereg(r,s) = —j(r,s)(roT In(1 — 1/T)/2 + sT*?In(1 — 1/T)/2) and R (j, t; 7', ')
from (5.46).

Proposition 5.5. The edge-scaled kerngl (5]91) converges to the Airy kernel

/
lim Kp(r,s;r',s') = kT KMY (Z Fe. L Es’) (5.92)

y oS, )
T—o0 K 2 K 2

uniformly forr, 7" in bounded sets.
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Granted Proposition §.5 we establish Theoferh 5.4.
Proof of Theorenh 5l4zrom (5.47) and[(5.86) it follows that

ET(Hn;dge(rk, sk)> Det (T3 Ry (j (re, si), t(sk); (11, 1), t(sl)))1gk,lgm‘ (5.93)

k=1

This determinant does not change when multiplied by thefact!("#)+9(".s) and there-
fore

ET(H” dge (e, sk ) = Det(Kr(rk, sk; 71, 51))1<ki<m- (5.94)

Note thaty(r, s) diverges a§" — oc. On the other hand

E <71 A1ry<r_kﬁ )) :Dt(flKAiry(r—kE 77"[ E >> )
(H R H’st e K 28k QSZ 1<k,I<m

) (5.95)
Theoren{54 thus follows fronj (5]92).

We turn to the proof of Propositidn 5.5. As bounded set we figulghout a centered
box B c R¢, where the dimensio depends on the context.

Proof of Propositiorf 5]5Let us first consides, > s;. By definition of K7(ra, 59571, 51),
(6-39), (5.6P), and(5.46), we have

e—9(ri,s1)

Kr(re, s9;71,81) = T3 x
T( 29925711, 1) e —g(r2,52)
x E o / dke =% (r1:51) ikl 3251 (Hne™™ —vpe™*m) 55, 5 ppe”tn (5.96)
n
<0
1 i 1l 10 ik —ik! 2 —ik!
1 ik"j(r2,82) ,—ik'l — >, pne't M—vpeT ) 5 i pne i
—Tr

wherep, = ¢"2/n(1 — ¢%), vp = png™™%, andygt = v,(1 — ¢*7*"). As in Sectiof G}
we regard the integrals ifi (5]96) as complex line integrats @se the notation explained
below (5.72).

The integrands in[(5.96) are holomorphic away fréine C|Re(k) = 0, |Im(k —
iT0/2)| > 10/2} and the straight path from~ to 7 can be deformed provided no singu-
larities are touched. In our choice the deformed path haethktraight lines, the first one
from —x to —7 +i5;(T"), the second one from~ +i3;(T) to m +i3;(T"), and the last one
from 7 + i5;(T) to = with 3; € (0, 7,), see Figur¢ 5]2. To be precise, the path along the
real line touches dt = 0 the starting point of a branch cut of the term in the exporménti
but still the integral remains unchanged by the above dedtion. Since the integrands
are2r-periodic along the real axis, the first and the last integtahcels exactlys, (7') is
determined such that the terms in the exponential are pumglginary. We obtain

Bi(T) = —% (s;T**In(1 - 1/T) + 7T In(1 — 1/T)), i=1,2. (5.97)
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Im
7o
S =

Figure 5.2: Deformation of the integration path. The original integral, frem to =, is
deformed along the integral on the dashed path.

We also definé = LT'/3. Then the summation goes overc 7-'/3(7Z_ U {0}) and

—g(r1,s1) T1/3 _ .
Kr(ra soir, 1) = ———=—— S L(L)LL)E ", (5.98)

e=9(r2,52) 472
LeT—1/3(Z_u{0})

where

and

Ji(L) = / e~ ki(rs) gIRLT? oy {22’ Z L, sin(kn)e_ﬁl(T)"} dk, (5.100)

n>1

j’z(L) — / 6ik,j(r2782)6_ileT1/3 eXp |i . 2Z Z /_j,n Sln(k/n)e—ﬂQ(T)n] dk,

- n>1
Finally definingJ;(L) = T*/3J;(L), we have
Kr(ra,soiry,s) = 3 (4n?T3) lesblamsn(140(T) j (L) Jo(L).  (5.101)
LeT—1/3(Z_u{0})

For the case, < s; the resultis

Kr(rasoims) == 3 (4rT) st o000 0) 1y (1) y(L). - (5.102)
LeT—/3(Z4\{0})

Now we proceed as follows. First we prove thatJas- oo, J;(L) — 2 Ai (“=L)
for L € B, by using the steepest descend curve for the term which snexpially small
in T'. Secondly we consider separately< s; ands, > s;. In the latter case, for largg,
we need the steepest descend curve for the whole integrdmedsaime strategy has been
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used in [3p]. In the case, < s, for large L, the steepest descend curve does not exist
anymore. On the other hand the teermt(*1=52) serves as a convergence factor and we
only need to find bounds for thg(L).

Convergence forL in a bounded set

Let L € B. The integral/;(L) is written as

Ji(L) =T"3 / T (k) iR LT? . (5.103)

where i

(k) = —ikT ™ (ry, 51) + 2 ; ?”e—ﬁm sin(kn). (5.104)
We make a saddle point approximation by using a curve whatsmallk, is very close
to the steepest descend curvea¥:), where

(k) = Tim ((RLTY? + 6y 7 (k))/T (5.105)

and the convergence is uniform for, v, L) € B. For the limit we obtain
(k) = to(k) + 2ikIn (1 — e ™/?) (5.106)

where
e—nTg/Q

(5.107)

Yo(k) =Y 2isin(kn)
n>1
In particulary (k) is holomorphic inC \ {k = z +iy € C|z = 0,|y| > 70/2} and the
whole integrand i@n-periodic along the real axis.

Instead of integrating along the straight path — = we integrate along' = {k =
z+iy,y = — |z| /v/3}, see Figur¢ 5]3. Far small this path is almost at steepest descend.
The real part of)(k) reaches its maximum &t = 0. To evaluate the errors far away
from zero we prove that the real partotk) is strictly decreasing fofz| increasing. By
symmetry we consider only € [0, w]. A simple computation gives

n?

%{Ck) = —(i4+1/V3)In(Q) (5.108)
with izt /V/3-70/2 iz—x//3~70/2
B (1 _ em—i—x —T0 )(1 _ e—z:c—x —T0 )
Q= 1= e (5.109)
and
 cosh(r9/2) — cosh(z/V/3) cos(z)
Re@ = 2 sinh?(y/4) ’
ImQ _sin(z) sinh(z/v/3) ' (5.110)

2sinh? (7, /4)
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Im

‘ }W/G Re

Figure 5.3: Deformation of the integration path. The path fremr to 7 is deformed
into C plus the dashed ones.

Using thatcosh(z/v/3) cos(r) < 1 and is maximal atz = 0, we haveReQ(r) >
ReQ(0) = 1, the inequality being strict if: # 0. ObviouslyIm@ < 0. Therefore
dip(k)

Re (W) = ———1In((ReQ)* + (ImQ)?) + arctan(ImQ/ReQ) <0  (5.111)

for all x € [0,7] and for all7y, € (0,00). The inequality is strict ifz # 0. Since

dRele(k) — Re <%§f)) and by [G.I31)Rew(k) is maximal atk = 0, 1(0) = 0, and is

strictly decreasing fofz| increasing.
Let us fixe, 0 < ¢ < 1, and letC. be the part ofC with x € [—¢,¢]. Then the
contribution at/, (L) coming fromC'\ C. is exponentially small irf".

Lemma 5.6. For some) > 0,

J(L) =0 () + T3 / V1T GIRLT g (5.112)

€

Proof. Let C+ be the part of” with - € [¢, 7] andC- the one withz € [—7, —¢]. For
x > ¢, Reyp(k) < Reyp(0) — 24 < 0 for suitables = 6(¢) > 0. In addition

Uir(k)T + ik LTY? = (k)T + O (L — r)T? + 5, T%%) . (5.113)
Then
‘/ ewl,T(k)TeikLTl/Sdk‘ < e T W%e(Redz(k)—é)TGO((Lr1)T1/3+s1T2/3)dx. (5.114)
o c

For (L, sy, ) € B, the integral on the right side is uniformly bounded andéfene
‘ / o1 (B)T ik LT3 1 ‘ —0 (6—6T) . (5.115)
ct

Similarly for the integral alon@;. O]
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Lemma 5.7. Uniformly for (L, r{, s;) € B, one has

J(L)=0 (") +0 (T + T A (“ — L) (5.116)

K K
for large T, with k = /2a3.

Proof. By Lemma[5.J6 we have to evaluate the contribution of the irtiejongC.. Fork
close to0 we have

2
Urp(k)T +ikLTY? = —giagk‘gT — ikTY3(ry — L) (5.117)
+ O (stk + i KT + |°T) .

Let C be the part of with = € [0,¢] andC; the one withw € [—¢,0]. Then | --- =

fcj R fcg ---. We consider explicitly only one of the two integrals, the@at being
evaluated in the same fashion,

T1/3/ g1 m(R)T+KLTY® g1
o
T1/3/ o 3isk®T ,—ikTV/3(r1~L) O (s3h+s1K*T**4+4°T) 4. (5.118)
Cce
o

The error term is the integral alordg” with integrand
T1/3€—%ia;;k3T6—ikT1/3(r1—L)(GO(sfk+slk3T2/3+k5T) —1) (5.119)

_ Tl/se—gmngTe—ile/?’(n—L)eo(s%k+slk3T2/3+k5T)O (sfk: + 31k3T2/3 + k:5T).

The term in the exponential is Ziask*T'(1 + x1) — ikT"*(r1 — L)(1 4 x2), Wherex,
andy, can be made arbitrarily small by takimgsmall enough4; is bounded). With the
change of variable = £7T"/3 we obtain

E\(L) = 1 / e~i5es(x) P —ilbxa) =120 (25 4,25 4 PT13) dz. (5.120)
T1/3 T1/3Ct

Remark that at the boundary of the integration, the real datieintegrand behaves as

e~325="T_This integral is uniformly bounded ifi for (L, r, s;) € B. The same holds for

the integral orC. Consequentlys; (L) = O (T~'/3).

Next we extend the integration fromC. to —=T'/3(1,cos(n/6)) and
7T/3(1, — cos(n/6)), obtaining the pathD;. In this way we add an error of
O (e=ET) with §'(c) ~ . Similarly we can complete the path upto= +N7T"/3,

y = —N=T'3/\/3 by straight lines. The integral is equal to the integratioont
—N#T"? to NxT"/3, since the function i€7T"/? periodic in the real direction and the
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error added by completing the integral is exponentiallylsmar’, for all N. Therefore
we may take the limitvV — oo.
Finally we obtain[(5.116), since

/ e—i5asz’—iz(r—L)q, _ il Ai (Tl ) (5.121)

K K

(e 9]

with k = /2as. O

Convergence ofKp(rg, so;71, 1) With s9 < 51

Lemma 5.8. Uniformly for (r;) € B,i = 1,2,

e — L — L L
lim Kp(rg, S9;71,81) = —/ eaL(s2=51) Aj (m_) Ai (7"2 ) d—2 (5.122)
0 K

T—oo I K

with kK = /2as.

Proof. Since(ry,my) € B, let us setl, such thatlLy < 2(|ri| + |ra| + 1) for all ry, 7.
Kr can be transformed into an integral adding an e@c(rT*l/?’). Let us fix ans with
0 <e< 1. Then

Lo o LX eT?/3 e~ LX
—KT(TQ,SQ;T’l,Sl) = Jl(L)JQ(L) A2 dL+ J1<L)J2(L) 5 dL
0 s Lo Am
[ee] G_LX 13
- / JUL) (L)~ — dL + O (T7/3) (5.123)
eT2/3 ™

with X = 1(s; — s2)(1 + O(1/T)) > 0. Since|J;(L)| < T*/3,i = 1,2, the third term
is bounded by™2/3¢==T**X /X — 0 asT — co. By Lemma5J7 the first term converges,
uniformly for (u;, s;) € B, to

LO — L - L 89—s8 1
/ Ai (“ ) Ai (” ) H T dL (5.124)
0 KR K K
asT — oo.

We consider the second term. We have already establishgubthtsvise convergence
of J;(L) to 2 Ai (“=%). If we obtain that for largel’, |J;(L)| < G with a constant?
independent of;, s; and L € [Lg,T?%3], then by dominated convergence

Y K

eT?/3 () . _ Lr(s0—51)
L L
lim [ (L) B(L)e AL = / Ai(“ )Ai (TQ >62 ——dL (5.125)
—JLo L

0

uniformly for (r;) € B. This property is proven in the following lemma. O

Lemma 5.9. For L € [Lo,eT%?], |J;(L)| < G with the constan& independent of;, r;,
and L, provided0 < ¢ < 1 andT large enough.
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Proof. The exponential terms ifi (5.103) are purely imaginarykfoeal. Let us set

VL) = SGRLT ™ + 0 (K)), (5.126)

then

Ji(L) = T3 / V1T . (5.127)

—T

In particular fork close to0,

Ui (k) = —§Oé3k3 (1 +0 (k2+51T_1/3)) —k(ry — L)T2/ (1 Lo (S%T_l/?’)) .
_ (5.128)
Since(r; — L)T2/3 ~ O(e) at most, we seL. = (L — r;)T~2/3. ! (k) has two local
extrema attk(L) with

L) = Ve (1 4O (Z v sz—1/3>) (5.129)

andc, = (2a3)~Y/2. Moreover for|k| > 2k(L), 1! (k) is strictly decreasing.J;(L) =
J7 =k [, - wherel, = [~m,—200VI], I = [~2¢,VL,0], I = [0,2¢0V I,

and/ly = [2¢ \/f, 7|. The integrals alond, and/, are evaluated similarly and so are the
integrals alongl; and I3. We present in detail only the integration alohgand /. Let

v = \/f Then

u(m) ,
/ R T1/3/ 11/)1 Tdk’ Tl/S/ f(u)ezquu (5130)
I 2c0y (

2co)

whereu = ¢! (k) and f(u) = %(u“). Integrating by parts we obtain

u(m) u(m) T
- / dflu) ey, (5.131)

u(2co7) u(2co) du or

T

713 /14 _ f<u)€iT

Fork € I, with |k| < ¢ follows from (5-I2ZB) thaf < 0 and$:% > 0. Fork > ¢,

du 1 +e ™ —2e /2 cos(k) _1/3
dk‘ L In ( 14+e 0 — 26_70/2 ) + (@) (SIT ) . (5132)
Then fork € Lwithk > e, % <0anddy > 0 Therefore—) —(duy=3d where
& <0 andd-¥ de > 0 for every point in/y. Thus “) does not change sign aloidg and

\ / \ oy (7 (@) + | f (2] (5.133)
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Using (5.13P), forT" sufficiently large,

|f(u(m))] = ‘ 2In(1 — 6_70/2) —2In(1 + 6_70/2) + 'yz + 0O (slT_l/g) | -
< (1 —e ™) —In(1+e™?)| 7 = ay, (5.134)

provideds small enough (which implies sufficiently small). The second term is bounded
by

1+ 0 (Y4 5,773
| f(u(2c07))| = ( — : ) < 2/72 (5.135)
for e small ands; € B. Therefore we have, uniformly ifr;, s;) € B,
2G4 2 2G4 2
o = ] < + < + . 5.136
J, /. ‘ SRR e e 7 HE

Next we estimat(% Jr o ‘ :

/ =T/ / T g — 1 / Ty (5.137)
I3 0 —c1y
whered (k) = ! (k — k(f)), c1 = c(1+ O(y)) andey = (1 + O(7)). Let us define
the pathsfg ={k =uw0: -y — e} & ={k = —cye ™, 1 0 — 7/4},
={k = ez —cy — vk & = {k = e, ¢ : /4 — 0}. Then
fI3 = [ = 2121 Je. -+ The integrals along; and¢; are estimated in the same
way.
- T4
T3 / eI ) = /3 / eV kDT e~ (1 + O(v))dg (5.138)
&1 0
and therefore
- /4 -
‘Tl/?’ / eiW)Tdk‘ < 2T 3¢, / e T (k@) . (5.139)
&1 0

Since@Z( k() = ¥ (0) + 30" (0)k(0)*(1 4 61()) ith 61 (ip) — 0 ase — 0 andk(ip)? =
22 (1 + O(v))e ¥, one has

1

Ime) (k(9)) = = 50" (0)(k(9))*(1 + 82(9))cg7*(1 + O(7)) sin(2¢) (5.140)

with d2() — 0 ase — 0. Moreover, fors small enoughsin(2¢)(14d2())(14+O(y)) >
. From this it follows

B 71'/4
&1 0

AT Beyry
T3y | 57(0) |

< 2T1/360’7 /Oo eTC%W"(O)w/Qd@ —
0
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We compute)” (0) = —2ye; ' (1 + O (12 + s,7'/3)). Therefore for, € BandT large
enough,

- 4 4
T3 / eW)Tdk‘ < < . (5.142)
‘ 3 T (L=m1) " (Lo—m1)
Next we need to evaluate the integral alghg
T1/3/ PR f — /3 p—im/4 T3 (0) /Cﬂ T (0)2?/2(14+0()) 4. (5.143)
&2 —c1y
Then for sufficiently smalb,
T1/3/ ei{/?(k)Tdk‘ < T3 /m T O22(148)/2 .,
&2 —c1y
< T3 / TV 08/4 0 < T1/3 / e~ T/ gy (5.144)

ViGN
VL —r VLo — 7"1'
Thus we have, uniformly fog; € B andT large enough,

e 8V
/13 ‘ = (LO—Tl) " Vv Lo—ﬁ. (5.145)

ThereforeJ;(L) is bounded by

4G 20 2
' JF

< + :
=T T T Vet
SinceLy,—r; > 2andX > 0, it follows that.J; (L).Jo(L)e~ =¥ is bounded by an integrable
function on[Lg, eT%/%] for 0 < ¢ < 1 andT large enough. O

| Ji(L) (5.146)

Convergence ofK7(rs, s2;71, 51) With s5 > 51

Lemma 5.10. Uniformly for (s;,r;) € B,i = 1,2,

0 —L — L\ dL
lim Krp(rg, so;ry, 1) = / eaL(s2=s1) Aj <T1 ) Aj (TQ > — (5.147)
T—o00 00 K K KR

with k = /2as.

Proof. Let us setl, such thatL, > 2(|r;| + |r2| + 1) for all (r;,73) € B. Then the sum
in K1 can be approximated by an integral at the expense of an@r(@rl/ 3). Let us fix
£,0<e < 1. Then

0 eLX —Lo eLX
KT(T’2,52;7“1,81) = J1(L)J2(L)—dL+/ JI(L)J2<L)_dL

_LO 47T2 8T2/3 47T2

—eT?/3 eLX
+ / J(L)o(L) AL + O (7713, (5.148)

o0
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with X = 2(so — s1)(1 + O(1/T)) > 0. The convergence of the first term has already
been proved. Let us sét= —(L — r1)T~%3. In the remainder of the proof we set

V(k) = Ty 2(k) — L. (5.149)

First consided. > ¢. _
Ji(L) =TY? / e?WT k. (5.150)

With the change of variable = ¢ (k), f(u) = %, and integration by parts, we have

‘df(u)
max
kelp(-m)p(m)] | du

W - (duy-sdy ) du) g G13P) with L replaced by

dk dk?

PACIES /2T W (5.151)

To compute‘ 4

—L. ltis easy then to see that uniformly for € B, maxey(_» ‘ df(w) ’ <G L
for Gy = 2/(sinh(7y/2)e)? < oo. Then for a suitable constaﬁtg < 00,
|J1(L)] < Ga(ry — L)~ (5.152)
The same holds fars, therefore the third term irf (5.148) is bounded by
—eT?2/3 2
Gy
drL, 5.153
= 5159

which is convergent fof’ finite and vanishes fdf' — occ.
Finally we consided < L < e. Let us set3 = y/2(cosh(r/2) — 1). We integrate

overC = {k =z +iy(z),y(r) = —/y(0)® + 132/3}, with iy(0) the stationary point of
(-, L), see Figuré B4y (0) = BVL+0 <E3/2> andC' is almost the steepest descend

curve forz small. This path has the property that the real part(@f) is strictly decreasing
as|z| increases and

D(iy(0)) = —5523/2 (1 +0O (sz*”3 + Z)) . (5.154)
We divide the integral in the part with:| < £ and the remainder,
Ji(L) =TY3 / " PTG — /C e?®T ) = T1/3 / e?WTAk + Ey(L), (5.155)
where 5

Ey(L) = T1/3/ AOTL — O (e—aTew(m:O)T) -0 <6—5 —2B(r—L) 3/2> (5.156)
C\C:

We then need to integrate only closexte= 0. We first establish some propertieswofk)
forz = 0.
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Figure 5.4: Deformation of the integration path. The path frem to 7 is deformed
into C plus the dashed ones.

Lemma 5.11.
i) (iy(0), L) = —%653/2 +0 (Z5/2 + Z3/23fT—1/3) 7
i7) dw(kL Ik —iyo) = 0, 6157
- T T T .
i) D) o = —2VE+ 0 (T4 VEaT).
. 3 ) -
iv) LU0 = — i+ 0O (L + slT*1/3> .

Proof. i) follows from Equation [[5.134) and ii) because= iy(0) is a stationary point of
W(-, L). iv) follows from (BI1Y) becausy; = 1/32. Finally let\ = V'L. Then

d d*p(k, L)  d*o(k, L) dk

— = — 5.158

d\  dk? dk3 dA ( )

and evaluating at = iy(0) and\ = 0 we obtain iii). O
With these properties

Ji (L) — Ey(L) =TY3 / e?®T L (5.159)

_ o~ 2BESRT OIS AT I RST) o 3 / Qe VE—iy(0)T = 5 (k=iy(0)°T

o( (k—iy(0))2T+/ T (k—iy(0 31T2/3+E(k7iy(0))3T+(kfz'y(()))351T2/3+(k7iy(0))4T)
X e .

Lety = v/ri — L, then/I = AT~1/3, Letk' = k — iy(0), then the integration is along
C! = C. +1iy(0).

Ti(L) — By(L) = e~ 387 00T /34281710 s / dke

/
£

x explO (VKT + ysi T3 + KTV + k25, T3 + k*T)].  (5.160)



124 Analysis of the 3D Ising corner line ensemble

SinceL can be made arbitrarily small, fef € B the exponent of the term in the integral
can be written as

Y 1 242/3 3
-+ Bl+x) - 3—ﬁzk T(1+ x2), (5.161)

where they; can be made as small as desired by choosisgall enough. After the
change of variablé7"'/? = - the integral becomes

/ dze” 5 0H0) 3 # (1hx), (5.162)
Cl

171/3

The integration is taken along a contour, symmetric witlpeesto the imaginary axis and
such that foRe(z) > 0, argz) € [—n/6,0]. This implies that the integral is uniformly
bounded.

Replacing the term in front of the integrél (5.160) by one,gher can be estimated as

RET (60(75T—2/3+W35%T*1/3) B 1) ’ (5.163)

since the integral if{5.1p0) is bounded. FoK «,
(ry — L)?PT723 4 (ry — L3T7Y3 < (ry — L)% + (1, — L)V/=. (5.164)
As a consequence
o (SO ) ¢ (¢ )
< 0 <T‘1/3e‘5(”‘”3/ ) . (5.165)

After this step we can also remove the error inside the iatgfrI60). As in the case of
L € B, the removal of this error leads to an additional errof’'of/? with the prefactor
e~38(n=L** Consequently we have obtained

Ji(L) = e_gﬁ(rl_,;)?’ﬂ/ dze 3¢ ~ 3527 —{—O( 1/36_§B(T1_L)3/Q>

C/TI/S
+ 0 (T’l/?’ ~38(r=L) 3”) ) ( Tef%ﬂmw”) , (5.166)
Next we change to the variable= w + i3/, — L. The integral becomes
/ ¢ i Lw g, (5.167)
CLTY/3+iBy

Finally completing the contour of the integration such tihaoes to infinity in the
directions argw) = ¢+ with o, = —7/6 andp_ = —57/6 leads to an exponentially
small error. Using thata; = 1/, the main term goes t& Ai (“=£). Since the errors
are integrable irl. and go to zero a& — oo, we obtain, forsy > sy,

o — L — L\ dL
lim KT(TQ, S9; 71, 81) / e§L(s27$1) Ai (Tl ) Ai (T2 ) — (5168)
K

T—o00 — 0 K K

with kK = /2as. H
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With the change of variablg = L/x, (5.168) is rewritten as

0
lim Kr(rg, se;r1,81) = /@1/ ez M(E2ms)r A <ﬂ — )\) Ai (— — )\) dA

T—oo K KR

— K—lKAiry (27 ESQ; ﬁ ESI) . (5.169)
K K

5.6 Proof of Theorem5-1

Now we have all the elements to prove our main theorem.

Proof of Theorem 5. 1L.et f; be the indicator function ofa;, co). Then [5.}4) corresponds
to

m m(ﬂ{nedge(fi,s» o) =r( ﬁ{n’“ry(ﬂ/ﬂ, 552 =0}). (5170

We choose: large enough and spljt = f# + ¢* with f? the indicator function ofa;, a]
andg“ the one of(a, c0). Then

IPT(ﬂ{nedgp(fi,Si) = O}) — Pr ﬁ{”;dge(ff,si) _ 0})’ -

i:: ( 79" si) 2 1). (5.171)

The term
Py ( Mo, = o)) (5.172)
converges to
P( (Yo e se/2) = 0}) (5.173)

which yields the right hand side df (5.4) as— .
The terms in the sum of the right hand side[of (5]171) are bed iy

Py (n;dge(ga, 5) > 1) < E; (n;dge(ga, si)> _ / Er (n;dge(r, si)> dr.  (5.174)

From (5.101),

o0 1
edge ) ~ L B 2
Er (UT (r, sz)> _/0 2 i(=L) dL. (5.175)
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J1(—L) isindeed a function of 4 L, which asymptotics has been studied already for.
large, but bounded by 4+ L < ¢72/3, with the result [5.166). Therefore the integrals in
G17%), [5-I75) converge for+ L < eT?%/3.

Next consider + L > eT%3. Let L = (r + L)T—2/3. With the change of variable
u = (k) and integrating twice by parts, we obtain

2 () d3k(u)
J(—L)| < T3 — 5.176
=Dl < T2 kellomabn) ‘ du (5.176)
Similarly as for [5.15P) we have,
d3k(u) ~
max < G{L7?, 5.177
kelp(—m)w(m)] ‘ dud | =7 ( )
for a suitable constari¥; < oo, which yields
[Ji(—L)| < Go(r + L) 27713 (5.178)

for some constan®, < oo. Therefore the integrals i (5.774), (5.175) have a batfd)
uniform in7" which vanishes as — oo

5.A  Appendix: fermionic correlations

5.A.1 Two-point function

Let A = Zk,leZ Ay, a;.a; be the second quantization of the one-particle matrixit is
assumed that~4 is trace class anbet(1 + e*) # 0 (see [8b], Chap. XIII). We use the

identities J
= Z a; [0, e taet = Z [e];.5a;. (5.179)
jET. jer.
Then
1 I
(aja;) = ETr Aata;) Z 7 Tr(ak[e Y niea;) (5.180)
nez
= > e Mni(—{aha) + 0im) = [0 = Y (anag) e,
nez neZ
and
> dap[l+ e Miay) = [ (5.181)
neZ

Finally multiplying this expression by",_, [(1 + e=*)~!]; ., we obtain

(ara;) = [(1+ e jm. (5.182)
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5.A.2 Proof of (6:41)-[5-4_3)

We prove recursively that

where
[ (alay) R

Then, taking;, = j for all &, the result[(5.41)F(5.43) is obtained. Foe= 1 the formula
holds by definition. Suppose the formufa (5]183) has beabkshed for some, i.e.

<a/2<1 CL]‘1> <a;k1 aj2> T <a”?1 a’jn>
_a.aﬂ‘ a’_"a. CLTCL'
<a;-k1aj1 a;-kna]n> _ < ].2 11> < 22. ]2> < 12. ]n> (5185)
—(a;,a;) —(ajai,) -+ (a] a;,)

We will need one more expression for- - ) such that in the first pairs the annihilation
operator precedes the creation operator,

* * % * _
<aj1ai1 TGy G Ay Qg 'ainajn> -

Uk k41
_<aj1a:1> T <a:1 ajk> <CL;-‘1 ajk+1> e <CL:1 ajn>
— (_ k _<ajka’>;1> U _<a']k:a':<k> <a”7kajk+l> e <a‘;kka'jn>
_<ajk+lai1> T _<ajk+laik> <a/’ik+1ajk+l> to <a"ik+1ajn>
—(aj,ai) o —laa;)  —(aa, ) 0 (a7,a5,)

(5.186)
Let us prove this formula. Fdr = 0, it agrees with[(5.185). Suppose it to be true for some
k. Let us then prove that the formufa{5.]L86) holdsKor 1,

* * * * .
<aj1 a’il U ajk+la/ik+1aik+2ajk+2 st ainajn> -
P — . * DY . * * . * .
= —(a;,a;, W Qg Q7 Ay - - - a; aj,) (5.187)

*

* * *
+ 6ik+17jk+1 <a’j1 Qi - ajkazkaik+2ajk+2 s ainajn>'

Using the expressiof (5.186) and considering the expansithe determinant in the: +
1)™" column (or row), it is easy to see that (5.1187) correspongstoua factor of—1,
to the expressior (5.186) but with the diagonal tetm a;, ., replaced by-ay, ., aj, .
Therefore [5.186) holds fdr + 1, too.
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Now we prove [5.185) for. + 1 by using [5.185) for. and [5.186) for andk < n,

1 —~

* * _ —A % % )
<aqaj1 e ain+1a]'n+1> - 7 TI"(G aqa’h a’in+1a]n+1)
—A

1 —A
Y e g Tee R a0

meZ

== > [ g (s -4}, a5, (5.188)

MmeZ
n+1

z : —A * * %k *
+ [6 ]]‘pvq <aj1ai2 e ajpflaipaip+1ajp+l te ain+1ajn+l>
p=2

+ [efA]th <a/;<2aj2 U a;!(n+1ajn+1>'

We take the term with the sum over € 7 together with the first one and multiply the

whole expression by _, [(1 + e~4)~1],4 to obtain

<a;'k1 gy« - afn+1ajn+1> = <GZ aj1><a:2aj2 T a;+1ajn+1> (5189)
n+1

* * k * *
+ : : <ai1ajp><aj1 aig T ajp—laipa’ip+1ajp+1 R ain+1ajn+1>'
p=2

Using (5.18b) and (5.186) for terms we see that this last expression is nothing else than
the expansion with respect to the first row [of (5]185) witbubstituted by: + 1.




Appendix

A.1 Equilibrium crystal shape geometry
As illustrated in Figur@¢ A]5, we define
r=1x0+0, y=1yo+ f(20)d—¢ (A1)

and
r — Xy, g:y_yo (AZ)

S
Il

If 2(g,0) = —%’ypT€3/2, then

~ o~ 2 / ~ ~
2(7,7) = _§7PT(JC (20)T — y)3/2. (A.3)
Letp, = 0.2, p, = 9,7, andd the angle between theaxis and the outher normal to the
facet. Thenf'(xo) = — ctan@. The surface profile and the free-energy density (surface
tension) per unit projected are the Legendre transform étteemther [§]
(wy) = Lf(x/.y0),  f(Peipy) = 07 (z = 2o = ypy)- (A.4)
Close to the flat surface, some algebra leads to
f(Ipl) = ~(@)Ipl + B(O)[p[’ (A.5)
with 0 )
ctan(0)xy — yo
0) = , B(0) = : A.6
() 04/1 + ctan(0)? () 30y%,(1 + ctan(0)?)3/2 (A-6)
Defining s = f”(x) it follows that %2 = (1 + ctan(9)?)x~ and <% = — ctan(d)(1 +
ctan(6)?)x~1. The stiffnessy is then
N Y 1 + ctan(6)?)3/2
5(6) = 1(6) + (9) = L NOT T (A7)
therefore
- 1 2
YO)BO) = g5 = = (A.8)
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Figure A.5: The facet in ther — y plane goes into the rounded surface in the negative

where the last equality iff (A.7) comes from thermodynanfis {»r, x, ando? are the
PT coefficient, the second derivative of the border line,thirdocal wandering coefficient
in the (z, y, z) coordinate axis. The change of coordinate fraimy) to (e;, es) leads to
the PT coefficient, the curvature, and the local wanderirgffmdent in the orthogonal
coordinate axisypr.1, 1, ando? namely

k1(0) = r(1+ctan()?)~3/2,
ver, (0) = vpr(l+ Ctan(0)2)3/4, (A.9)
o2(0) = o*(1+ctan()?)~>2

A.2 Fredholm determinant and Fredholm Pfaffian

A.2.1 Preliminaries

These notions are taken frofn [83], Chapter VI. ebe a separable Hilbert space. De-
note by £(H) the set of all bounded linear operator frathto H. Let {p,}°, be an
orthonormal basis of{. Then, for any positive operatot € L(H), thetraceis defined
by Tr(A) = Zf:ﬂ@w Apn).

An operatorA € L(H) is calledtrace classif and only if Tr(|A|) < oo, where
|A| = VA*A.

An operatorA € L(H) is calledHilbert-Schmidif and only if Tr(A*A) < co. These
operators can be expressed via an integral kernel(Zef.) be a measurable space and
H = L*(M, ). ThenA € L(H) is Hilbert-Schmidt if and only if there is a function (the
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kernel) K € L2(M x M, ® p) with

= /M K(z,y)f(y)du(y). (A.10)

Moreover,|| A3 = J,, | K(z,y)[Pdu(z)du(y).

The notions in the following part are taken from][85], Chat#t. Let H be an Hilbert
space, thel®)" H is defined as the vector space of multilinear functional&{oror given
P1y---5Pn EH,§01®®@n€®ngy

(1@ @@n)((m, -5 m0)) = (1,m) -+ (P 1) (A.11)
forany(n,...,n,) € H x --- x 'H. The inner-product is defined by
(1@ @) ® - @) = (1,m) -+ (Pns ) (A.12)
and for any operatad € £(’H) there is an operatdr,(A) € L(Q)" H) with
Fa(A) (1@ ®pn) = Ap1 @+ ® Ap,. (A.13)

It satisfiesT, (AB) = I',(A)T(B).
Next we consider the antisymmetric subspac&pfH, denoted by\" H. LetS, de-

note the permutation group ¢f, ..., n}, then\" H is the space spanned by the elements
PLA - Npp = Z 900(1 ®®900(n) (A14)
\/_ geSy,

The operatof’,,(A) restricted to/\" H is denoted by\"(A).

A.2.2 Fredholm determinant
Determinant of a trace class operator

If the Hilbert spaceH has finite dimensiom, then \"(A) is the operator multiplication
by Det(A) (the usual determinant). The Fredholm determinant extdrelsotion of de-
terminant to infinite dimensional Hilbert spaces. For aktt class operators acting on

a finite-dimensional spade with dimensionz, one can see that

Det(1 + A) ZTr /\ ), (A.15)

where the ternt = 0 is by definition set to bé. In the case dift = oo, Det(1 + A) is
defined by [[A.15) with: replaced withoo. The sum converges becauses trace class.

In particular, consider the case of an integral operatotoa L?(M, ;1) given by a
kernel K, i.e.,

- /M K (2, 9)f (5)du(y). (A.16)
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If Ais trace class and the kern&lis continuous, then

Tr (/\n(A)) = l' / ) Det (K (;, xi))lgi,jgnd'“(xl) e dp(zy). (A.17)

n.

The determinan{(A.15) then writes
— 1
Det(1+4) =" / Dt (K (i), o, ) ). (AI8)
n=0
(AI8) is called Fredholm determinant @h= L?(M, ).

Determinant of a kernel

The Fredholm determinant can also be defined for a kekhelithout passing by the
operators, as explained e.g. [h [7]. L&, 1) be a measure space andr) be a positive
continuous function o/ such thatl /A(z) € L?*(M, u). We say that a measurable set
S C M x M isthinif for all o,y € M the sets

{z € M|(z,y0) € S}, {x € M|(xg,y) €S}, {xe M|(x,x)e S} (A.19)

are of y-measure zero. A thick subset &f x M is defined as the complement of a thin
subset.
A function K (z,y) on M x M is akernelif:
1) K(x,y) is measurable,
2) for some thick open subsEtC M x M, K(x,y) is continuous o/,
3) 1|14 = $UPacarear Alw) Ay) K (2, )] < o.
The class of kernels form a vector space with the nprm 4.
For any kernelK (z, y) andn > 0 define

AL(K) = / dp(ar) - - dp(an) Det[K (21,5 )i o (A.20)
andAy(K) = 1. One can show that
/ dpa(a1) -~ dpa(a) [Det[K (x5, 27)]i o1 al < OV K| (A21)

with a constant” > 0 (depending ord). ThusA,,(K) is well-defined and the Fredholm
determinant attaced to the kerri€lis defined by

A(K) = f: DA (), (A.22)

n!
n=0
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A.2.3 Fredholm Pfaffian

As for the Fredholm determinant, also the Fredholm Pfaffiaa kernel is defined via
series. Consider a kerneRax 2 matrix kernelK” on a measurable spag&/, ;). Assume
that K is antisymmetrici.e., K (z,y) = —K'(y, z). This means

K1,2(5L’ay) = _K2,1(y>-77)a Ki,i(ﬂ%y) = —Ki,i(%iﬂ) =0,i=1,2. (A-23)
Define another kernel as the2 x 2 matrix
0 1
J(2,y) = Oy ( 1 0 ) - (A.24)
The Fredholm Pfaffian is defined in Rains’s pagel [82]. Deriote |J;-, M", let

S = {z,...,z,} C T and denote byk(S) = [K (z;,z;)] Then, sincek is
antisymmetric,

ij=1,.n"

Pf[(J+K)<S)] = Pf [J(.l’l,l'j) +K<£Ifz’,l’j>]i,j:1 77777 n (A25)
= Y PHK(S) =Y > PEHK(iy, )]t m-
s'cs m=041%#...%im
The Fredholm Pfaffian on the measurable spddey) is defined by
PE(J + K) — / PE(K(S))du(S) (A.26)
scr
1
= Z ] / dp(zy) ... dp(x,) PEK (2, xj)]m:l 77777 -
n—0 . n
It is also shown that the connection with the Fredholm deitegint is
Pf(J + K)? = Det(1 — JK). (A.27)

A.3 Real quaternionic matrices

A gquaternion is a linear combination of the basis quatemieg = 1, e, ez, 3}, Which
satisfye} = e2 = €3 = —1 andejeqe3 = —1. A N x N quaternionic matrixQ is then
Q= Q%+ Q'e; + Q% + Q%e3 with Q* someN x N matrices. The quaternion of basis
e, can be represented as< 2 matricese,,

. (10 (i 0 (0 1 (0
60_<01)7 el_<0_i)7 62_(_1 0)7 63_(10>(A28)

Therefore theV x N matrixQ can be represented by2& x 2N matrix Q. A quaternion
is calledreal if the coefficients of) are real:q;.fk eR,u=0,...,3,5,k=1,...,N. The
guaternion conjugatef a quaterniory = qg + gi1e1 + gae2 + g3es IS

4 = qo — q1€1 — G262 — g3€3, (A.29)
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thecomplex conjugatef ¢ is
q = qy + gie1 + gaex + gzes, (A.30)

and theHermite conjugatés
" =7 =q — dier — Gea — e (A.31)

For real quaternion the modulus @fs given by|q|> = 4q = q7 = ¢2 + ¢} + ¢ + ¢2.

Consider theN x 2N representation) of a quaternion matrix) with elements); .,

j,k = 1,...,N. The operations on) reflect to as follows. The transposition gives
(QT) ;1 = —eay ;e2, the Hermitian conjugatiof@); . = (qx;)T, and the time reversal
Q) = e2(QT)jnes" = Gry-

An hermitian matrixQ" = @, which is at the same time quaternionic real must satisfy
qJ e = Gk = Qhjs thereforeq ' must form a real symmetric matrix arqgik real antisym-
metric matrices fop = 1, 2, 3 Consequently the number of independent variables of such
matrices iV + 4N (N — 1)/2 = N(2N —1).

A 2N x 2N real quaternionic matrix) is diagonalized by a unitary matriX such
that UU® = URU = 1. These matrices compose a group, tiniary symplectigroup
USp(2N). Each eigenvalue af is twice degenerate and each couple corresponds to an
eigenvalue of) (Kramers degeneracy).

A.4 Gaussian ensembles via variational principle

LetS(p) = — [ p(H)Inp(H)dH be the entropy for the joint distribution function on ran-
dom matrlce39 We want to maximize5(p) under the constrait' = [ p(H) Tr(H?*)dH

be fixed and the constraint of the normalization. IBt= —In(A) — 1 and A be the
Lagrange multiplier, i.e.,

S(p) = —/p(H) Inp(H)dH — A(/p(H) Tr(HQ)dH—C>
(InA+ 1)</p(H)dH - 1). (A.32)

Let po be the distribution which maximizg(p), then at first order inp, 6.5(po) = S(po +
dp) — S(po) =0, i.e.,

—1—1In(po) = ATr(H*) +InA+1=0, (A.33)

which impliesp(H) = Aexp(—\Tr(H?)). The normalization condition fixes the value
of A,

ATt = / e AT AH = a(N). (A.34)
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The second constraint writes

_ 1 o am?) gL da(y)
“= a()\)/ T(ER)e HEAH = = ma (A.35)

Let us estimate()\). With the change of variabl® = H+/)\, we obtain
a(\) = A2 / e~ XN ax (A.36)

wheren is the dimension of the space where the integral is made,tihe.number of
independent elements of the matrix. The integral eM€rbeing finite and independent of
A, it follows that

da(X) -n
= — A.37
and finallyA = 5. Since we wani = 1/2N, it follows that
C =nN, n:N—l—%ﬁN(N—l). (A.38)

A.5 Hermite polynomials

The Hermite polynomialgpi'} are orthogonal with respect to the weight” onR, i.e.,

H H —z2 _ 0 if & #1,
/]R,pk (x)pl (IL’)e de = { \/Ezkk! if k=1 (A.39)
They satisfy the recursion relations
po(r) = 1,
px) = 2z, (A.40)
p?(m) = 21‘19113—1(@ —2(k — 1)19113—2@)7 k=2,

thus the leading coefficient @f! () is u;, = 2*. Another representation of Hermite poly-
nomials is
e = oo 4" e A.41
pi(z) =€ FrrLa (A.41)
An asymptotics of Hermite polynomial relevant for our puspas the following[[99]. For
r = (2n + 1)1/2 — 271/2n=1/6¢ + bounded,

e i) = 2n) 2P () TR (A £ O 7TH), (A42)

and forz = (2n + 1)'/2 cos 1, with ¢ € (0, 7),

29 H 2n2(nh1/2 1 , 1 1y . 3 1
e 2pH(z) = BN (sm [(571 + Z)(Slﬂ(?zﬁ) —2¢) + 171’} +0(n) ).
(A.43)

In all these formulas th&-terms hold uniformly.
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A.6 Kernel for 5 =2 Dyson’s Brownian motion

First of all we develop the transition functicih defined in [3.86) in terms of orthogonal
polynomials involving the Hermite polynomiaig'. Let us define

Fio(z) = (V2r N2PED "V 2pl (2 /2N ) e /4N (A.44)
then, fort’ > t,
O, (z,2) Z ful( q(t' —t)k. (A.45)

Considett, < t; <ty < tywitht; —t, > 1 andt;—t, > 1. Denote byQ; = e~ (1=t0)/2N
q = e~ B271)/2N ‘andQ, = e~ (*+~*2)/2N_\We want the expression of the kernel in the limit
to — —oo andts — oo, i.e.,Q; — 0and@, — 0.

First we deriveK y (z, to; 2/, t1). We can write it as product of matrices as follows. Let

u = [fi(z)Qb]i=o.... 00 = [fi(z )];:% -------- 0,
= [£5(2")Q1]j=0....c0: Lz[fj(fg)];i% ........ N1, (A.46)

The N x N matrix to be inverted writest = LDR and the kerneKy = uRA~'Lu.
Dividing the indices as follow$0, ..., 00} ={0,..., N —=1}U{N, ..., 00} we write the
matrices as blocks. The indéxefers to the sef0, ..., N — 1} and the index to the set
{N, ..., o0}, explicitly

Ky = [Ul UQHRl,l RQl]A [Lll L1,2][U1 U2]t,
D 0

A = [Liy L2 - [Ri1 Raql. (A.47)
0 Dy

The inverse ofA can be well approximated b = R 1Dy 1L 1. The inverseD; ;
obviously exists.L, ; and R, ; are also invertible prowded that both the initial posison
z? and the final positions? are distinct. In fact their determinants are Vandermonde
determinants. A simple computation shoWw® = 1 + @Q1Q2¢O(1), O(1) meaning a
matrix with coefficients of order one. Thus™! = B(1 + Q1Q2¢O(1)). Then

Ky = (wiRi1+ UQRQ,l)RHDHLH(ﬂ + Q1Q2q0(1))(L11v1 + Ly 2v2)
= U1ijv1(1 + O(@Q1Q2q)) + ulDﬁLf&(ﬂ + Q1Q2q0(1)) L1 v, (A.48)
+U2R271R1_j(ﬂ + QlQQ(]O(l))Di%Ug —+ Ug - - DI_EUQ. (A49)
Since
wDry = [folx) fi(@)(Qeq)™" -+ fno1(2)(Q2)V ] (A.50)

and

Vg = Qév[fN(iL’/) fN+1(33/)Q2 e ']t, (A.51)
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the second term is of ordé},. Similarly the third term is of orde®);. The fourth term is
of order;(Q)». Thus in the limitQ); — 0 and@, — 0 the kernel is

N—1
Kn(z,to; 2" 1) = UlDf&Ul = Z fr(@) fr(2 g™ (A.52)
k=0

The derivation formula forK y(x,t;;2',t2) is deduced in an analogous way. To
obtain the term with the double sum we need only to remark ithdhis caseD =

-----

Kn(x,t;2' 1) = = fulw) fe(z')g" + Z Fil@) fu@)g" = = ful@) fula')g"
k=0 k=0 k=N

(A.53)

A.7 Convergence of the extended Hermite kernel to the
extended Airy kernel

Recently new bounds on the Hermite polynomials are obtaiyeldrasikov [55]. They
implies
C2/E\EE112 ) > 1,

. "0 (A.54)

max(|pf’ (z/V2N) ™) < {

for some constant’ > 0.
With this estimate we obtain that the rescaled Hermite Kesneniformly bounded in
the spatial arguments.

Lemma A.12.

lim NY3KE(z = 2N + uNY3 2sN?3,y = 2N + /N3 258’ N*3) = A(u,v;u/,0")

N—oo

(A.55)
uniformly inu, v’ € R.
Proof. First we want to show that
NYVBKY(x = 2N + uNY3 2sN?3,9 = 2N + o' N3 25 N?/3) (A.56)

is uniformly bounded in:, v’ € R for N large enough. Consider first the case s’ =
As > 0. Then

—! \/ —x _
( ) . Z eASk‘N_l/SNl/?)p]HV-&-k(I‘/ 2N>€ 2/4Np]HV+k(y/' /2N)6 y2/4N
k=—N V2r N2N+E(N + k)!

N/ —x? a2
— 1 Z GI{ASNQ/?)p%#»/{Nl/:‘(x/ 2N)€ /4Npg+HN1/3 (y/\/ 2N)€ Y /4N

kel
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wherel = {—N,...,—1}N~3, This last sum can be written as an integral of a func-
tion fn(u,u’, As) which is constant on intervals of widtN—'/3. If we prove that|fy|
is bounded by an integrable function, then by dominated e@ance we can exchange
the limit and the integral. [(A.43) implies that this functiconverges pointwise to the
integrand of the extended Airy kernel. Thus the limit will the desired one.

In what follow theC; are positive constant which do not dependwon’. Using (A.54)
we obtain

1 kAs nT2/3 1
|<@)| ¢+ 02N1/3 Z "N (1+ K;Nfl/S)l/ﬁ

rEJ

IA

_N1/3 _N—1/3
< C+Cg/ dl€6HAsN1/18+Cg/ dHeHAs(l—N_l/S)_l/G
_N2/3 _N1/3
—N3As 1— e—N1/3As

< N/18E A57
< O+ As * As (A.57)

with J = {-N +1,..., -1} N3,
In the case\s < 0 is similar. In the same way we get

TE7 1 KkAs 7T2/3 1
|( )| < 05—N1/3Z€ N (1_|_/€N—1/3)1/6

KEL

< Cg / dre®s < —- (A.58)
0 |As|

with L = N~1/3N. O
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Figure A.6: Probability density of the distribution of the distan¢éor ¢

The fitisp = 2.2d(1 + 16d?)~! ~ 0.14/d.

= 25, 50, 100.
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Figure A.7: Rescaled probability density of the distribution of the distaider ¢t =

25,50, 100.
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t | E(deg) | E(d)/t'3 | Var(d(t))/t
25 242 | 0.57+0.027| 0.24+ 0.018
50 2.43 | 0.52+0.028| 0.22+ 0.022
100 2.38 | 0.57+0.034| 0.26+ 0.027
150 2.43 | 0.56+ 0.033| 0.20+ 0.022
200 2.36 | 0.54+ 0.036| 0.224+ 0.026
300 2.48 | 0.56+ 0.039| 0.22+ 0.028
400 2.31 | 0.52+0.040| 0.22+ 0.029
500 241 | 0.51+0.039| 0.194+ 0.026
600 2.48 | 0.61+0.047| 0.26+ 0.034
700 2.42 | 0.57+0.045| 0.23+ 0.032
800 2.36 | 0.60+ 0.050| 0.274+ 0.043

1000 | 2.37 | 0.544+0.049| 0.24+ 0.037
Mean| 2.40 0.56 0.23

Table A.1: Results of the simulations for different valuest@nd 1000 runs each.

0.7F T T T T I
0.6+ } J{ } .
}_ i I T I T T
0.5 f o I ' WL J[ l
E(d)/t1/3 ——
0.4} i
Var(d) /t ------
0.3+ . | .
DS S S A S LI o I x|
0.2F x 1 X X ¥ I
O.]_ - | | | | | —
200 400 600 800 1000

Figure A.8: Mean and variance for values oip to 1000. For eachthe simulation
consists in 1000 runs.
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