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Integrable spin chains with a continuous non-Abelian symmetry, such as the one-dimensional
isotropic Heisenberg model, show superdiffusive transport with little theoretical understanding.
Although recent studies reported a surprising connection to the Kardar-Parisi-Zhang (KPZ) uni-
versality class in that case, this view was most recently questioned by discrepancies in full counting
statistics. Here, by combining extensive numerical simulations of classical and quantum integrable
isotropic spin chains with a framework developed by exact studies of the KPZ class, we characterize
various two-point quantities that remain hitherto unexplored in spin chains, and find full agreement
with KPZ scaling laws without adjustable parameters. This establishes the partial emergence of the
KPZ class in integrable isotropic spin chains. Moreover, we reveal that the KPZ scaling laws are
intact in the presence of an energy current, under the appropriate Galilean boost required by the
propagation of spacetime correlation.

Characterization of transport properties in quantum
many-body systems, in particular those of integrable sys-
tems with non-diffusive transport, is one of the frontiers
of condensed matter physics. Integrability typically re-
sults in ballistic transport, as successfully described by
the framework of the generalized hydrodynamics [1–3],
but it is faced with challenges when ballistic contribu-
tions are canceled by symmetry or other mechanisms
[4, 5]. Paradigmatic is the situation with a continu-
ous non-Abelian symmetry, in particular the isotropic
Heisenberg spin chain, which was reported to show su-
perdiffusive transport with characteristic length ξ(t) ∼
t2/3 [6–8]. Surprisingly, this superdiffusive exponent
was associated with an apparently unrelated universal-
ity class established mainly for classical non-equilibrium
systems, namely the Kardar-Parisi-Zhang (KPZ) univer-
sality class for fluctuations of growing interfaces and re-
lated phenomena [9]. Key evidence [10] was the precise
agreement of the equilibrium two-point spin correlation
function with Prähofer and Spohn’s exact solution for
the KPZ class [11], often denoted by fKPZ(·). On the
one hand, this alleged manifestation of the KPZ class
is deemed universal [4, 5, 12], as confirmed in various
isotropic integrable spin chains, whether quantum [13] or
classical [14], and also supported by a few experimental
investigations [15, 16]. On the other hand, it is clear from
the symmetry of spins that the magnetization transfer
(integrated spin current) must show a symmetric distri-
bution, unless the symmetry is explicitly broken by the
initial condition or an external field [17], while for KPZ
the corresponding quantity, namely the interface height
increment, is intrinsically asymmetric [9]. Recent com-

putational studies [18, 19] reported further discrepancies
from KPZ, notably in the kurtosis, which is unaffected
by the spin’s symmetry. This called for a new universal-
ity class to describe this class of systems [18, 19]. After
all, all pieces of evidence for KPZ reported so far have
been rather weak, being the scaling exponents, which are
simple rational numbers such as 2/3, and the agreement
with Prähofer and Spohn’s solution fKPZ(·), which has
been compared with arbitrarily fitted scaling coefficients.

Here we clarify the fate of the KPZ universality in
isotropic integrable spin chains, both classical and quan-
tum. First we remark that the deep body of knowledge
gained by mathematical studies on the 1D KPZ class [9]
has not been fully utilized. It dictates, for example, the
mutual relation between scaling coefficients. They con-
tain universal quantifiers, which are lost if treated as free
fitting parameters. Moreover, the Prähofer-Spohn func-
tion is not the only two-point correlator with an exact
solution [9]; other two-point functions, such as the equal-
time spatial correlator [20] and equal-position two-time
correlator [21, 22] have also been dealt with. The purpose
of the present Letter is to make full use of these results to
carry out a comprehensive test of the KPZ universality
in isotropic integrable spin chains.

We study both classical and quantum integrable
isotropic spin chains. For the classical case, we use Kra-
jnik and Prosen’s model [17, 23, 24] based on the lat-
tice Landau-Lifshitz magnet [25], which we shall call the
KPLL model. It is an integrable variant of the lattice
Landau-Lifshitz model defined on a brick-layer space-
time lattice (see Supplementary Text 1 and Fig. S1 for
the complete definition), which converges to the Ishimori
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FIG. 1. The two-point function and the magnetization trans-
fer cumulants for the KPLL model. (a) Rescaled two-point

function C̃2(ℓ, t) ≡ ξ(t)
Ω

C2(ℓ, t) against ℓ/ξ(t), compared with
the Prähofer-Spohn solution fKPZ(·). (b) Correlation length
ξ(t). (c) Variance (main panel) and skewness (inset) of the
magnetization transfer h. The dashed line in the inset indi-
cates the skewness of the Baik-Rains distribution. (d) Ratio
of α1(t) [from Eq. (3)] and α2(t) [from Eq. (4)].

chain [26]

∂Sj

∂t
=

Sj × Sj−1

1 + Sj · Sj−1
+

Sj × Sj+1

1 + Sj · Sj+1
, (1)

in the continuous time limit [23, 24]. For the quantum
case, we study the isotropic Heisenberg chain, which is a
representative integrable model [27] defined by

Ĥ =
∑

j

Ŝj · Ŝj+1, (2)

with spin-1/2 operator Ŝj = (Ŝx
j , Ŝ

y
j , Ŝ

z
j ). In the follow-

ing, we use the classical KPLL model to realize large-scale
simulations for inspecting supposedly universal statisti-
cal properties of isotropic integrable spin chains, which
are then confirmed by the quantum Heisenberg simula-
tions. For the KPLL model, unless otherwise stated,
we started from infinite-temperature equilibrium states
and obtained N = 104 independent realizations with sys-
tem size L = 40, 000 and the periodic boundary condi-
tion, with time step 0.1. The z-component of the spins,
Sz
j (t), is our magnetization field, denoted by m(x, t) with
x = j hereafter. Another quantity of interest is the
integrated spin current, or the magnetization transfer,
h(x, t) ≡

∫ t

0
J(x, t′)dt′, with spin current J(x, t). The

magnetization transfer h(x, t) corresponds to the height
increment of the growing interfaces, which is central in
the studies of the KPZ class.

First we verify KPZ behavior of the KPLL model
through the standard quantities. Figure 1(a) displays

the two-point function C2(ℓ, t) ≡ ⟨m(x+ ℓ, t)m(x, 0)⟩,
showing agreement with the Prähofer-Spohn exact solu-
tion fKPZ(·). Here the normalized function C̃2(ℓ, t) ≡
ξ(t)
Ω C2(ℓ, t) is shown, where Ω ≡

∫
C2(ℓ, t)dℓ is con-

served as a result of the conservation of the total magne-
tization

∫
m(x, t)dx, and ξ(t) is the correlation length

determined by 1
Ω

∫
ℓ2C2(ℓ, t)dℓ = σ2ξ(t)2 with σ2 ≡∫

u2fKPZ(u)du ≈ 0.51. This correlation length is con-
firmed to show the characteristic power law ξ(t) ∼ t2/3 of
the KPZ class [Fig. 1(b)]. We also measure the variance
of the magnetization transfer and find the characteristic
KPZ growth, Var[h(x, t)] ∼ t2/3 [Fig. 1(c)]. On the other
hand, the skewness is zero and far from the value for the
Baik-Rains distribution [28] expected for the KPZ sta-
tionary state (inset). Although the data shown so far
are reproduction of known results [17, 18], we can scru-
tinize nontrivial relationship underlying these quantities.
According to KPZ scaling laws [9, 11, 29], we have

C2(ℓ, t) ≃
2αt2/3

ξ(t)2
fKPZ

(
ℓ

ξ(t)

)
, (3)

Var[h(x, t)] ≃ αt2/3Var[BR], (4)

where Var[BR] ≈ 1.15 is the variance of the Baik-Rains
distribution and α is a coefficient. Since these equations
are not guaranteed to describe spin chains, here we evalu-
ate α from data of C2(x, t) and Var[h(x, t)] independently
and denote them by α1(t) and α2(t), respectively. Then,
remarkably, we find α1(t) = α2(t) [Fig. 1(d)], substanti-
ating the validity of the KPZ scaling laws (3) and (4) in
spin chains. Note that Eq. (4) includes the Baik-Rains
variance, even though the Baik-Rains distribution does
not appear in spin chains.
We further test the validity of KPZ scaling laws

through other two-point quantities. First we study the
spatial correlation of the magnetization transfer:

Cs(ℓ, t) ≡ ⟨h(x, t)h(x+ ℓ, t)⟩ − ⟨h(x, t)⟩2. (5)

Figure 2(a) shows it in the rescaled units, C̃s(u) ≡
Cs(ℓ, t)/αt

2/3 against u ≡ ℓ/ξ(t). For the KPZ class,
the multi-point equal-time height correlation has been
characterized intensively and described in terms of a
family of stochastic processes called the Airy processes
[20, 30–34]. For the stationary state, a process called the
Airystat process has been considered [35] (see also a re-
view [20]), but it describes the height measured in the
absolute frame (say, h0(x, t)) instead of the height incre-
ment h(x, t) = h0(x, t) − h0(x, 0) considered here. We
therefore introduce here the limiting process A0(u) for
the height increment h(x, t), in other words the station-
ary version of the Airystat process, and call it the Airy0
process. We evaluate the covariance of the Airy0 process
C0(u) ≡ ⟨A0(u)A0(0)⟩ by numerical simulations of the
totally asymmetric simple exclusion process (TASEP),
a representative model in the KPZ class, and find it in
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FIG. 2. Spatial (a) and temporal (b) correlation func-
tions of the magnetization transfer for the KPLL model. (a)

The rescaled spatial correlator C̃s(u) = Cs(ℓ, t)/αt
2/3 (main

panel) and its slope dC̃s
du

(u) (left inset) against u ≡ ℓ/ξ(t).
The dashed lines show the curves for the KPZ class, ob-
tained by TASEP simulations. The right inset compares the

slope dC̃s
du

(0) at u = 0 with our exact result for the KPZ

class, dC̃s
du

(0) = −2. (b) The rescaled temporal correlator
Ct(t1, t2)/Ct(t2, t2) against t1/t2, compared with the Ferrari-
Spohn solution [Eq. (7)] for the KPZ class.

excellent agreement with the data for the KPLL model
[Fig. 2(a)]. Furthermore, we consider C0(u) for small u
analytically and prove dC0

du (0) = −2 (see Supplementary
Text 2). This is confirmed by our data for both the KPLL
model and the TASEP [insets of Fig. 2(a)]. Finally, we
also investigate the temporal correlation of the magneti-
zation transfer

Ct(t1, t2) ≡ ⟨h(x, t1)h(x, t2)⟩ − ⟨h(x, t1)⟩⟨h(x, t2)⟩. (6)

The results in Fig. 2(b) show excellent agreement with
the exact solution for the KPZ class obtained by Ferrari
and Spohn [21, 22]:

Ct(t1, t2)

Ct(t2, t2)
≃ 1

2

[
1 + τ2/3 − (1− τ)2/3

]
, (7)

with τ ≡ t1/t2.
The results obtained so far for the classical KPLL

model verified the validity of the KPZ scaling laws in
various two-point quantities. Remarkably, we confirm
all these results in simulations of the quantum Heisen-
berg model too (Fig. 3) without any adjustable parame-
ter. This establishes the universality of the results, en-
compassing both the quantum and classical worlds. The
details of the simulation and the results of the quantum
model are presented in End Matter.

Now we test the robustness of our findings under dif-
ferent situations, again using the classical KPLL model.
First, we consider the case with a non-vanishing energy
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FIG. 3. Results for the quantum Heisenberg model, with
system size L = 100 and maximum bond dimension χ =
1600 (see End Matter for details). (a) Correlation length ξ(t)
and variance of the magnetization transfer, Var[h]. (b) Ratio
α2(t)/α1(t). See End Matter for the evaluation of the error
bars. (c,d) Spatial (c) and temporal (d) correlation functions
of the magnetization transfer.

current. This is particularly tempting in view of the
hydrodynamic description proposed by De Nardis et al.
[36], which predicts that left-moving and right-moving
giant quasiparticles contribute equally to the magneti-
zation, and this is why the distribution of h becomes
symmetric. Therefore, it is important to clarify what
happens if the left-right symmetry is broken, e.g., by
the presence of a finite energy current. We prepared
such an initial condition by Monte Carlo sampling, us-
ing the statistical weight ∝ e−λJE with total energy cur-
rent JE ≡ −∑

j Sj · (Sj+1 × Sj+2) [37] and λ = −1.
Thereby, we indeed realize a situation where the energy
current reaches a constant finite value after a short tran-
sient [Fig. 4(a) inset].

Figure 4(a) shows the two-point function C̃2(ℓ, t) in
this case. Interestingly, now we find the peak position
of the correlation function moving at a constant veloc-
ity, ℓpeak = vpeakt with vpeak = 0.5522 [Fig. 4(b)(c)].
Apart from this, the form of the two-point function turns
out to be unchanged, i.e., it is the Prähofer-Spohn func-
tion fKPZ(·) [Fig. 4(d)] with correlation length growing
as ξ(t) ∼ t2/3 [Fig. 4(e)]. Therefore, the KPZ physics re-
mains intact in the presence of a finite energy current.
The propagation of the space-time correlation revealed
in Fig. 4(a)-(c) is analogous to the case of growing tilted
interfaces [39, 40] and nonlinear fluctuating hydrodynam-
ics for unharmonic chains [41]. An important lesson from
these studies is that one should measure the magneti-
zation transfer h(x, t) in the frame comoving with the
space-time correlator, which amounts to the following ex-
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FIG. 4. Results for KPLL with a finite energy current. (a)

Two-point function C2(ℓ, t)/t
2/3 against ℓ/ξ(t) for different

times, t = 3000, 8000, 15000, 23000, 32000 from left to right.
The displayed data are smoothed and vertically shifted to
have C2(ℓ, t) = 0 for ℓ far from the peak. Inset: total energy
current JE(t). (b)(c) The location and the velocity of the peak
of C2(ℓ, t), ℓpeak(t) and vpeak, respectively. The dashed line
in (b) shows ℓpeak(t) = vt with v = 0.5522, wrapped by the

periodic boundary. (d) Rescaled two-point function C̃2(ℓ, t)
centered at ℓ = ℓpeak(t) (symbols, same colors as (a)), com-
pared with the Prähofer-Spohn solution fKPZ(·) (dashed line).
(e) Correlation length ξ(t). The black dots are the data for the
case without energy current, shown in Fig. 1(b). (f) Variance
of the magnetization transfer h(x, t), measured in the original
and comoving frames (blue circles and red squares, respec-
tively). The thick dashed line indicates the KPZ growth law
(4) with α determined from C2(ℓ, t). (g)(h) Skewness and
kurtosis of the magnetization transfer h(x, t) in the comoving
frame. The values for the Baik-Rains distribution are 0.359
and 0.289, respectively [38], which are far from the data.

pression:

h(x, t) ≡
∫ t

0

J(x, t′)dt′ −
∫ x

x−vt

m(x′, 0)dx′ (8)

with v = vpeak. With this appropriate definition of
the magnetization transfer, we indeed confirm the KPZ
growth of the variance, Eq. (4) [Fig. 4(f) red squares],

whereas the näıve definition h(x, t) =
∫ t

0
J(x, t′)dt′ fails

to capture the KPZ exponent (blue circles). On the other
hand, even with the definition (8) without left-right sym-
metry, we do not find any indication of asymmetric dis-

0 1 2 3 4
x

0

20

40

60

80

100

h
0
(x

;t
)

(a)

100 102 104
t

10-2

100

102

V
a
r[
h
]

9 t2=3

9 t1=2

(b)
7 = 0:1

7 = 1

7 = 10

100 102 104 106
0
0.5
1
1.5

Var[h]=,t2=3 vs 73t

BR

GOE

FIG. 5. Results for KPLL with the flat initial condition.
(a) Snapshots of the height h0(x, t) = h(x, t) + h0(x, 0) at
t = 0, 2000, 4000, · · · , 10000 from bottom to top, for µ = 1.
For visibility, every subsequent snapshot is shifted upward by
20. (b) Variance of the magnetization transfer h for differ-
ent µ. The dashed line is the KPZ growth law (4) with α
determined from the equilibrium simulations [Fig. 1(d)]. The
dashed-dotted line is a guide for the eyes showing Var[h] ∼
t1/2. Inset: rescaled variance Var[h]/αt2/3 against µ3t, for
µ = 0.1, 0.5, 1, 2. The bold solid line displays the behavior for
KPZ interfaces [42] (with arbitrary horizontal shift), showing
crossover from the Baik-Rains (BR) distribution (dotted line)
to the characteristic distribution for flat interfaces, namely the
GOE Tracy-Widom distribution (dashed line). Simulation
parameters were L = 40, 000 and N = 1, 000 for µ = 0.1, 0.5, 1
and L = 400, 000 and N = 33 for µ = 2, 10.

tribution, as evidenced by vanishing skewness [Fig. 4(g)].
The value of the kurtosis also remains far from that of
the Baik-Rains distribution [Fig. 4(h)], just like the case
without energy current [18, 19]. To summarize, the pres-
ence of a finite energy current only necessitates consider-
ing the comoving frame; otherwise, it seems to have no
effect on relevant statistical quantities, as long as they
are measured in the comoving frame.

Finally, we study the effect of the initial condition.
Universal statistical properties of the authentic KPZ
class are known to depend on the initial condition, the
three representative cases being the domain wall (curved
interface), flat, and stationary initial conditions [9]. It is
important to assess whether KPZ scaling laws for non-
stationary cases can describe spin chains under the corre-
sponding, non-equilibrium settings. For the domain wall
initial condition, recent simulations suggested that KPZ
may be observed only for finite times, being eventually
replaced by the diffusive scaling [17]. This is argued to
result from the violation of the SU(2) symmetry, due to
the chemical potential µ used to prepare each domain of
biased spins [43]. Compared to this, the fate of the flat
initial condition is not clear and has not been studied to
our knowledge, even if some recent simulations of quan-
tum spin chains hint that KPZ behavior is also visible
when starting from non-stationary states [44].

We realize a flat initial condition, by drawing each
spin Sj(0) from infinite-temperature equilibrium distri-
bution with a space-dependent vectorial chemical poten-
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TABLE I. KPZ two-point properties in equilibrium integrable
spin chains. The new results of this work are marked with *.

exponents ξ(t) ∼ t2/3, Var[h(x, t)] ∼ t2/3

two-point function C2(ℓ, t) Prähofer-Spohn solution fKPZ

*variance amplitude Eq. (4) with Var[BR] ≈ 1.15

*spatial correlation Cs(ℓ, t) Airy0 covariance, Fig. 2(a)

*time correlation Ct(t1, t2) Ferrari-Spohn solution, Eq. (7)

tial µj , ρ(Sj) =
|µj |

4π sinh |µj |e
µj ·Sj . The chemical poten-

tial is determined as follows: (i) µ1 = 0, (ii) µj≥2 =

−µStot
j−1/|Stot

j−1| with Stot
j−1 ≡ ∑j−1

j′=1 Sj′(0) and µ > 0
[45]. This amounts to generating an initial height pro-
file h0(x, 0) ≡ ∑

0≤j<x S
z
j (0) that looks like a trajec-

tory of an Ornstein-Uhlenbeck process [Fig. 5(a) bottom
curve] instead of a Brownian trajectory for the equi-
librium case µ = 0. For KPZ interfaces, we demon-
strate with TASEP that such initial conditions result
asymptotically in the flat KPZ statistics [46], through
a dynamical crossover from the stationary statistics (the
Baik-Rains distribution) to the flat one (the GOE Tracy-
Widom distribution) [42] without changing the scaling
Var[h] ∼ t2/3 (Fig. S2). In contrast, for the KPLL mag-
net, we find completely different behavior for µ > 0,
showing crossover from the KPZ scaling t2/3 to the diffu-
sive one t1/2 (Fig. 5). Close scrutiny reveals that this
crossover takes place at time scale µ−3 [Fig. 5(b) in-
set], in agreement with anomalous relaxation discussed
in Ref. [43]. This indicates that the local violation of the
isotropy (SU(2) for quantum spins) is sufficient for KPZ
to break down in spin chains.

In summary, using the integrable isotropic spin chains,
both classical and quantum, we carried out quantitative
tests of KPZ scaling laws for various two-point quanti-
ties that have not been characterized for spin chains so
far, and found precise agreement in all of them (Table I).
Nevertheless, the KPZ scaling laws seem to not describe
higher-order quantities, as evidenced by earlier studies
[18, 19]. Therefore, the strict KPZ class rules only a sub-
set of statistical properties of isotropic integrable spin
chains (and other cases with a continuous non-Abelian
symmetry [12]). It is of primary importance to clarify
the underlying principles of such partial emergence of
the KPZ class. It could be explained by the coupled
Burgers equation as proposed in Ref. [36], possibly by in-
troducing a larger number of hydrodynamic modes. Also
one cannot exclude that there exists an unknown observ-
able capturing full KPZ statistics. Our finding on the
robustness of the KPZ scaling in the presence of energy
current, as well as its breakdown by the local violation
of isotropy, may also be hints for probing this mystery,
which hangs over such simple quantum many-body sys-
tems as the isotropic Heisenberg spin chain.
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END MATTER

Quantum model simulation. To obtain the data
shown in Fig. 3, we numerically evaluate C2(ℓ, t),
Cs(ℓ, t) and Ct(ℓ, t) for the infinite temperature equi-
librium state. These quantities are defined for the
quantum model as follows: C2(ℓ, t) ≡ ⟨Ŝz

0 Ŝ
z
ℓ (t)⟩,

Cs(ℓ, t) ≡ ⟨∆Ŝ0(t)∆Ŝℓ(t)⟩ − ⟨∆Ŝℓ(t)⟩2, and Ct(t1, t2) ≡
⟨∆Ŝ0(t1)∆Ŝ0(t2)⟩ − ⟨∆Ŝ0(t1)⟩⟨∆Ŝ0(t2)⟩ where ⟨Ô⟩ ≡
Tr[Ô]/2L, Ŝα

j (t) ≡ ÛtŜ
α
j Û

†
t (α = x, y, z) with Ût ≡

e−iĤt, Ĵj(t) ≡ Ŝx
j (t)Ŝ

y
j+1(t)− Ŝy

j (t)Ŝ
x
j+1(t) and ∆Ŝj(t) ≡∫ t

0
Ĵj(t

′)dt′ represents the local spin current and magne-
tization transfer at the j-th site respectively. Here, the
site index 0 represents the (L/2)-th site counted from
the left boundary and is nearly at the center of the sys-
tem, where L is the total number of sites. The index
j runs from −(L/2) + 1 to L/2. In the quantum con-
text, the definition of charge transfer must come with a
prescription for the appropriate time-ordering of the op-
erator ∆Ŝj(t) as the current operators at different times
do not commute with each other; see Refs [47, 48]. How-
ever, for simplicity, our correlation functions Cs(ℓ, t) and
Ct(t1, t2) are not defined with such a time-ordering, even
though these quantities are still physically observable in
principle, as we argue in Supplementary Text 3. Testing
the KPZ scaling for correlation functions with the ap-
propriate time ordering to reproduce charge transfer is
an important problem left for future studies.

To obtain the time-evolved operators and their expec-
tation values, we use the time-evolving block decima-
tion (TEBD) method [49] for matrix product operators,
with time step ∆t = 0.05 and maximum bond dimen-
sion χ = 400, 800, 1200, 1600, implemented by ITensor
[50]. We consider L = 100 and the open boundary con-
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dition for this simulation. For Cs(ℓ, t) and Ct(t1, t2),
we first obtain the current-current correlation function
Fℓ(t) ≡ ⟨Ĵℓ(t)ÛtĴ0(0)Û

†
t ⟩ using the TEBD and then

compute numerical integrals, such as ⟨∆Ŝ0(t)∆Ŝℓ(t)⟩ =∫ t

0
dt′

∫ t

0
dt′′Fℓ(t

′ − t′′). The time integral is evaluated
with a large time step 20∆t.

For simulations of such quantum models, it is crucial
to deal with truncation error due to the finite bond di-
mension χ. To understand the effect of this error, we
have performed simulations with different χ and com-
pared them. The results described in the following in-
dicate that a large value of χ is needed for quantitative
verification of the KPZ scaling functions, larger than that
needed for the exponents. While most of the data shown
in Fig. 3 are well-converged with respect to χ within nu-
merical accuracy, α1(t) is not, and we have systematically
evaluated the error bars as explained below. Note that
the Trotter error is not the dominant source of error in
the present study.

Numerical results for the quantum model. Let us start
with the quantities related to C2(ℓ, t). Figure 6(a) shows
Ω(t) ≡ ∑

l C2(ℓ, t), which should be conserved by the
U(1) symmetry of the Hamiltonian [Eq. (2)]. However,
because of the truncation error due to finite bond di-
mension, Ω(t) starts to deviate at long times. Indeed,
we find that the deviation becomes smaller with in-
creasing χ. With χ = 1600 used for the main results
shown in Fig. 3, the deviation remained within 0.8% of
the initial value, at the largest time inspected in this
work (t = 50). Next, we evaluate the correlation length
ξ(t) ≡ [ 1

σ2Ω(t)

∑
ℓ ℓ

2C2(ℓ, t)]
1/2 with σ2 ≈ 0.51. The data

exhibit the power law ξ(t) ∼ t2/3 [Fig. 6(b)] as expected
from the KPZ scaling.

Using these results, we plot the rescaled two-point

function C̃2(ℓ, t) ≡ ξ(t)
Ω(t)C2(ℓ, t) in Fig. 6(c). The data

are in good agreement with the Prähofer-Spohn exact
solution fKPZ(u) with u ≡ ℓ/ξ(t), confirming the earlier
finding in Ref. [10] without adjustable parameters. How-
ever, to evaluate the parameter α1(t) therefrom (Eq. (3)
with α = α1(t)), we must deal with the slight devia-
tion from fKPZ(u) visible even for the largest χ we used.
To this end, in the inset of Fig. 6(c), we plot α̃1(ℓ, t) ≡
ξ(t)2C2(ℓ, t)/(2t

2/3fKPZ(ℓ/ξ(t))). According to Eq. (3),
this quantity is expected to take a constant value α in
the long-time limit. Indeed, as t increases, α̃1(ℓ, t) de-
velops a plateau. The deviation from the plateau gives
a measure of the error in the estimate α1(t). Specifi-
cally, we measure αmax

1 (t) ≡ maxu α̃1(u, t) and α
min
1 (t) ≡

min|u|<1 α̃1(u, t) [Fig. 6(d)] and use
αmax

1 (t)+αmin
1 (t)

2 as the
estimate of α1(t) and α

max
1 (t)− αmin

1 (t) as its error bar.
The results in Fig. 6(d) indeed show that α1(t) tends to
converge to a constant in the long-time and large-χ limit.

Next, we consider the quantities related to the mag-
netization transfer. First, its variance exhibits the KPZ
scaling law, Var[h(x, t)] ∼ t2/3 [Fig. 6(e) inset]. From
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FIG. 6. Detailed results for the quantum Heisenberg model
(system size L = 100 and open boundary condition). All
panels except the inset of (c) show the χ-dependence of Ω(t)

(a), ξ(t) (b), C̃2(ℓ, t) (c), αmin
1 (t) and αmax

1 (t) (d), α2(t) (e),
Var[h] [(e) inset], α2(t)/α1(t) (f), Cs(ℓ, t) (g), and Ct(t1, t2)
(h), where χ denotes the maximum bond dimension in the
TEBD simulation. The same symbols are used in these panels
as indicated in the legend of (a). The error bars in (f) are
given by the range [α2(t)/α

max
1 (t), α2(t)/α

min
1 (t)]. The dashed

lines in (c)(g)(h) are the Prähofer-Spohn solution fKPZ(u),
the Airy0 covariance C0(u), and the Ferrari-Spohn solution
(7), respectively. The inset of (c) shows the time dependence
of α̃1(ℓ, t) with χ = 1600.

this, we evaluate α2(t) ≡ Var[h(0, t)]/(t2/3Var[BR]) in
Fig. 6(e), where the data converge to a constant value
in the long-time limit. The KPZ scaling laws predict
α1(t) = α2(t) = a constant α [Eqs. (3) and (4)]. This
is confirmed in Fig. 6(f), where the ratio α2(t)/α1(t) ap-
proaches one in the long-time and large-χ limit. Finally,
we plot the spatial and temporal correlation functions,
Cs(ℓ, t) and Ct(t1, t2), respectively, in the rescaled units
in Figs. 6(g)(h). They converge remarkably with increas-
ing χ and show good agreement with the Airy0 covariance
C0(u) and the Ferrari-Spohn exact solution (7), respec-
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tively, without adjustable parameters. These results pro-
vide strong evidence that the KPZ scaling laws for the
two-point quantities are valid in the quantum model too.
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SUPPLEMENTARY TEXT 1: INTEGRABLE DISCRETE LANDAU-LIFSHITZ MAGNET

Here we describe the definition of the integrable discrete Landau-Lifshitz magnet introduced by Krajnik and Prosen
[1–3] (the KPLL model), which we mainly use in this Letter. The KPLL model is defined on a space-time lattice, as
sketched in Fig. S1. Time is discretized as t = n∆t with n ∈ Z. Each site has a classic spin, Sn

j (= Sj(t) of the main
text), which is a unit vector, and the periodic boundary is assumed. As sketched in Fig. S1 as a brick layer, the time
evolution takes place pairwise, alternately, as follows:

(S2m+1
2i ,S2m+1

2i+1 ) = Φ(S2m
2i ,S

2m
2i+1), (S2m+2

2i−1 ,S2m+2
2i ) = Φ(S2m+1

2i−1 ,S2m+1
2i ), (S1)

with i,m ∈ Z and

Φ(S1,S2) ≡
1

s2 +∆t2
(s2S1 +∆t2S2 +∆tS1 × S2, s2S2 +∆t2S1 +∆tS2 × S1), s2 ≡ 1

2
(1 + S1 · S2). (S2)

𝑺𝑺00 𝑺𝑺10 𝑺𝑺20 𝑺𝑺30 𝑺𝑺40 𝑺𝑺50 𝑺𝑺60 𝑺𝑺70

𝑺𝑺01 𝑺𝑺11 𝑺𝑺21 𝑺𝑺31 𝑺𝑺41 𝑺𝑺51 𝑺𝑺61 𝑺𝑺71

𝑺𝑺02 𝑺𝑺12 𝑺𝑺22 𝑺𝑺32 𝑺𝑺42 𝑺𝑺52 𝑺𝑺62 𝑺𝑺72

𝑺𝑺03 𝑺𝑺13 𝑺𝑺23 𝑺𝑺33 𝑺𝑺43 𝑺𝑺53 𝑺𝑺63 𝑺𝑺73

…
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FIG. S1. Schematic of the brick-layer space-time lattice of the KPLL model [1–3].
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In the continuous time limit ∆t→ 0, this model converges to the Ishimori chain [4] [Eq. (1)]

∂Sj

∂t
= {Sj , H} =

Sj × Sj−1

1 + Sj · Sj−1
+

Sj × Sj+1

1 + Sj · Sj+1
, (S3)

with Hamiltonian H =
∑

j log(1 + Sj · Sj+1), a well-known integrable variant of the lattice Landau-Lifshitz model.
The KPLL model satisfies the following continuity equation for the z-component of the spin, Sn

j ≡ (Sn
j )

z:

S2m+2
2i − S2m

2i = −J2m+ 1
2

2i+ 1
2

+ J
2m+ 3

2

2i− 1
2

, S2m+2
2i+1 − S2m

2i+1 = −J2m+ 3
2

2i+ 3
2

+ J
2m+ 1

2

2i+ 1
2

, (S4)

with the spin current (integrated over the time step ∆t)

J
2m+ 1

2

2i+ 1
2

= S2m+1
2i+1 − S2m

2i+1 = −(S2m+1
2i − S2m

2i ), J
2m+ 3

2

2i− 1
2

= S2m+2
2i − S2m+1

2i = −(S2m+2
2i−1 − S2m+1

2i−1 ). (S5)

Of course, by setting J
2m+ 3

2

2i+ 1
2

= J
2m+ 1

2

2i− 1
2

= 0, we also have the following simplest expression of the continuity equation:

Sn+1
j − Sn

j = −Jn+ 1
2

j+ 1
2

+ J
n+ 1

2

j− 1
2

. (S6)

With this spin current, the magnetization transfer (the integrated spin current) discussed in the main text is defined
by

hnj+ 1
2
≡

n−1∑

n′=0

J
n′+ 1

2

j+ 1
2

, (S7)

which is denoted by h(x, t) =
∫ t

0
J(x, t′)dt′ in the main text, with x = j+ 1

2 and t = n∆t. The expression for the case
with a finite energy current, Eq. (8), can also be obtained straightforwardly, as follows:

hnj+ 1
2
≡

n−1∑

n′=0

J
n′+ 1

2

j+ 1
2

−
∑

j′∈J
S0
j′ (S8)

where J is the set of integers between j + 1
2 and j − vt+ 1

2 .

SUPPLEMENTARY TEXT 2: SHORT TIME COVARIANCE OF A0

The Airystat process was introduced in [5] and it is
given by

Astat(u) = max
v

{
√
2B(v) + L(v, 0;u, 1)},

Astat(0) = max
w

{
√
2B(w) + L(w, 0; 0, 1)},

(S9)

where L is the directed landscape [6] and B(u) is a stan-
dard two-sided Brownian motion (i.e., starting at “time”
u = 0 and with diffusivity constant 1). This process is
not stationary, but its increments are stationary, with

Astat(u)−Astat(0)
(d)
=

√
2B(u). (S10)

The stationary version of it, that we denote by A0(u)
and name Airy0 process, is given by

A0(u) := max
v

{L(v, 0;u, 1)+
√
2B(v)−

√
2B(u)}. (S11)

Our goal is to prove the following result.

Theorem 1. For small u we have

Cov(A0(0);A0(u)) = Var(A0(0))− 2u+ o(u). (S12)

Proof. First of all, note that

A0(0) = Astat(0), A0(u) = Astat(u)−
√
2B(u). (S13)

The covariance of A0 between times 0 and u can be
decomposed as

Cov(A0(0);A0(u)) =
1
2Var(A0(0))

+ 1
2Var(A0(u))− 1

2Var(A0(u)−A0(0)). (S14)

The last term can be rewritten using Eq. (S13) as

Var(A0(u)−A0(0)) = Var(Astat(u)−Astat(0))

+ Var(
√
2B(u))− 2Cov(Astat(u)−Astat(0);

√
2B(u))

(S15)
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Since the distribution of A0(u) is independent of u and
Var(

√
2B(u)) = 2u, we obtain

Cov(A0(0);A0(u)) = Var(A0(0))− 2u

+Cov(Astat(u)−Astat(0);
√
2B(u)). (S16)

In Lemma 2 we show that the last term is o(u), complet-
ing the proof.

Lemma 2. There exists a constant C such that for all
0 ≤ u ≤ 1 we have

|Cov(Astat(u)−Astat(0);
√
2B(u))|

≤ Cu3/2
(
1 + (ln(1/u))1/3

)
. (S17)

Here, of course, the threshold 1 can be replaced by any
arbitrary u0 > 0 by adapting the constant C appropri-
ately.

Proof of Lemma 2. Let us denote by v0 (resp. w0) the
argmax of the variational formulas in Eq. (S9). Consider
the event

GM = {−M ≤ v0, w0 ≤M + u}. (S18)

Using Theorem 2.5 and Proposition 2.7 of [7] we get

P(Gc
M ) ≤ Ce−cM3

(S19)

for some constants C, c > 0. Assume that GM occurs.
Then the geodesic from (−M, 0) to (u, 1) crosses that of
the stationary process Astat(0), and the geodesic from
(M, 0) to (0, 1) crosses that of Astat(u). Using the com-
parison inequality approach first introduced in [8] we get

L(−M, 0;u, 1)− L(−M, 0; 0, 1) ≤ Astat(u)−Astat(0)

≤ L(M + u, 0;u, 1)− L(M + u, 0; 0, 1). (S20)

Denote

X− = L(−M, 0;u, 1)− L(−M, 0; 0, 1),

X = Astat(u)−Astat(0),

X+ = L(M + u, 0;u, 1)− L(M + u, 0; 0, 1),

Y =
√
2B(u).

(S21)

Notice that in distribution

X−
(d)
= A2(u)− (M + u)2 −A2(0) +M2

= A2(u)−A2(0)− 2uM − u2,

X
(d)
=

√
2B(u),

X+
(d)
= A2(u)−M2 −A2(0) + (M + u)2

= A2(u)−A2(0) + 2uM + u2,

(S22)

where A2 is the Airy2 process [9]. More importantly, X−
and X+ are independent of Y .

Below we use the inequalities obtained by applying
Cauchy-Schwarz and/or bounding the variance by the
second moment, namely

|Cov(A1C ;B)| ≤ E(A4)1/4Var(B)1/2P(C)1/4 (S23)

for general random variables A,B and events C. First
we decompose by linearity

Cov(X;Y ) = Cov(X1GM
;Y ) + Cov(X1Gc

M
;Y ). (S24)

Using Eq. (S23) we get

|Cov(X1Gc
M
;Y )| ≤ E(X4)1/4Var(Y )1/2P(Gc

M )1/4.
(S25)

By Eq. (S22) we have E(X4) = 12u2 and Var(Y ) = 2u,
so that, together with Eq. (S19),

|Cov(X1Gc
M
;Y )| ≤ Cue−cM3/4. (S26)

Next we need to bound Cov(X1GM
;Y ), which is equal

to E(X1GM
Y ) since E(Y ) = 0. We further decompose

on Y ≥ 0 and Y < 0, and use Eq. (S20), to get

Cov(X1GM
;Y )

= E(X1GM
Y 1Y≥0) + E(X1GM

Y 1Y <0)

≤ E(X+1GM
Y 1Y≥0) + E(X−1GM

Y 1Y <0)

= E(X+Y 1Y≥0) + E(X−Y 1Y <0)

− E(X+1Gc
M
Y 1Y≥0) + E(X−1Gc

M
Y 1Y <0).

(S27)

The last two terms are bounded similarly. We have

|E(X+1Gc
M
Y 1Y≥0)| ≤ 4

√
E(X4

+)
4

√
P(Gc

M )
√

E(Y 21Y≥0)

≤ 4

√
E(X4

+)
4

√
P(Gc

M )
√

E(Y 2).

(S28)
Using (a+ b)4 ≤ 8(a4 + b4) we get

E(X4
+) ≤ 8E((A2(u)−A2(0))

4) + 8u4(u+ 2M)4. (S29)

By Lemma 3 below, in Eq. (S29) we get 4

√
E(X4

+) ≤
C
√
u(1 + u2M4)1/4 for some constant C. So,

|E(X+1Gc
M
Y 1Y≥0)| ≤ Cu(1+u2M4)1/4e−cM3/4. (S30)

The same bound holds true for E(X−1Gc
M
Y 1Y <0).

The sum of the first two terms in Eq. (S27) are given
by

E(X+Y 1Y≥0) + E(X−Y 1Y <0)

= E(X−Y ) + E((X+ −X−)Y 1Y≥0)

= (E(X+)− E(X−))E(Y 1Y≥0),

(S31)

where we used the fact that X± and Y are indepen-
dent and that E(Y ) = 0. We can compute explicitly
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E(Y 1Y≥0) =
√
u/

√
π and E(X+)−E(X−) = 4uM+2u2.

Thus,

E(X+Y 1Y≥0)+E(X−Y 1Y <0) = c2u
3/2(2M+u). (S32)

Putting all together we get

|Cov(Astat(u)−Astat(0);
√
2B(u))|

≤ Cu
(
e−cM3/4(1 + (1 + u2M4)1/4) + u1/2M

)
. (S33)

Finally we choose the value of M depending on u. With
M = ( 2c ln(1/u))

1/3 we get (1 + (1 + u2M4)1/4) = O(1),

u1/2M = (2/c)1/3
√
u(ln(1/u))1/3 and e−cM3/4 = u1/2,

which imply the claimed estimate.

Lemma 3. There exists a constant c1 such that for all
0 ≤ u ≤ 1,

E((A2(u)−A2(0))
4) ≤ c1u

2. (S34)

Proof. Using the comparison inequality techniques of [8],
as a consequence of the bounds of Lemma 3.4 of [10]
(taking the N → ∞ in there), we get

|A2(u)−A2(0)| ≤
√
2B(u) + u2 + 2κu (S35)

on a set Ωκ with P(Ωκ) ≥ 1 − Ce−cκ2

. Furthermore,
let ΩCut = {|A2(u)| ≤ K and |A2(0)| ≤ K}. Then

P(ΩCut) ≥ 1 − Ce−
4
3K

3/2

since the one-point distribu-
tion ofA2(u) is the GUE Tracy-Widom distribution func-
tion [11].

On ΩG = ΩCut ∩ Ωκ, using (a + b)4 ≤ 8(a4 + b4), we
get

E((A2(u)−A2(0))
4) ≤ 8E((A2(u)−A2(0))

4
1G)

+ 8E((A2(u)−A2(0))
4
1
c
G). (S36)

The second term is bounded by 8(2K)4P(Ωc
G) since

|A2(u)−A2(0)| ≤ 2K. For the first term, using Eq. (S35)

we get

E((A2(u)−A2(0))
4
1G) ≤ 32E(|B(u)|4) + 8(u2 + 2κu)4.

(S37)
Since E(|B(u)|4) = 3u2, if we choose for instance K =
u−2/3 and κ = u−1/2, we obtain E((A2(u) −A2(0))

4) ≤
Cu2 for some constant C > 0.

Finally, let us compare the short-time behavior of the
covariance of A0 with that of the other Airy processes.
For the Airy2 and the Airy1 processes, the small u be-
havior are the same: using the decomposition Eq. (S14)
and the fact that locally the increments are as that of
the stationary case, namely

√
2B(u), one obtains [9, 12]

Cov(Aℓ(u),Aℓ(0)) = Var(Aℓ(0))− u+ o(u), ℓ = 1, 2.
For the stationary case, the decomposition Eq. (S14)

and the fact that Var(Astat(u)−Astat(0)) = 2u leads to

Cov(Astat(0);Astat(u)) = Var(Astat(0))− u

+
1

2
(Var(Astat(u))−Var(Astat(0))) . (S38)

Let FBR,u be the Baik-Rains distribution with parameter
u [13, 14]. Then since Astat(u) is distributed according
to FBR,u and it has expectation equal to zero (as a con-
sequence of stationarity) we have

Var(Astat(u)) =

∫

R

s2dFu(s) =: gsc(u). (S39)

The latter is a scaling function which was already par-
tially studied, see Section 7.2 of [15] for instance. gsc(u)
is symmetric, it increases linearly in u as |u| → ∞ (this
cancels linear term in Eq. (S38)) and g′′(0) > 0. This
implies that for small u,

Var(Astat(u))−Var(Astat(0)) = g′′(0)u2+O(u4). (S40)

Thus the covariance of the Airystat, similarly to that of
the Airy1 and Airy2 process, has a linear term −u for
small u, which differs from the linear term −2u for the
Airy0 process.

SUPPLEMENTARY TEXT 3: CORRELATION FUNCTIONS Cs(ℓ, t) AND Ct(t1, t2) AND PHYSICAL
OBSERVABLES IN THE QUANTUM MODEL

Since the current operators Ĵj(t) at different times do not commute, it may not be obvious whether the correlation

functions related to the magnetization transfer ∆Ŝj =
∫ t

0
Ĵj(t

′)dt′ are measurable or not. However, since these
correlation functions are obtained from the expectation value of the current operators, they are measurable, at least
in principle, as we explicitly describe below.

Since ⟨∆Ŝj(t)⟩ = 0, the correlation functions are given as

Cs(ℓ, t) = ⟨∆Ŝ0(t)∆Ŝℓ(t)⟩, Ct(t1, t2) = ⟨∆Ŝ0(t1)∆Ŝ0(t2)⟩, (S41)

where the brackets represent the expectation values for the infinite-temperature equilibrium state. Using the current-
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current correlation function Fℓ(s) ≡ 2−LTr[Ĵℓe
−iĤsĴ0e

iĤs], they are recast into

Cs(ℓ, t) =

∫ t

0

dt′
∫ t

0

dt′′Fℓ(t
′ − t′′), Ct(t1, t2) =

∫ t1

0

dt′
∫ t2

0

dt′′Fℓ(t
′ − t′′), (S42)

and thus the problem is reduced to evaluating Fℓ(s).
While there are several ways to obtain Fℓ(s), here we consider an approach based on the real-time evolution of a

density matrix. Let us consider Gℓ(s), defined as follows:

Gℓ(s) ≡ Tr[Ĵℓρ̂(s)] (S43)

where ρ̂(s) ≡ e−iĤsρ̂0e
iĤs, ρ̂0 ≡ (Î − 2Ĵ0)/2

L, Î ≡ ⊗L/2
j=−L/2+1 Îj , and Îj is the identity operator acting on the j-th

site. The initial density matrix ρ̂0 is also represented as

ρ̂0 =




−1⊗

j=−L
2 +1

Îj
2


⊗ ρ̂01 ⊗




L
2⊗

j=2

Îj
2


 , ρ̂01 =

1

4
|↑↑⟩⟨↑↑|+ 1

2
|ψ⟩⟨ψ|+ 1

4
|↓↓⟩⟨↓↓| , (S44)

with |ψ⟩ = (|↑↓⟩+ i |↓↑⟩)/
√
2. Here, |σσ′⟩ ≡ |σ⟩0 ⊗ |σ′⟩1 and |σ⟩j is the eigenstate of Ŝz

j , i.e., Ŝ
z
j |↑⟩j = (1/2) |↑⟩j and

Ŝz
j |↓⟩j = (−1/2) |↓⟩j . Note that ρ̂0 is different (at the 0th and 1st sites) from the infinite-temperature equilibrium

state that we used for simulations as the initial state, but with this initial state, we can obtain the correlation functions
(S41) studied in this work. Specifically, since Tr[Ĵℓ] = 0, the function Gℓ(s) is related to Fℓ(s) as

Gℓ(s) = −2Fℓ(s). (S45)

This shows that Fℓ(s) is obtained from the current expectation value Gℓ(t). This means that we can compute Cs(ℓ, t)
and Ct(t1, t2) from the current measurement in the time evolution starting from the initial density matrix ρ̂0.
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FIG. S2. Stationary-to-flat crossover in TASEP with Ornstein-Uhlenbeck initial conditions. The initial conditions h0(x, 0)

were generated by Monte Carlo sampling with statistical weight e−β
∫
h0(x,0)

2dx. The parameter α for this case is known to be
2−2/3 exactly. (a) Height variance Var[h] against time t. The dotted and dashed lines display the power laws for the stationary

case (Baik-Rains distribution) and the flat case (GOE Tracy-Widom distribution), respectively, proportional to t2/3 for both

cases. (b)(c) Rescaled variance Var[h]/αt2/3 against t (b) and β2/3t (c), for β = 100, 10−1, 10−2, 10−3, 10−4, 10−6 from left
to right in (b). The thick solid line in (c) is the flat-to-stationary crossover function obtained in Ref. [16], displayed with an
arbitrary horizontal shift.
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[1] Ž. Krajnik and T. Prosen, Kardar-Parisi-Zhang physics in integrable rotationally symmetric dynamics on discrete space-

time lattice, J. Stat. Phys. 179, 110 (2020).
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[3] Ž. Krajnik, E. Ilievski, and T. Prosen, Absence of normal fluctuations in an integrable magnet, Phys. Rev. Lett. 128,

090604 (2022).
[4] Y. Ishimori, An integrable classical spin chain, J. Phys. Soc. Jpn. 51, 3417 (1982).
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