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Abstract

We consider Brownian motions with one-sided collisions, meaning

that each particle is reflected at its right neighbour. For a finite num-

ber of particles a Schütz-type formula is derived for the transition

probability. We investigate an infinite system with periodic initial

configuration, i.e., particles are located at the integer lattice at time

zero. The joint distribution of the positions of a finite subset of par-

ticles is expressed as a Fredholm determinant with a kernel defining

a signed determinantal point process. In the appropriate large time

scaling limit, the fluctuations in the particle positions are described

by the Airy1 process.
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1 Introduction

A widely studied model of interacting Brownian motions is governed by the
coupled stochastic differential equations

dxj =
(
V ′(xj+1 − xj)− V ′(xj − xj−1)

)
dt+

√
2dBj(t) , (1.1)

j = 1, . . . , N , written here for the case where particles diffuse in one dimen-
sion. Hence xj(t) ∈ R and {Bj(t), j = 1, . . . , N} is a collection of N indepen-
dent standard Brownian motions. The boundary terms V ′(xN+1 − xN ) and
V ′(x1−x0) are to be set equal to 0. The solutions to (1.1) define a reversible
diffusion process in RN with respect to the stationary measure

exp

(
−

N−1∑

j=1

V (xj+1 − xj)

) N∏

j=1

dxj . (1.2)

Particle j interacts with both, right and left, neighboring particles with labels
j + 1 and j − 1.

In our contribution we will study the case where the interaction is
only with the right neighbor. Hence, including an adjustment of the noise
strength,

dxj = V ′(xj+1 − xj)dt+ dBj(t) , (1.3)

j = 1, . . . , N . Somewhat unexpectedly, the measure (1.2) is still stationary.
Of course, now the diffusion process is no longer reversible. As to be discussed
this modification will change dramatically the large scale properties of the
dynamics.

A special case is the exponential potential e−βx, β > 0, which is related
to quantum Toda chains, Gelfand-Tsetlin patterns and other structures from
quantum integrable systems [6, 25]. Our focus is the hard collision limit,
β → ∞. Then the positions will be ordered as xN ≤ . . . ≤ x1. Hence the dif-
fusion process x(t) has the Weyl chamber WN = {x | xN ≤ . . . ≤ x1} as state
space. Away from ∂WN , x(t) is simply N -dimensional Brownian motion.
The interactions are point-like and particle j + 1 is reflected from particle j.
These are the one-sided collisions of the title. As a rare circumstance, for ev-
ery N this diffusion process possesses an explicit Schütz-type formula for its
transition probability [29,34]. For the particular initial condition x(0) = 0, it
follows from the Schütz-type formula that xN (t) has the same distribution as
the largest eigenvalue of a N ×N GUE random matrix. Even stronger, the
process t → −xN (t) has the same law as the top line of N -particle Dyson’s
Brownian motion starting at 0 [4, 31]. It then follows that

lim
t→∞

1

σt1/3
(
x⌊at⌋(t)− µt

)
= ξGUE . (1.4)
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Here ⌊·⌋ denotes integer part. The coefficients σ, µ depend on a > 0 and
ξGUE is a Tracy-Widom distributed random variable. One can also consider
the particle label ⌊at + rt2/3⌋. Then in (1.4) one has a stochastic process
in r and it converges to the Airy2 process [18]. Alternatively, one could
consider the label ⌊at⌋, but different times t + rt2/3, resulting in the same
limit process [35]. This can also be derived from the fixed time result using
the slow decorrelations along characteristics [16, 17].

In our contribution we will investigate the equally spaced initial condition
xj(0) = −j, j ∈ Z. Our main result is that the limit (1.4) still holds provided
ξGUE is replaced by ξGOE, i.e., the Tracy-Widom distribution for a Gaussian
Orthogonal Ensemble. Also the Airy2 process will have to be replaced by the
Airy1 process, see Theorem 2.4.

The limit (1.4) can also be studied for the reversible process governed
by (1.1). In this case other methods are available, listed under the heading
of non-equilibrium hydrodynamic fluctuation theory [10], which work for a
large class of potentials V . Then t1/3 would have to be replaced by t1/4 and
ξGUE by a Gaussian random variable. In this case the hard collision limit
corresponds to independent Brownian particles with the order of particle
labels maintained. The t1/4 behavior is a famous result by T.E. Harris [19].
For non-reversible diffusion processes, as in (1.3), one is still limited to a
very special choice of V . But it is expected that the result holds in greater
generality for a large class of potentials.

For the one-sided collision limit the solution to (1.3) can be represented
as a last passage problem, which has the same structure as directed polymers
at zero temperature [25, 26]. Also, (1.3) can be viewed as a particular dis-
cretization of the KPZ equation [23]. While these links help to come up with
convincing conjectures, our proof uses disjoint methods by relying on the
special structure of the transition probability. The same structure is familiar
from the TASEP with periodic initial conditions as has been investigated
in [8, 9, 27]. Some constructions developed there carry over directly to our
case. But novel steps are needed, like the bi-orthogonalization in our set-up.
Also the Lambert function apparently has not made its appearance before.

Acknowledgments. The authors would like to thank Neil O’Connell for
discussions on reflected Brownian motions. T. Weiss is grateful to Neil
O’Connell and Nikos Zygouras for their hospitality at Warwick University.
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2 Model and main results

One way to define a Brownian motion, x(t), starting from x(0) ∈ R and
being reflected at some continuous function f(t) with f(0) < x(0) is via the
Skorokhod representation [1, 30]

x(t) = x(0) +B(t)−min
{
0, inf

0≤s≤t
(x(0) +B(s)− f(s))

}

= max
{
x(0) +B(t), sup

0≤s≤t
(f(s) +B(t)− B(s))

}
,

(2.1)

where B is a standard Brownian motion starting at 0.
Let Bk, k ∈ Z, be independent standard Brownian motions starting at 0

and define the random variables

Yk,m(t) = sup
0≤sk+1≤...≤sm≤t

m∑

i=k

(Bi(si+1)−Bi(si)) (2.2)

with the convention sk = 0 and sm+1 = t.
Then, iterating the Skorokhod representation, we can define N Brownian

motions, x1, . . . , xN , starting at positions x1(0) ≥ x2(0) ≥ . . . ≥ xN(0),
such that the Brownian motion xk is reflected at the trajectory of Brownian
motion xk−1 according to

xm(t) = − max
1≤k≤m

{Yk,m(t)− xk(0)}, 1 ≤ m ≤ N. (2.3)

This is a Brownian motion in the N -dimensional Weyl chamber with π/4
oblique reflections [20, 22, 33]. Equivalently we visualize the dynamics as
N Brownian particles in R interacting through one-sided collisions. The
process {−x1(t), . . . ,−xN(t)} can be also interpreted as the zero-temperature
O’Connell-Yor semi-directed polymer model [25,26] modified by assigning the
extra weights −x1(0), x1(0)− x2(0), . . . , xN−1(0)− xN(0) at time 0.

An equivalent description is given by

x1(t) = x1(0) +B1(t),

xm(t) = xm(0) +Bm(t)− L
xm−1−xm(t), m = 2, . . . , N,

(2.4)

where LX−Y (t) is twice the semimartingale local time at zero of X(t)−Y (t).
This point of view is used in [34], where Warren obtained a formula for the
transition density of the system with N Brownian motions (Proposition 8
of [34], reported as Proposition 4.1 below). His result will be the starting
point for our analysis.

In this contribution we consider the case of infinitely many Brownian
particles starting from fixed equally spaced positions, which w.l.o.g. we set
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it to be 1. This system is obtained as a limit of the following system of
finitely many Brownian particles. Let us denote by

x(M)
m (t) = − max

k∈[−M+1,m]
{Yk,m(t) + k}, (2.5)

for m ∈ [−M + 1,M ]. This defines the system of 2M reflected Brownian

particles starting at time zero from x
(M)
m (0) = −m. The M → ∞ limit of

this process is well defined in the sense that the trajectories of finitely many
of them converge in uniform norm over any finite time interval (see Section 3
for the proof).

Proposition 2.1. Let us define

xm(t) = −max
k≤m

{Yk,m(t) + k}. (2.6)

Then, for any T > 0,

lim
M→∞

sup
t∈[0,T ]

|x(M)
m (t)− xm(t)| = 0, a.s. (2.7)

as well as

sup
t∈[0,T ]

|xm(t)| < ∞, a.s. (2.8)

As a first main result, we provide an expression for the joint distribution
at fixed time t.

Proposition 2.2. Consider the initial condition with infinitely many Brow-

nian motions, indexed by k ∈ Z, starting at positions xk(0) = −k. Then, for
any finite subset S of Z, it holds

P

(
⋂

k∈S
{xk(t) ≥ ak}

)
= det(1− PaK

flat
t Pa)L2(R×S), (2.9)

where Pa(x, k) = 1(−∞,ak)(x) and the kernel Kflat
t is given by

Kflat
t (x1, n1; x2, n2) = −(x1 − x2)

n2−n1−1

(n2 − n1 − 1)!
1(x1 ≥ x2)1(n2 > n1)

+
1

2πi

∫

Γ−

dz
etz

2/2e−zx1(−z)n1

etϕ(z)2/2e−ϕ(z)x2(−ϕ(z))n2
.

(2.10)

Here Γ− is any path going from ∞e−θi to ∞eθi with θ ∈ [π/2, 3π/4), crossing
the real axis to the left of −1, and such that the function

ϕ(z) = L0(ze
z) (2.11)

is continuous and bounded. Here L0 is the Lambert-W function, i.e., the

principal solution for w in z = wew, see Figure 1.
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Figure 1: (Dashed line) A possible choice for the contour Γ− and (solid line)
its image by ϕ.

Interesting and quite unexpected is the appearance of the Lambert func-
tion, defined as the multivalued inverse of the function z 7→ zez . It has
a branch structure similar to the logarithm, but slightly more complicated.
The Lambert function is of use in many different areas like combinatorics, ex-
ponential towers, delay-differential equations [11] and several problems from
physics [2,15,21]. This function has been studied in detail, e.g. see [3,12,14],
with [13] the standard reference. However, the specific behaviour needed for
our asymptotic analysis does not seem to be covered in the literature.

Equal time limit process

As second main result of our contribution we provide a characterization of
the law for the positions of the interacting Brownian motions in the large
time limit. Due to the asymmetric reflections, the particles have an average
velocity −1. For large time t the KPZ scaling theory suggests the positional
fluctuations relative to the characteristic to be of order t1/3. Nontrivial cor-
relations between particles occur if the particle indices are of order t2/3 apart
from each other. Therefore, to describe the Brownian particles close to the
origin at time t, we consider the scaling of the labels as

n(r, t) = ⌊−t + 25/3t2/3r⌋ (2.12)

and we define the rescaled process as

r 7→ Xt(r) = −xn(r,t)(t) + 25/3t2/3r

(2t)1/3
. (2.13)

The limit object is the Airy1 process, which is defined as follows.
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Definition 2.3. Let B0(x, y) = Ai(x+y), with Ai the standard Airy function,

∆ the one-dimensional Laplacian, and the kernel KA1
defined by

KA1
(s1, r1; s2, r2) = −

(
e(r2−r1)∆

)
(s1, s2)1(r2 > r1) +

(
e−u1∆B0e

u2∆
)
(s1, s2).
(2.14)

The Airy1 process, A1, is the process with m-point joint distributions at

r1 < r2 < . . . < rm given by the Fredholm determinant

P

(
m⋂

k=1

{A1(rk) ≤ sk}
)

= det (1− χsKA1
χs)L2({r1,...,rm}×R) , (2.15)

where χs(rk, x) = 1(x > sk).

Our second main result is the convergence of Xt to the Airy1 process.

Theorem 2.4. In the large time limit, Xt converges to the Airy1 process,

lim
t→∞

Xt(r) = A1(r), (2.16)

in the sense of finite-dimensional distributions.

Proposition 2.2 is proved in Section 4 and Theorem 2.4 in Section 5.
Properties of the Lambert function are collected in Appendix A.

Tagged particle limit process

The rescaled process at fixed time is not the only one in which the Airy1
process appears. It is also the case for the joint distributions of the positions
of a tagged Brownian motion at different times. More precisely, consider the
Brownian motion that started at the origin at time 0. Define its rescaled
position by

τ 7→ Xtagged
T (τ) := −x0(T + τ25/3T 2/3) + (T + τ25/3T 2/3)

(2T )1/3
. (2.17)

This rescaled process converges to the Airy1 process.

Theorem 2.5. In the large time limit,

lim
T→∞

Xtagged
T (τ) = A1(τ), (2.18)

in the sense of finite-dimensional distributions.

This theorem is proven in Section 6. It is a special case of the more general
statement of Theorem 6.1 in Section 6. The result is based from the fixed
time result, Theorem 2.4, and a slow decorrelation result, Proposition 6.2.
The latter says that along special space-time directions the decorrelation
happens over a macroscopic time span.
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3 Limit to infinitely many Brownian particles

In this section we prove Proposition 2.1. Given standard independent Brow-
nian motions B−M+1, . . . , BM we define as in (2.2)-(2.5),

Yk,m(t) = sup
0≤sk+1≤...≤sm≤t

m∑

i=k

(Bi(si+1)− Bi(si)), (3.1)

and
x(M)
m (t) = − max

−M+1≤k≤m
{Yk,m(t) + k}

xm(t) = −max
k≤m

{Yk,m(t) + k}.
(3.2)

For the proof of Proposition 2.1 we use following concentration inequality
result.

Proposition 3.1 (Proposition 2.1 of [24]). For each T > 0 there exists a

constant C > 0 such that for all k < m, δ > 0,

P

(
Yk,m(T )

2
√

(m− k + 1)T
≥ 1 + δ

)
≤ Ce−(m−k+1)δ3/2/C . (3.3)

Proof of Proposition 2.1. Let

AM := {Y−M,m(T )−M ≥ −M/2} ∪ {Ym,m(T ) +m ≤ −M/2}. (3.4)

We can deduce exponential decay of P(AM) in M from combining the Gaus-
sian tail of Ym,m with Proposition 3.1, using δ = 1 and elementary inequali-
ties. In particular

∑∞
M=1P(AM) < ∞, so by Borel-Cantelli, AM occurs only

finitely many times almost surely. This means, that a.s. there exists a M ′,
such that for all M ≥ M ′:

Y−M,m(T )−M < −M/2 and

Ym,m(T ) +m > −M/2
(3.5)

Consequently, Ym,m(T ) +m > Y−M,m(T )−M for all M ≥ M ′ and therefore

xm(T ) = x(M ′)
m (T ), a.s. (3.6)

It remains to show uniformity over the time interval [0, T ]. The above
argument implies that almost surely for any t ∈ [0, T ] there exists a finite Mt

such that xm(t) = x
(Mt)
m (t). Lemma 3.2 below implies that for any t ∈ [0, T ],

it holds xm(t) = x
(M ′)
m (t). This settles the convergence.
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Finally we show that supt∈[0,T ] |x
(M ′)
m (t)| < ∞. This follows from the

bound

|Yk,m(t)| ≤
m∑

i=k

(
sup
0≤s≤t

Bi(s)− inf
0≤s≤t

Bi(s)

)
< ∞. (3.7)

Lemma 3.2. Consider 0 ≤ t1 ≤ t2 and m, Mt1 , Mt2 such that

xm(ti) = x
(Mti )
m (ti), for i = 1, 2. (3.8)

Then

xm(t1) = x
(Mt2 )
m (t1). (3.9)

Proof. Define

Sm
M(a, b) =

{
s ∈ R

M+m+1| a = s−M+1 ≤ · · · ≤ sm ≤ sm+1 = b
}
. (3.10)

Notice that the definition of Yk,m contains a supremum of a continuous func-
tion over the compact set Sm

k (0, t), ensuring the existence of a maximizing
vector s.

Another representation of x
(M)
m (t) is

x(M)
m (t) = M − sup

s∈Sm
M (0,t)

m∑

k=−M+1

Ik

Ik = Bk(sk+1)−Bk(sk) + δ0,sk .

(3.11)

Notice that in (3.8) we can replace Mti by M = max{Mt1 ,Mt2}. The con-
dition (3.9) is equivalent to the existence of a s∗ ∈ Sm

M(0, t1) such that∑m
k=−M+1 Ik is maximal and s∗−Mt2+1 = 0.

Let s(i) ∈ Sm
M(0, ti) be a maximizer of

∑m
k=−M+1 Ik. If s

(1)
k ≤ s

(2)
k for all k,

then also s
(1)
−Mt2+1 ≤ s

(2)
−Mt2+1 = 0, by (3.8), and the choice s∗ = s(1) finishes

the proof.
Otherwise let k∗ be the maximal k such that s

(1)
k > s

(2)
k . There exists τ

with
s
(2)
k∗ ≤ s

(1)
k∗ ≤ τ ≤ s

(1)
k∗+1 ≤ s

(2)
k∗+1. (3.12)

This allows the following decomposition:

x
(Mti )
m (ti) = x(M)

m (ti) = M − sup
s∈Sm

M (0,ti)

m∑

k=−M+1

Ik

= M − sup
s∈Sk∗

M (0,τ)

k∗∑

k=−M+1

Ik − sup
s∈Sm

−k∗+1
(τ,ti)

m∑

k=k∗

Ik.

(3.13)
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Now the supremum over Sk∗

M (0, τ) is attained by both vectors

(s
(i)
−M+1, . . . , s

(i)
k∗ , τ). Consequently,

∑m
k=−M Ik is maximized also by

s∗ = (s
(2)
−M+1, . . . , s

(2)
k∗ , s

(1)
k∗+1, . . . , s

(1)
m+1), (3.14)

satisfying s∗−Mt2+1 = s
(2)
−Mt2+1 = 0.

4 Determinantal structure of joint distribu-

tions

Let us denote by x1(t) > x2(t) > . . . > xN(t) the positions of the N Brown-
ian motions as defined in Section 2. Their joint distribution has a density,
denoted by G(x, t|x(0)),

P

(
N⋂

k=1

{xk(t) ∈ dxk}
∣∣∣∣x1(0), . . . , xN (0)

)
= G(x, t|x(0))

N∏

k=1

dxk. (4.1)

Warren [34] proves an explicit formula for G.

Proposition 4.1 (Proposition 8 of [34]). The joint density of the positions

of the reflected Brownian motions at time t starting from positions xk(0),
k = 1, . . . , N , is given by

G(x, t|x(0)) = det(Fi−j(xN+1−i − xN+1−j(0), t))1≤i,j≤N (4.2)

with

Fk(x, t) =
1

2πi

∫

iR+δ

dz
etz

2/2e−zx

zk
(4.3)

for any δ > 0.

Proof. Note that Xk
k (t) in [34] corresponds to −xk(t) in this paper. Hence

the spatial coordinates are reversed. In Proposition 8 of [34] it is shown that

G(x, t|x(0)) = det(P
(i−j)
t (xj − x i(0)))1≤i,j≤N (4.4)

with

P
(0)
t (x) =

1√
2πt

e−x2/(2t),

P
(−n)
t (x) = (−1)n

dn

dxn
P

(0)
t (x), n ≥ 1,

P
(n)
t (x) =

∫ ∞

x

dy
(y − x)n−1

(n− 1)!
P

(0)
t (y), n ≥ 1.

(4.5)
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Using the identity

1√
2πt

e−x2/(2t) =
1

2πi

∫

iR+δ

dz etz
2/2e−zx (4.6)

(that holds for any δ) we have P
(0)
t (x) = F0(x, t). Also, we immediately get

P
(−n)
t (x) = F−n(x, t) for n ≥ 1. Further, for δ > 0 we have

P
(n)
t (x) =

1

2πi

∫

iR+δ

dz etz
2/2

∫ ∞

x

dy
(y − x)n−1

(n− 1)!
e−zy

=
1

2πi

∫

iR+δ

dz
etz

2/2e−zx

zn
= Fn(x, t).

(4.7)

for all n ≥ 1. Thus G(x, t|x(0)) = det(Fi−j(xj − x i(0), t))1≤i,j≤N and the
change of indices (i, j) → (N + 1− j, N + 1− i) gives us (4.2).

Equation (4.2) appeared in previously in [28] too. A joint distribution of
the same form as in Proposition 4.1 occurs also in the study of the totally
asymmetric simple exclusion process (TASEP) [29] (reported as Lemma 3.1
in [9]). Following the approach of [9] for TASEP, we can show that the joint
distributions of the positions of the Brownian particles can be expressed as
a Fredholm determinant for a given correlation kernel.

Using as a starting point Proposition 4.1 we prove the result for finitely
many Brownian particles starting at {−N,−N + 1, . . . ,−1}.
Proposition 4.2. Consider the initial condition xk(0) = −k for

k = 1, . . . , N . Then, for any subset S of {1, 2, . . . , N}, it holds

P

(
⋂

k∈S
{xk(t) ≥ ak}

)
= det(1− PaKtPa)L2(R×S), (4.8)

where Pa(x, k) = 1(−∞,ak)(x) and the kernel Kt is given by

Kt(x1, n1; x2, n2) = −φ(n1,n2)(x1, x2) +

n2∑

k=1

Ψn1

n1−k(x1)Φ
n2

n2−k(x2). (4.9)

Here

φ(n1,n2)(x1, x2) =
(x1 − x2)

n2−n1−1

(n2 − n1 − 1)!
1(x1 ≥ x2)1(n2 > n1),

Ψn
n−k(x) =

(−1)n−k

2πi

∫

iR−δ

dzetz
2/2e−z(x+k)zn−k,

Φn
n−ℓ(x) =

(−1)n−ℓ

2πi

∮

Γ0

dw
ew(x+ℓ)

etw2/2wn−ℓ

1 + w

w
,

(4.10)

for δ > 0.
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Proof. The proof is very similar to the one in [9], except that now space is
continuous. We report in Appendix B the relevant results from [9]. The
straightforward but key identity is

Fn+1(x, t) =

∫ ∞

x

dy Fn(y, t). (4.11)

Let us denote by xk
1 := xk, k = 1, . . . , N . The k-th row of the determinant

of (4.2) is given by

[
Fk−1(x

N+1−k
1 − xN(0), t) · · · Fk−N(x

N+1−k
1 − x1(0), t)

]
. (4.12)

Using repeatedly the identity (4.11) we can rewrite this row as the (k−1)-th
fold integral

∫ ∞

xN+1−k
1

dxN+2−k
2 . . .

∫ ∞

xN−1

k−1

dxN
k

[
F0(x

N
k − xN (0), t) · · · F−N+1(x

N
k − x1(0), t)

]
.

(4.13)
We do this replacement to each row k ≥ 2 and by multi-linearity of the
determinant we get

G(x, t|x(0)) =
∫

D′

det
[
F−j+1(x

N
i − xN+1−j(0), t)

]
1≤i,j≤N

∏

2≤k≤n≤N

dxn
k ,

(4.14)
where the set D′ is given by

D′ = {xn
k ∈ R, 2 ≤ k ≤ n ≤ N |xn

k ≥ xn−1
k−1}. (4.15)

Then, using the antisymmetry in the variables xN
1 , . . . , x

N
N of the determinant

in (4.14) we can reduce the integration over D (see Appendix B, Lemma B.1)
defined by

D = {xn
k ∈ R, 2 ≤ k ≤ n ≤ N |xn

k > xn+1
k , xn

k ≥ xn−1
k−1}. (4.16)

The next step is to encode the constraint of the integration over D into
a formula and then consider the measure over {xn

k , 1 ≤ k ≤ n ≤ N}, which
turns out to have determinantal correlations functions. At this point the
allowed configuration are such that xn

k ≤ xn
k+1. For a while, we still consider

ordered configurations at each level, i.e., with xn
1 ≤ xn

2 ≤ . . . ≤ xn
n for

1 ≤ n ≤ N . Let us set

D̃ = {xn
k ∈ R, 1 ≤ k ≤ n ≤ N |xn

k > xn+1
k , xn

k ≥ xn−1
k−1}. (4.17)
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Defining φ(x, y) = 1(x > y), it is easy to verify that

N−1∏

n=1

det
[
φ(xn

i , x
n+1
j )

]
1≤i,j≤n+1

=

{
1, if {xn

k , 1 ≤ k ≤ n ≤ N} ∈ D̃,
0, otherwise,

(4.18)
where xn

n+1 are “virtual” variables and φ(xn
n+1, x) := 1. We also set

ΨN
N−k(x) := (−1)N−kF−N+k(x− xk(0), t), (4.19)

for k ∈ {1, . . . , N}. Then, (4.14) can be obtained as a marginal of the
measure

1

ZN

N−1∏

n=1

det
[
φ(xn

i , x
n+1
j )

]
1≤i,j≤n+1

det
[
ΨN

N−i(x
N
j )
]
1≤i,j≤N

(4.20)

for some constant ZN . Notice that the measure (4.20) is symmetric in the
xn
k ’s since by permuting two of them (at the same level n) one gets twice a

factor −1. Thus, we relax the constraint of ordered configurations at each
level. The only effect is to modify the normalization constant ZN .

It is known from Lemma 3.4 of [9] (see Appendix B, Lemma B.2) that a
(signed) measure of the form (4.20) has determinantal correlation functions
and the correlation kernel is given as follow. Let us set

φ(n1,n2)(x, y) =

{
φ(∗(n2−n1))(x, y), if n1 < n2,
0, if n1 ≥ n2,

(4.21)

and
Ψn

n−k(x) := (φ(n,N) ∗ΨN
N−k)(x), for 1 ≤ k ≤ N. (4.22)

Assume that we have found families {Φn
0 (x), . . . ,Φ

n
n−1(x)} such that Φn

k(x)
is a polynomial of degree k and they satisfy the biorthogonal relation

∫

R

dxΨn
n−k(x)Φ

n
n−ℓ(x) = δk,ℓ, 1 ≤ k, ℓ ≤ n. (4.23)

Then, the measure (4.20) has correlation kernel given by

Kt(n1, x1;n2, x2) = −φ(n1,n2)(x1, x2) +

n2∑

k=1

Ψn1

n1−k(x1)Φ
n2

n2−k(x2). (4.24)

Notice that in (4.14) only Fk with k ≤ 0 arises. In this case, compare
with (4.3), every sign of δ can be used, so that by defining ΨN

N−k above we
decide to use the integration path over iR− δ, so that

ΨN
N−k(x) =

(−1)N−k

2πi

∫

iR−δ

dzetz
2/2e−z(x−xk(0))zN−k, (4.25)
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for any δ > 0. A simple computation gives (now we use xk(0) = −k)

Ψn
n−k(x) =

(−1)n−k

2πi

∫

iR−δ

dzetz
2/2e−z(x+k)zn−k. (4.26)

With a little bit of experience, it is not hard to find the biorthogonal func-
tions. They are given by

Φn
n−ℓ(x) =

(−1)n−ℓ

2πi

∮

Γ0

dw
ew(x+ℓ)

etw2/2wn−ℓ

1 + w

w
. (4.27)

Remark that the choice of the sign of δ in the definition of ΨN
N−k above is

irrelevant for the biorthogonalization, since there is no pole at z = 0 for
k = 1, . . . , n. Indeed, (4.23) can be written as

∫

R−

dxΨn
n−k(x)Φ

n
n−ℓ(x) +

∫

R+

dxΨn
n−k(x)Φ

n
n−ℓ(x). (4.28)

For the first term, we choose δ > 0 and the path Γ0 for w satisfying
Re(z − w) < 0. Then, we can take the integral over x inside and we ob-
tain
∫

R−

dxΨn
n−k(x)Φ

n
n−ℓ(x) = −(−1)k−ℓ

(2πi)2

∫

iR−δ

dz

∮

Γ0

dw
etz

2/2zn−ke−zk

etw2/2wn−ℓe−wℓ

1 + w

w(z − w)
.

(4.29)
For the second term, we choose δ < 0 and the path Γ0 for w satisfying
Re(z − w) > 0. Then, we can take the integral over x inside and we obtain
the same expression up to a minus sign. The net result of (4.28) is a residue
at z = w, which is given by

(−1)k−ℓ

2πi

∮

Γ0

dw
1 + w

w
(wew)ℓ−k =

(−1)k−ℓ

2πi

∮

Γ0

dW W ℓ−k−1 = δk,ℓ, (4.30)

where we made the change of variables W = wew. Finally, a simple compu-
tation gives,

φ(n1,n2)(x1, x2) =
(x1 − x2)

n2−n1−1

(n2 − n1 − 1)!
1(x1 ≥ x2)1(n2 > n1), (4.31)

which has also the integral representations

φ(n1,n2)(x1, x2) =
1

2πi

∫

iR−δ

dz
e−z(x1−x2)

(−z)n2−n1

=
1

2πi

∮

Γ0

dw
ew(x1−x2)

wn2−n1
1(x1 ≥ x2)1(n2 > n1).

(4.32)
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Remark 4.3. Φn2

n2−k(x) = 0 for k > n2 since the pole at w = 0 in (4.27)
vanishes. Therefore we can extend the sum over k to ∞. If we choose the
integration paths such that |wew| < |zez|, then we can take the sum into the
integrals and perform the (geometric) sum explicitly, with the result

n2∑

k=1

Ψn1

n1−k(x1)Φ
n2

n2−k(x2) =
1

(2πi)2

∫

iR−δ

dz

∮

Γ0

dw
etz

2/2e−zx1(−z)n1

etw2/2e−wx2(−w)n2

(1 + w)ew

zez − wew
.

(4.33)
A possible choice of the paths such that |wew| < |zez| is satisfied is the
following: w = eiθ/4 with θ ∈ [−π, π) and z = −1 + iy with y ∈ R.

Remark 4.4. It is possible to reformulate Kflat
t in a slightly different way.

By doing the change of variables w = ϕ(z), we get dz
dw

= (1+w)ew

(1+z)ez
. Let us

denote by zk(w), k ∈ Z, the solutions of

zez = wew (4.34)

with the trivial one indexed by z0(w) = w. Then,

Kflat
t (x1, n1; x2, n2) = −(x1 − x2)

n2−n1−1

(n2 − n1 − 1)!
1(x1 ≥ x2)1(n2 > n1)

+
∑

k∈Z\{0}

1

2πi

∮

Γ0

dw
etzk(w)2/2e−zk(w)x1(−zk(w))

n1

etw2/2e−wx2(−w)n2

(1 + w)ew

(1 + zk(w))ezk(w)
.

(4.35)

Remark 4.5. The form of the kernel (4.35) can be also derived by consid-
ering the low density totally asymmetric simple exclusion process (TASEP).
One considers the initial condition of particles starting every d position, i.e.,
with density ρ = 1/d. The kernel for this system is given in [8], see Theo-
rem 2.1, where one should however replace (1+pui(v))

t/(1+pv)t by eui(v)t/evt

since in [8] a discrete time model was considered. Then taking the d → ∞
limit, with space and time rescaled diffusively, one recovers (4.35).

Proof of Proposition 2.2. The idea is to consider the finite system, replace
xi by xi − M and ni by ni + M , and then take the M → ∞ limit. The
part of the kernel which should survive the limit, is the M-independent part.
The reformulation of Remark 4.3 can be used but it is not the best for our
purpose. Instead, notice that the path used in Ψn

n−k does not have necessarily
be vertical. We can take any path passing to the left of 0 and such that
it asymptotically have an angle between in (π/4, 3π/4). In that case, the
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Figure 2: (Dashed line) Image of w 7→ wew for w ∈ Γ0 and (solid line) of
z 7→ zez for z ∈ Γ− (which has infinitely many small loops around the origin).

quadratic term in z is strong enough to ensure convergence of the integral.
Thus, we choose the path for

z ∈ Γ− := {−2 + e2πi/3 sgn(y)|y|, y ∈ R}, (4.36)

and
w ∈ Γ0 := {eiθ, θ ∈ [−π, π)}, (4.37)

see Figure 2.
Computing the finite sum over k leads to

n2∑

k=1

Ψn1

n1−k(x1)Φ
n2

n2−k(x2) =
1

(2πi)2

∫

Γ−

dz

∮

Γ0

dw
etz

2/2e−zx1(−z)n1

etw2/2e−wx2(−w)n2

× (1 + w)ew

zez − wew

(
1−

(
wew

zez

)n2
)
.

(4.38)

If we do the change of variables xi → xi −M and ni → ni +M , then (4.38)
becomes

1

(2πi)2

∫

Γ−

dz

∮

Γ0

dw
etz

2/2e−zx1(−z)n1

etw2/2e−wx2(−w)n2

(1 + w)ew

zez − wew
eM(z−w)(z/w)M

− 1

(2πi)2

∫

Γ−

dz

∮

Γ0

dw
etz

2/2e−zx1(−z)n1

etw2/2e−wx2(−w)n2

(1 + w)ew

zez − wew

(
wew

zez

)n2

.

(4.39)

Denote by K
(1)
t the first term in (4.39) and by K

(2)
t the second term. K

(2)
t is

independent of M .
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By Proposition 4.2 we have

P

(
⋂

k∈S
{x(M)

k (t) ≥ ak}
)

= det(1− PaKt,MPa)L2(R×S), (4.40)

where

Kt,M(x1, n1; x2, n2) =− φ(n1,n2)(x1, x2) +K
(1)
t (x1, n1; x2, n2)

+K
(2)
t (x1, n1; x2, n2).

(4.41)

By Proposition 2.1 it follows

lim
M→∞

P

(
⋂

k∈S
{x(M)

k (t) ≥ ak}
)

= P

(
⋂

k∈S
{xk(t) ≥ ak}

)
. (4.42)

Therefore to conclude the proof we need to show that

lim
M→∞

det(1− PaKt,MPa)L2(R×S) = det(1− PaK
flat
t Pa)L2(R×S). (4.43)

It is easy to verify that

∣∣eM(z−w)(z/w)M
∣∣ ≤ eM(−1− 1

2
|y|+ 1

2
ln(4+2|y|+y2)) ≤ e−M/4, (4.44)

and to get the bounds

|K(1)(x1, n1; x2, n2)| ≤ Ce−M/4e(2x1−x2) = Ce−M/4e3(x2−x1)/2e(x1+x2)/2,

|K(2)(x1, n1; x2, n2)| ≤ Ce(2x1−x2) = Ce3(x2−x1)/2e(x1+x2)/2.
(4.45)

for some constant C uniform for x1, x2 bounded from above. Using the second
integral representation in (4.32) we get

|φ(n1,n2)(x1, x2)| ≤ Ce(x1−x2)
1(x1 ≥ x2)1(n2 > n1)

≤ Ce3(x2−x1)/2e(x1+x2)/2e−|x1−x2|/2
1(n2 > n1).

(4.46)

With these estimates one can show that the Fredholm determinant series
expansion is uniformly integrable/summable in M . Dominated convergence
allow us to take the M → ∞ inside the Fredholm series. The details are
exactly as in the proof of Proposition 3.6 of [7]. This gives

lim
M→∞

det(1− PaKt,MPa)L2(R×S) = det(1− PaK̃
flat
t Pa)L2(R×S), (4.47)

where

K̃flat
t (x1, n1; x2, n2) = −φ(n1,n2)(x1, x2) +K(2)(x1, n1; x2, n2). (4.48)
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It remains to verify that K̃flat
t = Kflat

t . Since K(2)(x1, n1; x2, n2) is given
by

− 1

(2πi)2

∮

Γ0

dw

∫

Γ−

dz
etz

2/2e−zx1(−z)n1

etw2/2e−wx2(−w)n2

(1 + w)ew

zez − wew

(
wew

zez

)n2

, (4.49)

the pole at w = 0 is not present. Let us do the change of variables W = wew,
i.e.,

w = w(W ) = L0(W ), where L0 is the LambertW function. (4.50)

By the choice of the integration contours, the path for W is still a simple loop
around the origin and it contains the image of zez , see Figure 2. Therefore,

(4.49) = − 1

(2πi)2

∮

Γ0

dW

∫

Γ−

dz
etz

2/2e−zx1(−z)n1

etw(W )2/2e−w(W )x2(−w(W ))n2

(W/zez)n2

zez −W

=
1

2πi

∫

Γ−

dz
etz

2/2e−zx1(−z)n1

etϕ(z)2/2e−ϕ(z)x2(−ϕ(z))n2

(4.51)
where ϕ(z) = L0(ze

z). At this point, the path Γ− can be deformed to a
generic path as in the Proposition. The convergence is ensured by the term
etz

2/2.

5 Asymptotic analysis

5.1 Proof of Theorem 2.4

To ensure convergence of the Fredholm determinants one needs a pointwise
limit as well as integrable bounds of the kernel. The structure of the proof
follows the approach of [8]. However, due to the presence of the Lambert
function, the search of a steep descent path is more involved than in previous
works.

We will use an explicit expression of the Airy1 kernel defined in (2.14)

KA1
(s1, r1; s2, r2) = − 1√

4π(r2 − r1)
exp

(
− (s2 − s1)

2

4(r2 − r1)

)
1(r2 > r1)

+Ai
(
s1 + s2 + (r2 − r1)

2
)
exp

(
(r2 − r1)(s1 + s2) +

2

3
(r2 − r1)

3

)
.

(5.1)

The scaling limit (2.13) amounts to setting

ni = −t + 25/3t2/3ri,

xi = −25/3t2/3ri − (2t)1/3si, i = 1, 2.
(5.2)
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Finally, we consider a conjugated version of the kernelKflat
t of Proposition 2.2,

Kconj(x1, n1; x2, n2) = ex2−x1Kflat
t (x1, n1; x2, n2), (5.3)

which decomposes as

Kconj(x1, n1; x2, n2) = −ex2−x1φ(n1,n2)(x1, x2) +Kconj
0 (x1, n1; x2, n2). (5.4)

Proposition 5.1 (Uniform convergence on compact sets). Consider

r1, r2 ∈ R as well as L, L̃ > 0 fixed. Then, with xi, ni defined by (5.2),
the kernel converges as

lim
t→∞

(2t)1/3Kconj(x1, n1; x2, n2) = KA1
(s1, r1; s2, r2) (5.5)

uniformly for (s1, s2) ∈ [−L, L̃]2.

Corollary 5.2. Consider r1, r2 ∈ R fixed. For any fixed L, L̃ > 0 there exists

t0 such that for t > t0 the bound

∣∣(2t)1/3Kconj(x1, n1; x2, n2)
∣∣ ≤ constL,L̃ (5.6)

holds for all s1, s2 ∈ [−L, L̃].

Proposition 5.3 (Large deviations). For any L > 0 there exist L̃ > 0 and

t0 > 0 such that the estimate

∣∣∣(2t)1/3Kconj
0 (x1, n1; x2, n2)

∣∣∣ ≤ e−(s1+s2) (5.7)

holds for any t > t0 and (s1, s2) ∈ [−L,∞)2 \ [−L, L̃]2.

Proposition 5.4. For any fixed r2−r1 > 0 there exist const1 > 0 and t0 > 0
such that the bound

∣∣(2t)1/3ex2−x1φ(n1,n2)(x1, x2)
∣∣ ≤ const1e

−|s2−s1| (5.8)

holds for any t > t0 and s1, s2 ∈ R.

With these estimates one proves Theorem 2.4.

Proof of Theorem 2.4. Given the previous bounds, the proof is identical to
the proof of Theorem 2.5 in [8]. In our case moderate and large deviations
are merged into the single Proposition 5.3. The constants appearing in [8]
specialize to κ = 21/3 and µ = −25/3 in our setting.

Now let us prove the convergence of the kernel.
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Proof of Proposition 5.1. We start with the first part of the conjugated ker-
nel (5.4) in its integral representation (4.32),

(2t)1/3ex2−x1φ(n1,n2)(x1, x2) =
(2t)1/3

2πi

∫

iR−δ

dz
e(z+1)(x2−x1)

(−z)n2−n1
. (5.9)

Setting δ = 1 and using the change of variables z = −1 + (2t)−1/3ζ as well
as the shorthand r = r2 − r1 and s = s2 − s1, we have

(5.9) =
1

2πi

∫

iR

dζ
e(2t)

−1/3ζ(x2−x1)

(1− (2t)−1/3ζ)n2−n1
=

1

2πi

∫

iR

dζ e−sζft(ζ, r) (5.10)

with

ft(ζ, r) =
e−24/3t1/3rζ

(1− (2t)−1/3ζ)25/3t2/3r
= e−24/3t1/3rζ−25/3t2/3r log(1−(2t)−1/3ζ). (5.11)

Since this integral is 0 for r ≤ 0 we can assume r > 0 from now on. The
function ft(ζ, r) satisfies the pointwise limit limt→∞ ft(ζ, r) = erζ

2

. Applying
Bernoulli’s inequality, we arrive at the t-independent integrable bound

|ft(ζ, r)| = |1− (2t)−1/3ζ |−25/3t2/3r =
(
1 + (2t)−2/3|ζ |2

)−22/3t2/3r

≤ (1 + r|ζ |2)−1.
(5.12)

Thus by dominated convergence

∣∣∣∣
1

2πi

∫

iR

dζ
(
e−sζft(ζ, r)− e−sζ+rζ2

)∣∣∣∣ ≤
1

2π

∫

iR

|dζ |
∣∣ft(ζ, r)− erζ

2∣∣ t→∞−→ 0.

(5.13)
This implies that the convergence of the integral is uniform in s. The limit
is easily identified as

lim
t→∞

−(2t)1/3ex2−x1φ(n1,n2)(x1, x2) = − 1

2πi

∫

iR

dζ e−sζ+rζ2
1(r > 0)

= − 1√
4πr

e−s2/4r
1(r > 0),

(5.14)

which is the first part of the kernel (5.1).
Now we turn to the main part of the kernel,

Kconj
0 (x1, n1; x2, n2) =

1

2πi

∫

Γ−

dz
etz

2/2e−(z+1)x1(−z)n1

etϕ(z)2/2e−(ϕ(z)+1)x2(−ϕ(z))n2
. (5.15)

20



-2.5 -2.0 -1.5 -1.0 -0.5

-1.5

-1.0

-0.5

0.5

1.0

-2.5 -2.0 -1.5 -1.0 -0.5

-1.5

-1.0

-0.5

0.5

1.0

Figure 3: (Dotted line) The contour Γρ and (solid line) its image under ϕ for
(left picture) ρ = 0 and (right picture) some small positive ρ. The dashed
lines separate the ranges of the principal branch 0 (right) and the branches
1 (top left) and −1 (bottom left).

Inserting the scaling (5.2) and using the identity z/ϕ(z) = eϕ(z)−z we define
the functions

f3(z) =
1

2

(
z2 + 2z − ϕ(z)2 − 2ϕ(z)

)

f2(z) = 25/3
(
r1 [z + 1 + log (−z)]− r2 [ϕ(z) + 1 + log (−ϕ(z))]

)

f1(z) = 21/3 (s1(z + 1)− s2(ϕ(z) + 1)) ,

(5.16)

which transforms the kernel to

Kconj
0 (x1, n1; x2, n2) =

1

2πi

∫

Γ−

dz exp
(
tf3(z)+ t2/3f2(z)+ t1/3f1(z)

)
. (5.17)

Define for 0 ≤ ρ < 1 a contour by

Γρ =
{
L⌊τ⌋

(
−(1− ρ)e2πiτ−1

)
, τ ∈ R \ [0, 1)

}
(5.18)

with Lk(z) being the k-th branch of the Lambert W function. We specify the
contour Γ− by Γ := Γ0, which is shown in Figure 3, along with a ρ-deformed
version, which will be used later in the asymptotic analysis. Lemma A.1
ensures that this contour is an admissible choice. By Lemma A.2 (with
ρ = 0), Γ is a steep descent curve for the function f3 with maximum real
part 0 at z = −1 and strictly negative everywhere else. We can therefore
restrict the contour to Γδ = {z ∈ Γ, |z + 1| < δ} by making an error which is
exponentially small in t, uniformly for si ∈ [−L, L̃].
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By (4.22) in [13] the Lambert W function can be expanded around the
branching point −e−1 as

L0(z) = −1 + p− 1

3
p2 +

11

72
p3 + . . . , (5.19)

with p(z) =
√
2(ez + 1). Inserting the Taylor series of zez provides the

expansion of ϕ and hence of the functions fi in the neighbourhood of z = −1,

ϕ(−1 + ζ) = −1− ζ − 2

3
ζ2 +O(ζ3),

f3(−1 + ζ) = −2

3
ζ3 +O(ζ4),

f2(−1 + ζ) = 22/3rζ2 +O(ζ3),

f1(−1 + ζ) = 21/3(s1 + s2)ζ +O(ζ2).

(5.20)

The O-terms should be understood as uniform in si for si ∈ [−L, L̃] and
with ri fixed. Let f̃i(ζ) be the expression fi(ζ) omitting the error term.
Define also

F (ζ) = exp
(
tf3(−1 + ζ) + t2/3f2(−1 + ζ) + t1/3f1(−1 + ζ)

)

and the corresponding version F̃ (ζ) without the errors. Let further

Γ̂δ = {z + 1; z ∈ Γδ}. Using the inequality |ex − 1| ≤ |x| e|x|, the error made
by integrating over F̃ instead of F can be estimated as

∣∣∣∣
(2t)1/3

2πi

∫

Γ̂δ

dζ
(
F (ζ)− F̃ (ζ)

)∣∣∣∣

≤ (2t)1/3

2π

∫

Γ̂δ

dζ
∣∣F̃ (ζ)

∣∣eO(ζ4t+ζ3t2/3+ζ2t1/3+ζ)O
(
ζ4t+ ζ3t2/3 + ζ2t1/3 + ζ

)

≤ (2t)1/3

2π

∫

Γ̂δ

dζ
∣∣∣etf̃3(ζ−1)(1+χ3)+t2/3f̃2(ζ−1)(1+χ2)+t1/3f̃1(ζ−1)(1+χ1)

∣∣∣

×O
(
ζ4t+ ζ3t2/3 + ζ2t1/3 + ζ

)
,

(5.21)
where χ1, χ2, χ3 are constants, which can be made as small as desired for
δ small enough. Since the contour Γ̂δ is close to {|ζ | e 3

4
iπ sgn(ζ), ζ ∈ (−δ, δ)}

the leading term in the exponential, tf̃3(ζ − 1)(1 + χ3) = −2
3
ζ3(1 + χ3)t has

negative real part and therefore ensures the integral to stay bounded for
t → ∞. By the change of variables ζ = t−1/3ξ the t1/3 prefactor cancels and
the remaining O-terms imply that the overall error is O(t−1/3).
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The final step is to evaluate (2t)1/3

2πi

∫
Γ̂δ
dζ F̃ (ζ). The change

of variables ζ = −(2t)−1/3ξ converts the contour of integration to

ηt = {−(2t)1/3ζ, ζ ∈ Γ̂δ}, and hence

(2t)1/3

2πi

∫

Γ̂δ

dζ F̃ (ζ) =
(2t)1/3

2πi

∫

Γ̂δ

dζe−
2

3
tζ3+r(2t)2/3ζ2+(s1+s2)(2t)1/3ζ

=
−1

2πi

∫

ηt

dξe
ξ3

3
+rξ2−(s1+s2)ξ.

(5.22)

For t → ∞ the contour ηt converges to η∞ = {|ξ| e iπ
4
sgn(ξ), ξ ∈ R}. Since there

are no poles in the relevant region with the cubic term guaranteeing conver-
gence, we can change η∞ to the usual Airy contour η = {|ξ| e iπ

3
sgn(ξ), ξ ∈ R},

so that

lim
t→∞

(2t)1/3

2πi

∫

Γ̂δ

dζ F̃ (ζ) =
−1

2πi

∫

η

dξe
ξ3

3
+rξ2−(s1+s2)ξ

= Ai
(
s1 + s2 + r2

)
e

2

3
r3+(s1+s2)r.

(5.23)

5.2 Kernel bounds

Bound on the main part of the kernel

Proof of Proposition 5.3. The result for (s1, s2) ∈ [−L, L̃]2 follows from the
estimates in the proof of Proposition 5.1. Thus, let us consider the region
(s1, s2) ∈ [−L,∞]2 \ [−L, L̃]2, so the inequality s1 + s2 ≥ L̃ − L ≥ 0 holds.
Define also nonnegative variables s̃i = si + L. Since s̃i are not anymore
bounded from above, we slightly redefine our functions f by decomposing
f1 = f11 + f12,

f3(z) =
1

2

(
z2 + 2z − ϕ(z)2 − 2ϕ(z)

)
,

f2(z) = 25/3
(
r1 [z + 1 + log (−z)]− r2 [ϕ(z) + 1 + log (−ϕ(z))]

)
,

f11(z) = 21/3 (s̃1(z + 1)− s̃2(ϕ(z) + 1)) ,

f12(z) = 21/3L (ϕ(z)− z) .

(5.24)

Using the shorthand G(z) = tf3(z) + t2/3f2(z) + t1/3 (f11(z) + f12(z)) the
kernel that we want to bound attains the form

(2t)1/3Kconj
0 (x1, n1; x2, n2) =

(2t)1/3

2πi

∫

Γ

dz eG(z). (5.25)
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We deform the contour Γ to Γρ = {L⌊τ⌋(−e2πiτ−1(1 − ρ)), τ ∈ R \ [0, 1)},
where ρ is given by

ρ = 2−5/3min
{
t−2/3(s1 + s2), ε

}
(5.26)

for some small ε > 0 to be chosen in the following. The point where Γρ crosses
the real line is given by z0 = −1−√

2ρ+O(ρ) according to Lemma A.1. We
also decompose the kernel as

(2t)1/3Kconj
0 (x1, n1; x2, n2) = eG(z0)

(2t)1/3

2πi

∫

Γρ

dz eG(z)−G(z0). (5.27)

For estimating the first factor one uses of the fact that ρ < ε and applies
the Taylor approximation,

f3(−1 + ζ) = −2

3
ζ3 +O(ζ4),

f2(−1 + ζ) = 22/3rζ2 +O(ζ3),

f11(−1 + ζ) = 21/3(s̃1 + s̃2)ζ +O(ζ2),

f12(−1 + ζ) = −24/3Lζ +O(ζ2).

(5.28)

Inserting ζ = −√
2ρ+O(ρ) and using the two inequalities for ρ coming from

(5.26) we can bound the arguments of the exponential as

Re(tf3(−1 + ζ)) ≤ 2

3
t(2ρ)3/2 (1 +O(

√
ρ)) ≤ 1

3
(s1 + s2)

3/2
(
1 +O(

√
ε)
)
,

Re(t2/3f2(−1 + ζ)) ≤ |r|(s1 + s2)
(
1 +O(

√
ε)
)
,

Re(t1/3f11(−1 + ζ)) ≤ −(s̃1 + s̃2)(s1 + s2)
1/2
(
1 +O(

√
ε)
)

≤ −(s1 + s2)
3/2
(
1 +O(

√
ε)
)
,

Re(t1/3f12(−1 + ζ)) ≤ 2L(s1 + s2)
1/2
(
1 +O(

√
ε)
)
.

(5.29)
Now choose first ε such that the f11 term dominates the f3 term. Then
choose L̃ such that the (s1 + s2)

3/2-terms dominate all other terms, leading
to the bound ∣∣eG(z0)

∣∣ ≤ e−const2(s1+s2)3/2 (5.30)

for some const2 > 0.
The remaining task is to show boundedness of the integral

(2t)1/3
∫
Γρ dz e

G(z)−G(z0). At first we notice that by Lemma A.1 the terms
z + 1 and − (ϕ(z) + 1) attain their maximum real part at z0, so s̃i ≥ 0
results in

Re (f11(z)− f11(z0)) ≤ 0 (5.31)
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along Γρ. This leads to the estimate

∣∣∣∣
∫

Γρ

dz eG(z)−G(z0)

∣∣∣∣ ≤
∫

Γρ

|dz|
∣∣etf̂3(z)+t2/3f̂2(z)+t1/3 f̂12(z)

∣∣, (5.32)

where f̂i(z) = fi(z) − fi(z0). Notice that in the integral on the right hand
side the variables si no longer appear. Integrability is ensured by Lem-
mas A.1 and A.2 claim 5 respectively. As Γρ is a steep descent path for
f̂3 by Lemma A.2, we can restrict the contour to a δ-neighbourhood of the
critical point, Γρ

δ = {z ∈ Γρ, |z − z0| < δ}, at the expense of an error of order
O(e−constδt).

Since the contour Γρ
δ approaches a straight vertical line, we can set

z = z0 + iξ and expand for small ξ as

Re(f̂3(z0 + iξ)) = −2
√

2ρ ξ2 (1 +O(ξ)) (1 +O(
√
ρ)) ,

Re(f̂2(z0 + iξ)) = −22/3rξ2 (1 +O(ξ)) (1 +O(
√
ρ)) ,

Re(f̂12(z0 + iξ)) =
1

3
24/3Lξ2 (1 +O(ξ)) (1 +O(

√
ρ)) .

(5.33)

By choosing δ and ε small enough there are some constants χ3, χ2, χ1 close
to 1 such that

∫

Γρ
δ

dz
∣∣eG(z)−G(z0)

∣∣ ≤
∫ δ

−δ

dξ eξ
2

(
−χ32

√
2ρt−χ222/3rt2/3+χ1

2
4/3

3
Lt1/3

)

=

∫ δ

−δ

dξ eηt
2/3ξ2 ≤ t−1/3

√
π

η
,

(5.34)

where

η = 2
√
2ρt1/3χ3 + 22/3rχ2 −

24/3

3
Lt−1/3χ1. (5.35)

Since
√
2ρt1/3 ≥ 21/3 min

{√
L̃− L,

√
εt1/3

}
, the first term dominates the

other two for L̃ and t large enough. Then, η is bounded from below by some
positive constant η0. Combining (5.30) and (5.34) we finally arrive at

∣∣(2t)1/3Kconj(x1, n1; x2, n2)
∣∣

≤ (2t)1/3

2π
t−1/3

√
π

η0
e−const2(s1+s2)3/2

(
1 +O(e−c(δ)t)

)
≤ e−(s1+s2),

(5.36)

where the last inequality holds for t and L̃ large enough.
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Bound on φ

Proof of Proposition 5.4. We start with the elementary representation of φ
given in (4.31) and insert the scaling,

(2t)1/3ex2−x1
(x1 − x2)

n2−n1−1

(n2 − n1 − 1)!

= (2t)1/3e−25/3t2/3r−(2t)1/3s (2
5/3t2/3r + (2t)1/3s)2

5/3t2/3r−1

(25/3t2/3r − 1)!

= (1 +O(t−2/3))
21/3√
2πr

e−(2t)1/3s

1 + 2−4/3t−1/3s/r
(1 + 2−4/3t−1/3s/r)2

5/3t2/3r.

(5.37)
Since the factorial depends on r and t only, the error from the Stirling formula
is uniform in s. Introducing s̃ = 2−4/3t−1/3s/r and some const3 depending
only on r we have

|(5.37)| ≤ const3 e
−(2t)1/3s(1 + s̃)2

5/3t2/3r−1 (5.38)

for t large enough.
Applying the inequality 1 + x ≤ exp (x− x2/2 + x3/3) we arrive at

|(5.37)| ≤ const3 e
−(2t)1/3s+(25/3t2/3r−1)(s̃−s̃2/2+s̃3/3)

= const3 e
− s2

4r (1−
2

3
s̃)−(s̃−s̃2/2+s̃3/3).

(5.39)

In the case |s̃| ≤ 1 we now use the basic inequality

e−a2/b ≤ ebe−|a| (5.40)

to obtain the desired bound.
Inserting the scaling into the conditions n2 > n1 and x1 ≥ x2 appearing

in (4.31) results in s̃ ≥ −1. So we are left to prove the claim for s̃ > 1.
From (5.38) one obtains

|(5.37)| ≤ const3
1
2
e−s̃·25/3t2/3r(1 + s̃)2

5/3t2/3r = const3
1
2

(
(1 + s̃)e−s̃

)25/3t2/3r
.

(5.41)
The elementary estimate (1 + s̃)e−s̃ ≤ e−s̃/4 finally results in

|(5.37)| ≤ const3
1
2
e−

1

4
s̃·25/3t2/3r = const3

1
2
e−

1

4
(2t)1/3s ≤ const1 e

−s (5.42)

for t ≥ 32.
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6 Tagged particle and slow decorrelations

In this section we want to prove the following result and then use it to show
Theorem 2.5.

Theorem 6.1. Let us fix a ν ∈ [0, 1), choose any θ1, . . . , θm ∈ [−tν , tν ],
u1, . . . , um ∈ R and define the rescaled random variables

Xresc
t (uk, θk) := −

x[−t+uk25/3t2/3+θk]
(t+ θk) + 2θk + uk2

5/3t2/3

(2t)1/3
. (6.1)

Then, for any s1, . . . , sm ∈ R fixed, it holds

lim
t→∞

P

(
m⋂

k=1

{Xresc
t (uk, θk) ≤ sk}

)
= P

(
m⋂

k=1

{A1(uk) ≤ sk}
)
. (6.2)

As a corollary we have Theorem 2.5.

Proof of Theorem 2.5. This follows by taking θk = τk2
5/3t2/3 and uk = −τk

in Theorem 6.1. Indeed,

Xresc
t (uk, θk) = −x[−t](t + τk2

5/3t2/3) + τk2
5/3t2/3

(2t)1/3
, (6.3)

which by translation invariance by an integer has the same distribution as
Xtagged

t (τk) (the difference due to the integer value approximation is at most
1/(2t)1/3, which is asymptotically irrelevant).

For the proof of theorem 6.1 we need the following slow-decorrelation
result.

Proposition 6.2. For a ν ∈ [0, 1), let us consider θ ∈ [−tν , tν ]. Then, for

any ε > 0,

lim
t→∞

P

(
|xn+θ(t + θ)− xn(t) + 2θ| ≥ εt1/3

)
= 0. (6.4)

Proof. Without loss of generality we consider θ ≥ 0. For θ < 0 one just have
to denote t̃ = t + θ so that t̃ − θ = t and the proof remains valid with t
replaced by t̃. Recall that by definition we have

xm(t) = −max
k≤m

{Yk,m(t)− xk(0)}, 1 ≤ m ≤ N, (6.5)

with xk(0) = −k. We also define

xstep
m (t) = − max

1≤k≤m
{Yk,m(t)} = −Y1,m(t), 1 ≤ m ≤ N. (6.6)
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First we need an inequality, namely

−xn+θ(t+ θ) = max
k≤n+θ

{k + Yk,n+θ(t+ θ)} ≥ max
k≤n

{k + Yk,n+θ(t+ θ)}

= max
k≤n

{k + sup
0≤sk+1≤...≤sn+θ+1=t+θ

n+θ∑

i=k

(Bi(si+1)− Bi(si))}

≥ max
k≤n

{k + sup
0≤sk+1≤...≤sn+θ+1=t+θ

with sn+1=t

n+θ∑

i=k

(Bi(si+1)− Bi(si))}

= −xn(t)− x̃step
θ (θ),

(6.7)

with

x̃step
θ (θ) = sup

t≤sn+2≤...≤sn+θ≤t+θ

n+θ∑

i=n+1

(Bi(si+1)−Bi(si)). (6.8)

Remark that xn(t) and x̃step
θ (θ) are independent and x̃step

θ (θ)
d
= xstep

θ (θ).
From Theorem 2.4 we have

χ1(t) := −xn(t) + n+ t

(2t)1/3
D

=⇒ D1,

χ2(t) := −xn+θ(t + θ) + n+ t + 2θ

(2t)1/3
D

=⇒ D1,

(6.9)

with D1(s) = F1(2s), F1 being the GOE Tracy-Widom distribution func-
tion [32]. Further, it is known by the connection with the GUE random
matrices [4, 31], that

− x̃step
θ (θ) + 2θ

(2θ)1/3
D

=⇒ D2, (6.10)

where D2(s) = F2(2
1/3s), F2 being the GUE Tracy-Widom distribution func-

tion [31]. Therefore,

χ3(t) := − x̃step
θ (θ) + 2θ

(2t)1/3
D
=⇒ 0, (6.11)

by (6.10) and θ/t → 0. By (6.9) and (6.11) we have χ1(t) + χ3(t)
D

=⇒ D1.
Further, (6.7) implies that

χ2(t) = χ1(t) + χ3(t) +Rt (6.12)

for some random variableRt ≥ 0. Since both χ2(t) and χ1(t)+χ3(t) converges
in distribution to D1 and Rt ≥ 0, by Lemma 4.1 of [5] (reported below) we
have Rt → 0 in probability as t → ∞. This together with (6.11) leads
to χ2(t) − χ1(t) → 0 in probability, which is the rescaled version of our
statement.
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Lemma 6.3 (Lemma 4.1 of [5]). Consider two sequences of random variables

{Xn} and {X̃n} such that for each n, Xn and X̃n are defined on the same

probability space Ωn. If Xn ≥ X̃n and Xn ⇒ D as well as X̃n ⇒ D then

Xn−X̃n converges to zero in probability. Conversely if X̃n ⇒ D and Xn−X̃n

converges to zero in probability then Xn ⇒ D as well.

Finally we come to the proof of Theorem 6.1.

Proof of theorem 6.1. Let us define the random variables

Ξk := Xresc
t (uk, θk)−Xresc

t (uk, 0). (6.13)

such that

P

(
m⋂

k=1

{Xresc
t (uk, θk) ≤ sk}

)
= P

(
m⋂

k=1

{Xresc
t (uk, 0) + Ξk ≤ sk}

)
. (6.14)

The slow-decorrelation result (Proposition 6.2) implies Ξk → 0 in probability
as t → ∞. Introducing ε > 0 we can use inclusion-exclusion to decompose

(6.14) = P

(
m⋂

k=1

{Xresc
t (uk, 0) + Ξk ≤ sk} ∩ {|Ξk| ≤ ε}

)
+
∑

j

P (Rj) ,

(6.15)
where the sum on the right hand side is finite and each Rj satisfies
Rj ⊂ {|Ξk| > ε} for at least one k. Using the limit result from Theorem 2.4,

lim
t→∞

P

(
m⋂

k=1

{Xresc
t (uk, 0) ≤ sk}

)
= P

(
m⋂

k=1

{A1(uk) ≤ sk}
)
, (6.16)

leads to

lim sup
t→∞

P

(
m⋂

k=1

{Xresc
t (uk, θk) ≤ sk}

)
≤ P

(
m⋂

k=1

{A1(uk) ≤ sk + ε}
)
,

lim inf
t→∞

P

(
m⋂

k=1

{Xresc
t (uk, θk) ≤ sk}

)
≥ P

(
m⋂

k=1

{A1(uk) ≤ sk − ε}
)
.

(6.17)

Since the joint distribution function of the Airy1 process is continuous in
s1, . . . , sm, we can take the limit ε → 0 and obtain

lim
t→∞

P

(
m⋂

k=1

{Xresc
t (uk, θk) ≤ sk}

)
= P

(
m⋂

k=1

{A1(uk) ≤ sk}
)
. (6.18)
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A Bounds on the Lambert W function

Lemma A.1 (Path of Γρ and its image under ϕ). For any ρ ∈ [0, 1) the

contour Γρ = {γ(τ) = L⌊τ⌋(−e2πiτ−1(1− ρ)), τ ∈ R \ [0, 1)}, with Lk(z) being
the k-th branch of the Lambert W function, satisfies

1. Γρ crosses the real line at one unique z0 ≤ −1.

2. z0 = −1 −√
2ρ+O(ρ).

3. Re(z) < Re(z0) for all z ∈ Γρ \ {z0}.

4. Re(z) is monotone along each part of Γρ \ {z0}.

5.
∣∣ d
dτ
Re(γ(τ))

∣∣ ≤ 3π for |τ | ≥ 2.

6. Γρ has asymptotic angle ±π/2.

In addition,

7. ϕ(z) crosses the real line infinitely often at the two unique points

z∗0 = ϕ(z0) ≥ −1 and z∗1 > z∗0 when z moves along Γρ.

8. z∗0 = −1 iff ρ = 0.

9. Re(ϕ(z)) > Re(ϕ(z0)) for all z ∈ Γρ with ϕ(z) 6= ϕ(z0).

10. Re(z) is monotone along each part of ϕ (Γρ) \ {z∗0 , z∗1}.

Lemma A.2 (Behaviour of f3 along Γρ).
The function f3(z) = (z + 1)2 − (ϕ(z) + 1)2 satisfies

1. f3 (Γ
ρ) crosses the real line at one unique ẑ0 = f3(z0), where z0 is given

as in Lemma A.1.

2. ẑ0 = 0 if ρ = 0.

3. Re(f3(z)) < Re(f3(z0)) for all z ∈ Γρ \ {z0}

4. Re(f3(z)) is monotone along each part of f3 (Γ
ρ) \ {ẑ0}.

5.
∣∣ d
dτ
Re(f3(γ(τ)))

∣∣ ≥ 4π2|τ | for |τ | ≥ 5.
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Proof of Lemma A.1. Write γ(τ) = L⌊τ⌋
(
−e2πiτ−1(1− ρ)

)
. The branch cut

of the Lambert function is done in such a way that

(2k − 2)π ≤ Im (Lk(z)) ≤ (2k + 1)π for k > 0,

−π ≤ Im (Lk(z)) ≤ π for k = 0,

(2k − 1)π ≤ Im (Lk(z)) ≤ (2k + 2)π for k < 0,

(A.1)

see also Figure 4 of [13]. The curve γ(τ) changes branches every time when
τ ∈ Z, but since at each jump point the function −e2πiτ−1(1 − ρ) meets the
line (−∞, 0], which is the location of the branch cut, the function γ(τ) is in
fact continuous at these points, and Γρ therefore connected.

The function Lk(z) satisfies the differential identity ((3.2) in [13])

L′
k(z) =

Lk(z)

z(1 + Lk(z))
. (A.2)

By elementary calculus we therefore have

γ′(τ) =
d

dτ
γ(τ) = 2πi

(
1− 1

γ(τ) + 1

)
. (A.3)

From the structure of the branches one has limτց1 γ(τ) = limτր0 γ(τ) ≤ −1.
This limit is our z0. The image of −1/e under L−1, L0 and L1 is −1, so
z0 = −1, which corresponds to ρ = 0.

Consider first τ > 1. Since all the involved branches lie in the upper half
plane, we have Im(γ(τ)) > 0. Additionally, the fact that the transformations
z 7→ z+1 and z 7→ −z−1 map the upper half plane onto itself implies by (A.3)
the inequality Re(γ′(τ)) < 0. This in turn implies Re(γ(τ)) ≤ −1 which can
be inserted in (A.3), leading to Im(γ′(τ)) ≥ 2π. So for τ > 1 the curve γ(τ)
is moving monotone north-west in τ . Analogously we can argue that γ(τ) is
moving monotone south-west in |τ | for τ < 0.

Thereby the Claims 1, 3 and 4 are settled. To see Claim 6, we notice
that for large |τ | also |γ(τ)| is large and the fraction in (A.3) tends to zero,
resulting in γ′(τ) → 2πi.

By (A.1) we have |Im(γ(τ))| ≥ 2π for all |τ | ≥ 2. Inserting this in (A.3)
results in |γ′(τ)| ≤ 2π(1 + 1/2π) ≤ 3π and consequently Claim 5.

Again by [13] the series (5.19) is the expansion of L1 or L−1 respectively,
when inserting p(z) = −

√
2(ez + 1) instead of p(z) =

√
2(ez + 1). Which

branch one gets depends on the sign of Im(z). Claim 2 follows.
For the corresponding statements on ϕ(z) first notice the identity

ϕ(γ(τ)) = L0

(
γ(τ)eγ(τ)

)
= L0

(
−e2πiτ−1(1− ρ)

)
= γ(τ − ⌊τ⌋), (A.4)
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from which it is clear that ϕ(γ(τ)) is periodic in τ . We can therefore reduce
our considerations to τ ∈ [0, 1).

By (4.4) of [13], the principal branch of the Lambert W function is given
by

{a+ ib ∈ C, a+ b cot(b) > 0 and − π < b < π}. (A.5)

So regarding points of the principal branch, by

sgn Im
(
(a+ ib)ea+ib

)
= sgn (a sin b+ b cos b) = sgn b, (A.6)

the function z 7→ zez preserves the sign of the imaginary part. But then
its inverse function L0 must do the same. Consequently, Im(γ(τ)) < 0 for
0 < τ < 1/2 and Im(γ(τ)) > 0 for 1/2 < τ < 1. In the same way as before
this leads through (A.3) to Re(γ′(τ)) > 0 for 0 < τ < 1/2 and Re(γ′(τ)) < 0
for 1/2 < τ < 1. This settles Claim 7, 9 and 10 with z∗1 = γ(1/2).

The equation z∗0 = −1 is equivalent to L0 (−e−1(1− ρ)) = −1, which
clearly holds for ρ = 0, and by injectivity in the principal branch for no
other ρ.

Proof of Lemma A.2. With {τ} = τ − ⌊τ⌋ being the fractional part of τ we
write using (A.4)

f3(γ(τ)) = (γ(τ) + 1)2 − (γ({τ}) + 1)2. (A.7)

Differentiating with respect to τ results in

d

dτ
f3(γ(τ)) = 4πi

(
γ(τ)− γ({τ})

)
. (A.8)

By Lemma A.1 we know that Re
(
γ(τ) − γ({τ})

)
< 0 which gives

Im d
dτ
f3(γ(τ)) < 0. The monotonicity of the imaginary part entails the

uniqueness in Claim 1.
Regarding the real part, first notice that for τ ր 0 or τ ց 1,

Im
(
γ(τ)− γ({τ})

)
tends to zero, resulting in Re d

dτ
f3(γ(τ)) = 0. By dif-

ferentiating a second time we arrive at

d2

dτ 2
f3(γ(τ)) = 8π2

(
1

γ(τ) + 1
− 1

γ({τ}) + 1

)
. (A.9)

From Lemma A.1 the right hand side has negative real part. Integrating
results in the desired monotonicity and therefore Claim 3 and 4.

By (A.1) we have |Im(γ(τ))| ≥ 2π(|τ | − 2) for all τ ∈ R. Combining
this with |Im(γ({τ}))| ≤ π results in |Im(γ(τ)− γ({τ}))| ≥ π|τ | for |τ | ≥ 5.
With (A.8), Claim 5 follows.

Claim 2 is a corollary of Lemma A.1, Claim 2.
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B Correlation kernel for determinantal mea-

sures

Here are two useful results from [9]. They are written for the continuous
case. The proofs are identical to the discrete case.

Lemma B.1 (See Lemma 3.3 of [9]). Let f an antisymmetric function of

{xN
1 , . . . , x

N
N}. Then, whenever f has enough decay to make the sums finite,

∫

D
f(xN

1 , . . . , x
N
N )

∏

2≤i≤j≤N

dxj
i =

∫

D′

f(xN
1 , . . . , x

N
N)

∏

2≤i≤j≤N

dxj
i (B.1)

where

D = {xj
i , 2 ≤ i ≤ j ≤ N |xj

i > xj+1
i , xj

i ≥ xj−1
i−1},

D′ = {xj
i , 2 ≤ i ≤ j ≤ N |xj

i ≥ xj−1
i−1}, (B.2)

and the positions x1
1 > x2

1 > . . . > xN
1 being fixed.

Lemma B.2 (See Lemma 3.4 of [9]). Assume we have a signed measure on

{xn
i , n = 1, . . . , N, i = 1, . . . , n} given in the form,

1

ZN

N−1∏

n=1

det[φn(x
n
i , x

n+1
j )]1≤i,j≤n+1 det[Ψ

N
N−i(x

N
j )]1≤i,j≤N , (B.3)

where xn
n+1 are some “virtual” variables and ZN is a normalization constant.

If ZN 6= 0, then the correlation functions are determinantal.

To write down the kernel we need to introduce some notations. Define

φ(n1,n2)(x, y) =

{
(φn1

∗ · · · ∗ φn2−1)(x, y), n1 < n2,

0, n1 ≥ n2,
. (B.4)

where (a ∗ b)(x, y) =
∫
R
dz a(x, z)b(z, y), and, for 1 ≤ n < N ,

Ψn
n−j(x) := (φ(n,N) ∗ΨN

N−j)(y), j = 1, . . . , N. (B.5)

Set φ0(x
0
1, x) = 1. Then the functions

{(φ0 ∗ φ(1,n))(x0
1, x), . . . , (φn−2 ∗ φ(n−1,n))(xn−2

n−1, x), φn−1(x
n−1
n , x)} (B.6)

are linearly independent and generate the n-dimensional space Vn. Define a

set of functions {Φn
j (x), j = 0, . . . , n− 1} spanning Vn defined by the orthog-

onality relations ∫

R

dxΦn
i (x)Ψ

n
j (x) = δi,j (B.7)
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for 0 ≤ i, j ≤ n− 1.
Further, if φn(x

n
n+1, x) = cnΦ

(n+1)
0 (x), for some cn 6= 0, n = 1, . . . , N − 1,

then the kernel takes the simple form

K(n1, x1;n2, x2) = −φ(n1,n2)(x1, x2) +

n2∑

k=1

Ψn1

n1−k(x1)Φ
n2

n2−k(x2). (B.8)
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