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Abstract

For stationary KPZ growth in 1 + 1 dimensions the height fluctuations

are governed by the Baik-Rains distribution. Using the totally asymmetric

single step growth model, alias TASEP, we investigate height fluctuations

for a general class of spatially homogeneous random initial conditions. We

prove that for TASEP there is a one-parameter family of limit distributions,

labeled by the diffusion coefficient of the initial conditions. The distributions

are defined through a variational formula. We use Monte Carlo simulations

to obtain their numerical plots. Also discussed is the connection to the

six-vertex model at its conical point.

1 Introduction

For stochastic growth models in the Kardar-Parisi-Zhang (KPZ) universality class
over a one-dimensional substrate the height fluctuations “always” broaden as t1/3.
On the other hand the full probability density function depends on the choice of
the initial data. As well known, for a flat initial surface, h(x, t = 0) = 0, the
large t fluctuations of h(0, t) are distributed according to the GOE Tracy-Widom
distribution [8, 41, 54]. In contrast, if the height profile is macroscopically curved,
then GOE has to be replaced by GUE [2, 4, 11, 27, 34, 46, 53]. Such dependence is
not so easily inferred directly from the growth dynamics. But if one switches to
the equivalent model of a directed polymer in a space-time random potential, then
one end point of the polymer is fixed, while the constraints for the other end point
depend on the initial conditions. For example, in the curved case the other end
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point is fixed and in the flat case the other end point is sampled along a straight
line. The size of the polymer free energy fluctuations is robust, but the probability
density is sensitive to the particular end point sampling.

In our contribution we study such dependence in case the initial slopes are
statistically homogeneous. Besides flat, the only other known explicit example
refers to initial heights which fluctuate as two-sided Brownian motion. If as surface
growth model we consider the one-dimensional KPZ equation,

∂th = 1
2
(∂xh)

2 + 1
2
∂2
xh+ ξ (1.1)

with ξ(x, t) normalized space-time white noise, then the time-stationary initial
data are

h(x, 0) = B(x) (1.2)

with B(x) a two-sided Brownian motion. As proved in [10],

h(0, t) ≃ − 1
24
t + (t/2)1/3ξBR (1.3)

for large t and the random amplitude ξBR is Baik-Rains distributed [7]. The same
limit distribution has been established for other stochastic growth model with
stationary initial conditions, see [1, 7, 26].

Our interest are spatially homogeneous random initial data, however drop-
ping the assumption of being time-stationary under the growth dynamics. This is
physically a rather natural assumption, since it is realized by initial slopes being
approximately independent. In fact, we will exclusively focus on the one-sided
growing single-step model, alias TASEP, with initial slope (= particle) configura-
tion ηj(t = 0) = ηj taking values 0, 1. The restriction to spatially homogeneous
initial slopes means that {ηj |j ∈ Z} is a stationary stochastic process. We assume
the validity of a functional central limit theorem

lim
ℓ→∞

2√
ℓ

[γxℓ]
∑

j=0

(

ηj − 〈η0〉
)

= σB(x) (1.4)

for some σ ≥ 0. Time-stationary corresponds to {ηj|j ∈ Z} being Bernoulli.
In (1.4), γ is a scaling constant set such that σ = 1 for Bernoulli. As to be
shown, if σ = 0, then the height fluctuations are GOE Tracy-Widom distributed,
thereby confirming a conjecture of [44] in the context of the KPZ equation. In
our contribution we will argue, and prove under additional assumptions, that for
translation invariant random initial data the universality classes are labeled by σ.
For each σ there is a distinct distribution function F (σ)(s), as defined through the
variational formula

F (σ)(s) = P

(

sup
x∈R

{
√
2σB(x) +A2(x)− x2} ≤ s

)

. (1.5)

Here A2(x) is the Airy process, independent of the two-sided Brownian motion
B(x). To indicate our main result, let us denote by ρ the expected density of par-
ticles and by j the expected (infinitesimal) current of particles. Time correlations
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are significant only close to the ray {j = j′(ρ)t}. Thus if j′(ρ) = 0, the height
fluctuations close to the origin, as obtained from ηj(t), are governed by F (σ)(s) in
the large t limit. In case j′(ρ) 6= 0, F (σ)(s) will be observed only when properly
centered (see e.g. [26] in the case σ = 1).

Our proof, to be detailed in Section 2, uses the last passage percolation (LPP)
picture. We rely on several non-trivial results obtained only recently, the most
important ones being tightness [16] for the point-to-point process with ending
points on horizontal lines, and the one-point slow-decorrelation [20]. Finally one
also needs to know the convergence of the finite-dimensional distributions [14].
These ingredients can be used to obtain a functional slow-decorrelation result
(Theorem 2.10), see [22] for the discrete time counterpart. Interestingly, this latter
result then implies tightness of the point-to-point process along generic lines, see
e.g. Corollary 2.12, which is a result not covered by the elegant and soft arguments
of [16].

Two recent contributions are close to our work. In the context of the KPZ
equation, Quastel and Remenik [44] investigate domains of attraction for general
initial conditions. In this model the convergence to the Airy process is not avail-
able. Instead the authors have to rely on a tightness argument, which yields weaker
results. Corwin, Liu, and Wang [22] study the discrete time TASEP, which maps
to last passage percolation with geometric random variables. In their main result,
Theorem 2.7 of [22], they consider a general class of initial conditions and derive a
variational formula of the form (1.5) with

√
2σB(x) replaced by the limiting initial

condition. We will comment on the relation of [22, 44] to our contribution after
Corollary 2.4.

As already proved in [35], F (0)(s) = FGOE(2
2/3s), with FGOE the GOE Tracy-

Widom distribution. As follows from our results, for σ = 1 we conclude that

F (1)(s) = P

(

sup
x∈R

{
√
2B(x) +A2(x)− x2} ≤ s

)

= FBR(s), (1.6)

where FBR is the Baik-Rains distribution function [7], see Corollary 2.4. For all
other values of σ we have to rely on Monte Carlo simulations, which will be reported
in Section 3. A convenient choice is to simulate the TASEP dynamics and to
independently sample ηj as a reversible Markov chain. The average density is taken
as 1

2
and varying the only remaining parameter one can achieve 0 ≤ σ < ∞. To

check the claimed universality we also simulate the diagonal transfer matrix of the
six-vertex model at its stochastic point, see Section 4. For the equilibrium Gibbs
measure of this model, the Baik-Rains distribution has been proved recently [1].

A further explicit solution of the variational problem (1.5) results by dropping
the Airy term,

P

(

sup
x∈R

{B(x)− x2} ≤ s
)

. (1.7)

Formally, one scales s as σ4/3 and takes the limit σ → ∞, see Appendix A. The
solution to (1.7) is studied in [30]. Its probability density vanishes for s < 0 and
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decays as a stretched exponential with power 3
2
for s → ∞. This information can

be used to obtain for large σ an explicit approximation to F (σ).

Acknowledgments. The authors are grateful for discussions with Ivan Corwin
and Kazumasa Takeuchi. This work started when two of us visited in early 2016
the Kavli Institute of Theoretical Physics at Santa Barbara. The work of P.L.
Ferrari and S. Chhita is supported by the German Research Foundation as part
of the SFB 1060–B04 project.

2 Convergence to the variational formula

In this section we prove the variational formula (1.5) for the totally asymmetric
simple exclusion process (TASEP) in continuous time, which is directly related to
the last passage percolation (LPP) model with exponential waiting times. Thus
we first recall the models and their well known relation.

2.1 TASEP and LPP

Let us first recall the relation between TASEP and LPP. A last passage percolation
(LPP) model on Z

2 with independent random variables {ωi,j, i, j ∈ Z} is the
following. An up-right path π = (π(0), π(1), . . . , π(n)) on Z

2 from a point A to a
point E is a sequence of points in Z

2 with π(k + 1)− π(k) ∈ {(0, 1), (1, 0)}, with
π(0) = A and π(n) = E, and where n is called the length ℓ(π) of π. Now, given a
set of points SA and E, one defines the last passage time LSA→E as

LSA→E = max
π:A→E
A∈SA

∑

1≤k≤ℓ(π)

ωπ(k). (2.1)

Finally, we denote by πmax
SA→E any maximizer of the last passage time LSA→E. For

continuous random variables, the maximizer is a.s. unique.
TASEP is an interacting particle system on Z with state space Ω = {0, 1}Z.

Here η is the occupation variable, which is 1 at site j if and only if j is occupied
by a particle. TASEP has generator L given by [40]

Lf(η) =
∑

j∈Z
ηj(1− ηj+1)

(

f(ηj,j+1)− f(η)
)

, (2.2)

where f are local functions (depending only on finitely many sites) and ηj,j+1

denotes the configuration η with the occupations at sites j and j + 1 interchanged.
Notice that for the TASEP the ordering of particles is preserved. That is, if initially
one orders from right to left as

. . . < x2(0) < x1(0) < 0 ≤ x0(0) < x−1(0) < · · · ,

then for all times t ≥ 0 also xn+1(t) < xn(t), n ∈ Z.
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Concerning the mapping between TASEP and LPP, the ωi,j in the LPP is the
waiting time of particle j to jump from site i− j−1 to site i− j. By definition ωi,j

are exp(1) iid. random variables. Let SA = {(u, k) ∈ Z
2 : u = k + xk(0), k ∈ Z}.

Then, the relationship between TASEP and LPP is given by

P
(

LSA→(m,n) ≤ t
)

= P (xn(t) ≥ m− n) . (2.3)

Further, for m = n,

P
(

LSA→(n,n) ≤ t
)

= P (xn(t) ≥ 0) = P (J(t) ≥ n) , (2.4)

where J(t) counts the number of jumps from site 0 to site 1 during the time-span
[0, t].

To state the variational problem for TASEP, we have to first reformulate the
TASEP as a growth process by introducing the height function h(j, t) which is
defined by

h(j, t) =











2J(t) +
∑j

i=1(1− 2ηi(t)) for j ≥ 1,

2J(t) for j = 0,

2J(t)−
∑0

i=j+1(1− 2ηi(t)) for j ≤ −1,

(2.5)

for j ∈ Z, t ≥ 0.
The well-studied cases corresponding to σ = 0, resp. σ = 1, in (1.5), are ob-

tained by choosing periodic initial conditions (xj(0) = −2j, j ∈ Z), resp. stationary
initial conditions [39] (ηi(0), i ∈ Z, are taken to be i.i.d. Bernoulli-ρ random vari-
ables, ρ ∈ (0, 1)). In this work we consider for simplicity ρ = 1/2 because in this
case the characteristic lines for the associated PDE (Burgers equation) corresponds
to the space-time lines with fixed spatial coordinate. Considering other densities
does not require any additional technical difficulty, as one introduces appropriate
space-shifts, which only slightly complicates the formulas. Here is the assumption
on the initial condition.

Assumption 2.1. The height function j 7→ h(j, 0) weakly (in the uniform topology
on bounded sets) converges under a Brownian scaling to a two-sided Brownian
motion with drift 0 and diffusion constant σ2. Explicitly,

x 7→ h([γℓx], 0)√
ℓ

→ σB(x) as ℓ → ∞, (2.6)

where B is a standard two-sided Brownian motion. Here γ is a model-dependent
scaling constant fixed by the property that σ = 1 is the stationary case.

Theorem 2.2. Let us define the distribution function

F (σ)(s) := P

(

max
u∈R

[√
2σB(u) +

(

A2(u)− u2
)

]

≤ s

)

. (2.7)

Then, under Assumption 2.1, for any s ∈ R it holds

lim
t→∞

P
(

h(0, t) ≥ t/2− s(t/2)1/3
)

= F (σ)(s). (2.8)
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Remark 2.3. Theorem 2.2 is for a class of initial condition of particular inter-
est. We state two simple extensions for which the proof requires only minimal
modifications.

(a) One could drop the assumption of translation-invariance for the initial height
profile, such that the limit on the right side of (2.6) will be another non-degenerate
limit process, say R. As soon as the condition (2.16) in the proof is satisfied for
R instead of σB, then Theorem 2.2 will also hold, where of course

√
2σB(u) is

replaced by
√
2R(u).

(b) As opposed to considering the reference point x = 0, one could choose instead
the reference point x = 2ξ(t/2)2/3, which then leads to

lim
t→∞

P
(

h(2ξ(t/2)2/3, t) ≥ t/2− s(t/2)1/3
)

= P

(

max
u∈R

[√
2σB(u) +

(

A2(u)− (u− ξ)2
)

]

≤ s

)

. (2.9)

For fixed σ, ξ 7→ maxu∈R
[√

2σB(u) + (A2(u)− (u− ξ)2)
]

can be viewed as a
stochastic process. The σ = 0 process is known as the Airy1 process [12, 45]
and σ = 1 process as the Airystat process [5]. Thus we arrived at a one-parameter
family of interpolating processes. It is distinct from the flat to stationary transition
discussed in (1.27) of [44] or in (56) of [22], which is obtained from mixed initial
conditions and by varying the reference point.

For the TASEP with Bernoulli initial measure, σ = 1, the limiting distribution
of the rescaled height function has been identified in [26] with the Baik-Rains
distribution FBR [7]. Thus we arrive at a variational characterization of the Baik-
Rains distribution.

Corollary 2.4. The Baik-Rains distribution is determined by

FBR(s) = P

(

sup
x∈R

{
√
2B(x) +A2(x)− x2} ≤ s

)

. (2.10)

As mentioned in the Introduction, variational formulas for LPP with geometric
random variables are studied in [22]. Theorem 2.7 of [22] provides a variational
formula for a class of generic initial conditions. Basically, the assumptions on the
LPP problem (which corresponds to assumptions on the initial particle distribu-
tions) are such that the, possibly random, starting line SA for the LPP problem
with end-point E, for example to E = (ℓ, ℓ), satisfies: (a) SA scales to a non-trivial
limit process under Brownian scaling in a Mℓ2/3-neighborhood of the origin, called
central region, and (b) beyond the central region, the law of large number from
points A ∈ SA to E is strictly decreasing upon moving A away from the origin.

With the use of the convergence to finite-dimensional distributions, tightness,
and slow-decorrelation, condition (a) implies the convergence to a variational pro-
cess similar as (2.7) but restricted to [−M,M ]. In our paper, this part of the
argument follows [22], except for using tightness on horizontal lines.
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Condition (b) implies that the starting point of maximizer from SA to E is
localized around the origin. More precisely, the probability that the maximizer
does not start from the central region goes to 0 as M → ∞, with a bound uniform
in ℓ. From a technical point of view, this bound turns out to be non-trivial.
In [22], this step is mastered by using a bound coming from the Gibbs property of
a underlying non-intersecting line ensemble. In our paper, this step is considerably
simplified by studying the LPP from lines SA which have piece-wise the slope
−1. For an illustration we refer to the dashed lines in Figure 2. Our line is not
optimally close to the line with constant LPP as in [22], but close enough to obtain
Theorem 2.2. The case of slope −1 can be analyzed using the explicit correlation
kernel available in [13], for which we derive a simple bound, see Lemma 2.7.

The stationary measures of the discrete time TASEP are given by a Markov
chain [47, 55] as the one discussed below. Applying the general theorem of [22] to
this setting leads to the variational formula (2.9) with σ = 1. However, the identity
(2.10) cannot be concluded, since, to our knowledge, the limiting distribution FBR

has not been established for the discrete time TASEP with parallel update. In the
discrete time setting, the convergence to FBR is only proven for the discrete time
polynuclear growth model with external sources [7].

The variational expression (2.10) is written also in [44], except that A2 is not
rigorously identified as the Airy2 process, although there is no reason to doubt.
The respective missing technical steps are explained in Theorem 1.5 of [44] and
subsequent remarks.

2.2 Initial condition for the simulation

In our Monte Carlo simulations, see Section 3, the initial data are generated by
the following Markov chain: {ηj(0), j ∈ Z} is a stationary Markov chain with
transition matrix

T =

(

α 1− α
1− α α

)

. (2.11)

The stationary one-point distribution is P(ηj = 0) = P(ηj = 1) = 1/2.

Lemma 2.5. The height function obtained through the stationary Markov chain
with transition matrix T satisfies Assumption 2.1 with γ = 1 and σ2 = α/(1− α).

This result can be obtained in various ways. One can use the coupling contained
in the proof of Theorem 1 of [48] between a Brownian motion and the correlated
random walk, which replaces the standard Skorokhod embedding in the proof of
Donsker’s theorem for the convergence of random walks to Brownian motions.
Another option is to consider the two last increment of the height function as the
state of the system and then one recovers the Markov property. Using the fact that
the height function is then a linear functional of the Markov process one recovers
the result by using the Kipnis-Varadhan Theorem [37].
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2.3 Proof of Theorem 2.2

The key ingredients to prove Theorem 2.2 are (a) functional slow-decorrelation,
(b) bounds that ensures that the optimizer stays within a specific region. Due
to Lemma 2.5, we know that the random line for the discrete model converges
weakly to a Brownian motion as a continuous function. Therefore we know that if
we restrict the maximization problem to a region of width Mℓ2/3 around the origin,
the random line will typically deviate from the anti-diagonal of order

√
Mℓ1/3. We

will prove a functional slow-decorrelation which says that the fluctuations of the
LPP problem from the anti-diagonal and those lines at distance O(ℓν) away from
it with ν < 1, do not exceed εℓ1/3 for any ε > 0, in the ℓ → ∞ limit. This gives
control of the LPP from the random line, when restricted to a Mℓ2/3-neighborhood
of the origin. Finally, we show that the probability that the maximizer starts more
than Mℓ1/3 away from the origin tends to zero as M tends to infinity (we get a
bound in M which goes to zero and which is uniform in ℓ).

One main difference between our proof and the one of the case of geometric
random variables of [22], is that we do not use the Gibbs property of the associated
multilayer model to bound the probability of LPP from small segments through
point-to-point probabilities, rather we bound this probability directly using the
fact that the kernel for the half-line problem is known. This simplifies the ap-
proach for the estimates of the moderate/large deviations made in [22]. To prove
the functional slow-decorrelation theorem we need a tightness result, which for
exponential random variables was recently obtained by Cator and Pimentel with
an elegant argument [16]. Interestingly, the functional slow-decorrelation allows
to deduce tightness on other space-time cuts, where the soft-argument does not
directly apply.

Proof of Theorem 2.2. The randomness from the initial conditions and the ran-
domness from the dynamics provide two independent sources of randomness in
the system. From the LPP perspective, these two sources become the random-
ness in the line from which the last passage time is taken and the randomness
of the weights ωi,j’s respectively. As the LPP only allows up-right paths, these
must be contained inside the set Bℓ = {(m,n) ∈ R

2 |m,n ≤ 1
4
ℓ}. All the sets

that defined below are subsets of Bℓ, but we do not write it explicitly to sim-
plify the notations. For instance, here we write L = {(k + xk(0), k), k ∈ Z}
instead of {(k + xk(0), k), k ∈ Z} ∩ Bℓ. Set t = ℓ + 22/3ℓ1/3s, which means that
ℓ = t− 22/3t1/3s + o(t−1/3), and (2.4) gives

P(h(0, t) ≥ t/2− s(t/2)1/3) = P(J(t) ≥ 1
4
t− s2−4/3t1/3)

= P(LL→( 1
4
t−s2−4/3t1/3, 1

4
t−s2−4/3t1/3) ≤ t)

= P(LL→(ℓ/4,ℓ/4) ≤ ℓ+ 22/3ℓ1/3s) = P(EL,ℓ,s),

(2.12)

where we define the event

EL,ℓ,s = {LL→(ℓ/4,ℓ/4) ≤ ℓ+ 22/3ℓ1/3s}. (2.13)
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L
L+

M,ℓ

L−
M,ℓ

DM,ℓ

CM,ℓ

m

n

Figure 1: Illustration of the main lines and domains used in the proof. The domain
CM,ℓ is the gray one, while DM,ℓ is the rectangular region. The thick dashed lines
are L±

M,ℓ.

For any given M ≥ 1, we define the domains

DM,ℓ = {(m,n) ∈ R
2 | |m+ n| ≤ (ℓ/2)2/3, |m− n| ≤ 2M(ℓ/2)2/3}, (2.14)

and CM,ℓ = C+
M,ℓ ∪ C−

M,ℓ, where

C−
M,ℓ =

ε0ℓ1/3/M
⋃

k=1

{(m,n) ∈ R
2 |n ≥ kM(ℓ/2)2/3, m+ n ≥ −1

4
k2M2(ℓ/2)1/3} (2.15)

is the region on the right of L−
M,ℓ, and C+

M,ℓ is the mirror image of C−
M,ℓ with respect

to the axis {m = n}; see Figure 1. For a standard two-sided Brownian motion B,

lim
M→∞

lim
ℓ→∞

P({(1
2
(x+ σB(x)), 1

2
(σB(x)− x)), x ∈ R} ⊂ DM,ℓ ∪ CM,ℓ) = 1. (2.16)

This, together with the weak convergence of L to σB (rotated by 45), see
Lemma 2.5 below, implies that

lim
M→∞

lim
ℓ→∞

P(L ⊂ DM,ℓ ∪ CM,ℓ) = 1, (2.17)

and consequently

lim
M→∞

lim
ℓ→∞

P(EL,ℓ,s) = P(EL,ℓ,s ∩ {L ⊂ DM,ℓ ∪ CM,ℓ}). (2.18)

For notational simplicity, let us denote by PM(·) = P(· ∩ {L ⊂ DM,ℓ ∪ CM,ℓ}).
By definition of the LPP time, LL→(ℓ/4,ℓ/4) = maxI∈L LI→(ℓ/4,ℓ/4). The maxi-

mum is obtained a.s. at a unique point (as the random waiting times have densi-
ties). Notice that EL,ℓ,s holds if and only if both EL∩DM,ℓ,ℓ,s and EL∩CM,ℓ,ℓ,s hold.
Theorem 2.6 below implies that for any given M ≥ M0 (with M0 a constant)

PM(EL∩CM,ℓ,ℓ,s)) ≥ 1− Ce−cM (2.19)
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LDM,ℓ

m

n

I0(u)

I+(u)

I−(u)

I(u)

Figure 2: LPP with random initial condition L.

uniformly for ℓ ≥ ℓ0, where C and c are constants independent of ℓ. Therefore

lim
M→∞

lim
ℓ→∞

PM(EL,ℓ,s) = lim
M→∞

lim
ℓ→∞

PM(EL∩DM,ℓ,ℓ,s). (2.20)

For a given I, we denote by I0 its orthogonal projection on the line
{(m,n) ∈ R

2 |m+ n = 0}, that is, the anti-diagonal. We now introduce the fol-
lowing coordinates: I0 = I0(u) = u(ℓ/2)2/3(−1, 1) and for this I0, we denote by
I = I(u) the point on L connected to I0(u) by a line of slope 1; see Figure 2. With
these notations we can write

EL∩DM,ℓ,ℓ,s = {max
|u|≤M

LI(u)→(ℓ/4,ℓ/4) ≤ ℓ + 22/3ℓ1/3s}

= {max
|u|≤M

LI0(u)→(ℓ/4,ℓ/4) + (LI(u)→(ℓ/4,ℓ/4) − LI0(u)→(ℓ/4,ℓ/4)) ≤ ℓ+ 22/3ℓ1/3s}.
(2.21)

Now we use the functional slow-decorrelation theorem, given in Theorem 2.10
below: for any ε > 0, the good event

GL,M,ℓ,ε = {max
|u|≤M

|LI(u)→(ℓ/4,ℓ/4)−LI0(u)→(ℓ/4,ℓ/4)−4m(I(u))+4m(I0(u))| ≤ 22/3ℓ1/3ε}
(2.22)

occurs with probability 1 as ℓ → ∞. Therefore for any ε > 0

(2.20) = lim
M→∞

lim
ℓ→∞

PM(EL∩DM,ℓ,ℓ,s ∩GL,M,ℓ,ε). (2.23)

Further,

PM(EL∩DM,ℓ,ℓ,s ∩GL,M,ℓ,ε)

= PM({max
|u|≤M

LI(u)→(ℓ/4,ℓ/4) ≤ ℓ+ 22/3ℓ1/3s} ∩GL,M,ℓ,ε)

≤ PM

(

{max
|u|≤M

LI0(u)→(ℓ/4,ℓ/4) − ℓ+ 4m(I(u))− 4m(I0(u))

22/3ℓ1/3
≤ s+ ε} ∩GL,M,ℓ,ε

)

.

(2.24)
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A lower bound to PM(EL∩DM,ℓ,ℓ,s∩GL,M,ℓ,ε) is obtained by replacing ε by −ε in the
same way. By Lemma 2.5, L converges weakly to a Brownian motion path with
diffusivity constant σ2 as ℓ → ∞, i.e., to σB. An elementary calculation gives

lim
ℓ→∞

4m(I(u))− 4m(I0(u))

22/3ℓ1/3
=

√
2σB(u). (2.25)

Further,
LI0(u)→(ℓ/4,ℓ/4)−ℓ

22/3ℓ1/3
as a stochastic process in u ∈ [M,M ] converges weakly to

A2(u)− u2 (with A2 being the Airy2 process [36,43]), see Corollary 2.12 (alterna-
tively, one could consider I to be the projection to the m-axis directly, with the
only difference that the difference of the LPP from I(u) and from I0(u) is now
a Brownian motion with a drift, exactly compensating the linear term in (2.57)).
Thus

lim
M→∞

lim
ℓ→∞

(2.24) = lim
M→∞

P

(

max
|u|≤M

[

A2(u)− u2 +
√
2σB(u)

]

≤ s+ ε
)

= P

(

max
u∈R

[

A2(u)− u2 +
√
2σB(u)

]

≤ s + ε
)

,
(2.26)

where the last equality is due to the fact that distributions of the positions of the
maximum of A2(u)− u2/2 and

√
2σB(u)− u2/2 are tight (for the Airy2 case, see

Proposition 4.4 of [21] or Proposition 2.13 in [22], while for the Brownian motion it
is obvious as we can control it with a Brownian motion with a drift away from the
origin; see [29–31] for explicit formulas). This, together with the analogous lower
bound holds for any ε > 0. Thus we have shown the convergence in distribution
in Theorem 2.2. The limiting distribution function in (2.7) is continuous as the
Airy2 process is locally Brownian (use inequalities (103)-(104) and the localizing
bound (88) in [22]).

In the next theorem we show that the LPP from CM,ℓ is typically lower than
the one from the origin, from which one can prove that the maximizer is localized
to occur in DM,ℓ. The probability that this does not occur goes to zero as M → ∞
as expected, since CM,ℓ stays on the right of the constant limit shape.

Theorem 2.6. Let CM,ℓ defined just after (2.14) and let LM,ℓ = ∂CM,ℓ be the
boundary of it. For any fixed s ∈ R and any M ≥ 1, there is a ε0 > 0 small
enough and an ℓ0(s) such that

P(LLM,ℓ→(ℓ/4,ℓ/4) < ℓ+ 22/3ℓ1/3s) > 1− Ce−cM (2.27)

uniformly for ℓ ≥ ℓ0. The constants C and c do not depend on M and ℓ.

Proof. Denote by

LkM,ℓ = ∂{(m,n) ∈ R
2 |n > kM(ℓ/2)2/3, m+ n > −1

4
k2M2(ℓ/2)1/3}. (2.28)
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Symmetry and union bounds give

P(LLM,ℓ→(ℓ/4,ℓ/4) > ℓ+ 22/3ℓ1/3s) ≤ 2

ε0ℓ1/3/M
∑

k=1

P(LLkM,ℓ→(ℓ/4,ℓ/4) > ℓ+ 22/3ℓ1/3s).

(2.29)
In order to study the right side of the above equation, recall the mapping

between LPP and TASEP as given in (2.4). Since LkM,ℓ → (ℓ/4, ℓ/4) is a half-
line with slope −1 taking values in the second quadrant, this LPP corresponds to
TASEP with an initial condition in which particles occupy every second position
below a threshold and there are no particles above the threshold. The distribution
function of this TASEP is given by a Fredholm determinant with an explicit kernel
derived in [13]. Namely, from [13, Proposition 3], we have the formula

P(xn(t) < a) = 1− det(1− χaKn,tχa)ℓ2(Z) (2.30)

where χa(x) = 1[x<a] and

Kn,t(y1, y2) =
1

(2πi)2

∮

Γ0

dv

∮

Γ−1,−1−v

du
e−vt(1 + v)y2+n

vn
eutun

(1 + u)y1+n+1

1 + 2v

(u− v)(1 + u+ v)
(2.31)

where −Γ0 − 1 is contained inside Γ−1,−1−v. Note that this kernel is equal to zero
if y1 ≤ −2n− 1. Indeed, in this case the only pole for u is at u = −1− v and the
integration over this simple poles leads to an integrand in v which does not have
a pole at 0 anymore. To find the specific formula for this theorem, notice that by
a translation of the LPP, the summand on the right side of (2.29) gives

P(LLkM,ℓ→(ℓ/4,ℓ/4) > ℓ+ 22/3ℓ1/3s)

= P(LL0,0→(ℓ/4+(kM)(ℓ/2)2/3+ 1
4
(kM)2(ℓ/2)1/3 ,ℓ/4−(kM)(ℓ/2)2/3) > ℓ+ 22/3ℓ1/3s).

(2.32)

Using the TASEP and LPP mapping (2.4), we have

P(LL0,0→(ℓ/4+(kM)(ℓ/2)2/3+ 1
4
(kM)2(ℓ/2)1/3 ,ℓ/4−(kM)(ℓ/2)2/3) > ℓ+ 22/3ℓ1/3s)

= P(xℓ/4−(kM)(ℓ/2)2/3(ℓ+ 22/3ℓ1/3s) < 2(kM)(ℓ/2)2/3 + 1
4
(k2M2)(ℓ/2)1/3).

(2.33)

The above equation indicates the scalings

t = ℓ+ 22/3ℓ1/3s,

n = ℓ/4− (kM)(ℓ/2)2/3,

yi = 2(kM)(ℓ/2)2/3 + 1
4
(k2M2)(ℓ/2)1/3 − 2(ℓ/2)1/3ξi.

(2.34)

with ξ1, ξ2 ∈ [0,∞), where the latter condition is from the indicator function
in (2.30). We define the rescaled and conjugated kernel to be

Kresc(ξ1, ξ2) = 2y2−y1+1 (ℓ/2)1/3Kn,t(y1, y2), (2.35)
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with n and t given in (2.34).
To conclude the proof of the theorem, we need bounds on Kresc, which are given

in Lemma 2.7 below. Set a = 2(kM)(ℓ/2)2/3 + 1
4
(k2M2)(ℓ/2)1/3. Then expanding

the Fredholm determinant associated to the right side of (2.33) gives

∞
∑

m=1

(−1)m+1

m!

∞
∑

z1=−∞
· · ·

∞
∑

zm=−∞

m
∏

i=1

χa(zi) det [Kt,n(zi, zj)]1≤i,j≤m . (2.36)

Now we consider the change of variable zi = a−2ξi(ℓ/2)
1/3 and extend the rescaled

kernel as piecewise constant so that we can write the Riemann sums as integrals.
The cut-off by χa(zi) corresponds to have ξi ≥ 0. Thus we get

∞
∑

m=1

(−1)m+1

m!

∫ ∞

0

dξ1· · ·
∫ ∞

0

dξm det [Kresc(ξi, ξj)]1≤i,j≤m . (2.37)

From Lemma 2.7, we factor out e−
1
2
(kM)3e−2kMξi from the above determinant.

Using Hadamard’s bound in the standard way we can conclude that (2.37) is
bounded above by Ce−k3M3/2 < Ce−kM/2. Therefore, the right side of (2.29) is
bounded above by

ε0ℓ1/3/M
∑

k=1

Ce−kM/2 ≤ Ce−M/2(1− e−M/2)−1 ≤ C̃e−cM , (2.38)

with our choice M ≥ 1. Since the estimate found in Lemma 2.7 is uniform, the
above bound is also uniform in ℓ.

Lemma 2.7. Let s ∈ R be fixed and take any M ≥ 1. Then, there exists a ε0 > 0
small enough and a ℓ0 ∈ (0,∞) (depending only on s) such that for all ℓ ≥ ℓ0 the
estimate

|Kresc(ξ1, ξ2)| ≤
C

(kM)2
e−

1
2
(kM)3−2(kM)(ξ2+s) (2.39)

holds for all k ∈ {1, . . . , ε0ℓ1/3/M}, for all ξ1, ξ2 ≥ 0, where C > 0 is a constant
which does not depend on ℓ and M .

Proof of Lemma 2.7. For convenience, set ε = ε(k,M, ℓ) = kM(ℓ/2)−1/3. In par-
ticular, we can choose ε0 small enough such that ε ≤ 21/3ε0 ≤ 1/4.

The proof of this result is via a steepest descent analysis. We remark that we
do not deform the contours of integration to pass through the critical points. It is
more convenient to deform the contours to be relatively close to the critical point
giving a less optimal estimate, but this is sufficient for our purposes.

We define the contours C0 = {v : |v| = 1/2− ε}, C1 = {u : |u+ 1| = 1/2} and
set Γ0 = C0, Γ−1,−1−v = C1. Also, set

g0(v) = −4v + (1 + 2ε+ ε2/2) log 2(1 + v)− (1− 2ε) log v. (2.40)
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Then, with the scalings given in (2.34), we have

log

(

e−vt(2(1 + v))y2+n

vn

)

=
ℓ

4
g0(v)− 2

(

ℓ

2

)1/3

ξ2 log(2(1 + v))− 2

(

ℓ

2

)1/3

sv.

(2.41)
We have a similar expression for log(e−utun/(2(1 + u))y1+n).

First notice that have for u ∈ C1 and v ∈ C0,
∣

∣

∣

∣

1 + 2v

(u− v)(1 + u+ v)

∣

∣

∣

∣

≤ C

ε
. (2.42)

Next, the term depending on ξ1 has constant absolute value for u ∈ C1 since
|1 + u| is constant on C1 and Re log(1 + u) = log |1 + u|. Similarly, since |v| is
constant on C0, the term depending on sv has constant absolute value. Finally,
since −Re log(1+v) = − log |1+v| is maximal at v = −1/2+ε, the term depending
on ξ2 ≥ 0 is bounded by its value at v = −1/2 + ε. Using these properties we
obtain, for some constant C2,

∣

∣

∣

∣

∣

4
(

ℓ
2

)1/3

(2πi)2

∫

C1

du

∫

C0

dv
e−vt(2(1 + v))y2+n

vn
eutun

(2(1 + u))y1+n+1

1 + 2v

(u− v)(1 + u+ v)

∣

∣

∣

∣

∣

≤ PC2ℓ
1/3

ε

∫

C1

|du|
∫

C0

|dv|
∣

∣

∣
e

ℓ
4
(g0(v)−g0(−1/2+ε)−g0(u)+g0(−1/2))e2(ℓ/2)

1/3s(u+1/2)
∣

∣

∣
,

(2.43)
where P is the value of the integrand at v = −1/2 + ε and u = −1/2:

P = exp

[

ℓ

4
Re

(

g0(−1
2
+ ε)− g0(−1

2
)
)

− 2

(

ℓ

2

)1/3

(ξ2 log(1 + 2ε) + εs)

]

. (2.44)

Let us use the parameterizations

v = −(1
2
− ε)eiθ, u = −1 + 1

2
eiφ. (2.45)

We need to control Re( ℓ
4
(g0(v)−g0(−1

2
+ε)) and Re(−g0(u)+g0(−1

2
)). By symme-

try it is enough to consider θ ∈ [0, π]. Explicit computations gives (for θ ∈ [0, π]),

dRe(g0(v))

dθ
= −4(1

2
− ε) sin(θ)

[

1− 1 + 2ε+ ε2/2

4|v + 1|2
]

≤ −4(1
2
− ε) sin(θ)

[

1− 1 + 2ε+ ε2/2

(1 + 2ε)2

]

≤ −ε sin(θ)

(2.46)

where we used 0 ≤ ε ≤ 1/4, for which 1 − 1+2ε+ε2/2
(1+2ε)2

≥ ε. Thus, integrating (2.46)

we obtain, for θ ∈ [0, π],

Re

(

ℓ

4
(g0(v)− g0(−1

2
+ ε)

)

≤ −ε(1− cos(θ)) ≤ −εθ2/8. (2.47)
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Similarly, for φ ∈ [0, π],

dRe(−g0(u))

dφ
= −2 sin(φ)

[

1− 1− 2ε

5− 4 cos(φ)

]

≤ −4ε sin(φ), (2.48)

which gives

Re
(

−g0(u) + g0(−1
2
)
)

≤ −4ε(1− cos(φ)) ≤ −εφ2/2. (2.49)

Finally, we need a bound for the term depending on s in (2.43). We have
∣

∣

∣
e2(ℓ/2)

1/3s(u+1/2)
∣

∣

∣
= es(ℓ/2)

1/32Re(u+1/2) = e−s(ℓ/2)1/3(1−cos(φ)). (2.50)

For any fixed s ∈ R, we choose ℓ0 large enough such that |s| (ℓ/2)1/3 ≤ ℓε/2 (this
is possible since ℓε ≥ kMℓ2/3 and k,M ≥ 1). Using this fact together with the
bounds (2.47) and (2.49) in (2.43) leads to

(2.43) ≤ PC3ℓ
1/3

ε

∫ π

−π

dθ

∫ π

−π

dφe−εℓθ2/4e−εℓφ2 ≤ PC4ℓ
1/3

ε2ℓ
. (2.51)

for some constants C3, C4. Replacing the value of ε into the bound gives

|Kresc(ξ1, ξ2)| ≤
CP

(kM)2
(2.52)

for some constant C.
It remains to estimate P . We have that

Re(g0(−1
2
+ ε)− g0(−1

2
)) = −4ε+ (1+ 2ε+ 1

2
ε2) log(1 + 2ε)− (1− 2ε) log(1− 2ε).

(2.53)
Provided that ε0 is small enough, we apply a Taylor series expansion to find that

Re(g0(−1
2
+ ε)− g0(−1

2
)) = −5

3
ε3 +O(ε4) ≤ −ε3, (2.54)

which means
ℓ

4
Re(g0(−1

2
+ ε)− g0(−1

2
)) ≤ −1

2
(kM)3. (2.55)

We also have

2

(

ℓ

2

)1/3

(ξ2 log(1 + 2ε) + εs) = 2kM(2ξ2(1 +O(ε0ℓ
−1/3)) + s). (2.56)

For ℓ large enough, 1 +O(ε0ℓ
−1/3) ≥ 1/2 and thus P ≤ e−

1
2
(kM)3−2(kM)(ξ2+s).

Below we prove the missing ingredients in the proof of Theorem 2.2, in par-
ticular the functional slow-decorrelation result (Theorem 2.10). This result is the
analogue of Theorem 2.15 of [22] for the case of geometric random variables. In
the proof one needs tightness (the analogue of Lemma 5.3 of [35] for the geometric
case). Fortunately, for the case of exponential random variables, this result was
obtained with soft arguments in [16].
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Proposition 2.8 (Compare with Theorem 4 of [16]). Consider the LPP from the
horizontal line {(m,n) ∈ Z

2 |n = 0}, and rescale it as

Lres,h
ℓ (u) :=

L(−2u(ℓ/2)2/3 ,0)→(ℓ/4,ℓ/4) − (ℓ+ 4u(ℓ/2)2/3 − 22/3u2ℓ1/3)

22/3ℓ1/3
, (2.57)

for u ∈ R with 2u(ℓ/2)2/3 ∈ Z and linearly interpolate for the other values of u.
Then, for any givenM > 0, the collection {Lres,h

ℓ } is tight in the space of continuous

functions of [−M,M ], C([−M,M ]). Furthermore, Lres,h
ℓ as a stochastic process in

u ∈ [M,M ] converges weakly to the Airy2 process.

Proof. Tightness of Lres,h
ℓ was already shown in Theorem 4 of [16] with a soft

argument that uses a comparison with the stationary case. The basic idea is to
compare, for fixed n, the increments of m 7→ L(0,0)→(m,n) with the same increment
for stationary initial conditions with densities ρ± = 1/2±κn−1/3. On some events
with high probability (going to 1 as κ → ∞) one has an explicit upper (resp. lower)
bounds of L(0,0)→(m+x,n) − L(0,0)→(m,n) in terms of increments of the stationary
case with density ρ+ (resp. ρ−). The increments of the latter are easy to control
since they are sums of independent exp(ρ±) random variables. In [16] paper, the
statement is written in the space of càdlàg functions. The reason is that the
detailed proof is given only for a related model (the Hammersley process / LPP
in Poisson points) in which càdlàg is the natural way of describing. However by
inspecting the bounds used in the proof, one sees that these are strong enough to
get tightness in the space of continuous functions as well.

The convergence of finite dimensional distributions for this exponential waiting
times and along the horizontal line is a special case of [14] (or can be obtained from
the finite-dimensional distributions along other lines using slow-decorrelation [20];
see [5] for an application of this technique). These two ingredients imply weak
convergence [9].

Remark 2.9. For geometric random variables this statement was shown in The-
orem 1.2 in [35], which is obtained by controlling the modulus of continuity
(Lemma 5.3 in [35]) together with the convergence of the finite-dimensional distri-
butions.

We are ready to prove the functional slow-decorrelation theorem. This is the
analogue of Theorem 2.15 of [22], which holds for geometric random variables,
specialized to our setting.

Theorem 2.10. Let L be any down-right path traversing DM,ℓ between the two
sides of DM,ℓ with |m − n| = 2M(ℓ/2)2/3 (as in Figure 2). For I0(u) =
u(ℓ/2)2/3(1,−1), let I(u) be the point in L whose orthogonal projection along (1, 1)
is I0(u). Denote by µ((ℓ1, ℓ2)) = (

√
ℓ1 +

√
ℓ2)

2 to be the limit shape approximation
of L(0,0)→(ℓ1,ℓ2). Then consider the rescaled LPP processes from the anti-diagonal,
Lres,ad, and from the line L, Lres,L (with linear interpolation as in Proposition 2.8).
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Define

Lres,ad
ℓ (u) :=

LI0(u)→(ℓ/4,ℓ/4) − µ((ℓ/4, ℓ/4)− I0(u))

22/3ℓ1/3
,

Lres,L
ℓ (u) :=

LI(u)→(ℓ/4,ℓ/4) − µ((ℓ/4, ℓ/4)− I(u))

22/3ℓ1/3
.

(2.58)

Then, Lres,ad
ℓ − Lres,L

ℓ converges in probability to 0 in C([−M,M ]) as ℓ → ∞.
Explicitly, there are ε, δ > 0 and a ℓ0, such that for all ℓ ≥ ℓ0,

P

(

max
|u|≤M

|Lres,ad
ℓ (u)− Lres,L

ℓ (u)| ≥ δ
)

< ε. (2.59)

In the proof, we use known results for the point-to-point LPP with exponential
random variables, which we recall here.

Proposition 2.11. For η ∈ (0,∞) define µ = (
√
ηℓ+

√
ℓ)2, σ = η−1/6(1+

√
η)4/3,

and the rescaled random variable

Lres
ℓ :=

L(0,0)→(ηℓ,ℓ) − µ

σℓ1/3
. (2.60)

(a) Limit law
lim
ℓ→∞

P(Lres
ℓ ≤ s) = FGUE(s), (2.61)

with FGUE the GUE Tracy-Widom distribution function.
(b) Bound on upper tail: there exist constants s0, ℓ0, C, c such that

P(Lres
ℓ ≥ s) ≤ Ce−cs (2.62)

for all ℓ ≥ ℓ0 and s ≥ s0.
(c) Bound on lower tail: there exists constants s0, ℓ0, C, c such that

P(Lres
ℓ ≤ s) ≤ Ce−c|s|3/2 (2.63)

for all ℓ ≥ ℓ0 and s ≤ −s0.

(a) was proven in Theorem 1.6 of [34]. Using the relation with the Laguerre
ensemble of random matrices (Proposition 6.1 of [3]), or to TASEP described
above, the distribution is given by a Fredholm determinant. An exponential decay
of its kernel leads directly to (b). See e.g. Proposition 4.2 of [24] or Lemma 1 of [6]
for an explicit statement. (c) was proven in [6] (Propositon 3 together with (56)).
In the present language it is reported in Proposition 4.3 of [24] as well.

Proof of Theorem 2.10. The proof is similar to the one of Theorem 2.15 of [22],
except that this time tightness is known on a horizontal slice of Z2 (see Propo-
sition 2.8). To prove (2.59) it is enough to prove it for Lres,h

ℓ instead of Lres,ad
ℓ .

Indeed, the anti-diagonal satisfies the requirements for L and one uses the triangle
inequality

|Lres,ad
ℓ (u)− Lres,L

ℓ (u)| ≤ |Lres,h
ℓ (u)− Lres,ad

ℓ (u)|+ |Lres,h
ℓ (u)− Lres,L

ℓ (u)|. (2.64)
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Thus we need to show

P

(

max
|u|≤M

|Lres,h
ℓ (u)− Lres,L

ℓ (u)| ≥ δ
)

< ε. (2.65)

Let us consider two horizontal lines that ‘enclose’ the set DM,ℓ, see Figure 2.
We choose the lines parameterized by

I±(u) = −2u(ℓ/2)2/3(1, 0)± 2M(ℓ/2)2/3(1, 1), |u| ≤ M, (2.66)

and define Lres,±
ℓ (u) as in (2.58) with I0(u) replaced by I±(u). To prove (2.65) we

use the inequalities

P

(

max
|u|≤M

Lres,h
ℓ (u)− Lres,L

ℓ (u) ≥ δ
)

≤ P

(

max
|u|≤M

Lres,h
ℓ (u)− Lres,+

ℓ (u) ≥ δ/2
)

+ P

(

max
|u|≤M

Lres,+
ℓ (u)− Lres,L

ℓ (u) ≥ δ/2
) (2.67)

and similarly

P

(

max
|u|≤M

Lres,L
ℓ (u)− Lres,h

ℓ (u) ≥ δ
)

≤ P

(

max
|u|≤M

Lres,L
ℓ (u)− Lres,−

ℓ (u) ≥ δ/2
)

+ P

(

max
|u|≤M

Lres,−
ℓ (u)− Lres,h

ℓ (u) ≥ δ/2
)

.
(2.68)

Below we consider only (2.67) as (2.68) is threaded in a similar way. First we
prove the following: for any ε, δ > 0, there exists a ℓ0 (depending on M only) such
that for all ℓ ≥ ℓ0,

P

(

max
|u|≤M

|Lres,+
ℓ (u)− Lres,h

ℓ (u)| ≥ δ/2
)

< ε/2. (2.69)

First of all, notice that tightness of Lres,h
ℓ implies also tightness of Lres,±

ℓ as they
are essentially the same process:

Lres,+
ℓ (u) = (1 + 4M(ℓ/2)−1/3)−1/3Lres,h

ℓ−8M(ℓ/2)2/3
(u+O(ℓ−1/3)). (2.70)

Thus, for M, ε, δ given above, there exists constants δ1, ℓ1 such that for all ℓ ≥ ℓ1,

P

(

max
|u1|,|u2|≤M,|u1−u2|≤δ1

|Lres,∗
ℓ (u1)− Lres,∗

ℓ (u2)| ≥ δ/6
)

< ε/6, ∗ ∈ {+, h}. (2.71)

Let us define uj = jδ1 with j ∈ Z satisfying uj ∈ [−M,M ]. Since the number of
j’s is finite, from the usual slow-decorrelation result (Theorem 2.1 of [20]), there
exists some constant ℓ2 (depending on ε, δ, δ1) such that for all ℓ ≥ ℓ2,

P

(

max
j:|uj|≤M

|Lres,+
ℓ (uj)− Lres,h

ℓ (uj)| ≥ δ/6
)

< ε/6. (2.72)
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For a given u ∈ [−M,M ], choose a j such that |uj − u| ≤ δ1. Then,

|Lres,+
ℓ (u)− Lres,h

ℓ (u)| ≤ |Lres,+
ℓ (u)− Lres,+

ℓ (uj)|+ |Lres,+
ℓ (uj)− Lres,h

ℓ (uj)|
+ |Lres,h

ℓ (uj)− Lres,h
ℓ (u)|,

(2.73)

which, together with (2.71) and (2.72), implies (2.69) as claimed.
Finally we prove: for any ε, δ > 0, there exists a ℓ0 (depending on M only)

such that for all ℓ ≥ ℓ0,

P

(

max
|u|≤M

Lres,+
ℓ (u)− Lres,L

ℓ (u) ≥ δ/2
)

< ε/2. (2.74)

Since the rescaled LPP are defined by linear interpolation between lattice-points,
the maximum in (2.74) is effectively only on O(ℓ2/3) number of points and thus it

is enough to have a bound on P

(

Lres,+
ℓ (u)−Lres,L

ℓ (u) ≥ δ/2
)

, which multiplied by

ℓ2/3 goes to 0 as ℓ → ∞.
Without rescaling, since the maximizers from I(u) to (ℓ/4, ℓ/4) can pass by

I+(u) (and will pass close to it since I+(u) is essentially on the characteristic line
between I(u) and (ℓ/4, ℓ/4)), we have

LI(u)→(ℓ/4,ℓ/4) ≥ LI(u)→I+(u) + LI+(u)→(ℓ/4,ℓ/4). (2.75)

A simple algebraic computation shows that

µ((ℓ/4, ℓ/4)− I(u)) = µ((ℓ/4, ℓ/4)− I+(u)) + µ(I+(u)− I(u)) +O(1), (2.76)

where the O(1) term is independent of ℓ (and bounded uniformly for |u| ≤ M).
Thus (2.75) holds also in the rescaled version up to a correction O(ℓ−1/3):

Lres,+
ℓ (u)− Lres,L

ℓ (u) ≤ −LI(u)→I+(u) − µ(I+(u)− I(u))

22/3ℓ1/3
+O(ℓ−1/3). (2.77)

With the choice of I+(u), I+(u)− I(u) = O(ℓ2/3) and thus by Proposition 2.11 we

have that
LI(u)→I+(u)−µ(I+(u)−I(u))

σℓ2/9
converges to a non-degenerate random variable.

Since, however, we divide by ℓ1/3 ≫ ℓ2/9, the right side of (2.77) will converge to
0. Take ℓ large enough such that the error term O(ℓ−1/3) is bounded by δ/4. Then

P

(

Lres,+
ℓ (u)− Lres,L

ℓ (u) ≥ δ/2
)

≤ P

(LI(u)→I+(u) − µ(I+(u)− I(u))

22/3ℓ1/3
≤ −δ/4

)

= P

(LI(u)→I+(u) − µ(I+(u)− I(u))

22/3ℓ2/9
≤ −δℓ1/9/4

)

≤ Ce−c(δ)ℓ1/6

(2.78)
where the last inequality comes from Proposition 2.11(c). Thus we have obtained
the required bound to prove (2.74), which was the last piece in the proof of The-
orem 2.10.
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Corollary 2.12. Consider the LPP from {(m,n) ∈ Z
2 |n + m = 0}, the anti-

diagonal, and rescale it as

Lres,ad
ℓ (u) :=

L(u(ℓ/2)2/3 ,−u(ℓ/2)2/3)→(ℓ/4,ℓ/4) − (ℓ− 22/3u2ℓ1/3)

22/3ℓ1/3
, (2.79)

for u ∈ R with u(ℓ/2)2/3 ∈ Z and linearly interpolate for the other values of u.
Then, for any given M > 0, the collection {Lres

ℓ } is tight in the space of continuous
functions of [−M,M ]. Furthermore, Lres

ℓ as a stochastic process in u ∈ [M,M ]
converges weakly to the Airy2 process.

Proof. This follows from Theorem 2.8 and Theorem 2.10, since in the latter we
can take L to be the anti-diagonal as well.

3 Monte Carlo simulations

Let us recall the variational formula obtained in Theorem 2.2,

F (σ)(s) := P

(

max
u∈R

[√
2σB(u) +A2(u)− u2

]

≤ s

)

. (3.1)

While this defines the limit distribution, it seems to be difficult to either deduce
more explicit expressions or to run numerical evaluations. To visualize our result
we therefore return to the TASEP. The TASEP is particularly convenient as it is
accessible by Monte Carlo simulations.

The TASEP exhibits well-known finite-time corrections. In particular, although
the shape of the distribution is accurate even for relatively small times, one gener-
ically observes a shift, which is due to the slow t−1/3 convergence of the first
moment [23, 49, 50, 52]. The speed of convergence of the variance is t−2/3. There-
fore, in order to minimize the errors due to finite-time corrections, we extrapolate
numerically the large time first and second cumulants and scale the numerical data
to match the limiting first two cumulants. This procedure gives good results for
the special case σ = 0 and σ = 1 for which the cumulants are known analytically
as well.

In Figure 3, we show the probability densities obtained by the Monte Carlo
simulations for a subset of values of the α given in Table 1.

When performing a simulation or even a real experiment as in [49, 50, 52],
the quantities often measured are not necessarily the probability density function,
rather only the first four cumulants. For potential comparison with future numer-
ical and experimental results, we provide below the cumulants obtained through
Monte Carlo simulations of TASEP, see Table 1. The values for σ = 0 and σ = 1
are known and they give an indication for the precision of the numerical simulation.
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Figure 3: Probability densities of F (σ)(s) with σ =
√

α/(1− α) from TASEP
simulation until time tmax = 103 and 106 runs. The different plots corresponds
to the values α = 0, 0.05, 0.1, 0.15, 0.20, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.54, 0.58, 0.62.
The left-most black line is the exact rescaled GOE distribution (σ = 0), which
overlaps with α = 0 from the simulations. The black line in the middle is the
stationary case (σ = 1).

4 The semi-infinite six-vertex model at its coni-

cal (KPZ) point

The planar six-vertex model can be viewed as a statistical mechanics model of
interacting up-right lattice paths. Paths may touch, but they do not cross. The
weight of such a collection of paths is defined by the product of the local weights,
which in the canonical labeling are given by

ω1 ω2 ω3 ω4 ω5 ω6

Much studied is the infinite volume limit with periodic boundary conditions.
This results in a translation-invariant Gibbs measure, which might not be extremal,
thereby possibly allowing for either ferro- or anti-ferroelectric ordering. A second
popular choice are domain wall boundary conditions. For a given lattice square,
all paths enter at the left edge and exit at the upper edge. There are no paths at
the right and lower edge. If paths are interpreted as level lines of a surface over
the two-dimensional lattice, then domain wall boundary conditions correspond to
a surface boundary which varies on the macroscopic scale. Thus an arctic circle
phenomenon is expected [17–19]. In fact, on its free fermion line the six-vertex
model with domain wall boundary conditions is equivalent to the domino tiling
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α σ κ1=Mean κ2=Variance κ3=3rd cumulant κ4=4th cumulant
0 0 -0.760 0.638 0.149 0.067
0 0 -0.763 0.639 0.150 0.066

0.05 0.229 -0.710 0.653 0.146 0.065
0.10 0.333 -0.662 0.674 0.147 0.063
0.15 0.42 -0.609 0.698 0.15 0.068
0.20 0.5 -0.546 0.729 0.156 0.068
0.25 0.577 -0.484 0.765 0.169 0.077
0.30 0.655 -0.406 0.808 0.183 0.088
0.35 0.734 -0.325 0.871 0.213 0.11
0.40 0.816 -0.233 0.938 0.261 0.17
0.42 0.851 -0.189 0.973 0.283 0.19
0.44 0.886 -0.15 1.01 0.312 0.22
0.45 0.905 -0.125 1.03 0.328 0.23
0.46 0.923 -0.101 1.05 0.348 0.27
0.48 0.961 -0.051 1.10 0.389 0.31
0.5 1 0 1.150 0.444 0.383
0.50 1 0.002 1.15 0.430 0.36
0.52 1.04 0.056 1.21 0.487 0.43
0.54 1.08 0.115 1.27 0.552 0.51
0.56 1.13 0.181 1.34 0.632 0.63
0.58 1.18 0.247 1.42 0.721 0.73
0.60 1.22 0.326 1.51 0.836 0.92
0.62 1.28 0.407 1.62 0.969 1.1
0.64 1.33 0.494 1.73 1.12 1.3
0.70 1.53 0.822 2.23 1.87 2.7
0.80 2 1.72 3.93 5.49 11.7
0.90 3 3.91 10.5 28.1 102

Table 1: Table of cumulants obtained numerically by extrapolating the data. The
bold numbers are the exactly known numbers. The higher the degree of the
cumulant, the lower is the reliability on the numerical extrapolation. The em-
pirical extrapolations are: κ1(σ) = −0.74795 − 0.96976σ + 1.7217σ4/3, κ2(σ) =
0.64268+0.0068163σ+0.50202σ8/3, κ3(σ) = 0.15631−0.049956σ+0.32731σ4, and
κ4(σ) = 0.059476 + 0.012039σ + 0.28315σ16/3 (the decimals are not though to be
all significative).

of a lattice square rotated by π/4 [25], also known as Aztec diamond, which is
well-studied [33, 36, 56].

In our context, the natural geometry is a semi-infinite lattice. For Ising type
models, the influence of boundary fields has been widely studied [28], in particular
close to criticality. We are not aware of corresponding investigations for the six-
vertex model. So far, the results to be described hold only on the stochastic line,
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which is defined by

~ω = (1, 1, q, p, 1− q, 1− p), 0 ≤ p, q ≤ 1. (4.1)

This choice is known as the conical point of the six-vertex model [15]. The name
has its origin from studying the free energy, which depends on ~ω only through
four independent parameters. Using the anti-ferroelectric picture one fixes two
temperature-like parameters with ∆ = (p + q)/(2pq) > 1 and considers the free
energy as a function of the horizontal and vertical electric fields. The free energy
has exactly two points satisfying (4.1) and a conical tip close to such point. The
Gibbs measure at the tip exhibits KPZ type fluctuations.

The semi-infinite lattice is obtained by cutting along the anti-diagonal at which
boundary conditions are imposed. The Gibbs measure of the semi-infinite lattice
is then obtained through the diagonal transfer matrix, which in fact is a Markov
chain. We introduce the occupation variables ηj,t ∈ {0, 1}, with 0 in case there is
no path at the edge and 1 in case a path is crossing the edge. We use j ∈ Z as the
spatial index and t ∈ Z as the temporal index. At two neighboring sites, j, j + 1,
the allowed states are 00, 10, 01, 11. They are updated according to the transition
matrix

T j,j+1 =









1 0 0 0
0 1− p p 0
0 q 1− q 0
0 0 0 1









. (4.2)

The updates of the evenly blocked lattice, ...(01)(23)..., and the oddly blocked
lattice, ...(12)(34)..., are alternate. Thus, the two step transition probability, T , is
defined by

T = TeTo, Te =
⊗

j∈Z
T 2j,2j+1, To =

⊗

j∈Z
T 2j−1,2j, (4.3)

all acting on {0, 1}Z.
Let us consider the alternating product measure µ(a,b) = ... ⊗ µe ⊗ µo ⊗ ...,

setting µe(1) = a, µo(1) = b (say with µe on even and µo on odd sites). If

(1− q)(1− b)a = (1− p)b(1− a), (4.4)

then, denoting by τ the lattice shift,

µ(a,b)T∗ = µ(a,b) ◦ τ, with ∗ ∈ {e, o}. (4.5)

Hence T has a one-parameter family of stationary measures µ(a∗,b∗), a
∗, b∗ solution

of (4.4). Thereby we arrive at the Markov chain ηj,t, stationary in both j and
t. By construction, this is an extremal Gibbs measure of the six-vertex model
with vertex weights (4.1). An alternative construction is explained in [1]. The
density-current relation, j(ρ), of this process is the solution to

j2 + ((2− p− q)/(q − p))j+ ρ(1− ρ) = 0. (4.6)
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Figure 4: Illustration of the universality: for σ2 = α/(1 − α) with α = 0.3 (blue)
and the stationary benchmark α = 0.5 (red), the dots are the probabilities for the
current fluctuations of the stochastic six-vertex model. Here we choose generic
values, p = 0.6, q = 0.2, and particle density ρ = 1/2. The data are scaled
according to KPZ scaling theory. We also considered the first order correction
(known to generically decay as t−1/3 [23,49,50,52]), which however resulted only in
minimal shifts (0.011 resp. 0.005). The solid line is the result of TASEP simulation
for the same value of σ. The number of Monte Carlo runs is 105.

Small perturbations travel with velocity v = j′(ρ). The two-point function
S(j, t) = E(ηj,tη0,0)−E(ηj,t)E(η0,0), decays exponentially except along the spe-
cial line {j = vt}. At distance of order t2/3 to this line, according to KPZ scaling
theory [38] (we use the normalisation as in (12) of [51]) one has the scaling form

S(j, t) ≃ A(Γt)−2/3fKPZ

(

(Γt)−2/3(j − vt)
)

(4.7)

with Γ = 1
2
A2|j′′(ρ)|, where A is the wandering coefficient in the stationary case.

In particular, S(j, t) decays as t−2/3 along {j = vt}.
If the boundary field ηj,0 satisfies a central limit theorem as in (2.6), then

our theory predicts a scaling behavior identical to (4.7), except that fKPZ has to
be replaced by a different scaling function. In fact, at stationarity, this scaling
function is related to the variance of the random variable on the right hand side
of (2.9), see Proposition 4.1 in [42].

To test our predictions, we consider the boundary fields µ(a,b) with general
0 ≤ a, b ≤ 1. Then Assumption 2.1 holds with

σ2 = 1
4γ

(

a(1− a) + b(1− b)
)

and γ = 1
4
(a∗(1− a∗) + b∗(1− b∗)) . (4.8)

For the simulation we set E(ηj,0) + E(ηj+1,0) = 2ρ = 1, which implies v = 0 and
a + b = 1 and thus σ2 = a(1 − a)/(2γ). In addition imposing stationarity, the
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Figure 5: Logarithmic plot of the probability densities of Figure 4.

unique solution of (4.4) in [0, 1] is a = a∗ = aBR given by

aBR =
1− q −

√

(1− p)(1− q)

p− q
. (4.9)

Let us denote by J(t) the current at the origin summed over the time span
[0, t]. At density ρ = 1/2, for the scaling coefficient Γ we have to set a = aBR and
a computation gives |j′′(ρ)| = |p − q|/

√

(1− p)(1− q). The stationary current is
given by j = aBR(1−aBR)(p− q)/2 = aBR−1/2. Thus, by the KPZ scaling theory,
we expect that

lim
t→∞

P

(

J(t)− jt

−(Γt)1/3
≤ s

)

= F (σ)(s), (4.10)

where the values of a and b for generic σ are

a = 1
2
(1−

√

1− 4σ2aBR(1− aBR)), b = 1− a = 1
2
(1 +

√

1− 4σ2aBR(1− aBR)),
(4.11)

since (4.8) has to be satisfied and for σ = 1 also (4.4). By varying a, we
realize the family of universal distributions F (σ) with σ ∈ [0, σmax], where
σ2
max = (4aBR(1− aBR))

−1 > 1. The theoretical prediction (4.10) is checked for a
generic value of (p, q) and two values of the diffusion coefficient σ, namely σ2 = 3/7
and the stationary case. The numerical agreement is very precise as illustrated in
Figures 4 and 5.

A Approximate distribution for large σ

Since the evaluation of the variational process is difficult, we present an approx-
imate form of (3.1), which is then compared to Monte Carlo results. For large
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values of σ, the fluctuations of the initial Brownian motion should be more impor-
tant than those from the Airy2 process. A first approximation to (3.1) is to replace
the A2(u) just by A2(0). In this case, the distribution function can be computed
analytically. Indeed,

F (σ)
appr(s) := P

(

A2(0) + max
u∈R

[√
2σB(u)− u2

]

≤ s

)

(A.1)

Since A2(0) and maxu∈R
[√

2σB(u)− u2
]

are independent random variables, F
(σ)
appr

is the convolution of their distributions. We know that P(A2(0) ≤ s) = FGUE(s).
The distribution function for maxu∈R

[√
2σB(u)− u2

]

has been derived by Groene-
boom [30], see also his more recent paper [31] describing a numerical evaluation.
We denote by FGr,c to be the Groeneboom distribution defined by

FGr,c(s) := P

(

max
v∈R

[

B(v)− cv2
]

≤ s

)

. (A.2)

Then,

P

(

max
u∈R

[√
2σB(u)− u2

]

≤ s

)

= FGr,1/
√
2

(

s√
2σ4/3

)

=: F
(σ)
Gr (s). (A.3)

As a consequence

F (σ)
appr(s) =

∫

R

dxF ′
GUE(x)F

(σ)
Gr (s− x). (A.4)

The approximation F
(σ)
appr(s) of F (σ)(s) will not be very accurate for small values of

s, since these corresponds to the realizations of B and A2 which are small around
u = 0, and in that case asking that only B is small is not quite the same as B
and A2 small. However, for larger values of s, the approximation should improve,
because the events leading to large maximums are due to large values of B and
A2. Since A2 is stationary, these events should be dominated by large fluctuations
of the Brownian motion.

A simplifying feature is that F
(σ)
appr is the distribution of a sum of two inde-

pendent random variables, their cumulants are just the sums of their cumulants.
Furthermore, if we denote by κ(n), the nth cumulant of FGr,1/

√
2, then the nth

cumulant of F
(σ)
Gr is given by 2n/2σ4n/3κ(n). The relevant cumulants are reported in

Table 2.
After running TASEP simulations for a few values of σ, surprisingly the prob-

ability density plots of F
(σ)
appr and F (σ) are already quite close even for fairly small

values of σ. In Figures 6 and 7 we plot the probability densities of F (σ)(s) obtained

from TASEP simulations and the approximation F
(σ)
appr(s). In order to obtain the

probability density of F
(σ)
appr(s), we first use the formula of [31] to derive a table

of values for the density of the Groeneboom distribution FGr,1/
√
2 with values in

[0, 20] taking values every 10−3, and then we numerically compute the convolution
of the rescaled Groeneboom density with the GUE density.
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Figure 6: Comparison between the probability densities of F (σ)(s) and F
(σ)
appr(s):

top-left is σ = 2.0, top-right is σ = 3.0, bottom-left is σ = 4.36 and bottom-right
is σ = 7.0. The simulation for σ = 2.0 uses maximal time tmax = 2000, while the
other tmax = 3000. The number of runs are 5× 105 for each case.
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Figure 7: Logarithmic plots of the probability densities of Figure 6.
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Distribution Mean Variance 3rd cumulant 4th cumulant
FGUE -1.77108 0.8132 0.164 0.109

F (0)(·) = F̃GOE(2
2/3·) -0.76007 0.6381 0.149 0.067

F (1) = FBR 0 1.1504 0.444 0.383
FGr,1/

√
2 0.8875 0.2646 0.128 0.080

Table 2: Table of the first four cumulants for a few distributions.
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