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Abstract

In this paper we consider the limiting distribution of KPZ growth models with
random but not stationary initial conditions introduced in [6]. The one-point distri-
bution of the limit is given in terms of a variational problem. By directly studying
it, we deduce the right tail asymptotic of the distribution function. This gives a
rigorous proof and extends the results obtained by Meerson and Schmidt in [18].

1 Introduction

The Kardar–Parisi–Zhang (KPZ) universality class of stochastic growth models in one
dimension are described by a stochastically growing interface parameterized by a height
function. For general initial conditions, the one-point distribution of the large time limit
can be written in terms of a variational problem. The ingredients are the (scaled) initial
condition and the Airy2 process, A2. The latter arises as the limiting interface process
when the macroscopic geometry of the interface in the law of large numbers is curved.
It was discovered in the work of Prähofer and Spohn [23] and described by its finite-
dimensional distribution. Soon after, Johansson showed weak convergence of the discrete
polynuclear growth model to the Airy2 process [16]. In the same paper, a first variational
formula appeared (see Corollary 1.3 of [16])

FGOE(2
2/3s) = P

(
sup
t∈R

(A2(t)− t2) ≤ s

)
(1.1)

where A2 is the Airy2 process and FGOE is the GOE Tracy–Widom distribution function
discovered in random matrix theory [27]. Formula (1.1) corresponds to the flat initial
condition as FGOE is the limiting distribution of the corresponding rescaled interface.

Later, variational formulas describing the one-point distributions for some special
initial conditions appeared in several papers, see for instance [3, 24–26]. The first study
of a large class of initial conditions, including random initial conditions, is the paper
of Corwin, Liu and Wang [8]. In a last passage percolation model they showed the
convergence of the one-point distribution to a probability distribution expressed by the
variational formula

P

(
sup
t∈R

{
h0(t) +A2(t)− t2

}
≤ s

)
(1.2)
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where h0 is the scaling limit of the initial height profile. Shortly after, Remenik and
Quastel in [26] asked and answered the question how much discrepancy from the perfectly
flat initial condition would be allowed to still see the GOE Tracy–Widom distribution for
the KPZ equation. In their paper the variational representation plays an important role.
The variational formula approach is proved to be useful since it allows one to go beyond
the use of exact formulas and to show, for instance, universal limiting distribution for a
flat but tilted profile [11].

Building on [8], Chhita, Ferrari and Spohn derived a variational formula which de-
scribes the limiting distribution for random initial conditions which scale to a Brownian
motion with the result [6]

F (σ)(s) = P

(
sup
t∈R

{√
2σB(t) +A2(t)− t2

}
≤ s

)
(1.3)

where B is a standard two-sided Brownian motion independent of the Airy2 process A2.
This distribution has two special cases which could be analyzed using exact formulas,
namely σ = 0 is the flat case and it reduces to (1.1) whereas σ = 1 corresponds to the
stationary initial condition for the model, so that F (1)(s) is the Baik–Rains distribu-
tion [4].

The characterization through a variational formula is tightly related to the question
of universality. In the framework of this paper, the key universal ingredient is the Airy2
process which is a projection of a more general space-time random process. The study of
this process started with the discovery of the KPZ fixed point by Matetski, Quastel and
Remenik [17], for further properties see [5, 20, 21], and continued with the desription of
the full space-time process called the Airy sheet or also directed landscape by Dauvergne,
Ortmann and Virág [10], see also [19].

Deducing concrete information from a variational formula is however not always an
easy task. For example, given (1.3), it is not clear what are the tails of the distribution.
They have only been known for a long time in the cases σ = 0 and σ = 1, because these
distributions had other representations, see e.g. [22]. Meerson and Schmidt considered the
F (σ) distribution in [18] and they deduced the correct right tail behavior by a physically
motivated but non-rigorous method. They found that ln(1−F (σ)(s)) ∼ −4

3
1√

1+3σ4 s
3/2 for

s ≫ 1. They also performed large scale simulations on the exclusion process confirming
their finding.

In this paper we give a rigorous proof of the asymptotics and extend the results of [18]
by obtaining upper and lower bound on the prefactor in front of the stretched exponential
decay, see Theorem 1.1. The upper tail distribution is governed by the maximal value of√
2σB(t) − t2. This fact holds already for non-random initial conditions. For instance,

in the case of (1.1), the tail behaviour of 1 − FGOE(2
2/3s) matches that of 1 − FGUE(s)

up to the exponential scale as the maximal value of −t2 is obtained at t = 0. The same
was shown for another simple function h0 in (1.2) as noticed in [28]. To make this point
explicit, Theorem 1.3 gives the tail decay for a generic non-random initial condition. One
important ingredient for the proof of Theorems 1.1 and 1.3 is the observation that, for
all δ > 0, the tail distribution of

P

(
sup
t∈R

(
A2(t)− δt2

)
> s

)
(1.4)

is, in the exponential scale, independent of δ, see Theorem 1.2 for a detailed statement.
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For a given realization of the Brownian motion, if the supremum in (1.1) is taken over
a finite interval instead of R, the distribution we are considering also has a Fredholm
determinant expression with a kernel depending on the Brownian motion [9]. This rep-
resentation is however not directly applicable when taking the limit as the finite interval
approaches R. For this purpose, it is better to use the kernel given in terms of hitting
times noticed first in [26]. That representation works well provided that the function h0 is
lower than a parabola with a prefactor 3/4, while in our application we need to get close
to 1. The explicit kernel representation has some intrinsic technical issues as confirmed
also in the simplest case of a hat-shaped h0 [28]. Our method is mainly probabilistic and
avoids the computation of a correlation kernel and its asymptotic analysis.

The second issue that we had to deal with was that the density of the maximum of
a Brownian motion with parabolic drift studied first by Groeneboom [13], see also [14]
for explicit formulas, contains a term with a linear combination of Airy Ai and Airy Bi
functions. The leading term is however coming from a subtle cancellation and it does not
follow from the naive asymptotic of the Airy functions. Fortunately, we could avoid this
issue by using an integral representation discovered by Janson, Louchard and Martin-Löf
in [15], which we carefully analyzed asymptotically, see Proposition 3.1.

The paper is organized as follows. We state the main results in the rest of the in-
troduction. We first prove Theorem 1.2 on the upper tail of the supremum of the Airy2
process minus a parabola with arbitrary coefficient in Section 2. Then Section 3 is about
the asymptotic of the supremum of the Brownian motion minus a parabola. Section 4
proves Theorem 1.1 on the right tail of the limiting distribution F (σ) for Brownian ini-
tial conditions. The proof of Theorem 1.3 about the case of general deterministic initial
conditions is given in Section 5.
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Main results

Theorem 1.1. Let σ > 0 be fixed. For s large enough, the right tail of F (σ)(s) satisfies

C1 s
−3/4e

− 4
3

1√
1+3σ4

s3/2 ≤ 1− F (σ)(s) ≤ C2 s
3/4 ln(s) e

− 4
3

1√
1+3σ4

s3/2

(1.5)

for some constants C1, C2 independent of s.

The s−3/4 behavior of the prefactor of the lower bound seems to be the correct one.
Indeed, for σ = 0 the prefactor is s−3/4/(4

√
2π) (see (1.8) below) and for σ = 1 it is

given by1 s−3/4/
√
π. In Proposition 4.1 and 4.2 we give expressions of the σ-dependence

1For σ = 0, the prefactor is obtained from equations (1) and (25), (26) of [2], except that in (26) there
is a typo, namely x

−3/2 should be x
−3/4. It can be also easily obtained from the Fredholm determinant

representation of FGOE in [12]. For σ = 1 the distribution is the Baik–Rains distribution, given in
Definition 2 of [4]. The prefactor easily follows using (2.3), (2.6) of [4], as well as (26) of [2].
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of C1, C2.
As it could be expected by the definition of the F (σ) distribution (1.3), the upper tail

behaviour of the F (σ) distribution is related to tail of the maximum of the Airy2 process
minus a parabola. The variational formula (1.1) was proved in [16]. In the next result
we generalize [16] in the sense that we compute the tail decay for the supremum with
parabola which can have any coefficient between 0 and 1.

Theorem 1.2. Let (A2(t))t∈R denote the Airy2 process. There is a constant C > 0 such

that for all c ∈ (0, 1)

1− FGUE(s) ≤ P

(
sup
t∈R

(
A2(t)− (1− c)t2

)
> s

)
≤ C

ln(s/(1− c))

s3/4
√
1− c

e−
4
3
s3/2 (1.6)

holds as s → ∞ where the constant C is independent of s.

This result might be compared to what has been proven for the KPZ equation with
narrow wedge initial condition at finite but large time. In that case, it is known that
the decay is exponential with s3/2 power, but without a more precise information on the
coefficient, see Proposition 4.2 of [7].

The lower bound in (1.6) is obvious by taking t = 0 instead of the supremum. Its
asymptotic expansion follows from (1) and (25) of [2], namely

1− FGUE(s) =
1

16πs3/2
e−

4
3
s3/2(1 +O(s−3/2)) (1.7)

as s → ∞. We remark that for c ≤ 0 the upper bound in (1.6) is trivial as well, since

P

(
sup
t∈R

(
A2(t)− (1− c)t2

)
> s

)
≤ P

(
sup
t∈R

(
A2(t)− t2

)
> s

)
∼ 1

4
√
2πs3/4

e−
4
3
s3/2 (1.8)

where we used (1.1) and the x → ∞ tail asymptotic

1− FGOE(x) ∼
e−

2
3
x3/2

4
√
πx3/4

. (1.9)

Theorem 1.3. Let h0 : R → R be a function satisfying h0(t) ≤ A+(1−ε)t2 for all t ∈ R,

for some constants A ∈ R and ε > 0. Let κ(h0) = supt∈R{h0(t) − t2} and let M > 0 be

large enough so that h0(t) ≤ κ(h0) + (1 − ε
2
)t2 for all |t| ≥ M . Then there are positive

real constants C1 and C2 which do not depend on the function h0 and s, such that for s
large enough

C1
e−

4
3
(s−κ(h0))3/2

(s− κ(h0))3/2
≤ P

(
sup
t∈R

{
h0(t) +A2(t)− t2

}
≥ s

)
≤ C2M

e−
4
3
(s−κ(h0))3/2

(s− κ(h0))1/4
. (1.10)

2 Supremum of the Airy2 process minus a parabola

The aim of this section is to prove Theorem 1.2 about the upper tail behaviour of the
Airy2 process minus a parabola with arbitrary coefficient. The first ingredient is a simple
bound on the supremum of the Airy2 process over a finite interval.
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Lemma 2.1. There is a explicit constant C such that for all a > 0

P

(
sup
t∈[0,a]

A2(t) > s

)
≤ C

e−
4
3
(s−a2)3/2

(s− a2)3/4
(2.1)

holds if s is large enough. From this we get the bound

P

(
sup
t∈[0,a]

A2(t) > s

)
≤ C ′ a

s1/4
e−

4
3
s3/2 (2.2)

for large s with some other constant C ′.

Proof. The probability on the left-hand side of (2.1) can be upper bounded as

P

(
sup
t∈[0,a]

A2(t) > s

)
≤ P

(
sup
t∈[0,a]

(
A2(t)− t2

)
> s− a2

)

≤ P

(
sup
t∈R

(
A2(t)− t2

)
> s− a2

)

= 1− FGOE

(
22/3

(
s− a2

))

(2.3)

where we extended the range of t in the second inequality and used (1.1) in the last
equality above which is the result of [16]. The proof of the first inequality (2.1) with
C = 1/(4

√
2π) is completed by applying the upper tail behaviour of the FGOE distribution

(1.9).
For (2.2), we divide the interval [0, a] into pieces of length 1/

√
s and by the union

bound we get

P

(
sup
t∈[0,a]

A2(t) > s

)
≤

a
√
s∑

k=1

P

(
sup

t∈[(k−1)/
√
s,k/

√
s]

A2(t) > s

)

≤ C a
√
s
e−

4
3
(s−1/s)3/2

(s− 1/s)3/4

≤ C ′ a

s1/4
e−

4
3
s3/2

(2.4)

for some constant C ′ where we applied stationarity of the Airy2 process and (2.1) in the
second inequality and the bound −(s − 1/s)3/2 ≤ −s3/2 + 2 for all s ≥ 1 in the third
inequality above.

With this lemma we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. To bound the probability that the Airy2 process remains below a
parabola, consider an increasing sequence x0 = 0 < x1 < x2 < . . . to be a partition of
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R+ to be specified later. Then we have by symmetry and the union bound

P

(
sup
t∈R

(
A2(t)− (1− c)t2

)
> s

)
≤ 2P

(
∪∞
k=0

{
∃t ∈ [xk, xk+1] : A2(t) > s+ (1− c)t2

})

≤ 2
∞∑

k=0

P
(
∃t ∈ [xk, xk+1] : A2(t) > s+ (1− c)t2

)

≤ 2

∞∑

k=0

P
(
∃t ∈ [xk, xk+1] : A2(t) > s+ (1− c)x2

k

)

≤ 2C
∞∑

k=0

e−
4
3(s+(1−c)x2

k−(xk+1−xk)
2)

3/2

(s+ (1− c)x2
k − (xk+1 − xk)2)

3/4

(2.5)
where we decreased the barrier which A2(t) has to reach in [xk, xk+1] in the third inequal-
ity, while in the forth inequality we used Lemma 2.1 and the translation invariance of the
Airy2 process.

The k = 0 term in the sum on the right-hand side of (2.5) is e−
4
3
(s−x2

1)
3/2

/(s− x2
1)

3/4,
hence if we choose x1 = 1/

√
s, then it is still bounded by a constant multiplied by

e−
4
3
s3/2/s3/4. The rest of the sequence is chosen so that it satisfies

(xk+1 − xk)
2 =

1

4
(1− c)x2

k (2.6)

for k = 1, 2, . . . which is the geometric choice xk+1 = γxk with γ = 1 +
√
1−c
2

. With this
sequence, the right-hand side of (2.5) can be bounded as

P

(
sup
t∈R

(
A2(t)− (1− c)t2

)
> s

)
≤ 2C

e−
4
3
(s− 1

s
)3/2

(s− 1
s
)3/4

+ 2C
∞∑

k=1

e−
4
3(s+

3
4
(1−c)x2

k)
3/2

s3/4

≤ 2C ′ e
− 4

3
s3/2

s3/4
+ 2C ′ e

− 4
3
s3/2

s3/4

∞∑

k=1

e−
4
3(

3
4
(1−c)γ2(k−1)s−1)

3/2

(2.7)
where we used the inequality (a + b)3/2 ≥ a3/2 + b3/2 in the last step. The sum on the
right-hand side of (2.7) can be upper bounded using Lemma 2.2 below with α = γ3 and
β =

√
3(1− c)3/2/(2s3/2) as

∞∑

k=1

e
−

√
3(1−c)3/2

2s3/2
γ3(k−1)

≤
ln
(
1 + 2γ3s3/2√

3(1−c)3/2

)

3 ln γ
≤ C̃

ln(s/(1− c))√
1− c

(2.8)

for s large enough with some C̃ which does not depend on c. In the last inequality above
we used that ln γ ∼ 1

2

√
1− c as c → 1. The inequalities (2.7) and (2.8) together prove

(1.6).

Lemma 2.2. Let α > 1 and β > 0. Then

∞∑

k=0

e−βαk ≤ ln(1 + α/β)

lnα
(2.9)
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Proof. We start by bounding the sum by an integral as

∞∑

k=0

e−βαk ≤
∫ ∞

−1

dx e−βαx

. (2.10)

The change of variables w = βαx gives dw
dx

= w lnα so that the right-hand side of (2.10)

∫ ∞

−1

dx e−βαx

=
1

lnα

∫ ∞

β/α

dw
e−w

w
=:

1

lnα
E1(β/α). (2.11)

Equation (5.1.20) of [1] provides a bound on the exponential integral function E1, namely
E1(x) ≤ e−x ln(1 + 1/x) for x > 0. Thus

∞∑

k=0

e−βαk ≤ 1

lnα
e−β/α ln(1 + α/β) (2.12)

which gives the claimed bound since α, β > 0.

3 Supremum of Brownian motion minus a parabola

Proposition 3.1. Let G(x) = P
(
maxt∈R(B(t)− 1

2
t2) ≥ x

)
where B(t) is a standard

two-sided Brownian motion. Then, as x → ∞ we have

G(x) = 3−1/2e−
4
3

√
2
3
x3/2

(1 +O(x−1/4)) (3.1)

as well as

− d

dx
G(x) =

2
√
2

3
e−

4
3

√
2
3
x3/2√

x(1 +O(x−1/4)). (3.2)

Consequently, for any c > 0 the density of the random variable maxt∈R(B(t)−ct2) satisfies

fc(x) := − d

dx
G
(
(2c)1/3x

)
=

4

3

√
c e−

4
3

√
4
3
c x3/2√

x(1 +O(x−1/4)) (3.3)

as x → ∞.

The proof is given below. The distribution function G(x) is written as a contour
integral in Lemma 3.5 of [15] as follows:

G(x) =
1

2i

∫

γ

dz
Hi(z)

Ai(z)
Ai(z + 21/3x) (3.4)

where γ is a path passing to the right of all zeroes of the Airy function Ai from −i∞ to
i∞. The function Hi is defined by (see (10.4.44) of [1])

Hi(z) = π−1

∫ ∞

0

dt e−t3/3+zt. (3.5)

In [15], the contour γ in (3.4) was chosen to come from e−iθ∞ and arrive to eiθ∞ with
θ slightly larger than π/2. The reason why this contour can be deformed to the vertical
one is the following. Lemma A.1 of [15] was used to argue for convergence of the integral
(3.4): they showed the decay of the ratio of the two Airy Ai functions, together with a

7



bound on Hi for contours with angle more than π/2. The bound in Lemma 3.3 is enough
to get the convergence also for vertical contours.

For the proof of (3.1), the asymptotic of the Airy and Hi functions will be needed.
By (10.4.90) of [1], for x real,

Hi(x) ∼ π−1/2x−1/4e
2
3
x3/2

as x → ∞. (3.6)

For our purposes, we need also the asymptotic behavior of Hi(z) for complex-valued z
close to 21/3x/3 which we state below and prove later in this section.

Lemma 3.2. Let z be such that | arg(z)| < π/3. Then for large z we have the asymptotic

behavior

Hi(z) e−
2
3
z3/2 = π−1/2z−1/4 +O(|z|−1/2). (3.7)

Lemma 3.3. Let θ ∈ [π/2, 3π/2] and x ∈ R. Then for all y ≥ 0,

∣∣Hi
(
x+ eiθy

)∣∣ ≤ Hi(x). (3.8)

Proof. By the defintion (3.5),

Hi
(
x+ eiθy

)
= π−1

∫ ∞

0

dt e−t3/3extee
iθyt (3.9)

where |eeiθyt| ≤ 1 for all θ ∈ [π/2, 3π/2] and t ≥ 0. Since e−t3/3ext is positive, the absolute
value of the integral in (3.9) can be upper bounded by the integral of e−t3/3ext which
yields (3.8).

Proof of Proposition 3.1. Let us first prove (3.1). In order to estimate G(x) for large x,
we use the integral representation (3.4). The integration contour is chosen to be vertical

γ = 21/3

3
x+ iR. If x > 0, then for z ∈ γ, we have arg(z) ∈ [−π/2, π/2]. Hence we can use

the asypmtotics of the Airy function

Ai(z) = 1
2
π−1/2z−1/4e−

2
3
z3/2(1 +O(1/z)) for | arg(z)| < π, (3.10)

see (10.4.59) of [1]. Let us parameterize the path γ as z = 21/3

3
x+ i21/3xv, v ∈ R.

Contribution for |v| > 1/3. Using Lemma 3.3 and 3.2 for the Hi function and the
asymptotic (3.10) on the Airy functions, the contribution for |v| > 1/3 is bounded by

Cx3/4

∫ ∞

1/3

dv e−x3/2g(v), g(v) =
2
√
2

9
√
3
Re[(4 + 3iv)3/2 − (1 + 3iv)3/2 − 1] (3.11)

for some constant C. Notice that for a ≥ 0,

dRe((a+ iv)3/2)

da
= −3

2
Im

√
a + iv (3.12)

which is an increasing function of a. This implies that g(v) is monotone increasing in
v ≥ 0 with g(v) ∼ √

v as v → ∞. We get that the leading behavior of the integral is

bounded by C ′e−x3/2g(1/3) with g(1/3)− g(0) < 0, for some other constant C ′. Thus this
contribution is vanishing with respect to the leading one computed below.
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Contribution for |v| ≤ 1/3. For the leading contribution, we use the asymptotic
expansion of Lemma 3.2 and (3.10), with the result that the contribution of G(x) coming
from the integral over |v| ≤ 1/3 is given by

2−2/3x

∫

|v|≤1/3

dv
Hi

(
21/3

3
x+ i21/3xv

)

Ai
(

21/3

3
x+ i21/3xv

) Ai

(
4 · 21/3

3
x+ i21/3xv

)

=
x3/4

√
π23/4

∫

|v|≤1/3

dv
ex

3/2h(v)

(4/3 + iv)1/4
(1 +O(1/x1/4)) (3.13)

with h(v) = 4
3

√
2((1/3 + iv)3/2 − (4/3 + iv)3/2/2). Further, one notices that Re(h(v)) is

strictly increasing for v < 0 and strictly decreasing for v > 0 with a quadratic approxi-
mation for small v given by

h(v) = −4
√
2

3
√
3
− 3

√
3

4
√
2
v2 +O(v3). (3.14)

Then, using standard steep descent analysis, we get (3.1).
The proof of (3.2) is similar. The only difference is that we need to replace the

asymptotic expansion of Ai(z + 21/3x) with the one of 21/3 Ai′(z + 21/3x). By (10.4.61)

of [1], we have Ai′(z) = −1
2
π−1/2z1/4e−2z3/2/3(1+O(1/z)). Thus in the asymptotic analysis

we need to replace z−1/4 with −21/3z1/4. This gives the claimed result.
By replacing t by (2c)−2/3t and using Brownian rescaling,

P

(
max
t∈R

(
B(t)− ct2

)
≥ x

)
= P

(
max
t∈R

(
B(t)− 1

2
t2
)
≥ x(2c)1/3

)
= G

(
(2c)1/3x

)
, (3.15)

hence (3.3) follows from (3.2) by substitution.

Now we prove the claimed asymptotic expansion of Hi.

Proof of Lemma 3.2. By symmetry with respect to the real axis (z 7→ z̄), consider z with
arg(z) ∈ [0, π/3). We parameterize z = reiθ with r > 0 and θ ∈ [0, π/3). We introduce
the change of variables t =

√
z + u which yields

− 1

3
t3 + zt =

2

3
z3/2 − 1

3
u3 −

√
zu2 (3.16)

and we get

Hi(z) e−2z3/2/3 = π−1

∫ ∞

−√
z

du e−u3/3−√
zu2

. (3.17)

For large values of |z|, the leading contribution comes from a neighborhood of 0. Consider
the integration contour Γ = Γ1 ∨ Γ2 where Γ1 = {−√

z + iy, 0 ≤ y ≤ Im(
√
z)} and

Γ2 = {x,−Re(
√
z) ≤ x < ∞}.

Consider first the contribution on the contour Γ1. Let f(u) = Re(−u3/3 − √
zu2).

Then we have

f(−
√
z) = −2

3
Re(z3/2) = −2

3
r3/2 cos(3θ/2) < 0 = f(0). (3.18)
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Setting u = −√
z + iy = −√

r cos(θ/2)− i
√
r sin(θ/2) + iy, we obtain

Re(−u3/3−
√
zu2) = const−

√
r sin(θ)y, (3.19)

which is decreasing in y. Thus the contribution of the integral of (3.17) over Γ1 can
bounded by the maximum of the integrand times the length of the contour, that is, by
π−1 Im(

√
z)ef(−

√
z) ≤ Ce−

2
3
r3/2 cos(3θ/2).

Next we focus on the contribution over Γ2. We have, for all u ≥ −√
r cos(θ/2) =

−Re(
√
z), the bound

Re(−u3/3−
√
zu2) = −1

3
u3 −

√
r cos(θ/2)u2 ≤ −2

3

√
r cos(θ/2)u2. (3.20)

For any δ > 0, which can be chosen later as a function of r, the tails of the Gaussian
integral gives ∣∣∣∣π

−1

∫

Γ2\{|u|≤δ}
du e−u3/3−√

zu2

∣∣∣∣ ≤ Ce−
2
3
√
r cos(θ/2)δ2 . (3.21)

Next, the local contribution is close to the integral with only the quadratic term. Indeed,
using |ex − 1| ≤ |x|e|x|, we have

∣∣∣∣π
−1

∫

{|u|≤δ}
du e−u3/3−√

zu2 − π−1

∫

{|u|≤δ}
du e−

√
zu2

∣∣∣∣

≤ π−1

∫

{|u|≤δ}
du

∣∣∣e−u3/3−√
zu2

∣∣∣
|u|3
3

= O(δ3). (3.22)

Extending the integration in the Gaussian integral to R, we only make a small error,
namely ∣∣∣∣π

−1

∫

{|u|≤δ}
du e−

√
zu2 − π−1

∫

R

du e−
√
zu2

∣∣∣∣ ≤ O(e−δ2
√
r cos(θ/2)). (3.23)

Finally, the Gaussian integral can be computed explicitly as

π−1

∫

R

du e−
√
zu2

= π−1/2z−1/4. (3.24)

Combining all these bounds, we get

Hi(z) e−
2
3
z3/2 = π−1/2z−1/4 +O(δ3,

√
re−

2
3
r3/2 cos(3θ/2), e−

2
3

√
r cos(θ/2)δ2). (3.25)

Now, since θ ∈ [0, π/3), we have cos(3θ/2), cos(θ/2) ∈ [1/
√
2, 1]. By choosing δ = r−1/6,

we get (3.7).

4 Tail bounds for random initial conditions

In this section we prove Theorem 1.1 about the upper tail decay of the F (σ)(s) distribution,
which follows by combining Propositions 4.1 and 4.2 below.

Fix c ∈ (0, 1) and let

τc = argmax
(√

2σB(t)− ct2
)
, Mc = max

t∈R

(√
2σB(t)− ct2

)
=

√
2σB(τc)− cτ 2c (4.1)
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be the position and the value of the maximum of the two-sided Brownian motion
√
2σB(t)

with diffusion coefficient 2σ2 where B(t) is a standard one. Note that

Mc = max
t∈R

(√
2σB(t)− ct2

)
= max

u∈R

(√
2σB

( u

2σ2

)
− cu2

4σ4

)
d
= max

u∈R

(
B(u)− c

4σ4
u2
)

(4.2)
where the second equality follows by the change of variables t = u/(2σ2) and the third
one by Brownian scaling. As a consequence, the random variable Mc has density f c

4σ4
(x)

where fc was defined in (3.3).

Lower bound. The idea of the lower bound is to use the inequality

sup
t∈R

{√
2σB(t) +A2(t)− t2

}
≥

√
2σB(t0) +A2(t0)− t20 (4.3)

which holds for any choice of t0 ∈ R. Furthermore, P
(√

2σB(t0) +A2(t0)− t20 > s
)

will be the largest, that is, we get the best lower bound if we take a time t0 where√
2σB(t0)+A2(t0)− t20 is the largest. As the Airy2 process is stationary and independent

of B, it does not make any difference for A2(t0) which time is chosen. Thus the idea is
to choose t0 to be the random time τ1 which maximizes

√
2σB(t)− t2.

Proposition 4.1. For all σ > 0, there is a constant C1 independent of s such that

1− F (σ)(s) ≥ C1σ
2(1 + 3σ4)1/4s−3/4e

− 4
3

1√
1+3σ4

s3/2

(4.4)

holds for s ≫ max{σ−4, σ4}.
Proof. The upper tail of the F (σ) distribution can be rewritten as

1− F (σ)(s) = E

(
P

(
sup
t∈R

(√
2σB(t) +A2(t)− t2

)
> s

∣∣∣ τ1
))

(4.5)

by conditioning on the value of the time τ1. The conditional probability on the right-hand
side of (4.5) can be lower bounded by replacing the supremum of

√
2σB(t) +A2(t)− t2

with its value at t = τ1 to get

1− F (σ) ≥ E
(
P
(√

2σB(τ1) +A2(τ1)− τ 21 > s
∣∣ τ1

))

= E (P (A2(τ1) > s−M1 | τ1))
= E (1− FGUE(s−M1))

(4.6)

where the first equality follows by the definition (4.1) of M1 and by rearranging. In the
second equality, we used that the Airy2 process is stationary with GUE Tracy–Widom
distribution at any position independently of τ1.

By using Proposition 3.1 about the asymptotic of the density of M1 and the tail decay
of the GUE Tracy–Widom distribution, see (1.7), one gets that the right-hand side of
(4.6) can be lower bounded by

E (1− FGUE(s−M1))

≥ 4

3

√
1

4σ4

1

16π

∫ s

0

dme
− 4

3

√

4
3

1
4σ4 m

3/2

e−
4
3
(s−m)3/2

√
m

(s−m)3/2
(1 +R(s,m)))

=
1

24πσ2

∫ 1

0

dµ e
− 4

3

√

4
3

1
4σ4 s

3/2µ3/2

e−
4
3
s3/2(1−µ)3/2

√
µ

(1− µ)3/2
(1 +R(s, sµ))

(4.7)
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with the change of variables m = sµ. Here R(s,m) = O((s − m)−3/2, m−1/4) and
R(s, sµ) = O(s−3/2(1− µ)−3/2, s−1/4µ−1/4) is meant as s → ∞ with µ ∈ (0, 1).

Let g(µ) = −4
3

√
4
3

1
4σ4µ

3/2 − 4
3
(1− µ)3/2. One can compute that

g′(µ) = 0 for µ = µ0 =
3σ4

1 + 3σ4
(4.8)

as well as
g′′(µ) < 0 for all µ ∈ [0, 1]. (4.9)

In particular, Taylor expansion gives g(µ) = g(µ0) − α(µ − µ0)
2 + O((µ − µ0)

3) with
g(µ0) = −4

3
1√

1+3σ4 and α = (1 + 3σ4)3/2/(6σ4).

The main contribution of the integral on the right-hand side of (4.7) comes from the

regime |µ − µ0| ∼ 1

s3/4
√

g′′(µ0)
=

√
3σ2

(1+3σ4)3/4
1

s3/4
. We assume that s ≫ max{σ4, σ−4} which

can be written equivalently as s−1/4 ≪ σ ≪ s1/4. Next we show that the error terms in
R in (4.7) are small in the regime of the main contribution. If σ → 0 as s → ∞, then

µ0 ∼ 3σ4 by (4.8) and for the regime which we consider |µ− µ0| ∼
√
3σ2

s3/4
= o(σ4) holds as

long as σ ≫ s−1/4. Hence µs → ∞ and R → 0 in the regime of the main contribution.
If σ → ∞ with s → ∞, then 1 − µ0 ∼ 1

3σ4 and the width of the regime considered is
∼ 1

33/4σ3s3/4
= o(σ−4) provided that σ ≪ s1/4. Furthermore, (1− µ)s → ∞ and R → 0 in

the regime which gives the main contribution. The error R also goes to 0 in the regime
above if σ remains bounded away from 0 and infinity.

In the regime of µ that we consider, the higher order terms of the expansion are con-
trolled by the quadratic term for all s ≫ min{σ4, σ−4}. Thus the quadratic approximation
leads to the lower bound

E (1− FGUE(s−M1)) ≥
1

24
√
πσ2

√
µ0

(1− µ0)3/2
√
αs3/4

e−g(µ0)s3/2(1 +O(s−1/4))

=
σ2(1 + 3σ4)1/4

4
√
2π

s−3/4e
− 4

3
1√

1+3σ4
s3/2

(1 +O(s−1/4)).

(4.10)

Upper bound. This strategy for getting the upper bound is different. We noticed that
the tail distribution of supt∈R(A2(t)− (1− c)t2) is, in the exponential scale, independent
of c provided that c < 1. This implies that the tail distribution will be determined
mostly by the tail of Mc = supt∈R(

√
2σB(t) − ct2). The proof of the upper bound goes

by conditioning on the value of Mc and bounding
√
2σB(t)− ct2 by Mc from above.

Proposition 4.2. For all σ > 0, there is a constant C2 independent of s such that

1− F (σ)(s) ≤ C2σ
6(1 + 3σ4)−2s3/4 ln(s) e

− 4
3

1√
1+3σ4

s3/2

(4.11)

holds for s ≫ max{σ−4, σ4}.
Proof. To get an upper bound, one can write the event

{
sup
t∈R

(√
2σB(t) +A2(t)− t2

)
> s

}

=
{
∃t ∈ R :

(√
2σB(t)− ct2

)
+
(
A2(t)− (1− c)t2

)
> s

}
(4.12)
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for any c ∈ (0, 1). Since the maximum of the first term on the right-hand side is Mc, it
holds for any t ∈ R that

√
2σB(t)− ct2 ≤ Mc, and one can bound the upper tail of F (σ)

as
1− F (σ)(s) ≤ P

(
∃t ∈ R : Mc +

(
A2(t)− (1− c)t2

)
> s

)

= E

(
P

(
sup
t∈R

(
A2(t)− (1− c)t2

)
> s−Mc

∣∣∣Mc

))
(4.13)

where the last equality follows by conditioning and rearrangement.
Now the upper bound on the right-hand side of (4.13) can be bounded by an integral

using Proposition 3.1 about the density of Mc and by Theorem 1.2. Hence we get

1− F (σ)(s)

≤ C

∫ s

0

dme
− 4

3

√

4
3

c
4σ4 m

3/2

e−
4
3
(s−m)3/2

√
m ln((s−m)/(1− c))

(s−m)3/4
√
1− c

(
1 +O(m−1/4)

)

≤ C

∫ 1

0

dµ e
− 4

3

√

4
3

c
4σ4 µ

3/2s3/2
e−

4
3
(1−µ)3/2s3/2 s

3/4√µ ln((s(1− µ))/(1− c))

(1− µ)3/4
√
1− c

×
(
1 +O

( 1

(sµ)1/4

))
.

(4.14)

As for the lower bound, we need to have s ≫ max{σ−4, σ4} to apply the approximations.
Very similarly to (4.7), one gets that the exponent is maximal for µ = µ0 = 3σ4

c+3σ4 .
We also have

− 4

3

√
4

3

c

4σ4
µ3/2 − 4

3
(1− µ)3/2 = −4

3

√
c√

c+ 3σ4
− (c+ 3σ4)3/2

6σ4
√
c

(µ− µ0)
2 +O

(
(µ− µ0)

3
)
.

(4.15)
This gives

1− F (σ)(s) ≤ C ′ σ4

√
c+ 3σ4

√
c

ln(s/(1− c))√
1− c

e
− 4

3

√
c√

c+3σ4
s3/2

(1 +O(s−1/4)) (4.16)

for some constant C ′ which does not depend on c and σ. Finally, since

√
c√

c+ 3σ4
=

1√
1 + 3σ4

− 3σ4

2(1 + 3σ4)3/2
(1− c) +O((1− c)2), (4.17)

we choose 1− c = c̃s−3/2. With the choice c̃ = 1
4
(1 + 3σ4)3/2/σ4, together with (4.16) we

obtain

1− F (σ)(s) ≤ C ′′σ6(1 + 3σ4)−2s3/4 ln(s) e
− 4

3
1√

1+3σ4
s3/2

(4.18)

for some other constant C ′′ independent of σ, s.

5 Tail bounds for deterministic initial profile

In this section we prove Theorem 1.3 confirming the heuristics that the leading contri-
bution for the right tail decay comes from the position where the function h0(t) − t2 is
maximal.
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Proof of Theorem 1.3. Let τ ∈ R be a time such that κ(h0) = supt∈R{h0(t) − t2} =
h0(τ)− τ 2. For the lower bound in (1.10) note that

sup
t∈R

{
h0(t) +A2(t)− t2

}
≥ h0(τ) +A2(τ)− τ 2 = κ(h0) +A2(τ) (5.1)

by the definition of the time τ . Hence

P

(
sup
t∈R

{
h0(t) +A2(t)− t2

}
≥ s

)
≥ P (κ(h0) +A2(τ) ≥ s) = 1− FGUE(s− κ(h0)).

(5.2)
This inequality together with the asymptotic (1.7) leads to the lower bound in (1.10).

Now we consider the upper bound. The function h0(t) − t2 is bounded from above
by κ(h0) for all times t ∈ R and it is bounded from above by κ(h0) − ε

2
t2 for |t| > M .

Therefore

P

(
sup
t∈R

{
h0(t) +A2(t)− t2

}
≥ s

)

≤ P

(
sup
|t|≤M

{κ(h0) +A2(t)} ≥ s

)
+P

(
sup
|t|>M

{
κ(h0) +A2(t)−

ε

2
t2
}
≥ s

)

≤ P

(
sup
|t|≤M

A2(t) ≥ s− κ(h0)

)
+P

(
sup
t∈R

{
A2(t)−

ε

2
t2
}
≥ s− κ(h0)

)
.

(5.3)

The first term is bounded using Lemma 2.1. The second term is bounded using Theo-
rem 1.2. Altogether we get

P

(
sup
t∈R

{
h0(t) +A2(t)− t2

}
≥ s

)

≤ C ′ 2M

(s− κ(h0))1/4
e−

4
3
(s−κ(h0))3/2 + C

ln[2(s− κ(h0))/ε]

(s− κ(h0))3/4
√
ε/2

e−
4
3
(s−κ(h0))3/2 . (5.4)

Since ε is fixed, for large s the second term is smaller than the first one, which completes
the proof.
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