Conver gence of the two-point function of the
stationary TASEP

Jinho Baik, Patrik L. Ferrari, and Sandrine Péché

Abstract We consider the two-point function of the totally asymneesimple ex-
clusion process with stationary initial conditions. Theotpoint function can be
expressed as the discrete Laplacian of the variance of suziased height func-
tion. The limit of the distribution function of the approptély scaled height func-
tion was obtained previously by Ferrari and Spohn. In thizepave show that the
convergence can be improved to the convergence of momenissiniplies the con-
vergence of the two-point function in a weak sense along #eg-nharacteristic
direction as time tends to infinity, thereby confirming thajeature in the paper of
Ferrari and Spohn.

1 Introduction and result

The totally asymmetric simple exclusion process (TASERYdgiably the simplest
non-reversible interacting stochastic particle systemd, iais also one of the most
studied. Particles live oA and they satisfy the exclusion constraint: each site can be
occupied by at most one particle. Therefore a particle cardigon can be denoted
by n € {0,1}%, wheren; = 0 means that sitg is empty whilen; = 1 means that
the site is occupied. The dynamics of the TASEP is then defisefdllows: every
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particle tries to jump to its right neighbor with rate one €ljamps occurs only if
the exclusion constraint is satisfied.

It is known [12] that the only translation-invariant statary measures of the
TASEP are Bernoulli product measures with parameter|0, 1], namely,

P(nj=1)=p foralljeZ. Q)

Herep is the average density of particles. The cgses0 andp = 1 are trivial and
in the following we fixp € (0,1). This system is referred asationary TASEP
The two-point function is defined as

S(j,t) :=E(nj(t)no(0)) — p°. ()

Note that this equals the covariancergft) andno(0). Hence the two-point func-
tion carries the information on how sifeat timet is correlated with site O at time 0.

It is known that
S(j,t)=p(1—p)=:X (3)

and alsoS(j,t) > 0. This implies that%S(j,t) can be thought of as a probability
mass function irj € Z. Indeed this equals the probability that a second clasifrt
which was at site 0 at time 0, is at sifeat timet [9]. It is also known that the
expectation off with respect to the probability mass functiétS( j,t) satisfies

EZJ (1-2p)t, 4)
and the variance scales as [16, 18]
5 PR (12002 0() ©)
je

ast — o. Therefore, for large timg one expects the scaling form fBas"

X " J - (1_ Zp)t 1
S(j,t) ~ 4 sc( 2x1/32/3 2x1/3t2/3 ©)

for some non-random functiags.. The precise expression gf; was first conjec-
tured in [15] based on the work [6]:

Jsc(W / S2dFRu(s) )

whereF(s) is the distribution function defined (17) below.
In order to understand the presence of the second derivat{@g¢and the second
moment formula (7), we recall that TASEP can also be seen tchastic growth

! The multiplicative factork was incorrectly written ag in [14]. This is a typographical error.
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interface model, whose discrete gradient of the heightledua2n. The dynamical
rule is that when a particle jumps to the right, a valley” changes to a mountain
/" \.- More precisely, let\;(j) denote the number of particles which have jumped
from sitej to j + 1 during the time intervgD,t], and define the height function

2N (0) + 31 (1—-2nmi(t))  forj>1,
he(j) = { 2\(0) for j =0, ®)
2Ni(0) — ;4 (1—2ni(t)) forj < —1.

Then initially ho(0) = 0 andhg(j) —ho(j — 1) = 1—2n;(0), and at the instance a
particle jumps from sitg to j + 1, the height function at positiopincreases by two.
Note thath:(j) —ho(j) = 2N(j). It was shown in [14] that the two-point function
can be expressed as

S(j,t) = g(Avar(h(-))) (i) 9)
with A being the discrete Laplacia@ f)(j) = f(j —1) —2f(j) + f(j +1). Since
it is known thatFy(s) has mean 0 [6], this explains the presence of the second
derivative in the conjectured formula (6) and the second ertrformula (7).
Define the probability distribution functions of the locatirescaled height func-
tion,
Fu(st) == P(he([(1 - 20)t + 2wy /%)
> (1—2x)t+2w(1— 2p)x /&%/3 - 2sx2/3t1/3) . (0)

The functionRy in (7) (which is defined in (17) below) was conjectured in [15]
be the limit

tlm Fw(s,t) = Fu(s). (12)

The convergence (11) for eastwas later proved in [10]. This strongly indicates
the validity of (6). A missing part in concluding (6) is thera@rgence of the mo-
ments offy(s,t) which is a stronger statement than (11). Our main resultisttie
moments indeed converge.

Theorem 1. Forall / € N,

Iim/sedFW(s,t):/sédFW(s) (12)
t—o Jp R
uniformly for w in a compact subset Bf

As a consequence we obtain the convergence of the two-poictibn is a weak
sense.

Corollary 2 We have, witty := p(1—p),

Jim X323 ([(1 - 20)t+ 2wy 42 1) = £ gy (13)
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if integrated over smooth functions in w with compact suppor

The proof of this corollary is given in Section 5. An improvent of the analysis
in this paper can yield the convergence in the point-wiseséan(13). However, we
do not consider this direction in this paper.

For completeness, let us state a formula of the limitingrithigtion functionF,(s)
explicitly. Let R, be the orthogonal projector on the interj@l+). Set

Kai s(xy) 1= /ﬂ% Ai(X+Ss+A)Ai(y+s+A)dA,
Foue(s) := det(1 — PoKai sP).

Feue is the GUE Tracy-Widom distribution function [17]. We alsefthe the func-
tion

(14)

w3 . PN ~
a(sw)i—e 5 ([ @A iy sidxyt || Buslps(ey) Busly)ixy).

(15)
where

Busl0)i= [ @Ky sz dz B = [ SAi(x+z+9dz  (16)

andps(x,y) := (1 — PoKai sPo) 1(x,y). Now

7}
Fw(s) i= =
w(S) = 5
There is an alternative formula expressed in terms the Laxgupations of the
Painlevé Il equation obtained in [6]. But we will only usestformula (17) in this
paper. One can also consider the joint distributions fdedéht values ofv and a
formula can be found in [5].

(Foue(s+w?)g(s+w?,w)) . 17)
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2 Setting and strategy of the proof

The height functioriy (j) associated to a TASEP with any initial condition can be
related to the last passage time of a directed last passagmateon (DLPP) model.
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Over the last decade or so, the so-called solvable, or detental DLPP models
[8,11, 13] were studied extensively. These are the modelstiach the probability
distribution of the last passage time can be expressecdiékpiin terms of Fredholm
determinants. The DLPP model corresponding to the stajoP&SEP is not one
of solvable models but can be related to one after suitatdé/ao continuation of
the parameters. This yields the following formularafs,t).

Fix w € R. Let us sét (recall thaty = p(1— p))

2m= (1—2y)t+2w(1—2p)xY3*%3, 2d = (1—2p)t+2wx¥/3%3, (18)
and define the functior’s

—gd(x=y) o 20Y) (Z—i—p)m*d

L(x,y) = i (1_p_z)m+ddz forx >y, )
galx=y) (1—p—2z)md
R(x,y) = . V0 4z forx<y,
( y) 27.“ I—,p (p+2)m7d y
with
a.= } — (20)
=3 p.
We define the kernel
Kma(xy) = [ Lx2R@y)dz (21)
and the distribution function
Finally, we set
Go(u) = g (u) +g2(u) +ga(u), (23)
where
(W) =u+ 2ad—m
G =ur a2
(24)

92(U) = (Ya, PlKmd P-a),
g3(u) = (Kqg (1 — Pu)@a, Pu(1 — PuKmdPy) "Pu(1 — Kma)W-a),

2 To be precise, we need to take the integer parts of the fosmiteem andd need to be integers.
Since the error between the formula above and the integés jse®(1), this does not result in
any significant changes in the estimates and hence for cemenwe definen andd as in (18)
without restricting them to be integers in this paper. Hoevewe remark that if we restrich and

d to be integers, one occasionally need to be careful in thegeréormulation of the estimates and
the exposition becomes more involved. We do not discuse thestleties in this paper.

3 For any set of pointS§, the notationgﬂ’rS f (z) dzdenotes the integral over a simple closed contour
which encloses the poin&but excludes any other poles of the functibiThe contour is oriented
counter-clockwise.
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with a(x) = €. Then it was shown in [10] thét

Fulst) = 17 g (F(U(S ) Go(u(s 1) (25)
where
u=u(st) :=t4sy 38, (26)
Set R R
Go(sit) :=Go(u(s;t)),  F(st):=F(u(st)). 27)

The main technical part of this paper is the following estiesa

Proposition 1 (Uniform upper tail estimates). There exist positive constants &,
¢ and C such that

s—F(st)Go(st)/(t/x)/3|<ce® s>, t>t (28)

The bound holds uniformly for w in a compact subsek of

Proposition 2 (Uniform lower tail estimates). There existg to, ¢ and C such that
Wt <Ce ™ s<og, t>1.
R ceols¥ (29)

The bound holds uniformly for w in a compact subset of
Theorem 1 now follows.

Proof of Theorem 1We only considef > 2. The casé = 1 follows easily. We first
write the integral on the left-hand-side of (12) as the surnthefintegral oveiR .
and the integral oveR_. For the integral oveR ., integrating by parts twice and
using the fact thaf,(-,t) is a cumulative distribution function,

/ﬂ'{+ SdFu(st) = — £((— 1)/R $2(s-Fisy) Golst) )ds (30)

+

%) t/)3 — Foue(s+Ww?)g(s+w?,w) for eachs ast — co. Thus due to Propo-

(t/x)%3
for £ > 2. It was in [10] that in addition to (11) we also have limit
Fst) 25l
sition 1 the Lebesgue dominated convergence theorem cappliecdhand we find
that (30) converges to

(-1 /ﬂh §2((s— Foue(s+wW2)g(s+ w2 w) )ds (31)

4 The formula (25) is the formula (4.10) of [10] whén= —a if we take into account (26) . See
(5.21) of [10] for the formula of the functio®g(u) = G*~3(u).

5 The exponents of the bounds are not optimal. The bound ingB8)(29) can be improved to
ce 9% andCe ol respectively. The improved bound for (28) can be achieveeikeep track
of a slightly better estimate in the analysis presentedimghper. On the other hand, in order to
improve the bound (29), we need a different approach sucliessdfn-Hilbert analysis as in [3,4].
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On the other hand, integrating by parts once,

ddRy(st)=—¢ | $IRy(st)ds (32)
R_ R_

Thus again, using the Lebesgue dominated convergencethaan be applied due
to Proposition 2 and from (11) we find that (32) converges to

¢ $Ry(9)ds (33)
R_

Integrating (31) and (33) by parts backwards and using tbetifeatF, is a cu-
mulative distribution function, we find that the sum of thés® integrals is the
right-hand-side of (12).

O

The estimate (28) for the upper tail is obtained by analyfivgformulas (22)
and (23) asymptotically using the saddle-point analydiés Asymptotic analysis is
very close to that of many previous papers, for example [211D We use some of
the results directly or improve upon them. See Section 3.

For the estimate (29) on the lower tail, we note the followi@gnsider the
TASEP with step-initial condition i.e3;(0) = 1 for j <0 andn;(0) =0 for j > 1.
Then the associated height functiaf™ j) satisfieshy *®(j) = |j|. This means that
initially ho is bounded above biyP. Since the initial condition of the stationary
TASEP is independent of the dynamics, we find thais stochastically bounded
abové by P, Hencé

P(h(j) > u) <P(R™A() > u). (34)
But P(h™®"j) > u) is known to be preciself (u) of (22) [11]. Therefore we have
Fu(st) <F(st) = de(l—RKmaPy)- (35)

Thus the estimate (29) follows if we show th(s, t) is bounded above tﬁ?e*"‘s‘g/2
for negative large enough This in turn follows if we show the same bound for the
Fredholm determinant (22). For this purpose we follow theaisf Widom [19]

which seems not as well-known as it should be. See Section 4.

6 This can also be seen easily from the corresponding dirdagthassage percolation (DLPP)
models. The DLPP model for the stationary TASEP is the DLP®Eehtor the TASEP with the
step initial condition plus an extra row and an extra coluniti won-zero weights.

7 We would like to thank Ivan Corwin and Eric Cator for commuaiing this observation with us.
This observation simplified the proof of the lower tail estbe which we originally obtained by
estimatingry(s,t) directly.
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3 Proof of Proposition 1. upper tail

The proposition follows from (39), (37) and (51) in the below

3.1 Asymptotics for F

The functionF (u) = det(1 — PuKnqPy) is the distribution function of the last pas-
sage time of the directed last passage model with i.i.d. meptal random vari-
ables. It is well-known [11] that this also equals the dimition function of the
largest eigenvalue of the Laguerre unitary ensemble (LURIchvis defined as
Mmd = =25 XX* whereX is a(m—d) x (m+d) random matrix with i.i.d. standard
complex Gaussian entries. This equality can also be seditilypn Appendix C

of [10] whereK,4 was shown to be same as the correlation kernel of the LUE up to

a conjugation by a multiplication. The asymptotics of LUEl&r(s,t) = F(u(s,t))
were considered in several papers, especially in [2,10\¥é ]have:

Lemma l. Fix 9 € R. Then
lim F(s.t) = Foue(s+w) (36)

uniformly for s€ [s,) and w in a compact subset &:. Furthermore, for given
S € Rand g > 0, there exist positive constants C and ¢ such that

I1-F(st)|<Ce® 37)

for s> sgand t> tg.

The bound (37) can be found in, for example, Section 3.1 0¥ [2]

3.2 Evaluation of g;
A direct computation using (18), (20), and (26) shows%hat

2ad—m
01(u) =u+ =

Ut e s(t/x)Y3. (38)

8 The exponent of the upper bound is not optimal: the optimpbeent ise=s¥?, But we do not
consider such an issue in this paper.

9 The formula becomes(t/x)%? + O(1) whereO(1) is independent o$ if we take the integer
parts in the definition ofm andd in (18). This is an example of the subtleties mentioned in the
Footnote 2. This results in the additional te@tt~/3) in (39). Since this is not a function & we
cannot obtain the bound (C1). However, this issue can be Byeshiftingstos— O(1)/(t/x)Y/3.

In other words, the centering and scaling- t +s(t/x)1/3 needs to be changed slightly to reflect
the difference of the formula of (18) and their integer cewmparts.
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This implies that

F(Sat)GO(Sat) = gz(U) + g3(U)
M 77 AN Ve
The term 1— F(s t) can be estimated using (37) aRds,t) is bounded by 1 since
it is a distribution function. We now show thgi(u)/(t/x)Y3 andgs(u)/(t/x)*2
are uniformly (int) bounded by exponentially decaying functionsin
In the rest of this section, we only consider the case wien 0. If w < 0,
we need to start with a different decompositionGf(u) ((5.22) instead of (5.21)
of [10]). After this change, the analysis is completely agalus. For the case when
w =0, we can proceed as in the case when 0 but with a yet slight modification:
see (6.31)-(6.34) of [10]. We skip the detail when< 0 andw = 0, and assume
from now on thatv > 0.

+s(1—F(st)) (39)

3.3 Estimationson g, and g3

Recall the definition (24) ofix(u). It is a direct calculation to show that (see (3.15)

of [10])

(1—p)™
pmfd

forxe R, forae (—1/2,1/2). Using this,g2(u) = (s, PyL(1 — Po)P_a). Inserting
the formulay, andL(x,y), we obtain

[ Rxy)w-ay)dy=2(0)9-a9,  2(p):= . o)

G2(U) = /R , HA(x+y)dxdy (41)
where 2(0) ( ) §
. —4p) [ —Z(U+X) Zt+p m

H(X) = 5k }zlrlpe g (42)

Thus (see (6.19) of [10])
(00w = [, Hixy)dxdy H(Y) = (/X040 0Y). @49

Similarly, recall the definition (24) ofi3(u). Using (40), an argument similar to
that for (41) implies that

(1 Kmg) W _a(x) = eaX[l [ Aurxyay| (44)

We also note that, similar to (40), we have (see (3.15) of)[10]
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1
|| e 0dy= 525 0at (45)

forxe R, forae (—1/2,1/2). Using this, we find that
md (1 —Pu)¢a(X)
=e-aX[ [ A-uixydy- | %(—u+x+y>%<z+y>dzd% (46)
+ +

where . e
(%) = 220) ﬁ pe2<u+x> <17(; f;)fn) —dz (47)
This implies that we can express (see (6.26)-(6.28) in [10])
(t/X)"3gs(u) = (B, AH) (48)
where

R(E) =] [ Frly+E)dy— [, Ot y)Frly+Eadxay,
i . (49)
HE =1 [ Hy oo

with Hi(y) = (t/x)Y32(y(t/x)M3) andFi(y) = (t/x) 37 (y(t/x)"/3), and the
operator is defined by = Py(1 — K¢) ~1Py where the kernel of; is

Ke (81, &) = e(é&) /]R Hox+ E)Fk(x+ &E)dx  &,6>0,  (50)

andK; (&1, &2) = 0 otherwise.
We obtain the following estimates fgp andgs.

Lemma 2. There are positive constants ¢ and C such that
(t/X) o <ce®  |t/x) g (u) <Ce (51)

foralls>0andt> 0.

Proof of Lemma 2Note from the formula (42) tha#4(x) = 5% (x;u) is a function
of x+u. HenceH(y) = Hi(y; ) is a function ofy +s. Thus,Hi (y;s) = Hi(y +s,0).
The same holds fdf; (y) = H:(y;9). N

Basic bounds for the functiortd;(y) andH;(y) were obtained in (6.15) of [10]:
for any 3 > 0 there exist positive constar@g andCi3 such that

IH(y;s)| <Cge ™ and [Hi(y;9)| < Cige*fgy (52)
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uniformly fort > 0,y > 0, ands > 0. In particular, the bound holds féi: (y;0)
andH; (y;0) whens= 0, fort > 0 andy > 0. Thus usindH; (y;s) = H(y+s;0) and
insertingy + s in place ofy in (52), we find that: for any3 > 0 there are positive
constant€g andCi3 such that

Hi(y;s)] <Cpe Y and |Hi(y;9)| < Che P (53)

uniformlyint > 0,y > 0 ands > 0.

The bound for(t/x)~/3g,(u) follows from (43) and (53).

We now estimate|(t/x) /3gs(u)|. ChoosingB > |w|, (53) implies that
|® (&) < CePse(B-W)< for a positive constar@. Thus,

|| 2, ) <Ce P, (54)

for a constan€’ uniformly int > 0 ands > 0. On the other hand, (53) implies that
|¥(&)e™| is bounded by a constant. Since we assuwmne0 (see Section 3.2), we
find that||4{||fz(R+) is uniformly bounded irt > 0 ands > 0. Finally, using the

inequality
A< 111 = Kajwos) I+ (L= Kpj i)t = (T=K) | (55)

whereKj; 42, is the Airy kernel restricted ofW? + s,0), and the fact (see (6.36)
of [10]) that||(1 — Kaj ) — (1 — K¢)71|| — 0 ast — oo imply that||A¢|| is uniformly
bounded irt > 0 ands > 0. Therefore, the bound fdt/x)~%/3gs(u) follows from

(@ A< | @[ A IHI]-
O

4 Proof of Proposition 2: lower tail

Recall from Section 3.1 thddy, 4 is a similarity transform of the correlation kernel
of the LUEMp,4. Since the correlation kernel of the LUE is a positive profeg
all the eigenvalues, which we denote oy j =0,1,2,---, of B;KngP, are real and
Hj € [0,1]. It was shown in Appendix B.3 of [10] that; € [0,1) if u> 0. From
this we find that détl — PuKmaPu) = [1js0(1— Kj) < [js0€ H = e 1 (RkmaR),
Therefore,

F(st) < exp(—Tr (PikmdPu)). (56)
This trick is due to Widom [19].

The trace has the following lower bound:

Proposition 3. There exist positive constangs &, ¢ such that

Tr (PuKmgPy) > c|s%/2 (57)
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foralls < —spandt>tg.

The same estimate was obtained in the context of random pations and an
oriented digital boiling model by Widom [19]. We follow theaper [19] to prove
the Proposition, and as such we only sketch the main ideas@mat provide all
the details of the proof. Once this proposition is provedntRroposition 2 follows
from (35) and (56).

Proof of Proposition 3Since the operatdf; is trace class with continuous kernel,
we have

B -1 e (1—w)™d 724 dwdz
(ko) _/ﬂh Ke (3 x)dx = Wﬁl T & (1—z)md wid (w—2)2

fj{e’\""u‘”) dwdz
I—l I-O eMFUz - )2

Fu(2) :=Uz—Inz+yIn(1-2), u = % (59)
HereM :=m—d andy:= 14 = ( ;p)2+0(t*1/3). Note that’ = p—12 +0O(t~1/3)

if sis in a bounded set, and > p_12 for all s< 0. We analyze (58) asymptotically

(58)

where

using the saddle-point analysis. Note the presence of ﬂwlﬁrityﬁz in the

integrand.
We first consider the case where

1— ¥’ +e<u <1+ Y2 —st 23, (60)

for somee > 0 (small, but fixed) andp > 1 also fixed. The critical points aff,
are

)= %W* VAW (-7, (6D)

The two critical points are non-real afaf (U')| = % p < 1. Consider the fol-
lowing two contours: _
=|z€% o<e6<2nm (62)
and _
z=1+|z-1€%  0<6<2m (63)

respectively. Then

R ) = -mon (4~ ) =i (g - )
Re(dde u( )) =—Im(2) (u’— #) =—Im(2) (ﬁ - #) :

(64)
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/1/u/ Zé-
Vy/u

Fig. 1 The bold path™ is the deformation of that locally follows the steepest descent path.

Thus along these contours Bg) achieves its relative maximum (resp. minimum)
at z-. Hence these paths are of steep-ascent and steep-descent Wide chose
to work with these explicit contours instead of the contafrsteepest-ascent and
steepest-descent for convenience. Due to this reason,addmenodify the contours
locally near the critical points iff is close to(1+ /y)2. Namely, in this case, the
contours above become almost tangential and are almodtepaoathe direction
along which RéF,) is constant. Then we cannot apply the saddle-point mettmod. |
this case, we simply modify the contours locally near théaai points so that it
passes through the critical points along the steepest dliedicection as pictured in
Figure 1 for thez-contour. A similar modification is needed for thecontour. This
small modification does not yield any significant changes@edstimation. For the
convenience of presentation, we work with the above expdamtours and skip the
details on how the formulas changes after the modificatidhs. same procedure
was also explained in Section 6.2 of [7] for the similar estiions.

We now deform the original contours in (58) to the new corganir steepest-
ascent and steepest-descent, which we call by the same nWayaes . We first
deform the original contours to those in (a) of Figure 2 wherés the contour of
steepest-ascent and the parfpéxcept for the segment frogy to z! is the part of
the contour of steepest-descent. These contours can ledias in (b) of Figure 2
and we have

(65)
Here the first integral needs to be interpreted as the Pahbfglue due to the di-
vergent terms in the integrand. The second integral is flwgrcontributions of the
pole in the deformation of the contours. The contours in #erd double integral
are defined as follows. The-contour,¢’, is a segment frorg, to z; to the left of 1
and to the right of 0. The-contour,}”, encircles the whole segme#tbut not 1,
see Figure 2.
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l'o I 0 rn ry
3 % :

@ (b)
Fig. 2 The subdivision of the integration from (a) the ones in (88{k) the ones in (65).

SettingQ(z) := exp(MF,(2)), the Cauchy’s integral formula implies that the sec-
ond integral of (65) equals

QW) ~MF(@) - Fulz)) (66)

Qw) 271

Noting thatF,(z) = Fu(z ), we have
1 eMFu(w)~MFy(2) _MIm(E,
s [ S g MMEE) g

Observe that whent = (1+ ,/y)? the two critical points coincide and
=7 = 1+W In addition,Fy 1, 2(z) € R. Thus

—Im(Fu(z))) = IM(Fy 1, y)2(Z)) — Im(Fu(Z)))
M(L+/7)?
:/u oy |m%Fv(zc+(v))dv

Usmg the definition (59) o, and the fact that! (v) is a critical value, we find that
LRz (V) = &7 (v). From the formula (61) off,

(68)

+ WV -2 2 12
m(z (\/M))_—2 ; (I+vy) =V (69)

> 5@+ vy V)2
sincev’ satisfies the condition (60). Therefore, (68) implies that
67)>ME" ((1+ VY)E-u)2 (70)
Recall that/y = (1— p)/p+O(t~1/3),M = p?t(1+O(t~%/3)), andu’ = u/M with

u=t+s(t/x)¥3. Then, we can choosesa > 0 large enough (but fixed indepen-
dently oft) such that for alk < —so it holds (1+ /y)? — U > —c;st-%2 for some



Convergence of the two-point function of the stationary E®S 15

c1 > 0. Therefore fou/ satisfying (60), there is a positive constarsuch that

1 eMFy(W)~MFy(2)
A e e L (71)
!

uniformly int.

We now show that the contribution of the Principal Value gmg in (65) is much
smaller than (71). Indeed we will show that thigd§l). This proves (57) by taking
the constant smaller than one in (71).

A direct computation shows that

@ - )& - X5)
R = - (72)
This implies
IR (@) ~ (14 V)2 —u) 2~ st 13 (73)

asu’ — (1+ /)% —st™?/3, while for (1— /y)?+ & < U < (1+ /y)? — € we have
|F/(z5)| = O(1). Thus, for the general satisfying (60)cit=Y3 < |F/(z)| < ¢

for some positive constantg andc,. HenceO(tY3) < \/MF/(z) < O(tY/?). Let

us choose the partg(zF) andVy(z) of the pathsp and Iy respectively whose
size areB(MF/(z))~Y2. Then both parts become smaller @ass «. Because

the pathsy andl; are chosen to be steep descent, the contribution coming from
Fox M\ {Mo(z) UVo(zs )} x {Mi(zf) UVa(z; )} is at most of ordelO(1) if B is
chosen large enough (but fixed). Let us first consider theritmnibns from the
intersecting contoungy(z}) x Vi(z) andVp(z; ) x Va(z; ). Due to the symmetry, it

is enough to consider the contribution\@f{z) x V1(z), given by

1
+ )—MFy(2)
(z): /Vo /\/1 (W_Z)Zdzdw (74)

Now we have to see if this integral is bounded by a constante&iconverges to
zt, we use the Taylor's series Bf in z—z/ . Sincez{ is a critical point, the function
Fu(2) in the exponent may be approximatedraéz) ) + 2F (z)(z— z£)?. It can be
checked that the contributions from the higher order temasagligible. Changing
the variables az=z +Z(MF/ (z))~Y2, w=z + W (MF/(z))~/?, we obtain

1\/\/2 212

|(z5) ~ — / / Tzt (75)

which is finite.

Let us now show that the contribution of the non-intersertitontours
Vo(z5) x V4(zT) are also bounded from above by some constant. To that Bim,
being fixed, we assume thgtis chosen large enough so tlsgts> B. This time the
singularity term ¥|w — z? is bounded from above and one can easily deduce that

forall v’ € (1— /y)?+&,(1+ /¥)? —sot=%/3),
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-1 " " 1
= pv. / / MFuW)-MFy(2) dzdw < O(1
‘(2711)2 Vo) I (#) (w—2)? v* @)

Combining the whole, we have shown that the contributioomfthe first integral
in (65) isO(1) and (57) is proved fou' € [(1— /y)?+ &, (1+,/y)% — sot~%/3).
We now consider the case where

[ (0,(1- Y)Y +e). (76)

In (60), we could have chosen> 0 small enough so that

1-vyi+e<sy ((va) +(1-v9)?). (77)

Consider the Laguerre Unitary Ensemiﬂ&axx* whereX isa(m—d) x (m—+d)
random matrix with i.i.d. complex standard Gaussian egtri®enote by
A1 > A2 > --- > Am_q its ordered eigenvalues. By the definition of the correfatio

kernelK;, we have
m—d
-5("F 1), (78)
2,1

wherel = (U, +). This can be bounded below as

wherelg = ((1—,/y)?+ &,+). Now, we call on the results of [1], giving con-
vergence rates for the spectral distribution of random sarmgvariance matrices.
Let F_q denote the empirical probability distribution functiorsasiated to the
spectral measure:

Fm— - — d Zl ]1)\ <x: (80)

Let alsoF be the cumulative distribution function of the Marchenkastir distri-
butionp defined by the density

dp_ WX
dx 271X

l[ui,ui] (X), (81)

wherey = mh_g anduf = (1£,/y)2. Itis well known thatFm_q(X) — F(x) a.s. for
all x. In [1] it is proven that

max(E(Fm-q(X)) — F(X)| < (m—d) "2 (82)
Then (78) and (79) imply that

Tr(Ke) > (m—d)(1—F((1— y)?+¢)) — (m—d)¥/2. (83)
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With the condition (77) one, F((1— /y)? +¢€) < 1 uniformly and since
m—d = p% 4 O(t%3) — o, we find that there exists a positive const@nt C(¢)
such that

Tr(K¢) > C(m—d) (84)
uniformly in t and foru’ satisfying (76). Now asi =t — s(t/x)%/% andu > 0, we
have(—s)%/2 = (t —u)¥2(x /t)Y/2 < x%/2. Thus sincen— d = p% + O(t%/3), (84)
implies that there exists a positive constastich that

Tr(Ke) > ¢(—9)%/? (85)

uniformly int and foru’ satisfying (76). Thus (57) is proved fof satisfying (76).
This completes the proof of Proposition 3.

O
5 Proof of Corollary 2
Let us consider the rescaled height function
i 01— _ 1/3:2/3
o () - W) (1= 20t + 2w(1 — 20) V4] (86)

“2x2/%13

with j(w) = (1—2p)t+2wx/3t?/3. By (10),Fu(s,t) = P(H(w) < s). We have:

2
Ge(W) = Var(Hy (w /szdFWst (/ deW(s,t)> , 87)
R
and, in the original variables,

Var(h (j(w)) = (2x%%"/%)2G (w). (88)
Using the notatiom := (2x1/32/3)~1, by (9)

/H%2X1/3t2/35(j(w),t) (W dwa/ G(w+0)— ZG(;EWHG‘(W*‘S)f(w)dw
F(W+ 8) — 2 (W) + f(w— 3)
I 52 aw

(89)
By Theorem 1 and the fact th@it sdRy(s) = 0 (see [6]), we have thd; (w) con-
verges tagsc(w) uniformly for w in a compact set dR. Therefore, for smooth test
functionsf with compact support, ds— o this expression converges to

% /R gsc(W) f (wW)dw = % /R ge(w) f (w)dw (90)



18

Jinho Baik, Patrik L. Ferrari, and Sandrine Péché

References

Z.D. Bai, B. Miao, and J. YadConvergence rates of spectral distributions of large sampl
covariance matricesSIAM J. Matrix Anal. Appl.25 (2003), 105-127.

J. Baik, G. Ben Arous, and S. Péclhase transition of the largest eigenvalue for non-null
complex sample covariance matricégn. Probab33 (2006), 1643—-1697.

J. Baik, P. Deift, and K. Johanssddn the distribution of the length of the longest increasing
subsequence of random permutatiohsAmer. Math. Socl2 (1999), 1119-1178.

J. Baik, P. Deift, K. McLaughlin, P. Miller, and K. JohanssOptimal tail estimates for di-
rected last passage site percolation with geometric randariables Adv. Theor. Math. Phys.
5(2002), 1207-1250.

J. Baik, P.L. Ferrari, and S. Péchémit process of stationary TASEP near the characteristic
line, Comm. Pure Appl. Matt63 (2010), 1017-1070.

J. Baik and E.M. Raing,imiting distributions for a polynuclear growth model wigxternal
sourcesJ. Stat. Physl00 (2000), 523-542.

A. Borodin and P.L. FerrariAnisotropic growth of random surfaces i+ 1 dimensions
arXiv:0804.3035 (2008).

A. Borodin and S. Péch@jry kernel with two sets of parameters in directed perdolaiand
random matrix theoryJ. Stat. Physl32 (2008), 275-290.

P.A. FerrariShock fluctuations in asymmetric simple exclusinobab. Theory Relat. Fields
91 (1992), 81-101.

. P.L. Ferrari and H. SpohBgaling limit for the space-time covariance of the statigrtatally

asymmetric simple exclusion proce€®mm. Math. Phys265 (2006), 1-44.

. K. Johanssorghape fluctuations and random matric€@mm. Math. Phys209 (2000), 437—

476.

. T.M. Liggett,Coupling the simple exclusion procegsin. Probab4 (1976), 339—-356.
. A. Okounkov/nfinite wedge and random partitionSelecta Math. (N.S3j (2002), 57-81.
. M. Prahofer and H. Spohurrent fluctuations for the totally asymmetric simple esan

process In and out of equilibrium (V. Sidoravicius, ed.), Progrés$’robability, Birkhauser,
2002.

. M. Prahofer and H. SpohBxact scaling function for one-dimensional stationary Kp@wth,

J. Stat. Physl15 (2004), 255-279.

. H. SpohnExcess noise for a lattice gas model of a resisibrPhys. B57 (1984), 255—-261.
. C.A. Tracy and H. Widoml.evel-spacing distributions and the Airy kern€omm. Math.

Phys.159 (1994), 151-174.

. H. van Beijeren, R. Kutner, and H. Spotitxcess noise for driven diffusive systefbys.

Rev. Lett.54 (1985), 2026-2029.

. H. Widom,On convergence of moments for random young tableaux and dorargrowth

mode] Int. Math. Res. Not9 (2002), 455-464.



