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Abstract

The Ferrari-Spohn diffusion process arises as limit process for the
2D Ising model as well as random walks with area penalty. Motivated
by the 3D Ising model, we consider M such diffusions conditioned not
to intersect. We show that the top process converges to the Airy2
process as M → ∞. We then explain the relation with the 3D Ising
model and present some conjectures about it.

1 Introduction and result

In this paper we consider M non-intersecting Ferrari-Spohn diffusions and
show that the top trajectory converges to the Airy2 process in the M → ∞
limit. The Ferrari-Spohn diffusion, denoted by X̃ (t), is a diffusion process
which first appeared in [15] as the limiting process of a Brownian motion
conditioned to stay above a large circular barrier. The infinitesimal generator
of X̃ (t) is given by

(Lf)(x) =
1

2

d2f(x)

dx2
+ a(x)

df(x)

dx
, (1.1)

where the drift is given by a(x) = d
dx

ln(Ω(x)) with Ω(x) = Ai(−ω1 + x).
Here, −ω1 is the right-most zero of the Airy function Ai.

Another way to obtain this process is to consider a random walk con-
ditioned to stay positive, which can be thought as having a hard-wall at
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the origin, and subjected to a penalty given in terms of the area under its
trajectory. This model was studied in [20] and it was motivated by the 2D
Ising model, as we will discuss in more detail in Section 2.1. One consid-
ers a discrete time random walk on Z with one-time transition probability
p(y) such that

∑

y∈Z yp(y) = 0 and σ2 =
∑

y∈Z y
2p(y) < ∞. Denote by

X = (Xk)−N≤k≤N the random walk starting from time −N to time N and by
Puv

N+ the set of trajectories such that X−N = u, XN = v, and Xk > 0 for all
k. Then, for λ > 0, we consider the probability distribution on Puv

N+ given
by

P
uv

N,λ (X) =
1

Zuv

N,λ

e−λ
∑N

j=−N Xj

N−1
∏

j=−N

p(Xj+1 −Xj), (1.2)

where Zuv

N,λ is the normalization constant.
Without penalty, that is with λ = 0, the process X under Puv

N,0 fluctuates

away from the wall by N1/2. On the other hand, if λ > 0, then X remains
localized as N → ∞ (if u, v stay bounded). In the regime λ → 0 the typical
distance of X from the wall is λ−1/3, while the correlation distance along
the interface is of order λ−2/3. Thus it makes sense to consider the process
αλ1/3X[βtλ−2/3] for some constants α, β > 0. For λ = 1/N , α = σ2/32−1/3 and

β = σ−2/32−2/3, is it proven in [20] that1, in the sense of finite-dimensional
distributions,

lim
N→∞

αN2/3X[βtN2/3] = X̃ (t), (1.3)

provided that the initial and final points are o(N1/3) from the wall. We refer
to this scaling as (1/2/3) scaling.

Motivated by the 3D Ising model, see Section 2.2 for a detailed discussion,
the random walk model was extended in [21] to several random walks as
above but with the extra constraint to be non-intersecting. More precisely,
one considers M non-intersecting walks X

n = (Xn
k )−N≤k≤N , n = 1, . . . ,M

subject to the same area tilt as in (1.2)2. On top of it, one conditions on
Xn

k < Xn+1
k , n = 1, . . . ,M − 1, −N ≤ k ≤ N . Under the scaling as in (1.3),

it is shown that the collection {Xn, 1 ≤ n ≤ M} converges to the so-called
Dyson Ferrari-Spohn diffusion process X (t) = (X1(t), . . . ,XM(t)). It is a
diffusion process in the Weyl chamber WM,+ = {0 ≤ x1 ≤ . . . ≤ xM} ⊂ R

M

1In [20] the scaling was with α = β = 1, but we have chosen to add these to have
convergence to X̃ (t) without scaling factors in there.

2An extension to area penalty with prefactor λi with λ > 1 instead of constant λ has
been considered in [8].
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with zero-boundary conditions on ∂WM,+. Its generator is given by

(LMf)(x) =

M
∑

k=1

(

1

2

d2

dx2
k

+ aM,k(x)
d

dxk

)

f(x), (1.4)

where aM,k(x) = d
dxk

ln(ΩM (x)) with the ground state ΩM given by

ΩM (x1, . . . , xM ) = det[Ai(xj − ωi)]1≤i,j≤M . Here, −ω1 > −ω2 > . . . denote
the zeroes of the Airy function Ai.

The result of this paper is to show that XM(t) converges to the Airy2
process as M → ∞, which is a universal limit process in the Kardar-Parisi-
Zhang universality class of stochastic growth models. The Airy2 process was
discovered in the study of the polynuclear growth model [26].

Theorem 1.1. Let τ1 < τ2 < . . . < τm and S1, . . . , Sm be fixed. Set tk = 2τk
and sk = c1M

2/3 + Sk, with c1 =
32/3π2/3

22/3
. Then,

lim
N→∞

P

( m
⋂

k=1

{XM(tk) ≤ sk}
)

= P

( m
⋂

k=1

{A2(τk) ≤ Sk}
)

(1.5)

with A2 is the Airy2 process.

The Airy2 process is defined by its finite-dimensional distribution as fol-
lows.

Definition 1.2. The m-point joint distributions of the Airy2 process A2 at
times τ1 < τ2 < . . . < τm are given by

P

( m
⋂

k=1

{A2(τk) ≤ Sk}
)

= det(1− χsKAi)L2(R×{τ1,...,τm}), (1.6)

where χs(x, τk) = 1x>Sk
and the extended Airy kernel KAi is given by

KAi(ξi, τi; ξj, τj) =

{
∫∞

0
dλe−λ(τi−τj)Ai(ξi + λ)Ai(ξj + λ), if τi ≥ τj ,

−
∫ 0

−∞
dλe−λ(τi−τj)Ai(ξi + λ)Ai(ξj + λ), if τi < τj .

(1.7)

In particular, the one-point distribution of the Airy2 process is the so-
called GUE Tracy-Widom distribution function, discovered in random ma-
trices [28].

In a zero-temperature case of the 3D-Ising corner, corresponding to a
plane partition model (see [25]) which can be described via non-intersecting
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line ensembles, the appearance of the Airy2 process at the edge was proven
in [14]. However for the real 3D-Ising model the problem remains open.

For the special case of the one-point distribution, the original work [15]
on Brownian motion conditioned to stay above a large circle, was extended
in a physical level of rigor in [17] to several walks and a physical derivation
of the one-point case is provided.

The rest of the paper is organized as follows. In Section 2 we discuss the
relation between the model we studied and the Ising model. Furthermore, we
present some conjectures on the Ising model related with our work. Finally,
in Section 3 we define in more detail the model and prove Theorem 1.1.

Acknowledments: The work of P.L. Ferrari was partly funded by the
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) un-
der Germany’s Excellence Strategy - GZ 2047/1, projekt-id 390685813 and
Projektnummer 211504053 - SFB 1060. The work of S. Shlosman was partly
funded by the ANR-RNF grant 20-41-09009.
This work has started during the scientific program on Randomness, Inte-
grability, and Universality of the Galileo Galilei Institute in 2022. We thank
GGI for the hospitality and support. In particular we appreciate the activ-
ity and enthusiasm of Filippo Colomo, as an organizer of the meeting. We
thank him for discussions on the subject of the present paper, as well as
Alexey Borodin, Vadim Gorin, Kurt Johansson and Herbert Spohn.

2 Relations with the Ising model

2.1 Two-dimensional Ising model and Ferrari-Spohn

diffusion

The following instance of the low-temperature (large β) Ising model was
considered in [27]. It is living in the square box VN = [−N,N ] × [−N,N ]
with (−) boundary conditions and under positive magnetic field h = B

N
. It

is proven there that if B is below certain critical value Bc (β) , then the (−)
boundary conditions win, and the box VN is filled with the (−) phase. In the
opposite case B > Bc the magnetic field wins, and the box VN contains a big
droplet of the (+)-phase. This (random) droplet Γ is pressed to the sides of
the box, and the (−) phase fills only the four corners of VN , with total area
∼ c (β) |VN | , where c (β) → 0 as β → ∞.

One would like to understand the fluctuations of Γ in the various parts
of VN . It turns out that in regions of Γ where the distance to the corner is
O(N), the fluctuations are of order N1/2. But along the sides of VN , where
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Γ is pressed to the walls, the fluctuations are only of order N1/3, as was
explained first in [9].

Comparing this random curve Γ near the wall with the tilted random
walk of Section 1 one sees quite a similar picture, and expects that again
this part of Γ, scaled by N2/3 along the wall and by N1/3 in the orthogonal
direction, converges, as N → ∞, to the Ferrari-Spohn diffusion. Of course,
the curve Γ is not a graph of the function; it has overhangs, plus its different
parts interact, unlike the case of the tilted random walks. Yet all these
fine details of Γ disappear in the (1/2/3) scaling, and the resulting limiting
process is again the same Ferrari-Spohn diffusion, see [18] for the details
(compare with [16]). Its generator is given by (1.1), with the Ai function

scaled differently, namely replacing Ω(x) by Ai
(

3

√

4Bm∗
βχ

1/2
β x − ω1

)

. Here

appear various quantities, characterizing the 2D Ising model for all subcritical
temperatures; m∗

β is the spontaneous magnetization, χβ is the curvature of
the Wulff shape (at its bottom point), and B is taken to be bigger than
Bc(β).

2.2 Three dimensional model

In this section a family of random lines will appear, which is the motivation
for the multiple random walks models considered in [21] and discussed in
Section 1.

The caricature of the crystal growth process was considered in [19]. The
motivation was to study the dynamics of the large droplet of the (+)-phase
floating in the cubic box VN of size 8N3 filled with the (−)-phase of the
low-temperature 3D Ising model, when the volume of the droplet (being of
the order of cN3) grows.

For that reason it was considered the 3D Ising model in VN with Do-
brushin boundary conditions, i.e. (−)-spins attached to the boundary ∂VN

in the upper half-space, and (+)-spins attached to the boundary ∂VN in the
lower half-space. These boundary conditions force a (random) interface Γ
into VN , separating the two phases. Further on, the model was considered in
the canonical ensemble, i.e. restricted to the spin configurations σ with the
fixed value of the total magnetization M ,

M (σ) =
∑

x∈VN

σx = C, (2.1)

and the problem was to study the properties of Γ as a function of the value
of C. A technical simplification was made in [19], by passing to the SOS-
approximation of the model, so the level of the study corresponds to the
random walk model in Section 1, rather than to Section 2.1.
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The main result of [19] is that the interesting behavior of the surface
Γ happens if one varies the constant C on the scale N2, i.e. considers the
dependence of Γ as a function of the parameter a, where C = aN2. Then the
interface Γ undergoes a sequence of transitions at the values 0 < a1 < a2 < ...
of the following nature:

1. For the values of a ∈ [0, a1) the interface Γ is rigid, i.e. it looks very
similar to the horizontal plane L = {(x, y, z) : z = 0} in R

3. More pre-
cisely, the density of locations where Γ differs from L (i.e. the relative
area of the symmetric difference Γ △ L) is low at low temperatures:
|Γ△ L| ∼ α (β)N2, with α (β) → 0 as β → ∞. For any given loca-
tion (x̄, ȳ, 0) ∈ L, the probability that the intersection of Γ with the
vertical line l(x̄,ȳ) = {(x, y, z) : x = x̄, y = ȳ} is different from the point
(x̄, ȳ, 0) ∈ L is of the order of e−4β. So, neglecting the local fluctua-
tions, one can say that the interface Γ in the regime a ∈ [0, a1) has its
height h (Γ) equal to zero.

2. For the values of a ∈ (a1, a2) the interface Γ has one monolayer defined
by the (random) contour γ1 ⊂ L, which means that the height of Γ
inside γ1, i.e. h

(

Γ|Int(γ1)
)

, equals to 1, while h
(

Γ|Ext(γ1)
)

= 0 (again,
neglecting the local fluctuations). This monolayer is macroscopic in
size, meaning that diam (γ1) ≥ d1 (β)N, with d1 (β) > const > 0 uni-
formly in a ∈ (a1, a2). The segment (a1, a2) consists of two subsegments,
(a1, a2) = (a1, a3/2)∪ (a3/2, a2), where the behavior of the interface γ1
differs slightly. For a ∈ (a1, a3/2) the contour γ1 does not touch the
boundary ∂L and typically stays away from it, at a distance O (N) .
For a ∈ (a3/2, a2) the contour γ1 does touch the boundary ∂L.

3. For the values of a ∈ (a2, a3) the interface Γ has two monolayers, defined
by the pair of contours γ1, γ2 ⊂ L, γ2 ⊂ Int (γ1) . The height of Γ
inside γ2, i.e. h

(

Γ|Int(γ2)
)

, equals to 2, h
(

Γ|Int(γ1)\Int(γ2)
)

= 1, while
again h

(

Γ|Ext(γ1)
)

= 0. Again, (a2, a3) = (a2, a5/2)∪ (a5/2, a3), and for
a ∈ (a2, a5/2) the contour γ2 is well inside γ1, the distance between them
being typically O (N) . In the remaining regime a ∈ (a5/2, a3) they are
touching each other, the distance between them being O

(

N1/2
)

.

4. This process of creating extra monolayers continues, as the parameter
a grows. But starting from some value k = k (β) the following extra
feature takes place: for all a ∈ (ak, ak+1) the distances dist (γi, γj) =
o (N) between all the k nested contours γi. (Same holds even for the
Hausdorff distances, Hdist (γi, γj).) In other words, the subsegments
(ak, ak+1/2) ⊂ (ak, ak+1) become empty, once k ≥ k (β) . As we just
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explained above, this is not the case for the few initial values of k, where
the distance between the two top contours dist (γk−1, γk) = O (N) ,
while dist (γi, γj) = o (N) for remaining i, j < k, and the top monolayer
stays away from the flock of all the bottom ones.

2.3 Conjectures on the Ising model

Here we will discuss the questions of the Wulff shapes and the way the random
interface Γ is approximated by it. Let us first discuss the analog of the setting
of the Section 2.2, where the number of levels, k, of the interface, is not fixed,
but grows with N . In other words, we consider the Ising model as in the
Section 2.2, but we put a different canonical constraint:

M(σ) =
∑

x∈VN

σx = bN3, (2.2)

with b > 0 some fixed constant. In order to avoid the situation of Γ touching
the top of the box VN one should take b not too big. At low temperatures,
which is a regime we focus on, b ≤ 1 is good enough.

Conjectures

1. Limit shape. For every b ∈ [0, 1] , every β large enough, there exists a
(non-random) surface Wβ,b in the cube Q = [−1,+1]3 , the boundary
∂Wβ,b of which is the square, ∂Wβ,b = ∂Q∩L. This surface Wβ,b is the
typical shape of the random surface Γ. It means that for every ε > 0

lim
N→∞

P

(

Hdist

(

1

N
Γ,Wβ,b

)

> ε

)

= 0, (2.3)

where Hdist is the Hausdorff distance.

2. The facets. The surface Wβ,b is obtained by the solution of the Wulff
variation problem [12]. It has certain height, zβ,b. The intersection

Wβ,b ∩ {L+ z} =

{

∅ if z > zβ,b,
1D curve if z < zβ,b,

(2.4)

while Wβ,b ∩ {L + zβ,b} is a closed 2D region with smooth boundary,
which is the flat facet ofWβ,b. The existence of the facet is the corollary
of the fact that the surface tension function τβ (n), n ∈ S

2 has a cusp
at n = (0, 0, 1) for all β large enough. Let Aβ,b > 0 be its area; clearly,
Aβ,b → 4 as β → ∞.
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The random interface Γ also has a (random) flat facet, in the following
sense. Define the height h by

h(Γ) = max{z |Area (Γ ∩ {L+ z}) > 1
2
Aβ,bN

2}, (2.5)

and if such value does not exist, put h (Γ) = ∞. We define the facet
Φ (Γ) ⊂ R

2 as the intersection

Φ (Γ) ∩ {L+ h (Γ)} . (2.6)

We put Φ (Γ) = ∅ for h (Γ) = ∞.

We conjecture that with probability going to 1 as β → ∞ the following
happens:

(a) h (Γ) is finite,

(b) Φ (Γ) is indeed the facet of Γ, in the sense that the next to Φ (Γ)
layer is very small :

Area (Γ ∩ L+ h (Γ) + 1) < c (β)N2 (2.7)

with c (β) → 0 as β → ∞.

3. Airy2 process. Let ∂Φ be the exterior boundary of the random facet
Φ. Our main conjecture is that the fluctuations of ∂Φ for the typical
interface converge to the Airy2 process, as N → ∞.

The meaning of the statement is the following. Of course, for some Γ
the curve ∂Φ can be weird or even empty. We claim that such curves
∂Φ (and the interfaces Γ themselves) are not typical: their probability
goes to zero as N → ∞.

The same kind of conjectures can be made for the case when one considers
the canonical low-temperature Ising model in the box VN with (−)-boundary
condition and with the canonical constraint

M (σ) =
∑

x∈VN

σx =
(

−m∗
β + b

)

N3, (2.8)

where b > 0. The canonical constraint produces an interface Γ without
boundary, separating the (+)-phase inside Γ from the (−)-phase outside it,
of linear size ∼ N . In order that Γ can stay away from the walls ∂VN the
parameter b should not be too large; b < 1/2 is fine.

The conjectures about the behavior of the typical Γ-s are very similar to
the above. They also have the asymptotic shape, given by the surface W̃β,b
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in the cube Q = [−1,+1]3, this time without boundary. It is given by the
Wulff construction, see [12] for the 2D case and [2, 10] for the 3D case. The
surface W̃β,b has six flat facets, in the above sense, while the typical interface
Γ also has six random flat facets, of the linear size ∼ N . For the typical Γ
the fluctuations of the boundaries of the facets are again given by the Airy2
process.

We finish our conjecture list by pointing to the difference between the
results of [12] and of [2,10]. In both cases the main claim is that the random
interface Γ is close to its asymptotic shape W . But while in [12] the closeness
is measured in the Hausdorff distance, see (2.3), in [2,10] it is measured in the
weaker L1 sense, which replaces the distance Hdist( 1

N
Γ,Wβ,b) by the volume

inside the closed surface 1
N
Γ ∪Wβ,b. (In the case without boundary one has

to consider the volume of the symmetric difference Int( 1
N
Γ) △ Int(W̃β,b) of

the 3D bodies Int( 1
N
Γ) and Int(W̃β,b) properly shifted with respect to each

other.) Our last conjecture is that for low temperatures the convergence
of the random interface Γ to its asymptotic shape W holds in the stronger
Hausdorff distance Hdist. We also note that the part 2 of our conjectures
does not hold at zero temperature, see [3].

3 Model and proof of the main result

3.1 Semigroup of the Ferrari-Spohn diffusion

Let us introduce in more details the Ferrari-Spohn diffusion, see [15]. Con-
sider the Airy operator

HAi = − d2

dx2
+ x on R+ (3.1)

with Dirichlet boundary conditions at 0. Let −ω1 > −ω2 > . . . the zeroes of
the Airy function Ai. The normalized eigenfunctions of HAi are given by

ϕk(x) =
Ai(−ωk + x)

(−1)k−1Ai′(−ωk)
, k ≥ 1, (3.2)

and have eigenvalues
HAiϕk(x) = ωkϕk(x). (3.3)

The normalization comes from the identity
∫

R+
dx(Ai(x−a))2 = (Ai′(−a))2+

a(Ai(−a))2, where the last term vanishes at a = ωk. This identity is obtained
by integration by parts and the identity Ai′′(x) = xAi(x). The ground state
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is Ω(x) = ϕ1(x). So the Hamiltonian

H = −1

2

d2

dx2
+

1

2
x− 1

2
ω1 (3.4)

satisfies HΩ = 0. The Ferrari-Spohn diffusion X̃ (t) is the stationary process
on R+ obtained by the ground-state transformation (the Doob h-transform
of −H): (Lf)(x) = −Ω(x)−1(HΩf)(x). The generator of X̃ (t) is given by

(Lf)(x) =
1

2

d2f(x)

dx2
+ a(x)

df(x)

dx
(3.5)

acting on smooth functions f , where

a(x) =
d

dx
ln(Ω(x)) =

Ai′(−ω1 + x)

Ai(−ω1 + x)
. (3.6)

What we are interested in is the transition probability, namely the semigroup
Tt of X̃ (t). It has integral kernel

Tt(x, y) = e
1
2
ω1t

Ω(y)

Ω(x)
Tt(x, y) (3.7)

with
Tt(x, y) = (e−tĤ)(x, y) =

∑

k≥1

e−
1
2
ωktϕk(x)ϕk(y), (3.8)

and Ĥ = H + 1
2
ω1 =

1
2
HAi. The stationary distribution of X̃ (t) has density

on R+ given by

ρ(x) = Ω(x)2 =
Ai(−ω1 + x)2

Ai′(−ω1)2
. (3.9)

3.2 Joint distributions of the Dyson Ferrari-Spohn dif-

fusion

Now we consider M non-intersecting Ferrari-Spohn diffusions, 0 < X1(t) <
X2(t) < . . . < XM(t). As shown in [20, 21], the ground state is given by the
Slater determinant

ΩM(x1, . . . , xM) = det[ϕi(xj)]1≤i,j≤M , (3.10)

and satisfies HMΩM = 0 for

HM =
M
∑

k=1

(

−1

2

d2

dx2
k

+
1

2
xk −

1

2
ωk

)

. (3.11)
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It was shown in [20, 21] that the generator of X (t) = (X1(t), . . . ,XM(t)) is
indeed (1.4) and its stationary distribution is given by

P(Xk(t) ∈ dxk, 1 ≤ k ≤ M) =
ΩM(x)2

ZM

dx1 . . . dxM , (3.12)

where ZM is the normalization constant. Moreover, the transition semigroup
has kernel

Tt(x, y) = e
∑M

k=1 ωkt
ΩM (y)

ΩM (x)
det [Tt(xi, yj)]1≤i,j≤M . (3.13)

From (3.12) and (3.13) we get that the joint distributions at times t1 <
t2 < . . . < tm is given by

P

( m
⋂

n=1

M
⋂

k=1

{Xk(tn) ∈ dxn
k}
)

=
ΩM (x)2

ZM

m−1
∏

n=1

Tt(x
n
i , x

n+1
j )1≤i,j≤n

m
∏

n=1

M
∏

k=1

dxn
k

=
1

Z̃M

det[e−
1
2
ωit1ϕi(x

1
j )]1≤i,j≤M

m−1
∏

n=1

det
[

Ttn+1−tn(x
n
i , x

n+1
j )

]

1≤i,j≤M

× det[e
1
2
ωitMϕi(x

M
j )]1≤i,j≤M

m
∏

n=1

M
∏

k=1

dxn
k

=
1

Z̃M

det[Φ1
i (x

1
j )]1≤i,j≤M

m−1
∏

n=1

det
[

Ttn+1−tn(x
n
i , x

n+1
j )

]

1≤i,j≤M

× det[ΨM
i (xM

j )]1≤i,j≤M

m
∏

n=1

M
∏

k=1

dxn
k ,

(3.14)
where we have set

ΨM
i (x) = e

1
2
ωitMϕi(x), Φ1

i (x) = e−
1
2
ωit1ϕi(x). (3.15)

Define for n < M , Ψn
i (x) = (TtM−tn ∗ ΨM

i )(x) and for n > 1, Φn
i (x) =

(Φ1
i ∗ Ttn−t1)(x). A simple computation gives

Ψn
i (x) = e

1
2
ωitnϕi(x), Φn

i (x) = e−
1
2
ωitnϕi(x). (3.16)

In particular, these functions satisfy the orthogonality relation

∫

R+

dxΦn
i (x)Ψ

n
j (x) = δi,j, 1 ≤ i, j ≤ M. (3.17)
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3.3 Determinantal correlations

A measure of the form (3.12) forms a biorthogonal ensemble [4] and thus it
defines a determinantal point process. Eynard-Mehta theorem tells us that a
measure of the form (3.14) is determinantal on the space R+ × {t1, . . . , tm},
see [7, 13, 22, 24, 29].

Let us first consider the one-point measure, which forms a biorthogo-
nal ensemble [4]. Using the orthogonality property (3.17), one immediately
obtains that the determinantal point process

η =

M
∑

k=1

δxk
(3.18)

has correlation kernel

KM(x, y) =

M
∑

k=1

ϕk(x)ϕk(y) =

M
∑

k=1

Ai(−ωk + x)Ai(−ωk + y)

(Ai′(−ωk))2
. (3.19)

In particular, the distribution of the top path at time t, XM(t), equals a gap
probability of η and thus it is given by a Fredholm determinant

P(XM(t) ≤ s) = det(1−KM)L2(s,∞) (3.20)

for any s > 0.
Next consider the point process on WM,+ × {t1, . . . , tm},

η =

m
∑

n=1

M
∑

k=1

δ(xn
k ,tn)

. (3.21)

Its correlation kernel can be easily computed3 and it is given by

KM(x, ti; y, tj) = −Ttj−ti(x, y)1tj>ti +
M
∑

k=1

Ψi
k(x)Φ

j
k(y)

=

{
∑M

k=1 e
− 1

2
ωk(tj−ti)ϕk(x)ϕk(y), for ti ≥ tj ,

−
∑∞

k=M+1 e
− 1

2
ωk(tj−ti)ϕk(x)ϕk(y), for ti < tj.

(3.22)
Then, for any s1, . . . , sm > 0,

P

( m
⋂

k=1

{XM(tk) ≤ sk}
)

= det(1− χsKM)L2(R×{t1,...,tm}), (3.23)

3See e.g. Theorem 1.4 of [7] or Theorem 4.2 of [5] for notations closer to this paper.
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where χs(tk, x) = 1x>sk .
Unlike in most of the papers where the convergence to the Airy2 have been

proven, here we do not have a double integral representation for the corre-
lation kernel. In this paper we need to analyze the limit of the correlation
kernel using the expression in (3.22).

3.4 Scaling limit

To understand what is the correct scaling limit for space and time that we
need to consider, we first need to know how −ωk scales for large k. We have
(see Chapter 10.4 of [1])

ωk = f(3π
2
(k − 1/4)), Ai′(−ωk) = (−1)k−1f1(

3π
2
(k − 1/4)), (3.24)

where the functions f, f1 satisfy

f(z) = z2/3
[

1 +
5

48z2
+O(z−4)

]

, f1(z) =
z1/6√
π

[

1 +
5

48z2
+O(z−4)

]

.

(3.25)

Set c0 =
31/3

21/3π2/3 and c1 =
32/3π2/3

22/3
. Then, for large M ,

ω[M−λc0M1/3] =

[

3π

2
(M − λc0M

1/3 − 1/4)

]2/3

(1 +O(M−2))

= c1M
2/3 − λ+O(M−1/3, λ2M−2/3)

(3.26)

as well as
Ai′(−ω[M−λc0M1/3]) =

√
c0M

1/6(1 +O(λM−2/3). (3.27)

Therefore,

ϕ[M−λc0M1/3](c1M
2/3 + ξ) =

Ai(ξ + λ+O(M−1/3, λ2M−2/3))√
c0M1/6(1 +O(λM−2/3))

≃ Ai(λ+ ξ)√
c0M1/6

.

(3.28)
This implies that we need to scale space and time as

x = c1M
2/3 + ξ, t = 2τ. (3.29)

Then the point process

η̃ =

m
∑

n=1

M
∑

k=1

δ(xn
k−c1M2/3,tn) (3.30)
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is determinantal with (conjugated) correlation kernel given by

K̃M(ξi, τi; ξj, τj) = e(τj−τi)c1M
2/3

KM(c1M
2/3+ξi, 2τi; c2M

2/3+ξj, 2τj). (3.31)

In particular, for sk = c1M
2/3 + Sk and tk = 2τk,

P

( m
⋂

k=1

{XM(tk) ≤ sk}
)

= det(1− χSK̃M)L2(R×{τ1,...,τm}). (3.32)

For τi ≥ τj we have

K̃M(ξi, τi; ξj, τj) ≃
1

c0M1/3

∑

λ∈IM

e−λ(τi−τj)Ai(λ+ ξi)Ai(λ+ ξj)

≃
∫ ∞

0

e−λ(τi−τj)Ai(ξi + λ)Ai(ξj + λ)

(3.33)

where IM = c−1
0 M−1/3{0, 1, . . . ,M − 1}. Similarly, for τi < τj ,

K̃M(ξi, τi; ξj, τj) ≃ −
∫ 0

−∞

e−λ(τi−τj)Ai(ξi + λ)Ai(ξj + λ). (3.34)

In order to prove Theorem 1.1, we need to make the above approximations
precise. In particular, we need to show the convergence of the Fredholm
determinant.

3.5 Proof of Theorem 1.1

Let us recall a couple of simple bounds on the Airy function4:

sup
x∈R

|Ai(x)| ≤ c = 0.7857 . . . , |Ai(x)| ≤ e−x (3.35)

for all x ∈ R. Also, the (absolute value of the) derivative at the zeros satisfies
the lower bound |Ai′(−ωk)| ≥ |Ai′(−ωk−1)| ≥ |Ai′(−ω1)| = 0.7012 . . ..

For τi ≥ τj the kernel is given by

K̃M(ξi, τi; ξj, τj) =
∑

λ∈IM

e
−
(

ω
[M−λc0M

1/3]
−c1M2/3

)

(τj−τi)

× ϕ[M−λc0M1/3](c1M
2/3 + ξi)ϕ[M−λc0M1/3](c1M

2/3 + ξj) (3.36)

4The first bound follows by limn→∞ n1/3J[2n+un1/3u](2n) = Ai(u) (see also (3.2.23)
of [1]) and the bound of Landau [23]. For any x ≥ 0.01, the bound |Ai(x)| ≤

1
2
√
πx1/4 e

− 2

3
x3/2

(see Equation 9.7.15 of [11]), is better that the bound e−x and e−0.01 > c.
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with IM = c−1
0 M−1/3{0, 1, . . . ,M − 1}, while for τi < τj the kernel is given

by

K̃M(ξi, τi; ξj, τj) = −
∑

λ∈JM

e
−
(

ω
[M−λc0M

1/3]
−c1M2/3

)

(τj−τi)

× ϕ[M−λc0M1/3](c1M
2/3 + ξi)ϕ[M−λc0M1/3](c1M

2/3 + ξj) (3.37)

with JM = c−1
0 M−1/3{−1,−2, . . .}.

We have the following pointwise convergence of the functions entering in
the expression of the kernel.

Lemma 3.1. For any given λ,

lim
M→∞

√
c0M

1/6ϕ[M−λc0M1/3](c1M
2/3 + ξ) = Ai(λ+ ξ) (3.38)

and

lim
M→∞

e
−
(

ω
[M−λc0M

1/3]
−c1M2/3

)

(τ2−τ1) = e−λ(τ1−τ2). (3.39)

Proof. The first statement follows from (3.28), while the second from (3.26).

In order to have convergence of the kernel, we need to be able to take the
limit inside the sum. We do this by dominated convergence and therefore we
need some bounds on the functions also for large values of λ.

Lemma 3.2.

(a) For λ ∈ [0,M1/6], we have

∣

∣

√
c0M

1/6ϕ[M−λc0M1/3](c1M
2/3 + ξ)

∣

∣ ≤ Ce−(ξ+λ), (3.40)

for some constant C > 0.
(b) For λ ∈ (M1/6,M2/3/c0]), we have

∣

∣

√
c0M

1/6ϕ[M−λc0M1/3](c1M
2/3 + ξ)

∣

∣ ≤ CM1/6e−M1/6

e−ξ, (3.41)

for some constant C > 0.
(c) For λ ≥ 0, the exponential term satisfies

e
−
(

ω
[M−λc0M

1/3]
−c1M2/3

)

(τ2−τ1) ≤ C (3.42)

for some constant C > 0.
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Proof. (a) From (3.28) we have

√
c0M

1/6ϕ[M−λc0M1/3](c1M
2/3 + ξ) =

Ai(ξ + λ+O(M−1/3))

1 +O(M−1/2)
(3.43)

and the claimed bound follows from (3.35).
(b) Using ω[M−λc0M1/3] ≤ ω[M−c0M1/2], |Ai′(−ω[M−λc0M1/3])| ≥

|Ai′(−ω1)| ≥ 0.7, and (3.40) the claimed bound is proven.
(c) follows from (3.26).

As a consequence we get the following limit and bounds.

Proposition 3.3. For τi ≥ τj, uniformly for ξi, ξj in a bounded set, we have

lim
M→∞

K̃M(ξi, τi; ξj, τj) =

∫ ∞

0

e−λ(τi−τj)Ai(ξi + λ)Ai(ξj + λ) (3.44)

and there exists a constant C > 0 such that

|K̃M(ξi, τi; ξj, τj)| ≤ Ce−(ξi+ξj) (3.45)

uniformly for all M large enough.

Proof. It follows from Lemmas 3.1 and 3.2 by applying dominated conver-
gence.

Similarly, for λ < 0 we have the following estimates.

Lemma 3.4.

(a) For all λ < 0,

∣

∣

√
c0M

1/6ϕ[M−λc0M1/3](c1M
2/3 + ξ)

∣

∣ ≤ C (3.46)

for some constant C > 0.
(b) For −M1/6 < λ < 0,

e
−
(

ω
[M−λc0M

1/3]
−c1M2/3

)

(τj−τi) ≤ Ceλ(τj−τi), (3.47)

for some constant C > 0.
(c) For λ < −M1/6,

e
−
(

ω
[M−λc0M

1/3]
−c1M2/3

)

(τj−τi) ≤ e−min{ 3
4
(−λ),(−λ)2/3M2/9}(τj−τi). (3.48)
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Proof. (a) Using |Ai′(−ω[M−λc0M1/3])| ≥ |Ai′(−ωM)| and |Ai(x)| ≤ c ≤ 1 we
get

∣

∣

√
c0M

1/6ϕ[M−λc0M1/3](c1M
2/3 + ξ)

∣

∣ ≤
√
c0M

1/6

|Ai′(−ωM)| ≤ C, (3.49)

where in the last inequality we used (3.27).
(b) Denote λ̃ = −λ > 0. For λ̃ ≤ M1/6, ω[M+λ̃c0M1/3] − c1M

2/3 ≥ λ̃ +

O(M−1/3), from which it follows

e
−
(

ω
[M+λ̃c0M

1/3]
−c1M2/3

)

(τj−τi) ≤ Ce−λ̃(τj−τi). (3.50)

(c) For λ̃ > M1/6, ω[M+λ̃c0M1/3] − c1M
2/3 ≥ min{3

4
λ̃, λ̃2/3M2/9}, where we

used the inequality (1 + x)2/3 ≥ 1 + 1
2
min{x2/3, x}. This gives

e
−
(

ω
[M+λ̃c0M

1/3]
−c1M2/3

)

(τj−τi) ≤ e−min{ 3
4
λ̃,λ̃2/3M2/9}(τj−τi). (3.51)

The convergence in (3.37) is coming from the exponential term.

Proposition 3.5. For τi < τj, uniformly for ξi, ξj in a bounded set, we have

lim
M→∞

K̃M(ξi, τi; ξj, τj) = −
∫ 0

−∞

e−λ(τi−τj)Ai(ξi + λ)Ai(ξj + λ) (3.52)

and, there exists a constant C > 0 such that

|K̃M(ξi, τj ; ξi, τj)| ≤ C (3.53)

uniformly for all M large enough.

Proof. It follows from Lemmas 3.1 and 3.4 by applying dominated conver-
gence.

We have now all the ingredient to complete the proof of our theorem.
From (3.32) we have

l.h.s. of (1.5) = lim
M→∞

det(1− χSK̃M)L2(R×{τ1,...,τm})

= lim
M→∞

∑

n≥0

(−1)n

n!

∑

i1,...,in∈{1,...,m}

∫ ∞

Si1

dξ1 · · ·
∫ ∞

Sin

dξn det
[

K̃M(ξj , τij ; ξk, τik)
]

1≤j,k≤n

=
∑

n≥0

(−1)n

n!

∑

i1,...,in∈{1,...,m}

∫ ∞

Si1

dξ1 · · ·
∫ ∞

Sin

dξn det
[

KAi(ξj, τij ; ξk, τik)
]

1≤j,k≤n

= det(1− χSKAi)L2(R×{τ1,...,τm}) = r.h.s. of (1.5).
(3.54)
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To justify the exchange of limit and sums/integrals we use dominated con-
vergence. By Propositions 3.3 and 3.5 we have pointwise convergence of the
kernel to the extended Airy kernel. To apply dominated convergence we use
the bounds in Propositions 3.3 and 3.5, together with Hadamard’s bound,
which says that for a n×n matrix A with |Ai,j| ≤ 1, | det(A)| ≤ nn/2. This is
by now very standard, see e.g. [6] for detailed computations. This completes
the proof of Theorem 1.1.
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