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Abstract

We consider some models in the Kardar-Parisi-Zhang universality
class, namely the polynuclear growth model and the totally/partially
asymmetric simple exclusion process. For these models, in the limit of
large time t, universality of fluctuations has been previously obtained.
In this paper we consider the convergence to the limiting distributions
and determine the (non-universal) first order corrections, which turn
out to be a non-random shift of order t−1/3 (of order 1 in microscopic
units). Subtracting this deterministic correction, the convergence is
then of order t−2/3. We also determine the strength of asymmetry in
the exclusion process for which the shift is zero. Finally, we discuss to
what extend the discreteness of the model has an effect on the fitting
functions.

1 Introduction and results

A growth model is a stochastic evolution for a height function ht(x), x space,
t time. In this paper we consider some models in the Kardar-Parisi-Zhang
(KPZ) universality class [21] in 1+1 dimensions, that are irreversible and have
local growth rules. Moreover, there is a smoothing mechanism ensuring the
existence of a deterministic limit shape hma(ξ) := limt→∞ t−1ht(ξt), around
which fluctuations are expected to have some degree of universality. More
precisely, the height function under the scaling

hresc
t (u) :=

ht(ξt+ ut2/3)− t hma(ξ + ut−1/3)

t1/3
(1.1)
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should be a well-defined stochastic process as t → ∞, which means that
fluctuations are of order t1/3 and the spatial correlation length scales as t2/3

(below we will focus on the one-point distribution only). The limit process
still depends on initial conditions and is expected to be universal inside sub-
classes of the KPZ class (e.g., the processes for flat or curved limit shape are
different). For more details, see the recent reviews [16,18] and the references
therein.

Theory. On the theoretical side, some solvable models in the KPZ class
have been analyzed in great detail. Two of the best studied models are
the polynuclear growth (PNG) model and the (totally/partially) asymmet-
ric simple exclusion process (TASEP/PASEP), see below for a concise def-
inition. For example, it was shown [4, 19, 26, 41] that if the initial condi-
tions generate a curved limit shape, then the limiting distribution function
of Ft = P(hresc

t (0) ≤ s) as t → ∞ is given by the GUE Tracy-Widom dis-
tribution function, FGUE, occurring first in random matrix theory in [37].
Recently, the first model in the KPZ class, namely the KPZ equation itself,
it was solved and the FGUE was obtained [2, 31, 32, 34]1.

This solution of the KPZ equation includes the distribution function for
ht at any time t, not only in the t → ∞ limit. A further aspect noticed
in [31] is that the correction of Ft from FGUE is of order t−1/3. This means
that on the original scale, the difference between the height function ht(ξt)
and t hma(ξ) is of order 1.

Experiments. Until recently, on the experimental side there were only few
experiments giving the fluctuations exponent 1/3 [24, 43]. Besides the diffi-
culties of having good statistics, one of the main issues in the experimental
set-up is to have really a local dynamic, and the centering in (1.1) has to
be obtained experimentally from the measured asymptotic growth velocity.
In any case, experimental data were not good enough to have more detailed
information on the scaling exponents, until the recent amazing experiments
carried out by Takeuchi (see [35] and [36]). Using nematic liquid crystals
they were able to get accurate statistics that confirmed the fluctuation and
correlation exponents, but also the limiting distribution functions and the
covariance of the processes2 previously obtained in solvable models.

As it was the case for the solution of the KPZ equation cited above, also in
these experiments one could see that the fit between the density of the Tracy-

1These works uses the approach of Bertini and Giacomin for the weakly asymmet-
ric simple exclusion process (WASEP) [6]; a replica approach is in [12, 14, 28]; see the
review [33] for details.

2The processes are: (a) for non-random initial condition and flat limit shape: the Airy1
process [10, 30], (b) for curved limit shape: the Airy2 [27] process.
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Widom distributions and the measurements is good even at relatively small
time t, but finite size corrections are still visible. They measured also the
decay of the mean, variance, skewness and kurtosis. In the scaled variables,
the mean has been seen to decay as t−1/3, while the others as t−2/3. Thus, in
the unrescaled variables, the mean has a shift of order 1.

Before explaining the results, we briefly describe the models analyzed in
this paper3.

(a) PASEP and TASEP. The partially asymmetric simple exclusion pro-
cess (PASEP) on Z in continuous time is an interacting particles system. At
any time instant t at most one particle can occupy a site in Z and particles
try to jump to the right neighboring site with rate p and to the left neighbor-
ing site with rate q = 1− p. The jumps are made only if the arrival sites are
free. This dynamics does not change the order of particles. We label them
from right to left so that xk(t) denotes the position of particle with label
k at time t and xk(t) > xk+1(t) for all k and t. The two initial conditions
analyzed in this paper are step initial condition, xk(0) = −k, k = 1, 2, . . .,
and alternating initial condition, xk(0) = −2k, k ∈ Z. When q = 0 (and
p = 1) the particles can only jump to the right so that the model is totally
asymmetric and is called TASEP.

(b) PNG model. The polynuclear growth model describes an interface
given by a height function x 7→ ht(x) ∈ Z, x ∈ R, which is a step function
with up- and down-steps on the integers and constant in between. The PNG
dynamics is the following. The up-steps move to the left with unit speed and
the down-steps to the right with unit speed. On top of it, there are random
nucleation events, i.e., creation of a pair of up- and down-steps, which then
follow the deterministic spread to the left/right. In this paper we consider
h0(x) = 0 for all x ∈ R and nucleations as follows: for flat PNG, nucleations
form a Poisson point process in R × R+ with intensity 2, while for PNG
droplet the nucleations are further restricted to {(x, t), |x| ≤ t} (see also the
review [17] for more details and illustrations).

Results. A difference between the shift of the mean in the solution of the
KPZ equation and in the liquid crystal experiment is that they have opposite
signs. The latter has the same sign as for the TASEP (totally asymmetric)
as we will show. Since the solution of the KPZ equation can be obtained
starting from the WASEP (weakly asymmetric), there will be a value of the
asymmetry for which the mean has no shift (up to O(t−2/3)). A preliminary

3Java animations of these models can be found for the PNG model at
http://www-wt.iam.uni-bonn.de/~ferrari/animations/AnimationRSK.html and at
http://www-wt.iam.uni-bonn.de/~ferrari/animations/ContinuousTASEP.html for
TASEP.
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Monte-Carlo simulation indicates that this happens for the PASEP height
function at the origin for p = pc ≃ 0.78 [31].

Result 1. In Corollary 4.3 we show that pc is the solution of

∞∑

ℓ=1

(1− pc)
ℓ

pℓc − (1− pc)ℓ
=

1

2
⇐⇒ pc = 0.78227 87862. . . (1.2)

We first determine an analytic formula for the shift of the distribution of
a tagged particle (see Proposition 4.1). The shift turns out to be a function
of the macroscopic particle number. However, when we switch back to the
height function representation, the shift becomes again independent of the
macroscopic position (the ξ in (1.1)).

The other results concern the first order correction to the limiting distri-
bution function and density. Let us illustrate it for the PNG droplet. The
other cases are analogue, but instead of the GUE one has for example the
GOE Tracy-Widom distribution. The height function is an integer-valued
function, i.e. ht(0) ∈ Z, and since we always look at it it at a single point,
x = 0, we drop the space dependence in our notation and write ht ≡ ht(0).
It is known that for some explicit constants c1, c2, the rescaled variable

h̃t,resc :=
ht − c1t

c2t1/3
D−→ ζ as t → ∞, (1.3)

where ζ is a random variable with (GUE) Tracy-Widom distribution FGUE,
i.e.,

F̃t(s) := P(h̃t,resc ≤ s) → FGUE(s) as t → ∞. (1.4)

Remark that F̃t is piecewise constant over intervals of length δt := 1/(c2t
1/3).

One expects that

h̃t,resc = ζ + η δt +O(δ2t ) on Ĩt := (Z− c1t)δt. (1.5)

where η is another random variable a priori not independent from ζ . With
(1.5) we mean thatP(h̃t,resc ≤ s) = P(ζ + η δt +O(δ2t ) ≤ s) (1.6)

for s ∈ Ĩt.
But what is the nature of η? The surprising result is that for the models

we consider, η is a deterministic constant and therefore independent from ζ
(see Section 3 for PNG and TASEP, Section 4 for PASEP). This implies the
following.
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Result 2. Let us denote by δt := c−1
2 t−1/3 the discrete lattice width where

h̃t,resc lives. There exists a constant η such that

F̃t(s) = P(h̃t,resc ≤ s
)
= FGUE(s− η δt) +O(δ2t ) (1.7)

for all s ∈ Ĩt = (Z− c1t)δt.

For PNG and TASEP the shift does not depend on the chosen macroscopic
position, but this property is not generic and might depend on the chosen
observable too, as shown by the result on PASEP. (This non-universality of
η is quite intuitive, since η is a correction term on the microscopic scale, thus
model-dependent.) Consequently, by shifting the height function ht by the
constant η as in (1.7), the convergence of the distribution function to FGUE

is of order O(t−2/3). If η was not independent from ζ , then one would have
a convergence only of order O(t−1/3) instead.

In the domain of random matrices, similar results have been obtained for
the Gaussian and Laguerre Unitary Ensembles [13, 22]. However, in those
cases the analyzed random variable were continuous. This differs from the
random variables of the models considered here, since before rescaling they
live on Z, while after the rescaling (1.1) they still live on a discrete lattice of
width δt. The discreteness becomes irrelevant for the universal statements,
but at first order it can not be neglected for the fit with the limiting dis-
tribution function and density. Indeed, the shift needed to have a fit with
accuracy of order O(t−2/3) is not the same for the density as for distribution
function. In order to see this feature, consider the slightly modified scaling
of the height function

ht,resc := (ht − c1t− a)δt (1.8)

where a ∈ R is a given constant. Further, set

Ft(s) := P(ht,resc ≤ s), (1.9)

and
pt(s) := δ−1

t (Ft(s)− Ft(s− δt)). (1.10)

Result 3. With the choice a := η + 1
2
we have

pt(s) = F ′
GUE(s) +O(δ2t ). (1.11)

for all s ∈ It := (Z− c1t− a)δt.

These results are discussed in Section 2 and used for the fits of the sim-
ulations of TASEP in Section 3.
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Remark 1.1. Result 3 is generic and does not depend on the fact that our
distributions is expressed by a Fredholm determinant, but is a consequence
of the O(δ2t ) error for the centered discrete derivative.

Remark 1.2. With the scaling (1.8), Result 2 writes

Ft(s) = FGUE(s+
1
2
δt) +O(δ2t ), s ∈ It, (1.12)

while the scaling (1.3) yields

F̃t(s) = FGUE(s+
1
2
δt − aδt) +O(δ2t ), s ∈ Ĩt, (1.13)

and
p̃t(s) = F ′

GUE(s− aδt) +O(δ2t ), s ∈ Ĩt, (1.14)

where p̃t(s) := δ−1
t (F̃t(s)− F̃t(s− δt)).

In view of these results, we carried out a simulation for TASEP with time
t = 1000. As observable we used a tagged particle. The dots in Figure 4
represent s 7→ pt(s) for s ∈ It and a = η + 1

2
, which is well approximated

by the solid line s 7→ F ′
GUE(s) as predicted by Result 3. As comparison, the

dashed line is the unshifted density s 7→ F ′
GUE(s− aδt) (see (1.14)), i.e., the

fit obtained with a = 0.
The same applies to the distribution function. The dots in Figure 3

are the plot of s 7→ Ft(s) for s ∈ It and a = η + 1
2
. The dashed line is the

predicted limiting distribution function with scaling (1.3), be s 7→ FGUE(s) =
FGUE(s +

1
2
δt − aδt) (see (1.13)). The fit suggested by Result 2 is the solid

line, s 7→ FGUE(s+
1
2
δt), which indeed is a better fit.

In the same way we fit Figures 2 and 1 with the difference that the limiting
distribution function is s 7→ FGOE(2s).

Finally, the shift used in ht,resc is the same needed to have a convergence
of the moments, and consequently of the variance, skewness, kurtosis of order
O(t−2/3). The following result is discussed in Section 2.2.

Result 4. We have E(hm
t,resc) = E(ζm) +O(δ2t ) (1.15)

for all m ∈ N.

Remark that if η was not independent from ζ , the convergence of the
variance, skewness, and kurtosis would still be of order O(t−1/3).
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2 Strategy and effects of the discreteness

In this section we present the strategy used to get the results. We discuss
the effects of the intrinsic discreteness of the models on the fitting functions
and on the moments, since it is relevant at first order. Finally, we explain
how to fit data coming from an experiment.

2.1 On the fitting functions (Results 2 and 3)

For the PNG model and the TASEP, the strategy of getting (2.8) is the
following4. In these cases, the distribution function of ht can be expressed as
a (discrete) Fredholm determinant with kernel Kt,P(ht ≤ x) = det(1−Kt)ℓ2({x+1,x+2,...}), x ∈ Z. (2.1)

For some constant a ∈ R, the rescaled random variable

ht,resc := (ht − c1t− a)δt with δt = c−1
2 t−1/3 (2.2)

lives on It := (Z− c1t− a)δt. According to the scaling in (2.2), we define the
rescaled kernel Kt,resc as

Kt,resc(s1, s2) := δ−1
t Kt(c1t + a+ s1δ

−1
t , c1t+ a + s2δ

−1
t ) (2.3)

so that the distribution function Ft defined by

Ft(s) := P(ht ≤ c1t+ sδ−1
t + a), s ∈ R, (2.4)

can be written as a Fredholm determinant on ℓ2([s+ δt,∞) ∩ It, δtν) with ν
the point measure on It,

Ft(s) = det(1−Kt,resc)ℓ2([s+δt,∞)∩It,δtν)

=
∞∑

n=0

(−1)n

n!

∑

x1,...,xn∈Jt

δnt det(Kt,resc(xi, xj))1≤i,j≤n.
(2.5)

4Mathematically, we get a weaker result, but to illustrate what really happens let us
assume that one has (2.8). What is missing are explicit bounds on the decay of the
kernels, which can be obtained by standard asymptotic analysis; the ingredients like the
steep descent paths are all already contained in previous papers. For TASEP we illustrate
the results with a simulation for time t = 1000.
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Note that Ft and the Fredholm determinant in (2.5) are piecewise constant
functions, with jumps for values of s in the lattice It. The next step is to
show that for s1, s2 ∈ It and a well-chosen a ∈ R,

Kt,resc(s1, s2) = K(s1, s2) + δtKasym(s1, s2) +O(δ2t ) (2.6)

where K is a symmetric and Kasym an antisymmetric kernel. Then, it follows
that5

Ft(s) = det(1−Kt,resc)ℓ2([s+δt,∞)∩It,δtν)

= det(1−K)ℓ2([s+δt,∞)∩It,δtν)

×
(
1 + δtTr((1− χsKχs)

−1)χsKasymχs) +O(δ2t )
) (2.7)

where χs is the projection onto [s+ δt,∞)∩ It. The operator under the trace
is antisymmetric, therefore its trace is zero and

Ft(s) = det(1−K)ℓ2([s+δt,∞)∩It,δtν)
(
1 +O(δ2t )

)
, s ∈ R. (2.8)

If we denote by
F (s) := det(1−K)L2((s,∞)) (2.9)

the limiting distribution of Ft(s) taken as a Fredholm on L2((s,∞)), then by
Lemma 2.1 below, we get

Ft(s) = F (s+ 1
2
δt) +O(δ2t ), (2.10)

for s ∈ It, and by the argument below (that gives Result 3), one finally
obtains

pt(s) = F ′(s) +O(δ2t ). (2.11)

In Section 3 we derive (2.6) for the PNG model and the TASEP.
Let us explain how to get Result 3 without the need of Fredholm deter-

minant representations. Assume that there exists a constant γ such that

Ft(s) = F (s+ γδt) + δ2tQ(s) +O(δ3t ), s ∈ It, (2.12)

with F ∈ C2 and Q ∈ C1. Then using Taylor expansion we readily obtain

pt(s) = F ′(s) +
δt
2
(γ2 − (1− γ)2)F ′′(s) +O(δ2t ), s ∈ It. (2.13)

Therefore, if γ = 1/2, then pt(s) − F ′(s) = O(δ2t ) for s ∈ It, while the
approximation would be only of order δt if γ 6= 1/2.

In our case, see Corollary 2.2, we have γ = 1/2 which is a consequence of
the following lemma.

5On a rigorous level, one needs to verify that (a) the O(δ2t ) in (2.6) is an operator with
with 1-norm of order O(δ2t ) and (b) (1− χsKχs)

−1χsKasymχs is trace-class.
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Lemma 2.1. Assume that the kernel K satisfies6

max{|K(x1, x2)|, |∂iK(x1, x2)|, |∂i∂jK(x1, x2)|} ≤ Ce−c(x1+x2) (2.14)

for some constants C, c > 0, for all x1, x2 ∈ (s,∞) and i, j ∈ {1, 2}. Let δt
be as above the lattice width. Then7

∣∣det(1−K)L2((s+δt/2,∞)) − det(1−K)ℓ2([s+δt,∞)∩It,δtν)
∣∣ = O(δ2t e

−cs). (2.15)

Proof. Let us set Jt := It ∩ [s+ δt,∞). Then, we have

det(1−K)ℓ2(Jt,δtν) =

∞∑

n=0

(−1)n

n!

∑

x1,...,xn∈Jt

δnt det(K(xi, xj))1≤i,j≤n (2.16)

and

det(1−K)L2((s+δt/2,∞)) =

∞∑

n=0

(−1)n

n!

∫

(s+δt/2,∞)n

dnx det(K(xi, xj))1≤i,j≤n.

(2.17)
Equation (2.15) then follows from Lemma A.1 with

f(x1, . . . , xn) := det(K(s+ δt + xi, s+ δt + xj))1≤i,j≤n (2.18)

together with Lemma A.2.

A straightforward corollary is the following.

Corollary 2.2. Assume (2.8) and (2.14) to hold. Then, for large t, we have
(remember that δt = c−1

2 t−1/3)

Ft(s) = F (s+ 1
2
δt) +O(δ2t ) (2.19)

for s ∈ It.

Remark 2.3. An equivalent way would be to consider the scaling (2.3)
without the shift by a, i.e.,

K̃t,resc(s1, s2) := δ−1
t Kt(c1t+ s1δ

−1
t , c1t + s2δ

−1
t ) = Kt,resc(s1 − aδt, s2 − aδt)

(2.20)

6With ∂i we mean the derivative with respect to the ith entry of the function. The
assumption (2.14) holds for the Airy kernels, see Lemma A.3.

7For the Airy kernels it is easy to improveO(t−2/3e−s) toO(t−2/3e−max{s,0}). However,
getting a rigorous good bound for the error as s → −∞ is a much more difficult task (this
would be needed for a rigorous proof of the convergence of the moments).
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Then, instead of (2.6) we would have obtained

K̃t,resc(s1, s2) =K(s1, s2)− aδt(∂1K(s1, s2) + ∂2K(s1, s2))

+ δtK̃asym(s1, s2) +O(δ2t ).
(2.21)

In the specific case of the Airy kernels KA2
(x, y) :=

∫
R+

dλ Ai(x+λ) Ai(y+λ)

and KA1
(x, y) := Ai(x+ y),

∂1KA2
(s1, s2) + ∂2KA2

(s1, s2) = −Ai(s1) Ai(s2), (2.22)

and
∂1KA1

(s1, s2) + ∂2KA1
(s1, s2) = 2Ai′(s1 + s2). (2.23)

2.2 On the moments (Result 4)

Another consequence of the constant shift by a is that all finite moments
of Ft converge as fast as t−2/3. Without the shift, the first moment would
converge only as fast as t−1/3, while the variance, skewness, kurtosis would
of course not be affected by the shift.

Lemma 2.4. Assume that8 Ft(s) = F (s + δt
2
) + O(δ2t )Gt(s) for s ∈ It

such that F has finite mth moment (with F ′′ ∈ L1 ∩ C0) and Gt satisfy-
ing

∫
R
ds |s|m|Gt(s)| < ∞ uniformly in t. Then,

∫

R

sm dFt(s) =

∫

R

sm dF (s) +O(δ2t ) (2.24)

for all m ∈ N.

Proof. Let us set It = I+t ∪ I−t where I±t = It ∩R±, w = sup I−t + δt = inf I+t ,
and Ĩ±t := I±t + δt/2. Then, for any m ≥ 1,

∫

R

sm dFt(s) ≡ δt
∑

s∈It
sm pt(s) =

∑

s∈It
sm(Ft(s)− Ft(s− δt))

=
∑

s∈I+t

sm(Ft(s)− 1)−
∑

s∈I+t

(s+ δt)
m(Ft(s)− 1) +

∑

s∈I−t

smFt(s)

−
∑

s∈I−t

(s+ δt)
mFt(s) + wmFt(w − δt)− wm(Ft(w − δt)− 1)

= wm +
∑

s∈I+t

(sm − (s+ δt)
m)(Ft(s)− 1) +

∑

s∈I−t

(sm − (s+ δt)
m)Ft(s).

(2.25)

8Note that this condition is stronger than (2.19) and in general not so easy to obtain
rigorously.
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Now we set s̃ = s+ δt
2
so that

(sm − (s+ δt)
m) = (s̃− δt

2
)m − (s̃+ δt

2
)m = −mδts̃

m−1 +O(δ3t ). (2.26)

Then using Ft(s̃− δt
2
) = F (s̃) +O(δ2t )Gt(s̃) we obtain

(2.25) = wm −mδt
∑

s̃∈Ĩ+t

s̃m−1(F (s̃)− 1)−mδt
∑

s̃∈Ĩ−t

s̃m−1F (s̃) +O(δ2t )

= wm −mδt

∫ ∞

w

ds sm−1(F (s)− 1)−mδt

∫ w

−∞
ds sm−1F (s) +O(δ2t )

=

∫

R

sm dF (s) +O(δ2t ).

(2.27)
where we used Lemma A.1 to approximate the sums by the integrals.

2.3 How to fit the experimental data

For completeness, we explain shortly how to fit the experimental data. We
partially follow the description of the Supplementary Notes of [36] and use
their notations. Let us assume that we observed a growth process which is
thought to belong to the KPZ class. Let S = εZ, ε > 0, be a discrete subset
of R, where the values of the height function at time t, denoted by ht, lives.
Let N ≫ 1 the number of experimental measurements and denote by 〈 · 〉 the
empirical average over the N experiments. Having (1.5) in mind, we expect
to have

ht ≃ v∞ t + (Γt)1/3ζ + a (2.28)

where ζ is a GUE (resp. GOE) Tracy-Widom distributed random variable
for curved (resp. flat) limit shape, v∞ the asymptotic growth velocity and a
a constant.

(1) Determine the asymptotic growth velocity v∞. Using

d〈ht〉
dt

≃ v∞ + b t−2/3, b = Γ1/3E(ζ)/3. (2.29)

one obtains v∞ from the plot (t−2/3, d〈ht〉
dt

).

(2) Verify the fluctuation scaling exponent and the fluctuation amplitude
Γ. With a log-log plot we can verify if the power 2/3 in

〈(ht − 〈ht〉)2〉 ≃ (Γt)2/3 Var(ζ) (2.30)

holds and at the same time measure the constant Γ 6= 0.
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(3) Determine the shift parameter a. Consider the standard KPZ scaling

h̃t,resc := (ht − v∞ t)/(Γ t)1/3. Then, a is measured according to the
relation

〈h̃t,resc〉 −E(ζ) ≃ a (Γt)−1/3. (2.31)

Now that we have determined v∞, Γ and a, we fit the data vs. the theoretical
predictions. We set ht,resc := h̃t,resc − a (Γt)−1/3.

(4.1) Density : We do a plot of the frequencies of ht,resc with the set
(S − v∞t− a)/(Γt)1/3 in the abscissa axis. Then we compare this with
the graph of the Tracy-Widom densites s 7→ F ′(s).

(4.2) Distribution function: We do a plot of the cumulated frequencies of
ht,resc with the set (S − v∞t− a)/(Γt)1/3 in the abscissa axis. Then we
compare this with the graph of the (shifted) Tracy-Widom distribution
function s 7→ F (s+ 1

2
ε/(Γt)1/3)).

3 PNG and TASEP

In this section we determine the value of the order 1 shifts for the PNG and
TASEP models, both with flat and curved geometry.

3.1 Flat PNG

In [11] the formula for the height function ht at time t for the flat PNG was
obtained9. It is shown thatP(ht(0) ≤ H) = det(1−KflatPNG

t )ℓ2({H+1,H+2,...}) (3.1)

with

KflatPNG
t (x1, x2) = Jx1+x2

(4t) =
1

2πi

∮

Γ0

dz
e2t(z−z−1)

zx1+x2+1
, (3.2)

where Jn is the standard Bessel function (we use the conventions of [1])10.
As t → ∞, we consider the scaling

H(s) = 2t+ s(2t)1/3 ∈ N ⇒ s ∈ It = (N− 2t)(2t)−1/3 (3.3)

9For the one-point distribution there exists also a formulation in terms of Fredholm
Pfaffian.

10With the notation ΓS , with S a set, we mean any simple counterclockwise oriented
path encircling the set S.
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Under this scaling it is known that [11]

KflatPNG
t,resc (s1, s2) := (2t)1/3KflatPNG

t (H(s1), H(s2))

→ Ai(s1 + s2) = KA1
(s1, s2) (3.4)

as t → ∞ and uniformly for s1, s2 in bounded sets. Moreover, there are ex-
ponential bounds for the decay of KflatPNG

t,resc (see, e.g., Appendix A.2 of [15])
which ensures that we can take the limit t → ∞ inside the Fredholm deter-
minant, leading to11

lim
t→∞

P(ht(0) ≤ 2t+ s(2t)1/3) = det(1−KA1
)L2((s,∞)) = FGOE(2s), (3.5)

where FGOE is the GOE Tracy-Widom distribution function [38].
Here we focus on the first order correction of KflatPNG

t,resc with respect to
KA1

and show that it is zero. Since the asymptotic analysis is quite standard
(see e.g. Lemma 6.1 of [8] for the explanation of general strategy), here and
in the next sections we indicate only the important steps.

Proposition 3.1. Uniformly for s1, s2 in a bounded subset of It,

KflatPNG
t,resc (s1, s2) = KA1

(s1, s2) +O(t−2/3). (3.6)

Proof. We have

KflatPNG
t,resc (s1, s2) =

(2t)1/3

2πi

∮

Γ0

dz
e2t(z−z−1)

z4t+(s1+s2)(2t)1/3+1
. (3.7)

The function z 7→ z − z−1 − 2 ln z has a double critical point at zc = 1. The
steepest descent path can be taken to be coming into zc with an angle e−πi/3,
leaving with an angle eπi/3, and completed by a piece of a circle around zero
with a radius strictly larger than 1. Then, the leading term in the asymptotic
of KflatPNG

t,resc comes from a t−1/3-neighborhood of zc. Setting z = 1+Z(2t)−1/3

and doing the large t expansion of the integrand in (3.7), one obtains

KflatPNG
t,resc (s1, s2) =

1

2πi

∫ ∞eπi/3

∞e−πi/3

dZ exp

(
Z3

3
− ζZ

)

×
(
1− t−1/3

(
Z

21/3
− ζZ2

24/3
+

Z4

24/3

)
+O(t−2/3)

)
, (3.8)

11In [11] the result is for joint distributions of the height function at different posi-
tions. The one-point distribution was also obtained through its relation with symmetrized
permutations [5].
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where we have set for simplicity ζ := s1 + s2. Using the contour integral
representation of the Airy function (A.11) we have

KflatPNG
t,resc (s1, s2) = Ai(ζ)+ t−1/3

[
Ai′(ζ)

21/3
+

ζ Ai′′(ζ)

24/3
− Ai(4)(ζ)

24/3

]
+O(t−2/3).

(3.9)

Finally, using the identity Ai′′(ζ) = ζ Ai(ζ) of the Airy function one readily
gets that the square bracket is equal to zero.

3.2 PNG droplet

The formula for the height function ht at time t for the PNG droplet was
determined in [27]. Let us fix c ∈ (−1, 1). Then,P(ht(ct) ≤ H) = det(1−KcurvPNG

t,c )ℓ2({H+1,H+2,...}) (3.10)

with

KcurvPNG
t,c (x1, x2) =

∑

ℓ≥0

Jx1+ℓ(2t
√
1− c2)Jx2+ℓ(2t

√
1− c2). (3.11)

We consider the case c = 0 (and drop the index c) since the general case is
simply obtained by replacing t by t

√
1− c2. An integral representation of

the kernel is given by

KcurvPNG
t (x1, x2) =

1

(2πi)2

∮

Γ0

dw

∮

Γ0,w

dz
e2t(z−z−1)

e2t(w−w−1)

wx2−1

zx1

1

z − w
. (3.12)

As t → ∞, we consider the scaling

H(s) = 2t+ st1/3 + a ∈ N ⇒ s ∈ It = (N− 2t− a)t−1/3 (3.13)

for a t-independent constant a to be specified later. In [27] it is proven that
the rescaled kernel converges to the Airy kernel, namely

KcurvPNG
t,resc (s1, s2) := t1/3KcurvPNG

t (H(s1), H(s2))

→
∫

R+

dλAi(s1 + λ) Ai(s2 + λ) = KA2
(s1, s2), (3.14)

as t → ∞ and uniformly for s1, s2 in bounded sets. Moreover, exponential
bounds for the decay of KcurvPNG

t,resc ensure that12

lim
t→∞

P(ht(0) ≤ 2t+ st1/3 + a) = det(1−KA2
)L2((s,∞)) = FGUE(s), (3.15)

12The extension to joint distributions was obtained in [27], while the one-point result
is reported in [26] using a mapping to the Poissonized longest increasing subsequence
problem, which was already solved in [3].
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where FGUE is the GUE Tracy-Widom distribution function [37].
The first order correction ofKcurvPNG

t,resc with respect toKA2
is the following.

Proposition 3.2. Uniformly for s1, s2 in a bounded subset of It, with the
choice a = 1/2,

KcurvPNG
t,resc (s1, s2) = KA2

(s1, s2) +O(t−2/3). (3.16)

Proof. The rescaled kernel is

KcurvPNG
t,resc (s1, s2) =

t1/3

(2πi)2

∮

Γ0

dw

∮

Γ0,w

dz
et(z−z−1)

et(w−w−1)

w2t+s2t1/3+a−1

z2t+s1t1/3+a

1

z − w
.

(3.17)
Here, we have to integrate over two contours, the one in the z-variable en-
closing the contour in the w-variable. The steepest descent path for z can be
taken as in the flat case, the one for w leaves the critical points with an angle
e2πi/3 and then is completed by a piece of a circle of radius strictly smaller
than 1. Doing the change of variables

z = 1 + t−1/3Z, w = 1 + t−1/3W, (3.18)

we eventually get

KcurvPNG
t,resc (s1, s2) =

1

(2πi)2

∫ ∞e2πi/3

∞e−2πi/3

dW

∫ ∞eπi/3

∞e−πi/3

dZ
eZ

3/3−s1Z

eW 3/3−s2W

1

Z −W

×
(
1 + t−1/3

[
s1Z

2 − s2W
2

2
− Z4 −W 4

4
− aZ + (a− 1)W

]
+O(t−2/3)

)
,

(3.19)

where the integration paths do not intersect. At this point we see that setting
a = 1/2 the first order term is antisymmetric. In particular we can choose
the paths to satisfy ReZ > ReW and use 1

Z−W
=

∫∞
0

dλe−λ(Z−W ) to get

KcurvPNG
t,resc (s1, s2) = KA2

(s1, s2)+t−1/3
(
P (s1, s2)−P (s2, s1)

)
+O(t−2/3) (3.20)

with P given by

P (s1, s2) =
1

2

∫ ∞

0

dλAi(s2 + λ)

[
d

ds1
+ s1

d2

ds21
− d4

ds41

]
Ai(s1 + λ). (3.21)

Using Ai′′(x) = xAi(x) and integration by parts one then shows P (s1, s2) =
P (s2, s1).
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Without the shift by a in the scaling, the result would have been

KcurvPNG
t,resc (s1, s2) = KA2

(s1, s2)− 1
2
t−1/3(−Ai(s1) Ai(s2))) +O(t−2/3) (3.22)

from which we can read off the shift a = 1/2, compare with Remark 2.3.

Remark 3.3. The shift by a = 1/2 is actually independent of c ∈ (−1, 1),
which is due to the fact that it is built up during the first stages of the growth
process and for large t it converges to 1/2. Therefore for large t, the shift at
time t

√
1− c2 is the same as for the model at time t.

3.3 TASEP with alternating initial condition

Now consider TASEP with alternating initial condition, xk(t = 0) = −2k,
k ∈ Z. The joint distribution of particle positions for this initial condition
has been determined in [10]. For one particle (here −xn(t) plays the role of
ht), we have P(xn(t) ≥ X) = det(1−KflatTASEP

t,n )ℓ2({...,X−2,X−1}) (3.23)

with

KflatTASEP
t,n (x1, x2) =

−1

2πi

∮

Γ1

dz et(1−2z) z2n+x2

(1− z)2n+x1+1
. (3.24)

As t → ∞, we consider the scaling

X(s) = −2n+ 1
2
t− st1/3 − a ∈ Z ⇒ s ∈ It = (Z− t/2 + a)t−1/3 (3.25)

for a t-independent constant a to be specified later. It is known13 that [10]

KflatTASEP
t,resc (s1, s2) := 2X(s2)−X(s1)t1/3KflatTASEP

t (X(s1), X(s2))

→ KA1
(s1, s2) (3.26)

as t → ∞ and uniformly for s1, s2 in bounded sets. Moreover, exponential
bounds for the decay of KflatTASEP

t,resc ensure that

lim
t→∞

P(x0(t) ≥ t/2− st1/3 − a) = det(1−KA1
)L2((s,∞)) = FGOE(2s). (3.27)

The first order correction of KflatTASEP
t,resc with respect to KA1

is given as
follows.

13The prefactor 2X(s2)−X(s1) is just a conjugation, which does not change the underlying
determinantal point process, but it is needed to have a well-defined limit.
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Figure 1: Distribution function of xn=[t/4](t) for TASEP with alternating
initial conditions and t = 1000. The number of runs is 106. The dots are the
plot of (s ∈ It,P(x[t/4](t) ≥ X(s))) with δt = t−1/3 and a = 1/2. The solid
line is (s, FGOE(2s+

1
2
δt)) while the dashed line is (s, FGOE(2s+

1
2
δt − aδt))),

where the shift by aδt for dashed line follows from the definition It, see (3.25).
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Figure 2: Probabilities for xn=[t/4](t) for TASEP with alternating initial con-
ditions and t = 1000. The number of runs is 106. The dots are the plot of
(s ∈ It,P(x[t/4](t) = X(s))δ−1

t ) with δt = t−1/3 and a = 1/2. The solid line is
(s, 2F ′

1(2s)) while the dashed line is (s, 2F ′
1(2s− aδt)).

17



Proposition 3.4. Uniformly for s1, s2 in a bounded subset of It, with the
choice a = 1/2, it holds

KflatTASEP
t,resc (s1, s2) = KA1

(s1, s2) + t−1/3Kasym(s1, s2) +O(t−2/3), (3.28)

where Kasym(s1, s2) =
1
2
(s22 − s21) Ai(s1 + s2).

Proof. The rescaled kernel reads

KflatTASEP
t,resc (s1, s2) = −t1/3

2πi

2s1t
1/3

2s2t1/3

∮

Γ1

dz et(1−2z) zt/2−s2t1/3−a

(1− z)t/2−s1t1/3−a+1
(3.29)

The function z 7→ 1−2z+ 1
2
ln z

1−z
has a double critical point at zc = 1/2. We

choose as steep descent path the one coming into zc with angle eiπ/3, leaving
with angle e−iπ/3, and continued by a piece of a circle around 1 with radius
1/2. Setting Z = t1/3(2z − 1), we get

KflatTASEP
t,resc (s1, s2) =

1

2πi

∫ ∞eiπ/3

∞e−iπ/3

dZ eZ
3/3−(s1+s2)Z

×
(
1 + t−1/3

(
(1− 2a)Z +

s2 − s1
2

Z2

)
+O(t−2/3)

)
. (3.30)

Thus we see that in order to make the first order correction antisymmetric
we need to choose a = 1/2. With this choice,

KflatTASEP
t,resc (s1, s2) = Ai(s1+s2)+

1
2
(s2−s1) Ai

′′(s1+s2)t
−1/3+O(t−2/3) (3.31)

and the statement follows using Ai′′(s1 + s2) = (s1 + s2) Ai(s1 + s2).

3.4 TASEP with step initial condition

Now consider TASEP with step initial condition, xk(0) = −k, k = 1, 2, . . .
The joint distribution of particle positions for this initial condition can be
found for example (as special case) in [9]. For one particle, we have14P(xn(t) ≥ X) = det(1−KstepTASEP

t,n )ℓ2({...,X−2,X−1}) (3.32)

with

KstepTASEP
t,n (x1, x2) =

1

(2πi)2

∮

Γ0

dz

∮

Γ1

dw
etz

etw

(
1− z

1− w

)n
wn+x2

zn+x1+1

1

z − w
(3.33)

14The formula for the one-point distribution can be also given by a last passage percola-
tion model, which can be analyzed by determinantal line ensembles leading to the Laguerre
kernel [19]. Joint distributions for the related last passage model can be determined via
Schur process [19, 20, 25].
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Now consider a particle that at time t is in the “rarefaction fan”, i.e., it is in
the region with decreasing density strictly between 0 and 1. Such particles
have a particle number n = σt for some σ ∈ (0, 1). Thus, we define for a
couple (n, t) the value of σ := n/t and we assume that this value for large
n and t is clearly away both from 0 and 1. Then, the scaling for t → ∞ is
given by

n = σt ∈ N, X(s) = −n + (1−
√
σ)2t− sc2t

1/3 − a ∈ Z, (3.34)

so that
It = (Z− (1−

√
σ)2t+ a)c−1

2 t−1/3 (3.35)

with c2 = σ−1/6(1−√
σ)2/3, and for a t-independent constant a to be specified

later. It is also known that [9]

KstepTASEP
t,σ,resc (s1, s2) := c−1

2 t1/3(1−
√
σ)X(s1)−X(s2)KstepTASEP

t,σt (X(s1), X(s2))

→ KA2
(s1, s2) (3.36)

as t → ∞ and uniformly for s1, s2 in bounded sets. Moreover, exponential
bounds for the decay of KstepTASEP

t,resc ensure that

lim
t→∞

P(xn(t) ≥ X(s)) = det(1−KA2
)L2((s,∞)) = FGUE(s). (3.37)

Now let us focus on the first order correction.

Proposition 3.5. Uniformly for s1, s2 in a bounded set, with the choice
a = 1/2, it holds

KstepTASEP
t,σ,resc (s1, s2) = KA2

(s1, s2) + c−1
2 t−1/3Kasym(s1, s2) +O(t−2/3), (3.38)

where Kasym(s1, s2) = P (s1, s2)− P (s2, s1), with

P (s1, s2) =
1

2

∫

R+

dλ Ai(s1 + λ)

×
(
Ai′(s2 + λ) + s2Ai

′′(s2 + λ)− 1− 2
√
σ

2
√
σ

Ai(4)(s2 + λ)

)
. (3.39)

Proof. With c1 = 1−2
√
σ we can write X(s) = c1t−c2st

1/3−a. The rescaled
kernel then reads

KstepTASEP
t,σ,resc (s1, s2) =

c2t
1/3(1−√

σ)c2(s1−s2)t1/3

(2πi)2

×
∮

Γ0

dz

∮

Γ1

dw
etz

etw

(
1− z

1− w

)σt
w(σ+c1)t−c2s2t1/3−a

z(σ+c1)t−c2s1t1/3−a+1

1

z − w
. (3.40)
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Figure 3: Distribution function of xn=[t/4](t) for TASEP with step initial
conditions and t = 1000. The number of runs is 106. The dots are the plot of
(s ∈ It,P(x[t/4](t) ≥ X(s))) with δt = (t/2)−1/3 and a = 1/2. The solid line
is (s, FGUE(s+
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Figure 4: Probabilities for x[t/4](t) for TASEP with step initial conditions
and t = 1000. The number of runs is 106. The dots are the plot of
(s ∈ It,P(x[t/4](t) = X(s))δ−1

t ) with δt = (t/2)−1/3 and a = 1/2. The solid
line is (s, F ′

2(s)) while the dashed line is (s, F ′
2(s− aδt)).
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The function z 7→ z+ σ ln(1− z)− (σ+ c1) ln z has a double critical point at
ξ = 1−√

σ. The steepest descent path for z can be taken such that it comes
into ξ with an angle e−2πi/3, leaves with an angle e2πi/3, and is completed by
a piece of a circle around zero of radius strictly larger than ξ. The steepest
descent path for w comes into ξ with an angle eπi/3, leaves it with an angle
e−πi/3, and is completed by a piece of a circle around zero of radius strictly
larger than 1. By the change of variables

z = ξ + c−1
3 t−1/3Z, w = ξ + c−1

3 t−1/3W (3.41)

with c3 = σ−1/6(1 − √
σ)−1/3 and a large t expansion of the integrand, we

have

KstepTASEP
t,σ,resc (s1, s2) =

1

(2πi)2

∫ ∞e2πi/3

∞e−2πi/3

dZ

∫ ∞eπi/3

∞e−πi/3

dW
eW

3/3−s2W

eZ3/3−s1Z

1

W − Z

×
(
1+c−1

2 t−1/3

(
(a−1)Z−aW+

s2W
2 − s1Z

2

2
+c4(Z

4−W 4)

)
+O(t−2/3)

)
,

(3.42)

with c4 = (1 − 2
√
σ)/(4

√
σ). The choice a = 1/2 makes the first order

correction of the kernel antisymmetric. Finally, we can choose the paths
satisfying ReZ < ReW and use 1

W−Z
=

∫∞
0

dλ e−λ(W−Z) to obtain (3.38).

Remark 3.6. Looking at Figures 1–4 one has the impression that TASEP
with alternating initial conditions is already “closer” than with step initial
conditions to its asymptotics at time t = 1000, which is confirmed by the data
in Table 1. This is to remind the reader that although in both cases the error
is O(t−2/3), depending on the prefactor one still might see some differences of
the accuracy for not too large times t. The slower convergence for curved vs.
flat geometry holds also for the PNG model as verified numerically by Richter
in his diploma thesis [29] adapting the numerical approach of Borneman [7].

4 PASEP

Consider the partially asymmetric simple exclusion process on Z in continu-
ous time with step initial condition. A formula for the one-point distribution
of the nth particle from the right has been derived in [39,40]. The expression
is this time not just a Fredholm determinant, but an integral in the complex
plane of a Fredholm determinant. A rigorous large time asymptotic analysis
is in [41], in which it is shown that particles in the rarefaction fan fluctuate
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TASEP, t = 1000 Mean Variance Skewness Kurtosis

Alternating IC −0.60495 0.4027 0.282 0.143
s 7→ FGOE(2s) −0.60327 0.4019(5) 0.293 0.165
Relative error 0.28 % 0.18 % −3.6 % −13 %

Step IC −1.7949(7) 0.842(2) 0.19(0) 0.06(7)
s 7→ FGUE(s) −1.77109 0.8132 0.224 0.094
Relative error 1.3 % 3.6 % −15 % −29 %

Table 1: Comparison between alternating and step initial conditions. The
data comes from the simulation used for the previous figures.

asymptotically according to the GUE Tracy-Widom distribution FGUE. The
scaling limit to be considered is15

n = σt ∈ Z, X(s) = c1(σ)t− sc2(σ)t
1/3 − a ∈ Z (4.1)

where
c1(σ) = 1− 2

√
σ, c2(σ) = σ−1/6(1−

√
σ)2/3. (4.2)

The t-independent constant a will be specified later. Then in [41] it is proven
that

lim
t→∞

P(xn(t/γ) ≥ X(s)) = FGUE(s) with γ = p− q > 0. (4.3)

Our result on the first order correction is the following.

Proposition 4.1. Let p ∈ (1
2
, 1], q = 1− p, and set

ap,q =

∞∑

ℓ=1

qℓ

pℓ − qℓ
and a =

1

2
− 1√

σ
ap,q. (4.4)

Then for large time t it holdsP (xn(t/γ) ≥ X(s)) = FGUE(s+
1
2
δt)(1 +O(t−2/3)), (4.5)

for s in a bounded subset of It = (Z− c1(σ)t+ a)δt with δt = c2(σ)
−1t−1/3.

Remark 4.2. Note that the previously discussed TASEP with step initial
conditions is a special case of this result, with p = 1− q = 1, since a1,0 = 0

15There is a minor difference with respect to the papers of Tracy and Widom. To get
their framework we need to apply the transformation x → −x.
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From this result one can easily get the corresponding result for the height
function. Let ηx(t) be 1 if there is a particle at site x at time t, and zero
otherwise. Then the height function is defined by

h(x, t) =





2J(0, t) +
∑x−1

y=0(1− 2ηy(t)), for x ≥ 1,

2J(0, t), for x = 0,

2J(0, t)−
∑−1

y=x(1− 2ηy(t)), for x ≤ −1,

(4.6)

where J(0, t) =
∑

y≥0 ηy(t). To get the result for the h from Proposition 4.1
one simply uses the identityP(xj(t) ≥ x) = P(h(x, t) ≥ 2j + x) (4.7)

with the following result.

Corollary 4.3. Let x = ξt ∈ Z and set

H(s) =
1

2
(1 + ξ2)t− s

(1− ξ2)2/3

21/3
t1/3 + ã, ã = 2ap,q − 1. (4.8)

Then, for large t it holdsP(h(x, t/γ) ≥ H(s)) = FGUE(s+
1
2
δht )(1 +O(t−2/3)), (4.9)

for s ∈ Iht , where Iht is defined by the requirement H(s) ∈ 2Z if x is even
and H(s) ∈ 2Z + 1 if x is odd. Since the lattice width of h is 2, we have
δht = 24/3(1− ξ2)−2/3t−1/3.
From this result it follows that the critical value pc of the asymmetry in
PASEP such that the density (and the moments) of the rescaled integrated
current are correct up to order O(t−2/3) is the solution of

apc,1−pc =
1

2
⇐⇒ pc = 0.78227 87862. . . (4.10)

In Figure 5 we plot the function 2ap,1−p − 1.

Proof of Corollary 4.3. Let us define a linearization of the distribution func-
tions by

F̃t(s) :=

{P(xn(t/γ) ≥ c1(σ)t− sc2(σ)t
1/3 − 1

2
+ 1√

σ
ap,q), if s ∈ It,

linear interpolation, otherwise,

(4.11)
and similarly

F̃ h
t (s) :=

{P(h(ξt, t/γ) ≥ H(s), if s ∈ Iht ,

linear interpolation, otherwise.
(4.12)
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Then, Proposition 4.1 tell us that

F̃t(s− 1
2
δt) = FGUE(s)(1 +O(t−2/3)), s ∈ R, (4.13)

and we want to show that

F̃ h
t (s− 1

2
δht ) = FGUE(s)(1 +O(t−2/3)), for s ∈ Iht + 1

2
δht . (4.14)

For s ∈ Iht + 1
2
δht , using (4.7) we have

F̃ h
t (s− 1

2
δht ) = P(h(ξt, t/γ) ≥ H(s− 1

2
δht ))

= P(h(ξt, t/γ) ≥ H(s) + 1) = P(xσt(t/γ) ≥ ξt)
(4.15)

with σ = (H(s)+1−ξt)/(2t). With this value of σ, an algebraic computation
gives

ξt = c1(σ)t− sc2(σ)t
1/3 − (a− 1/2) +O(t−1/3). (4.16)

Since sc2(σ)t
1/3 + (a− 1/2) = (s− 1

2
δt)c2(σ)t

1/3 + a we get that

F̃ h
t (s− 1

2
δht ) = (4.15) = F̃t(s− 1

2
δt+O(t−2/3)) = FGUE(s)(1+O(t−2/3)) (4.17)

where in the last step we used (4.13) coming from Proposition 4.1.

Remark 4.4. As p → 1/2 the model becomes close to the WASEP studied
in [2, 31, 32, 34]. In particular, our result matches the limit behavior of [31].
Indeed, when the asymmetry β := 2p− 1 → 0, the shift for the fitting of the
density behaves as

ap,1−p ≃
γE − ln(2β)

2β
+

1

4
+O(β), (4.18)

with γE = −∂x ln(Γ(x))
∣∣
x=1

= −0.57721 56649 . . . the Euler constant, so that

for the height function the shift is then ã = β−1(ln(2β)− γE)− 1
2
+O(β).

Proof of Proposition 4.1. As for PNG and TASEP, we indicate the main
steps of the asymptotic analysis to get (4.5) for s in a bounded set, but we
will derive bounds for |s| → ∞ needed to determine moment convergence.
Set u = c1t− c2st

1/3 − a and τ = q/p < 1. As shown in [42],P(xn(t/γ) ≥ u
)
=

1

2πi

∮
dµ

µ
(µ; τ)∞ det

(1 + µJµ), (4.19)
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Figure 5: The function p 7→ 2ap,1−p−1 for p ∈ (1/2, 1]. It crosses the ordinate
axis as p = pc = 0.78227 87862. . ..

where (µ; τ)∞ is the q-Pochhammer symbol (see Appendix B for identities)
and the integral is taken over a circle around the origin with radius in the
interval (0, τ). The operator Jµ has kernel

Jµ(η, η
′) =

1

2πi

∮
dζ

exp
(

tζ
1−ζ

)
(1− ζ)uζn

exp
(

tη′

1−η′

)
(1− η′)u(η′)n+1

f
(
µ, ζ

η′

)

ζ − η
, (4.20)

where η, η′ are on a circle around 0 with radius r ∈ (τ, 1) and ζ runs on a
circle around 0 with radius in (1, r/τ). For 1 < |z| < τ−1, the function f is
given by

f(µ, z) =

∞∑

k=−∞

τk

1− τkµ
zk, (4.21)

which extends analytically to C∗ \ {τk : k ∈ Z}.
The function ζ 7→ ζ

1−ζ
+ σ ln ζ + c1 ln(1 − ζ) has a double critical point

at ξ = −
√
σ

1−√
σ
, and the steepest descent path can be taken such that the

η-contour for Jµ is a pair of rays from ξ in the directions ±π/3 completed
by a circle around zero of radius strictly smaller than 1, and the ζ-contour
is a pair of rays from ξ− t−1/3 in the directions ±2π/3 completed by a circle
around zero of radius strictly larger than 1. We then do the transformations

ζ = ξ + c−1
3 t−1/3z, η = ξ + c−1

3 t−1/3w, η′ = ξ + c−1
3 t−1/3w̃, (4.22)

with c3 = σ−1/6(1−√
σ)5/3. Expanding f around z = 1 yields

µ f(µ, z) =
1

1− z
+ g(µ) +O

(
|z − 1|

)
, (4.23)
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where

g(µ) =
∞∑

k=0

µτk

1− µτk
+

∞∑

k=1

τk

τk − µ
. (4.24)

This expansion is obtained by dividing the series into {0, 1, . . .} and
{. . . ,−2,−1}, using

µτk

1− τkµ
=

1

1− τkµ
− 1, (4.25)

and then change the variable k → −k in one of the sum. After a large t
expansion, the kernel µJµ can be written as

1

2πi

∫ e2πi/3∞

e−2πi/3∞
dz

ew̃
3/3−w̃(s+δt/2)

ez3/3−z(s+δt/2)

e(w̃−z)δt/2

(z − w)(w̃ − z)

×
exp

((
c4w̃

4 − 1
2
sw̃2 −

(
g(µ)√

σ
+ a

)
w̃
)
c−1
2 t−1/3 +O(t−2/3)

)

exp
((
c4z4 − 1

2
sz2 −

( g(µ)√
σ
+ a

)
z
)
c−1
2 t−1/3 +O(t−2/3)

) (4.26)

with c4 =
1+2

√
σ

4
√
σ
. Since Re(z − w̃) < 0, we have

e(z−w̃)(s+δt/2)

w̃ − z
=

∫ ∞

s+δt/2

dx e(z−w̃)x, (4.27)

and plugging (4.27) into (4.26) gives

1

2πi

∫ ∞

s+δt/2

dx

∫ e2πi/3∞

e−2πi/3∞
dz

ew̃
3/3−w̃x

ez3/3−zx

1

z − w

×
exp

((
c4w̃

4 − 1
2
sw̃2 −

(g(µ)√
σ
− 1

2
+ a

)
w̃
)
c−1
2 t−1/3 +O(t−2/3)

)

exp
((
c4z4 − 1

2
sz2 −

(
g(µ)√

σ
− 1

2
+ a

)
z
)
c−1
2 t−1/3 +O(t−2/3)

) (4.28)

The operator Jµ is the product C1C2C3, where the factors have kernels

C1(w, z) =
1

2πi

e−z3/3

z − w
,

C2(z, x) =
1

2πi
exz e−c−1

2
t−1/3

[
c4z4−sz2/2−z(g(µ)/

√
σ−1/2+a)

]
+O(t−2/3),

C3(x, w̃) = ew̃
3/3−w̃x ec

−1

2
t−1/3

[
c4w̃4−sw̃2/2−w̃(g(µ)/

√
σ−1/2+a)

]
+O(t−2/3).

(4.29)

The operator C3C1C2, which has the same Fredholm determinant, acts on
L2(s+ δt/2,∞) and has kernel with (x, y) entry given by

1

(2πi)2

∫ e2πi/3∞

e−2πi/3∞
dz

∫ eπi/3∞

e−πi/3∞
dw

ew
3/3−wx

ez3/3−zy

1

z − w

(
1 +O(t−2/3)

+
((
c4(w

4 − z4)− 1
2
s(w2 − z2)−

(g(µ)√
σ
− 1

2
+ a

)
(w − z)

)
c−1
2 t−1/3

)
. (4.30)
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Using again Re(z−w) < 0, we can write 1
w−z

=
∫∞
0

dλe−λ(w−z). Thus, (4.30)
equals

−KA2
(x, y) + c−1

2 t−1/3
(
Kasym(x, y) +Ksym(x, y)

)
+O(t−2/3), (4.31)

where Kasym(x, y) = P (x, y)− P (y, x) with

P (x, y) =

∫ ∞

0

dλAi(x+ λ)

[
c4

d4

dy4
− s

2

d2

dy2

]
Ai(y + λ) (4.32)

is asymmetric, and Ksym(x, y) = −
( g(µ)√

σ
− 1

2
+ a

)
Ai(x) Ai(y) is symmetric.

Hence, we haveP(xm(t/γ) ≥ u
)
= FGUE(s+ δt/2)

×
(
1−

(
G√
σ
− 1

2
+ a

)
Tr

(
(1− χsKA2

χs)
−1χs(Ai⊗Ai)χs

)
t−1/3

+O(t−2/3)
)
. (4.33)

with χs the projection onto (s+ δt/2,∞) and

G =
1

2πi

∮

τ<|µ|<1

dµ

µ
g(µ)(µ; τ)∞. (4.34)

We will show that G = ap,q so that by choosing a = 1
2
− 1√

σ
ap,q the prefactor

of the first order correction vanishes. First note that

1

2πi

∮

τ<|µ|<1

dµ

µ
(µ; τ)∞

∞∑

k=0

µτk

1− τkµ
= 0, (4.35)

as the integrand has no poles inside the unit circle. So, we have

G =
1

2πi

∮

τ<|µ|<1

dµ

µ
(µ; τ)∞

∞∑

k=1

τk

τk − µ
. (4.36)

We use
1

µ

τk

τk − µ
=

1

µ
+

1

τk − µ
, (4.37)

the fact that (µ; τ)∞ is analytic inside the integration domain, so that the
sum of the contributions of the simple poles gives

G =
∞∑

k=1

(
1− (τk; τ)∞

)
. (4.38)
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There is a simpler expression for G. Using the identity (B.2) we get

G = −
∞∑

k=1

∞∑

ℓ=1

(−1)ℓτ ℓ(ℓ−1)/2

(τ ; τ)ℓ
τkℓ =

∞∑

ℓ=1

(−1)ℓτ ℓ(ℓ−1)/2

(τ ; τ)ℓ

τ ℓ

τ ℓ − 1
(4.39)

Then we use (B.3) and (α; τ)ℓ/(ατ ; τ)ℓ = (α− 1)/(ατ ℓ − 1) to get

G = lim
α→1

1

α− 1

∞∑

ℓ=1

(−1)ℓτ ℓ(ℓ−1)/2(α; τ)ℓ
(τ ; τ)ℓ(ατ ; τ)ℓ

τ ℓ

= lim
α→1

1

α− 1

(
1φ1

(
α
ατ

∣∣∣∣ τ ; τ
)
− 1

)

= lim
α→1

1

α− 1
lim
β→∞

(
2φ1

(
α, β
ατ

∣∣∣∣ τ ;
τ

β

)
− 1

)
(4.40)

where we used (B.4) in the last equality. Finally, the q-Gauss identity (B.5)
leads to

G = lim
α→1

1

α− 1
lim
β→∞

(
(ατ/β; τ)∞(τ ; τ)∞
(ατ ; τ)∞(τ/β; τ)∞

− 1

)
= −∂α(ατ ; τ)∞

(τ ; τ)∞

∣∣∣∣
α=1

= −∂α ln[(ατ ; τ)∞]
∣∣
α=1

= −∂α

∞∑

ℓ=0

ln(1− ατ ℓ+1)

∣∣∣∣
α=1

=
∞∑

ℓ=1

τ ℓ

1− τ ℓ
.

(4.41)
Replacing τ = q/p leads to G = ap,q. This and (4.33) shows thatP(xn(t/γ) ≥ u

)
= FGUE(s)(1 +O(t−2/3)). (4.42)

A Discrete sums versus integrals

Lemma A.1. Let f : Rn → R be a smooth function with ∂j∂kf ∈ L1(Rn),
for all j, k = 1, . . . , n. Then, for δ > 0 (small)

∣∣∣∣δ
n

∑

x∈(Z∗

+
)n

f(xδ)−
∫

(− δ
2
,∞)n

dnx f(x)

∣∣∣∣ = O(δ2)
n∑

j,k=1

∫

Rn
+

dnx |∂j∂kf(x)|. (A.1)

Proof. We first rewrite
∫

(− δ
2
,∞)n

dnx f(x) =
∑

x∈(Z∗

+
)n

∫

[− δ
2
, δ
2
]n
dny f(xδ + y) (A.2)
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and use Taylor development

f(xδ + y) = f(xδ) +

n∑

j=1

∂jf(xδ)yj +
1

2

n∑

j,k=1

yjykRj,k(δ, y), (A.3)

with

|Rj,k(δ, y)| ≤ max
u∈[− δ

2
, δ
2
]2
|∂j∂kf(xδ + u)|, for y ∈ [− δ

2
, δ
2
]n (A.4)

to obtain (after integrating over y),
∣∣∣∣
∫

(− δ
2
,∞)n
dnx f(x)−

∑

x∈(Z∗

+
)n

δnf(xδ)

∣∣∣∣ ≤
δ2

12

∑

x∈(Z∗

+
)n

n∑

j,k=1

δn max
u∈[− δ

2
, δ
2
]2
|∂j∂kf(xδ+u)|.

(A.5)
The statement then follows because the sum over x converges, as δ → 0, to∑n

j,k=1

∫
Rn
+

dnx |∂j∂kf(x)|.

Lemma A.2. Let f(x1, . . . , xn) = det(K(xi, xj))1≤i,j≤n with the kernel K
satisfying

max{|K(x1, x2)|, |∂iK(x1, x2)|, |∂i∂jK(x1, x2)|} ≤ Ce−c(x1+x2) (A.6)

for all x1, x2 ∈ (s,∞), i, j ∈ {1, 2} and some positive constants c, C. Then,

|∂i∂jf(x1, . . . , xn)| ≤ 4Cnnn/2
n∏

k=1

e−2cxk (A.7)

for all 1 ≤ i, j ≤ n.

Proof. Let Ki, (resp. K,j) be the matrix (K(xi, xj))1≤i,j≤n with the ith row
(resp. the jth column) replaced by its derivative w.r.t. the first (resp. the
second) variable. Then,

∂if(x1, . . . , xn) = detKi, + detK,i (A.8)

and from this

∂i∂jf(x1, . . . , xn) = detKij, + detKi,j + detKj,i + detK,ji (A.9)

with Kij, = (Ki,)j,. By Hadamard’s bound, the absolute value of an n × n
determinant with entries in the closed unit disk is bounded by nn/2. It then
follows

|∂i∂jf(x1, . . . , xn)| ≤ 4Cnnn/2
n∏

k=1

e−2cxk (A.10)

for any 1 ≤ i, j ≤ n.
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Lemma A.3. For the Airy kernels, KA2
(x, y) =

∫
R+

dλ Ai(x+ λ) Ai(y + λ)

and KA1
(x, y) = Ai(x+ y), assumption (A.6) of Lemma A.2 is satisfied.

Proof. It is easy to see from the integral representation

Ai(x) =
1

2πi

∫ ∞eπi/3

∞e−πi/3

dz ez
3/3−z x =

1

2πi

∫

iR+δ

dz ez
3/3−z x, ε > 0, (A.11)

that for any δ > 0, there exists a constant Cδ ∈ (0,∞) so that

max{|Ai(x)|, |Ai′(x)|, |Ai′′(x)|} ≤ Cδe
−δx (A.12)

uniformly in x ∈ R.
In the case K(x1, x2) =

∫
R+

dλ Ai(x1 + λ) Ai(x2 + λ) we get from the

bounds (A.12) with ε = 1
2
, after integration with respect to λ, that

max{|K(x1, x2)|, |∂iK(x1, x2)|, |∂i∂jK(x1, x2)|} ≤ Ce−(x1+x2)/2 (A.13)

for some constant C > 0 and all i, j ∈ {1, 2}.
The case K(x1, x2) = Ai(x1 + x2) is even easier, since the bound (A.13)

comes directly from (A.12).

B q-Pochhammer symbols, q-hypergeometric

functions

Here we collect some identities on q-Pochhammer symbols and q-hyper-
geometric functions, used for the PASEP. We use the standards as in [23].
The q-Pochhammer symbol is defined by

(µ; q)∞ =

∞∏

k=0

(1− µqk), and (µ; q)n =

n−1∏

k=0

(1− µqk). (B.1)

They satisfies the following identities:

(µ; q)n =
(µ; q)∞
(µqn; q)∞

, (µ; q)∞ =

∞∑

n=0

(−1)nqn(n−1)/2

(q; q)n
µn (B.2)

so that in particular (0; q)∞ = 1 and (1; q)∞ = 0.
The q-hypergeometric function is defined by

rφs

(
a1, . . . , ar
b1, . . . , bs

∣∣∣∣ q; z
)

=

∞∑

n=0

(a1; q)n · · · (ar; q)n
(b1; q)n · · · (bs; q)n

zn

(q; q)n

(
(−1)nqn(n−2)/2

)1+s−r
.

(B.3)
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In particular, it holds

r−1φs

(
a1, . . . , ar−1

b1, . . . , bs

∣∣∣∣ q; z
)

= lim
ar→∞ rφs

(
a1, . . . , ar
b1, . . . , bs

∣∣∣∣ q;
z

ar

)
. (B.4)

The q-Gauss identity is

2φ1

(
α, β
γ

∣∣∣∣ q; γ
)

=
(γ/α; q)∞(γ/β; q)∞
(γ; q)∞(γ/(αβ); q)∞

. (B.5)
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