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Abstract We consider the two-point function of the totally asymmetric simple ex-
clusion process with stationary initial conditions. The two-point function can be
expressed as the discrete Laplacian of the variance of the associated height func-
tion. The limit of the distribution function of the appropriately scaled height func-
tion was obtained previously by Ferrari and Spohn. In this paper we show that the
convergence can be improved to the convergence of moments. This implies the con-
vergence of the two-point function in a weak sense along the near-characteristic
direction as time tends to infinity, thereby confirming the conjecture in the paper of
Ferrari and Spohn.

1 Introduction and result

The totally asymmetric simple exclusion process (TASEP) isarguably the simplest
non-reversible interacting stochastic particle system, and it is also one of the most
studied. Particles live onZ and they satisfy the exclusion constraint: each site can be
occupied by at most one particle. Therefore a particle configuration can be denoted
by η ∈ {0,1}Z, whereη j = 0 means that sitej is empty whileη j = 1 means that
the site is occupied. The dynamics of the TASEP is then definedas follows: every

Jinho Baik
Department of Mathematics, University of Michigan, Ann Arbor, MI, 48109, USA.
e-mail: baik@umich.edu

Patrik L. Ferrari
Institute for Applied Mathematics, Bonn University, Endenicher Allee 60, 53115 Bonn, Germany.
e-mail: ferrari@uni-bonn.de

Sandrine Péché
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particle tries to jump to its right neighbor with rate one. The jumps occurs only if
the exclusion constraint is satisfied.

It is known [12] that the only translation-invariant stationary measures of the
TASEP are Bernoulli product measures with parameterρ ∈ [0,1], namely,

P(η j = 1) = ρ for all j ∈ Z. (1)

Hereρ is the average density of particles. The casesρ = 0 andρ = 1 are trivial and
in the following we fixρ ∈ (0,1). This system is referred asstationary TASEP.

The two-point function is defined as

S( j, t) := E(η j(t)η0(0))−ρ2. (2)

Note that this equals the covariance ofη j(t) andη0(0). Hence the two-point func-
tion carries the information on how sitej at timet is correlated with site 0 at time 0.
It is known that

∑
j∈Z

S( j, t) = ρ(1−ρ) =: χ (3)

and alsoS( j, t) ≥ 0. This implies that1χ S( j, t) can be thought of as a probability
mass function inj ∈Z. Indeed this equals the probability that a second class particle,
which was at site 0 at time 0, is at sitej at time t [9]. It is also known that the
expectation ofj with respect to the probability mass function1

χ S( j, t) satisfies

∑
j∈Z

j
S( j, t)

χ
= (1−2ρ)t, (4)

and the variance scales as [16,18]

∑
j∈Z

j2
S( j, t)

χ
− ((1−2ρ)t)2 = O(t4/3). (5)

ast → ∞. Therefore, for large timet, one expects the scaling form forSas1

S( j, t)≃ χ
4

g′′sc

(
j − (1−2ρ)t

2χ1/3t2/3

)
1

2χ1/3t2/3
(6)

for some non-random functiongsc. The precise expression ofgsc was first conjec-
tured in [15] based on the work [6]:

gsc(w) =
∫

R
s2dFw(s) (7)

whereFw(s) is the distribution function defined (17) below.
In order to understand the presence of the second derivativein (6) and the second

moment formula (7), we recall that TASEP can also be seen as a stochastic growth

1 The multiplicative factorχ4 was incorrectly written asχ2 in [14]. This is a typographical error.
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interface model, whose discrete gradient of the height equals 1−2η . The dynamical
rule is that when a particle jumps to the right, a valley�� changes to a mountain
��. More precisely, letNt( j) denote the number of particles which have jumped
from site j to j +1 during the time interval[0, t], and define the height function

ht( j) =





2Nt(0)+∑ j
i=1(1−2ηi(t)) for j ≥ 1,

2Nt(0) for j = 0,

2Nt(0)−∑0
i= j+1(1−2ηi(t)) for j ≤−1.

(8)

Then initially h0(0) = 0 andh0( j)−h0( j −1) = 1−2η j(0), and at the instance a
particle jumps from sitej to j+1, the height function at positionj increases by two.
Note thatht( j)−h0( j) = 2Nt( j). It was shown in [14] that the two-point function
can be expressed as

S( j, t) = 1
8

(
∆Var(ht(·))

)
( j) (9)

with ∆ being the discrete Laplacian,(∆ f )( j) = f ( j −1)−2 f ( j)+ f ( j +1). Since
it is known thatFw(s) has mean 0 [6], this explains the presence of the second
derivative in the conjectured formula (6) and the second moment formula (7).

Define the probability distribution functions of the location-rescaled height func-
tion,

Fw(s, t) := P
(

ht([(1−2ρ)t+2wχ1/3t2/3])

≥ (1−2χ)t+2w(1−2ρ)χ1/3t2/3−2sχ2/3t1/3
)
. (10)

The functionFw in (7) (which is defined in (17) below) was conjectured in [15]to
be the limit

lim
t→∞

Fw(s, t) = Fw(s). (11)

The convergence (11) for eachs was later proved in [10]. This strongly indicates
the validity of (6). A missing part in concluding (6) is the convergence of the mo-
ments ofFw(s, t) which is a stronger statement than (11). Our main result is that the
moments indeed converge.

Theorem 1. For all ℓ ∈ N,

lim
t→∞

∫

R
sℓdFw(s, t) =

∫

R
sℓdFw(s) (12)

uniformly for w in a compact subset ofR.

As a consequence we obtain the convergence of the two-point function is a weak
sense.

Corollary 2 We have, withχ := ρ(1−ρ),

lim
t→∞

2χ1/3t2/3S
(
[(1−2ρ)t+2wχ1/3t2/3], t

)
=

χ
4

g′′sc(w) (13)
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if integrated over smooth functions in w with compact support.

The proof of this corollary is given in Section 5. An improvement of the analysis
in this paper can yield the convergence in the point-wise sense in (13). However, we
do not consider this direction in this paper.

For completeness, let us state a formula of the limiting distribution functionFw(s)
explicitly. Let Pu be the orthogonal projector on the interval[u,+∞). Set

KAi ,s(x,y) :=
∫

R+

Ai(x+ s+λ )Ai(y+ s+λ )dλ ,

FGUE(s) := det(1−P0KAi ,sP0).

(14)

FGUE is the GUE Tracy-Widom distribution function [17]. We also define the func-
tion

g(s,w) := e−
w3
3

(∫

R2
−

ew(x+y)Ai(x+y+s)dxdy+
∫

R2
+

Ψ̂w,s(x)ρs(x,y)Φ̂w,s(y)dxdy

)
,

(15)
where

Φ̂w,s(x) :=
∫

R−
ewz+wsKAi ,s(z,x)dz, Ψ̂w,s(x) :=

∫

R−
ewzAi(x+ z+ s)dz, (16)

andρs(x,y) := (1−P0KAi ,sP0)
−1(x,y). Now

Fw(s) :=
∂
∂s

(
FGUE(s+w2)g(s+w2,w)

)
. (17)

There is an alternative formula expressed in terms the Lax pair equations of the
Painlevé II equation obtained in [6]. But we will only use the formula (17) in this
paper. One can also consider the joint distributions for different values ofw and a
formula can be found in [5].

Acknowledgments

We would like to thank Ivan Corwin and Eric Cator for a communication which
helped us simplify the proof of Proposition 2. The work of Jinho Baik was supported
in part by NSF grants DMS1068646. Patrik Ferrari was supported by the German
Research Foundation via the SFB611–A12 project.

2 Setting and strategy of the proof

The height functionht( j) associated to a TASEP with any initial condition can be
related to the last passage time of a directed last passage percolation (DLPP) model.
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Over the last decade or so, the so-called solvable, or determinantal DLPP models
[8,11,13] were studied extensively. These are the models for which the probability
distribution of the last passage time can be expressed explicitly in terms of Fredholm
determinants. The DLPP model corresponding to the stationary TASEP is not one
of solvable models but can be related to one after suitable analytic continuation of
the parameters. This yields the following formula ofFw(s, t).

Fix w∈ R. Let us set2 (recall thatχ = ρ(1−ρ))

2m= (1−2χ)t+2w(1−2ρ)χ1/3t2/3, 2d = (1−2ρ)t+2wχ1/3t2/3, (18)

and define the functions3

L(x,y) =
−ea(x−y)

2π i

∮

Γ1−ρ
e−z(x−y) (z+ρ)m−d

(1−ρ − z)m+d
dz for x> y,

R(x,y) =
ea(x−y)

2π i

∮

Γ−ρ
ez(y−x) (1−ρ − z)m+d

(ρ + z)m−d dz for x< y,

(19)

with

a :=
1
2
−ρ . (20)

We define the kernel

Km,d(x,y) =
∫

R−
L(x,z)R(z,y)dz, (21)

and the distribution function

F(u) := det(1−PuKm,dPu). (22)

Finally, we set
G0(u) = g1(u)+g2(u)+g3(u), (23)

where

g1(u) = u+
2ad−m
1/4−a2 ,

g2(u) = 〈ψa,PuKm,dψ−a〉,
g3(u) = 〈K∗

m,d(1−Pu)ψa,Pu(1−PuKm,dPu)
−1Pu(1−Km,d)ψ−a〉,

(24)

2 To be precise, we need to take the integer parts of the formulas sincemandd need to be integers.
Since the error between the formula above and the integer parts is O(1), this does not result in
any significant changes in the estimates and hence for convenience we definem andd as in (18)
without restricting them to be integers in this paper. However, we remark that if we restrictm and
d to be integers, one occasionally need to be careful in the precise formulation of the estimates and
the exposition becomes more involved. We do not discuss these subtleties in this paper.
3 For any set of pointsS, the notation

∮
ΓS

f (z)dzdenotes the integral over a simple closed contour
which encloses the pointsSbut excludes any other poles of the functionf . The contour is oriented
counter-clockwise.
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with ψa(x) = e−ax. Then it was shown in [10] that4

Fw(s, t) =
1

(t/χ)1/3

d
ds

(F(u(s, t))G0(u(s, t))) (25)

where
u= u(s, t) := t + sχ−1/3t1/3. (26)

Set
Ĝ0(s, t) := G0(u(s, t)), F̂(s, t) := F(u(s, t)). (27)

The main technical part of this paper is the following estimates:5

Proposition 1 (Uniform upper tail estimates). There exist positive constants s0, t0,
c and C such that

∣∣∣s− F̂(s, t)Ĝ0(s, t)/(t/χ)1/3
∣∣∣≤Ce−c|s|, s≥ s0, t ≥ t0. (28)

The bound holds uniformly for w in a compact subset ofR.

Proposition 2 (Uniform lower tail estimates). There exist s0, t0, c and C such that

|Fw(s, t)| ≤Ce−c|s|3/2
, s≤−s0, t ≥ t0. (29)

The bound holds uniformly for w in a compact subset ofR.

Theorem 1 now follows.

Proof of Theorem 1.We only considerℓ≥ 2. The caseℓ= 1 follows easily. We first
write the integral on the left-hand-side of (12) as the sum ofthe integral overR+

and the integral overR−. For the integral overR+, integrating by parts twice and
using the fact thatFw(·, t) is a cumulative distribution function,

∫

R+

sℓdFw(s, t) =− ℓ(ℓ−1)
∫

R+

sℓ−2
(

s− F̂(s, t)
Ĝ0(s, t)

(t/χ)1/3

)
ds (30)

for ℓ ≥ 2. It was in [10] that in addition to (11) we also have limit

F̂(s, t) Ĝ0(s,t)
(t/χ)1/3 → FGUE(s+w2)g(s+w2,w) for eachs ast → ∞. Thus due to Propo-

sition 1 the Lebesgue dominated convergence theorem can be applied and we find
that (30) converges to

−ℓ(ℓ−1)
∫

R+

sℓ−2
(

s−FGUE(s+w2)g(s+w2,w)
)

ds. (31)

4 The formula (25) is the formula (4.10) of [10] whenb = −a if we take into account (26) . See
(5.21) of [10] for the formula of the functionG0(u) = Ga,−a(u).
5 The exponents of the bounds are not optimal. The bound in (28)and (29) can be improved to

Ce−c|s|3/2
andCe−c|s|3 respectively. The improved bound for (28) can be achieved ifwe keep track

of a slightly better estimate in the analysis presented in this paper. On the other hand, in order to
improve the bound (29), we need a different approach such as Riemann-Hilbert analysis as in [3,4].
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On the other hand, integrating by parts once,
∫

R−
sℓdFw(s, t) =− ℓ

∫

R−
sℓ−1Fw(s, t)ds. (32)

Thus again, using the Lebesgue dominated convergence theorem can be applied due
to Proposition 2 and from (11) we find that (32) converges to

−ℓ

∫

R−
sℓ−1Fw(s)ds. (33)

Integrating (31) and (33) by parts backwards and using the fact thatFw is a cu-
mulative distribution function, we find that the sum of thesetwo integrals is the
right-hand-side of (12).

⊓⊔
The estimate (28) for the upper tail is obtained by analyzingthe formulas (22)

and (23) asymptotically using the saddle-point analysis. This asymptotic analysis is
very close to that of many previous papers, for example [2,10,11]. We use some of
the results directly or improve upon them. See Section 3.

For the estimate (29) on the lower tail, we note the following. Consider the
TASEP with step-initial condition i.e.η j(0) = 1 for j ≤ 0 andη j(0) = 0 for j ≥ 1.
Then the associated height functionhstep

t ( j) satisfieshstep
0 ( j) = | j|. This means that

initially h0 is bounded above byhstep
0 . Since the initial condition of the stationary

TASEP is independent of the dynamics, we find thatht is stochastically bounded
above6 by hstep

t . Hence7

P(ht( j)≥ u)≤ P(hstep
t ( j) ≥ u). (34)

But P(hstep
t ( j) ≥ u) is known to be preciselyF(u) of (22) [11]. Therefore we have

Fw(s, t)≤ F̂(s, t) = det(1−PuKm,dPu). (35)

Thus the estimate (29) follows if we show thatF̂(s, t) is bounded above byCe−c|s|3/2

for negative large enoughs. This in turn follows if we show the same bound for the
Fredholm determinant (22). For this purpose we follow the idea of Widom [19]
which seems not as well-known as it should be. See Section 4.

6 This can also be seen easily from the corresponding directedlast passage percolation (DLPP)
models. The DLPP model for the stationary TASEP is the DLPP model for the TASEP with the
step initial condition plus an extra row and an extra column with non-zero weights.
7 We would like to thank Ivan Corwin and Eric Cator for communicating this observation with us.
This observation simplified the proof of the lower tail estimate which we originally obtained by
estimatingFw(s, t) directly.
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3 Proof of Proposition 1: upper tail

The proposition follows from (39), (37) and (51) in the below.

3.1 Asymptotics for F̂

The functionF(u) = det(1−PuKm,dPu) is the distribution function of the last pas-
sage time of the directed last passage model with i.i.d. exponential random vari-
ables. It is well-known [11] that this also equals the distribution function of the
largest eigenvalue of the Laguerre unitary ensemble (LUE) which is defined as
Mm,d =

1
m−dXX∗ whereX is a(m−d)× (m+d) random matrix with i.i.d. standard

complex Gaussian entries. This equality can also be seen explicitly in Appendix C
of [10] whereKm,d was shown to be same as the correlation kernel of the LUE up to
a conjugation by a multiplication. The asymptotics of LUE and F̂(s, t) = F(u(s, t))
were considered in several papers, especially in [2,10,11]. We have:

Lemma 1. Fix s0 ∈ R. Then

lim
t→∞

F̂(s, t) = FGUE(s+w2) (36)

uniformly for s∈ [s0,∞) and w in a compact subset ofR. Furthermore, for given
s0 ∈R and t0 > 0, there exist positive constants C and c such that

|1− F̂(s, t)| ≤Ce−cs (37)

for s≥ s0 and t≥ t0.

The bound (37) can be found in, for example, Section 3.1 of [2].8

3.2 Evaluation of g1

A direct computation using (18), (20), and (26) shows that9

g1(u) = u+
2ad−m
1/4−a2 = s(t/χ)1/3. (38)

8 The exponent of the upper bound is not optimal: the optimal exponent ise−c|s|3/2
. But we do not

consider such an issue in this paper.
9 The formula becomess(t/χ)1/3 +O(1) whereO(1) is independent ofs if we take the integer
parts in the definition ofm andd in (18). This is an example of the subtleties mentioned in the
Footnote 2. This results in the additional termO(t−1/3) in (39). Since this is not a function ins, we
cannot obtain the bound (C1). However, this issue can be fixedby shiftings to s−O(1)/(t/χ)1/3.
In other words, the centering and scalingu= t +s(t/χ)1/3 needs to be changed slightly to reflect
the difference of the formula of (18) and their integer counter-parts.



Convergence of the two-point function of the stationary TASEP 9

This implies that

s− F̂(s, t)Ĝ0(s, t)

(t/χ)1/3
=−F̂(s, t)

g2(u)+g3(u)

(t/χ)1/3
+ s(1− F̂(s, t)) (39)

The term 1− F̂(s, t) can be estimated using (37) andF̂(s, t) is bounded by 1 since
it is a distribution function. We now show thatg2(u)/(t/χ)1/3 andg3(u)/(t/χ)1/3

are uniformly (int) bounded by exponentially decaying functions ins.
In the rest of this section, we only consider the case whenw > 0. If w < 0,

we need to start with a different decomposition ofG0(u) ((5.22) instead of (5.21)
of [10]). After this change, the analysis is completely analogous. For the case when
w= 0, we can proceed as in the case whenw> 0 but with a yet slight modification:
see (6.31)-(6.34) of [10]. We skip the detail whenw < 0 andw = 0, and assume
from now on thatw> 0.

3.3 Estimations on g2 and g3

Recall the definition (24) ofg2(u). It is a direct calculation to show that (see (3.15)
of [10])

∫ ∞

x
R(x,y)ψ−a(y)dy= Z(ρ)ψ−a(x), Z(ρ) :=

(1−ρ)m+d

ρm−d , (40)

for x∈R, for a∈ (−1/2,1/2). Using this,g2(u) = 〈ψa,PuL(1−P0)ψ−a〉. Inserting
the formulaψa andL(x,y), we obtain

g2(u) =
∫

R2
+

Ht(x+ y)dxdy, (41)

where

Ht(x) :=
−Z(ρ)

2π i

∮

Γ1−ρ
e−z(u+x) (z+ρ)m−d

(1−ρ − z)m+d
dz. (42)

Thus (see (6.19) of [10])

(t/χ)−1/3g2(u) =
∫

R2
+

Ht(x+ y)dxdy, Ht(y) := (t/χ)1/3
Ht (y(t/χ)1/3). (43)

Similarly, recall the definition (24) ofg3(u). Using (40), an argument similar to
that for (41) implies that

(1−Km,d)ψ−a(x) = eax
[
1−

∫

R+

Ht(−u+ x+ y)dy

]
. (44)

We also note that, similar to (40), we have (see (3.15) of [10])
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∫ ∞

x
ψa(y)L(y,x)dy=

1
Z(ρ)

ψa(x) (45)

for x∈ R, for a∈ (−1/2,1/2). Using this, we find that

K∗
m,d(1−Pu)ψa(x)

= e−ax
[∫

R+

H̃t (−u+ x+ y)dy−
∫

R2
+

H̃t(−u+ x+ y)Ht(z+ y)dzdy

]
(46)

where

H̃t (x) :=
1

2π i Z(ρ)

∮

Γ−ρ
ez(u+x) (1−ρ − z)m+d

(z+ρ)m−d dz. (47)

This implies that we can express (see (6.26)-(6.28) in [10])

(t/χ)−1/3g3(u) = 〈Φt ,AtΨt〉 (48)

where

Φt (ξ ) = ewξ
[∫

R+

H̃t(y+ ξ )dy−
∫

R2
+

Ht(x+ y)H̃t(y+ ξ )dxdy
]
,

Ψt(ξ ) = e−wξ
[
1−

∫

R+

Ht(y+ ξ )dy
]
,

(49)

with Ht(y) = (t/χ)1/3H̃ (y(t/χ)1/3) andH̃t(y) = (t/χ)1/3H̃t (y(t/χ)1/3), and the
operatorAt is defined byAt = P0(1−Kt)

−1P0 where the kernel ofKt is

Kt(ξ1,ξ2) = ew(ξ2−ξ1)
∫

R+

Ht(x+ ξ1)H̃t(x+ ξ2)dx, ξ1,ξ2 ≥ 0, (50)

andKt(ξ1,ξ2) = 0 otherwise.
We obtain the following estimates forg2 andg3.

Lemma 2. There are positive constants c and C such that
∣∣∣(t/χ)−1/3g2(u)

∣∣∣ ≤Ce−cs, |(t/χ)−1/3g3(u)| ≤Ce−cs (51)

for all s≥ 0 and t≥ 0.

Proof of Lemma 2.Note from the formula (42) thatHt(x) = Ht (x;u) is a function
of x+u . HenceHt(y) = Ht(y;s) is a function ofy+s. Thus,Ht(y;s) = Ht(y+s;0).
The same holds for̃Ht(y) = H̃t(y;s).

Basic bounds for the functionsHt(y) andH̃t(y) were obtained in (6.15) of [10]:
for anyβ > 0 there exist positive constantsCβ andC′

β such that

|Ht(y;s)| ≤Cβ e−β y and |H̃t(y;s)| ≤C′
β e−β y (52)
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uniformly for t ≥ 0, y ≥ 0, ands≥ 0. In particular, the bound holds forHt(y;0)
andH̃t(y;0) whens= 0, for t ≥ 0 andy≥ 0. Thus usingHt(y;s) = Ht(y+ s;0) and
insertingy+ s in place ofy in (52), we find that: for anyβ > 0 there are positive
constantsCβ andC′

β such that

|Ht(y;s)| ≤Cβ e−β (s+y) and |H̃t(y;s)| ≤C′
β e−β (s+y) (53)

uniformly in t ≥ 0, y≥ 0 ands≥ 0.
The bound for(t/χ)−1/3g2(u) follows from (43) and (53).
We now estimate|(t/χ)−1/3g3(u)|. Choosing β > |w|, (53) implies that

|Φt(ξ )| ≤Ce−β se−(β−w)ξ for a positive constantC. Thus,

||Φt ||L2(R+)
≤C′e−β s, (54)

for a constantC′ uniformly in t ≥ 0 ands≥ 0. On the other hand, (53) implies that
|Ψt(ξ )ewξ | is bounded by a constant. Since we assumew> 0 (see Section 3.2), we
find that ||Ψt ||2L2(R+)

is uniformly bounded int ≥ 0 ands≥ 0. Finally, using the
inequality

||At || ≤ ||(1−KAi ,w2+s)
−1||+ ||(1−KAi ,w2+s)

−1− (1−Kt)
−1|| (55)

whereKAi ,w2+s is the Airy kernel restricted on(w2+ s,∞), and the fact (see (6.36)
of [10]) that||(1−KAi )

−1−(1−Kt)
−1||→ 0 ast →∞ imply that||At || is uniformly

bounded int ≥ 0 ands≥ 0. Therefore, the bound for(t/χ)−1/3g3(u) follows from
|〈Φt ,AtΨt〉| ≤ ||Φt || ||At || ||Ψt ||.

⊓⊔

4 Proof of Proposition 2: lower tail

Recall from Section 3.1 thatKm,d is a similarity transform of the correlation kernel
of the LUEMm,d. Since the correlation kernel of the LUE is a positive projection,
all the eigenvalues, which we denote byµ j , j = 0,1,2, · · · , of PuKmdPu are real and
µ j ∈ [0,1]. It was shown in Appendix B.3 of [10] thatµ j ∈ [0,1) if u > 0. From
this we find that det(1−PuKm,dPu) = ∏ j≥0(1− µ j) ≤ ∏ j≥0e−µ j = e−Tr(PuKm,dPu).
Therefore,

F̂(s, t)≤ exp(−Tr(PuKm,dPu)). (56)

This trick is due to Widom [19].
The trace has the following lower bound:

Proposition 3. There exist positive constants t0, s0, c such that

Tr(PuKm,dPu)≥ c|s|3/2 (57)
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for all s≤−s0 and t≥ t0.

The same estimate was obtained in the context of random permutations and an
oriented digital boiling model by Widom [19]. We follow the paper [19] to prove
the Proposition, and as such we only sketch the main ideas anddo not provide all
the details of the proof. Once this proposition is proved, then Proposition 2 follows
from (35) and (56).

Proof of Proposition 3.Since the operatorKt is trace class with continuous kernel,
we have

Tr(Kt ) =
∫

R+

Kt (x,x)dx =
−1

(2π i)2

∮

Γ1

∮

Γ0

ewu

ezu

(1−w)m+d

(1− z)m+d

zm−d

wm−d

dwdz
(w− z)2

=
−1

(2π i)2

∮

Γ1

∮

Γ0

eMFu(w)

eMFu(z)

dwdz
(w− z)2

(58)

where
Fu(z) := u′z− lnz+ γ ln(1− z), u′ :=

u
M
. (59)

HereM := m−d andγ := m+d
m−d = (1−ρ

ρ )2+O(t−1/3). Note thatu′ = 1
ρ2 +O(t−1/3)

if s is in a bounded set, andu′ ≥ 1
ρ2 for all s≤ 0. We analyze (58) asymptotically

using the saddle-point analysis. Note the presence of the singularity 1
(w−z)2

in the
integrand.

We first consider the case where

(1−√
γ)2+ ε ≤ u′ < (1+

√
γ)2− s0t

−2/3, (60)

for someε > 0 (small, but fixed) ands0 ≫ 1 also fixed. The critical points areFu

are

z±c (u
′) =

u′+1− γ
2u′

± 1
2u′

√
(u′− (1+

√
γ)2)(u′− (1−√

γ)2). (61)

The two critical points are non-real and|z±c (u′)| = 1√
u′
≤ ρ < 1. Consider the fol-

lowing two contours:
w= |z+c |eiθ , 0≤ θ < 2π , (62)

and
z= 1+ |z+c −1|eiθ , 0≤ θ < 2π , (63)

respectively. Then

Re

(
d

dθ
Fu(w)

)
=−Im(w)

(
u′− γ

|w−1|2
)
=−Im(w)

(
γ

|z+c −1|2 −
γ

|w−1|2
)
,

Re

(
d

dθ
Fu(z)

)
=−Im(z)

(
u′− γ

|z|2
)
=−Im(z)

(
γ

|z+c |2
− γ

|z|2
)
.

(64)
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0 1

z+c

Γ

√
1/u′

√
γ/u′

Fig. 1 The bold pathΓ is the deformation ofΓ1 that locally follows the steepest descent path.

Thus along these contours Re(Fu) achieves its relative maximum (resp. minimum)
at z±c . Hence these paths are of steep-ascent and steep-descent for Fu. We chose
to work with these explicit contours instead of the contoursof steepest-ascent and
steepest-descent for convenience. Due to this reason, we need to modify the contours
locally near the critical points ifu′ is close to(1+

√γ)2. Namely, in this case, the
contours above become almost tangential and are almost parallel to the direction
along which Re(Fu) is constant. Then we cannot apply the saddle-point method. In
this case, we simply modify the contours locally near the critical points so that it
passes through the critical points along the steepest descent direction as pictured in
Figure 1 for thez-contour. A similar modification is needed for thew-contour. This
small modification does not yield any significant changes in the estimation. For the
convenience of presentation, we work with the above explicit contours and skip the
details on how the formulas changes after the modifications.The same procedure
was also explained in Section 6.2 of [7] for the similar estimations.

We now deform the original contours in (58) to the new contours of steepest-
ascent and steepest-descent, which we call by the same names, Γ0 andΓ1. We first
deform the original contours to those in (a) of Figure 2 whereΓ0 is the contour of
steepest-ascent and the part ofΓ1 except for the segment fromz−c to z+c is the part of
the contour of steepest-descent. These contours can be divided as in (b) of Figure 2
and we have

(58) =
−1

(2π i)2P.V.
∮

Γ0

∮

Γ1

eMFu(w)

eMFu(z)

dzdw
(w− z)2 +

1
(2π i)2

∫

C

∮

Γ ′′
1

eMFu(w)

eMFu(z)

dzdw
(w− z)2 .

(65)
Here the first integral needs to be interpreted as the Principal Value due to the di-
vergent terms in the integrand. The second integral is from the contributions of the
pole in the deformation of the contours. The contours in the second double integral
are defined as follows. Thew-contour,C , is a segment fromz−c to z+c to the left of 1
and to the right of 0. Thez-contour,Γ ′′

1 , encircles the whole segmentC but not 1,
see Figure 2.
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(a) (b)

00 1 11
= −

z+cz+c

z−cz−c

Γ0Γ0

C

Γ1 Γ1 Γ ′′
1

Fig. 2 The subdivision of the integration from (a) the ones in (58) to (b) the ones in (65).

SettingQ(z) := exp(MFu(z)), the Cauchy’s integral formula implies that the sec-
ond integral of (65) equals

−1
2π i

∫

C

Q′(w)
Q(w)

dw =
−M (Fu(z+c )−Fu(z−c ))

2π i
. (66)

Noting thatFu(z+c ) = Fu(z
−
c ), we have

1
(2π i)2

∫

C

∮

Γ ′′
1

eMFu(w)−MFu(z)

(w− z)2 dzdw=
−M Im(Fu(z+c ))

π
. (67)

Observe that whenu′ = (1 +
√γ)2, the two critical points coincide and

zc := z±c = 1
1+

√γ . In addition,FM(1+
√γ)2(zc) ∈ R. Thus

−Im(Fu(z
+
c )) = Im(FM(1+

√γ)2(zc))− Im(Fu(z
+
c ))

=

∫ M(1+
√γ)2

u
Im

d
dv

Fv(z
+
c (v))dv.

(68)

Using the definition (59) ofFu and the fact thatz+c (ν) is a critical value, we find that
d
dvFv(z+c (v)) =

1
M z+c (v). From the formula (61) ofz+c ,

Im(z+c (v
′M)) =

√
ν ′− (1−√γ)2

2ν ′ ((1+
√

γ)2−ν ′)1/2

≥ ε
2
((1+

√
γ)2−ν ′)1/2

(69)

sinceν ′ satisfies the condition (60). Therefore, (68) implies that

(67)≥ M
επ
3
((1+

√
γ)2−u′)3/2. (70)

Recall that
√γ = (1−ρ)/ρ +O(t−1/3), M = ρ2t(1+O(t−1/3)), andu′ = u/M with

u= t + s(t/χ)1/3. Then, we can choose as0 > 0 large enough (but fixed indepen-
dently oft) such that for alls≤ −s0 it holds(1+

√γ)2−u′ ≥ −c1st−2/3 for some
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c1 > 0. Therefore foru′ satisfying (60), there is a positive constantc such that

1
(2π i)2

∫

C

∮

Γ ′′
1

eMFu(w)−MFu(z)

(w− z)2 dzdw≥ c(−s)3/2 (71)

uniformly in t.
We now show that the contribution of the Principal Value integral in (65) is much

smaller than (71). Indeed we will show that this isO(1). This proves (57) by taking
the constantc smaller than one in (71).

A direct computation shows that

F ′′
u (z

+
c ) = (1− γ)

(z+c − 1
1+

√γ )(z
+
c − 1

1−√γ )

(z+c )2(z+c −1)2
. (72)

This implies
|F ′′

u (z
+
c )| ∼ ((1+

√
γ)2−u′)1/2 ∼ s1/2t−1/3 (73)

asu′ → (1+
√γ)2− st−2/3, while for (1−√γ)2+ ε ≤ u′ < (1+

√γ)2− ε we have
|F ′′

u (z
+
c )| = O(1). Thus, for the generalu′ satisfying (60),c1t−1/3 ≤ |F ′′

u (z
+
c )| ≤ c2

for some positive constantsc1 andc2. HenceO(t1/3)≤
√

MF ′′
u (z

+
c )≤ O(t1/2). Let

us choose the partsV0(z±c ) andV1(z±c ) of the pathsΓ0 andΓ1 respectively whose
size areB(MF ′′

u (z
+
c ))

−1/2. Then both parts become smaller ast → ∞. Because
the pathsΓ0 andΓ1 are chosen to be steep descent, the contribution coming from
Γ0×Γ1\ {V0(z+c )∪V0(z−c )}×{V1(z+c )∪V1(z−c )} is at most of orderO(1) if B is
chosen large enough (but fixed). Let us first consider the contributions from the
intersecting contoursV0(z+c )×V1(z+c ) andV0(z−c )×V1(z−c ). Due to the symmetry, it
is enough to consider the contribution ofV0(z+c )×V1(z+c ), given by

I(z+c ) :=
−1

(2π i)2P.V.
∫

V0(z
+
c )

∫

V1(z
+
c )

eMFu(w)−MFu(z) 1
(w− z)2 dzdw. (74)

Now we have to see if this integral is bounded by a constant. Sincez converges to
z+c , we use the Taylor’s series ofFu in z−z+c . Sincez+c is a critical point, the function
Fu(z) in the exponent may be approximated asFu(z+c )+

1
2F ′′

u (zc)(z− z+c )
2. It can be

checked that the contributions from the higher order terms are negligible. Changing
the variables asz= z+c + z′(MF ′′

u (z
+
c ))

−1/2, w= z+c +w′(MF ′′
u (z

+
c ))

−1/2, we obtain

I(z+c )≈
−1

(2π i)2P.V.
∫

iR

∫

R

e
1
2 (w

′2−z′2)

(w′− z′)2 dz′dw′ (75)

which is finite.
Let us now show that the contribution of the non-intersecting contours

V0(z±c )×V1(z∓c ) are also bounded from above by some constant. To that aim,B
being fixed, we assume thats0 is chosen large enough so thats0 ≫ B. This time the
singularity term 1/|w− z|2 is bounded from above and one can easily deduce that
for all u′ ∈ ((1−√γ)2+ ε,(1+√γ)2− s0t−2/3),
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∣∣∣ −1
(2π i)2 P.V.

∫

V0(z
±
c )

∫

V1(z
∓
c )

eMFu(w)−MFu(z) 1
(w− z)2 dzdw

∣∣∣≤ O(1).

Combining the whole, we have shown that the contributions from the first integral
in (65) isO(1) and (57) is proved foru′ ∈ [(1−√γ)2+ ε,(1+√γ)2− s0t−2/3).

We now consider the case where

u′ ∈ (0,(1−√
γ)2+ ε). (76)

In (60), we could have chosenε > 0 small enough so that

(1−√
γ)2+ ε <

1
2

(
(1+

√
γ)2+(1−√

γ)2). (77)

Consider the Laguerre Unitary Ensemble1m−dXX∗ whereX is a(m−d)× (m+d)
random matrix with i.i.d. complex standard Gaussian entries. Denote by
λ1 ≥ λ2 ≥ ·· · ≥ λm−d its ordered eigenvalues. By the definition of the correlation
kernelKt , we have

Tr(Kt) = E

(m−d

∑
i=1

1I (λi)

)
, (78)

whereI = (u′,+∞). This can be bounded below as

E

(m−d

∑
i=1

1I (λi)

)
≥ E

(m−d

∑
i=1

1Iε (λi)

)
, (79)

whereIε = ((1−√γ)2 + ε,+∞). Now, we call on the results of [1], giving con-
vergence rates for the spectral distribution of random sample covariance matrices.
Let Fm−d denote the empirical probability distribution function associated to the
spectral measure:

Fm−d(x) =
1

m−d

m−d

∑
i=1

1λi≤x. (80)

Let alsoF be the cumulative distribution function of the Marchenko-Pastur distri-
butionρ defined by the density

dρ
dx

=

√
(uc

+− x)(x−uc
−)

2πx
1[uc

−,u
c
+]
(x), (81)

whereγ = m+d
m−d andu±c = (1±√γ)2. It is well known thatFm−d(x)→ F(x) a.s. for

all x. In [1] it is proven that

max
x>0

|E(Fm−d(x))−F(x)| ≤ (m−d)−1/2. (82)

Then (78) and (79) imply that

Tr(Kt)≥ (m−d)(1−F((1−√
γ)2+ ε))− (m−d)1/2. (83)
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With the condition (77) onε, F((1 − √γ)2 + ε) < 1 uniformly and since
m−d = ρ2t +O(t2/3)→ ∞, we find that there exists a positive constantC = C(ε)
such that

Tr(Kt )≥C(m−d) (84)

uniformly in t and foru′ satisfying (76). Now asu = t − s(t/χ)1/3 andu ≥ 0, we
have(−s)3/2 = (t −u)3/2(χ/t)1/2 ≤ χ1/2t. Thus sincem−d = ρ2t +O(t2/3), (84)
implies that there exists a positive constantc such that

Tr(Kt)≥ c(−s)3/2 (85)

uniformly in t and foru′ satisfying (76). Thus (57) is proved foru′ satisfying (76).
This completes the proof of Proposition 3.

⊓⊔

5 Proof of Corollary 2

Let us consider the rescaled height function

Ht(w) :=
ht( j(w))− [(1−2χ)t+2w(1−2ρ)χ1/3t2/3]

−2χ2/3t1/3
, (86)

with j(w) = (1−2ρ)t+2wχ1/3t2/3. By (10),Fw(s, t) = P(Ht(w)≤ s). We have:

Gt(w) := Var(Ht(w)) =
∫

R
s2dFw(s, t)−

(∫

R
sdFw(s, t)

)2

, (87)

and, in the original variables,

Var(ht( j(w))) = (2χ2/3t1/3)2Gt(w). (88)

Using the notationδ := (2χ1/3t2/3)−1, by (9)

∫

R
2χ1/3t2/3S( j(w), t) f (w)dw=

χ
4

∫

R

Gt(w+ δ )−2Gt(w)+Gt(w− δ )
δ 2 f (w)dw

=
χ
4

∫

R
Gt(w)

f (w+ δ )−2 f (w)+ f (w− δ )
δ 2 dw.

(89)
By Theorem 1 and the fact that

∫
R sdFw(s) = 0 (see [6]), we have thatGt(w) con-

verges togsc(w) uniformly for w in a compact set ofR. Therefore, for smooth test
functions f with compact support, ast → ∞ this expression converges to

χ
4

∫

R
gsc(w) f ′′(w)dw=

χ
4

∫

R
g′′sc(w) f (w)dw. (90)



18 Jinho Baik, Patrik L. Ferrari, and Sandrine Péché
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