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Abstract

We prove an equality-in-law relating the maximum of GUE Dyson’s Brownian
motion and the non-colliding systems with a wall. This generalizes the well known
relation between the maximum of a Brownian motion and a reflected Brownian mo-
tion.

1 Introduction and Results

Dyson’s Brownian motion model of GUE (Gaussian unitary ensemble) is a stochastic pro-
cess of positions of m particles, X(t) = (Xi(¢),...,Xn(t)) described by the stochastic
differential equation,

dt

1<j<m = * J
J#i
where B;,1 < i < m are independent one dimensional Brownian motions [5]. The process
satisfies X1 (t) < Xo(t) < --- < X,,(¢) for all t > 0. We remark that the process X can be
started from the origin, i.e., one can take X;(0) = 0,1 <i < m. See [8].
One can introduce similar non-colliding system of m particles with a wall at the origin [6,
7,14]. The dynamics of the positions of the m particles X(©) = (Xl(c), e ,Xy(nc)) satisfying
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0 < Xq(t) < Xo(t) < --- < X,,(¢) for all £ > 0 are described by the stochastic differential
equation,

© g, dt 1 1 _
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This process is referred to as Dyson’s Brownian motion of type C'. It can be interpreted as

a system of m Brownian particles conditioned to never collide with each other or the wall.

One can also consider the case where the wall above is replaced by a reflecting wall

[7]. The dynamics of the positions of the m particles X(P) = (X{D), Ceey Xy(nD)) satisfying

0 < Xi(t) < Xo(t) < --+ < X,u(t) for all t > 0, is described by the stochastic differential
equation,

1 1 1
(D) _ L1 E : .
dXZ- = dBZ—f-Q]_(Z:l)dL(t)—I— ' (X(D) B X(,D) + X,(D) n X(,D)> dt, 1< <m, (13)
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where L(t) denotes the local time of X{D) at the origin. This process will be referred to
as Dyson’s Brownian motion of type D. Some authors consider a process defined by the
s.d.e.s (1.3) without the local time term. In this case the first component of the process is
not constrained to remain non-negative, and the process takes values in the Weyl chamber
of type D, {|x1] < 22 < z3... < x,,}. The process we consider with a reflecting wall is
obtained from this by replacing the first component with its absolute value, with the local
time term appearing as a consequence of Tanaka’s formula.

It is known the processes X (") can be obtained using the Doob h-transform, see [6].
Let (PtO’(C’D);t > 0) be the transition semigroup for m independent Brownian motions
killed on exiting {0 < 21 < x... < T, }, resp. the transition semigroup for m independent
Brownian motions reflected at the origin killed on exiting {0 < x; < z3... < z,,}. From
the Karlin-McGregor formula, the corresponding densities can be written as

det{o:(z; — 2}) — ¢u(wi + 7)) hr<ij<m, (1.4)
resp.,

det{¢(z; — x;) + ¢¢(zs + x;)}1§i,jgm, (1.5)
where ¢;(z2) = ﬁe‘ﬁ/(%). Let

i=1  1<i<j<m (1.6)



For notational simplicity we suppress the index C, D for the semigroups and in A in the
following. Then one can show that h(z) is invariant for the P? semigroup and we may
define a Markov semigroup by

Py(z,dx’) = h(2")PP(z,dz’) /h(z). (1.7)

This is the semigroup of the Dyson non-colliding system of Brownian motions of type C'
and D. Similarly to the X process, the processes X (©) and X() can also be started from
the origin (see [9] or use Lemma 4 in [7] and apply the same arguments as in [8]).

In GUE Dyson’s Brownian motion of n particles, let us take the initial conditions to be
X;(0) =0,1 <i <n. The quantity we are interested in is the maximum of the position of
the top particle for a finite duration of time, maxg<s<; X,(s). In the sequel we write sup
instead of max to conform with common usage in the literature. Let m be the integer such
that n = 2m when n is even and n = 2m — 1 when n is odd. Consider the non-colliding
systems of X (@) X(P) of m particles starting from the origin, XZ-(C’D) (0)=0,1<i<m.

Our main result of this note is

Theorem 1. Let X and X @), XP) start from the origin. Then for each fized t > 0, one
has
X)), forn=2m,

1.8
Xy(nD)(t), forn =2m — 1. (1.8)

sup X, (s) & {

0<s<t

To prove the theorem we introduce two more processes Z; and Yj. In the Z process,
Zy < Zy < ... < Zy, Zy is a Brownian motion and Z;,; is reflected by Z;, 1 < j <n —1.
Here the reflection means the Skorokhod construction to push Z;;; up from Z;. More
precisely,

Z1(t) = Ba(?),

Zj(t) = sup (Zja(s) + Bj(t) = Bi(s)), 2<j<n, (1.9)
where B;,1 < i <n are independent Brownian motions, each starting from 0. The process
is the same as the process (X{(t), X2(t),..., X"(t);t > 0) studied in section 4 of [15]. The
representation (1.9) was given earlier in [2]. In the Y process, 0 <Y; <Y, < ... <Y,
the interactions among Y;’s are the same as in the Z process, i.e., Yjy is reflected by Y,
1 < j<n-—1, but Y] is now a Brownian motion reflected at the origin (again by Skorokhod
construction). Similarly to (1.9),

Yi(t) = Bi(t) — inf By(s) = sup (Bi(t) — Bi(s)),

0<s<t 0<s<t (1 10)
Yilt) = sup (Vi 1(s) + By(t) - By(s)), 2<j <n. '
0<s<t
From the results in [4,8,15], we know
(Xn(t);t > 0) L (Zo(t);t > 0) (1.11)



and hence
sup X, (s) < sup Zn(8). (1.12)

0<s<t 0<s<t

In this note we show

Proposition 2. The following equalities in law hold between processes:

)
)

d .
)= (X))t >0 (1.13)
;1 >0

)
)
m € N.

The proof of this proposition is given in Section 2. The idea behind it is that the processes
(Y:)i>1 and (X ](-C’D))jzl could be realized on a common probability space consisting of
Brownian motions satisfying certain interlacing conditions with a boundary [15,16]. Such a
system is expected to appear as a scaling limit of the discrete processes considered in [3,16].
In this enlarged process, the processes Y,,(t) and XP) (t) just represent two different ways
of looking at the evolution of a specific particle and so the statement of Proposition 2 follows
immediately. Justification of such an approach is however quite involved, and we prefer to
give a simple independent proof. See also [4] for another representation of XP) in terms
of independent Brownian motions.
Then to prove (1.8) it is enough to show

Proposition 3. For each fixed t we have

d

sup Z,(s) = Y,(t). (1.14)
0<s<t
This is shown in Section 3. For n = 1 case, this is well known from the Skorokhod

construction of reflected Brownian motion [10]. The n > 1 case can also be understood
graphically by reversing time direction and the order of particles. This relation could also
be established as a limiting case of the last passage percolation. In fact the identities in
our theorem was first anticipated from the consideration of a diffusion scaling limit of the
totally asymmetric exclusion process with 2 speeds [1].
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2 Proof of proposition 2

In this section we prove the relation between X (@) and Y, (1.13). The following Lemma
is a generalization of the Rogers-Pitman criterion [11] for a function of a Markov process
to be Markovian.

Lemma 4. Suppose that {X(t) : t > 0} is a Markov process with state space E, evolving
according to a transition semigroup (Py;t > 0) and with initial distribution p. Suppose that
{Y(t) : t > 0} is a Markov process with state space F, evolving according to a transition
semigroup (Qy;t > 0) and with initial distribution v. Suppose further that L is a Markov
transition kernel from E to F', such that pL = v and the intertwining P,L = LQ; holds.
Now let f: E — G and g : F — G be maps into a third state space G, and suppose that

L(z,-) is carried by {y € F : g(y) = f(x)} for each z € E.

Then we have

{f(X(0) £ 20} = {g(Y(1) £ 2 0},
in the sense of finite dimensional distributions.

Proof of Lemma 4. For any bounded function o on G let I'ya be the function avo f defined
on E and let I';ae be the function « o g defined on F'. Then it follows from the condition
that L(z,-) is carried by {y € F : g(y) = f(z)} that whenever h is a bounded function
defined on F' then

L(Tsae x h) =Ty x Lh, (2.1)
which is shorthand for [ L(z,dy)T2a(y)h(y) = I'ia x Lh. For any bounded test functions
g, Qq, -+, defined on G, and times 0 < t; < --- < t,, we have, using the previous

equation and the intertwining relation repeatedly,

Elao(g(Y(0)))ar(g(Y (1)) - - - an(g(Y (£0)))]
= v(loap X Qy, (Taorr X Qpyty (- - - (T20tn—1 X Qty—t,,  Tocwn) -+ +)))
= uL(Dyo X Qp, (Taay X Quyyy (- -+ (Daovn_1 X Q. Tocry)-++)))
= (Mo X Py, (Thon X Py, (- (Tian_1 X Pi, ¢ Tian)-++)))

= E[ao(f(X(0)))en (f(X(t2))) - - - an(f (X (tn)))] (2.2)

which proves the equality in law. O

We let (Y'(t) : t > 0) be the process Y of n reflected Brownian motions with a wall
introduced in the previous section. It is clear from the construction (1.10) that the pro-
cess Y is a time homogeneous Markov process. We denote its transition semigroup by
(Qt;t > 0). It turns out that there is an explicit formula for the corresponding den-

sities. Recall ¢ (z) = \/%me_g/(%). Let us define ¢ (y) = jy—kkqﬁt(y) for k > 0 and

- 00 (z—y)k—1
(B(y) = (~1)F [ C0 6 (2)dz for k > 1.
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Figure 1: The set K. The triangle represents the intertwining relations of the variables z
and the vertical line on the left indicates z2**! > 0, see (2.5),(2.6).The set of variables on
the bottom line is denoted by b(z) and the one on the upper right line by e(z).

Proposition 5. The transition densities q(y,y') fromy = (y1,...,yn) att =0 to y' =
(Yy,-..,y) at t of the Y process can be written as

w(y,y) = det{a;;(yi, y})}lgz‘,jgn (2.3)

where a; ; 1s given by

a;;(y,y) = (=)0 Ny + o) + (=1 ey — o). (2.4)

The same type of formula was first obtained for the totally asymmetric simple exclusion
process by Schiitz [13]. The formula for the Z process was given as a Proposition 8 in [15],
see also [12].

Proof of Proposition 5. For a fixed ', define Gy(y,t) to be (2.3) as a function of y and t.
We check that G satisfies (i) the heat equation, (ii) the boundary conditions g_yG1|?/1:0 =0,
g_g|yi:yi—1 =0, =2,3,...,n and (iii) the initial conditions G(y,t =0) =[]\, 0(y; — ¥}).

(i) holds since ¢{"(y) for each k satisfies the heat equation. (ii) follows from the
relations, a%alj W ¥)ly=0 = ¢§])(y,)+(_1)j+1¢§J)(_y/) =0 and a%aij(ya Y) = —ai-1;(y,y").
For (iii) we notice that the first term in (2.4) goes to zero as t — 0 for y,3’ > 0 and the
statement for the remaining part is shown in Lemma 7 in [15]. O

For n = 2m, resp. n = 2m — 1 we take (X (), > 0) to be Dyson Brownian motion of
type C, resp. of type D. The transition semigroup (Pt;t > O) of this process is given by
(1.7).

Let K denote the set with n layers z = (2%, 2%,...,2") where 22* = (23 22F ... 22F) e
RE | 226=1 = (R0 21 22 1) € RE and the intertwining relations,
sz’1 < sz < zgk’1 < zgk <...< z,zkA < z,gk (2.5)
and
%A1 _ 2k - 2k+1 _ 2k % _ 2k+1
0< 27" <z <z <z <Lz Sy (2.6)



hold (Fig. 1). Let n = 2m or n = 2m — 1 for some integer m. We define a kernel L°
from £ = {0 <z < ...<za,ttoF ={0 <y <...<uy,}. Forz e K, define
b(z) = 2" = (27,...,2") € E, e(2) = (21,28,23,23,...,2"") € F and K(z) = {z €
K;b(z) =z € E},K[y] = {2z € K;e(z) =y € F}. The kernel L° is defined by

Log(x) = /F 19z, dy)gly) = /K OIS 2.7)

where the integrals are taken with respect to Lebesgue measure but integrations with
respect to z on the RHS is for b(z) = x fixed.

The function h defined at (1.6) is equal to the Euclidean volume of K(z). Consequently
we may define L to be the Markov kernel L(z, dy) = L°(x,dy)/h(z). In the remaining part
of this section we show

Proposition 6.
LQ; = P,L. (2.8)

Now if we apply Lemma 4 with f(z) = z,,, g(y) = y, and the initial conditions starting
from the origin we obtain (1.13).

Proof of Proposition 6. The kernels P;(x,-) and L(x,-) are continuous in . Thus we may
consider x in the interior of E, and it is enough to prove

(L°Qi)(z,dy) = (PP L°)(x, dy). (2.9)

From the definition of the kernel L°, this is equivalent to showing

(e(2),y)dz = O(z,b(2))dz .
/Kmqum /p< (2)) (2.10)

Kly]

where ¢; and p° are densities corresponding to Q; and P?. Integrations with respect to z
are on the LHS with b(z) = « fixed and on the RHS with e(2) = y fixed.

Let us consider the case where n = 2m. Using the determinantal expressions for ¢
and p? we show that both sides of (2.10) are equal to the determinant of size 2m whose
(4,7) matrix element is ag; ;(0,y;) for 1 < i < m,1 < j < 2m and agy, ;(Ti—m,y;) for
m4+1<:<2m,1<j5<2m.

The integrand of the LHS of (2.10) is

q(e(2),y) = det{a; ;(e(2)i, y;) }1<ij<om (2.11)

with b(z) = x. We perform the integral with respect to 2!, ..., 2*""1 in this order. After
the integral up to 2271, 1 <1 < m, we get the determinant of size 2m whose (i, j) matrix
element is ag; ;(0,y;) for 1 < i <1, agy (22, y;) for I +1 < i < 2l and a; j(e(2);,y;) for
20+ 1 < ¢ < 2m. Here we use a property of a; ;,

aij(y,y') = / a;-1,(u,y")du, (2.12)
Y

7



and do some row operations in the determinant. The case for | = m gives the desired
expression.
The integrand of the RHS of (2.10) is

pg (l', sz) == det(af2m72m(l‘i; Z?m))lgz,jgm (213)
with the condition e(z) = . We perform the integrals with respect to
(22m ... 2Em ), (2m=t o 22m Y L 2t 28 in this order. We use properties of a;

ai;(y,y) = — / a1 (y, w)du, (2.14)
y/
i 2j(7,0) =0, agi2i-1(0,y) =1, a2;(0,y) =0, 21 <j. (2.15)

After each integration corresponding to a layer of K we simplify the determinant using
column operations. We also expand the size of the determinant after an integration corre-
sponding to (2%,...,2% ) for 1 <1 < m, by adding a new first row

(1,1,-..,1,0,0,...,0) =

! 9m—20+1
(azt21-1(0,277Y), ..., az -1 (0, 2271, am (0, e(2)ar), - - -y a2 (0, e(2)am))) (2.16)

together with a new column. After the integrals up to (z27',..., 2121_11) have been per-
formed, we obtain the determinant of size 2m — [ + 1,
2(1-1
a2(1+i71),2(171)(072j( l)) a(i+i-1),j+1-1(0, €(2) j41-1) (2.17)
2 _1 . .
a2m,2(l—1)($i—m+l—172j( )) a2m,j+l—1($i—m+l—1>6(2)j+l—1)

Here 1 <i<m—1+1 (resp. m — [ +2 < i <2m — [+ 1) for the upper expression (resp.
the lower expression) and 1 < 7 <[ —1 (resp. [ < j < 2m —1[+ 1) for the left (resp. right)
expression. For [ = 1 this reduces to the same determinant as for the LHS.

The case n = 2m — 1 is almost identical. Similar arguments show that both sides of
(2.9) are equal to a determinant size 2m — 1 whose (4, j) matrix element is ay; ;(0,y;) for
1<i<m-—1,1<j<2m—1and agm_1,;(Ti—m+1,y;) form+1<i<2m—-11<j5<
2m — 1. U

3 Proof of proposition 3

Using (1.10) repeatedly, one has

n

V)= sup Y (Bi(ti) = Bilty) (3.1)

0<t1 <. <tn <t i=1



with ¢,,1 = t. By renaming ¢ — ¢,,_; 1 by ¢; and changing the order of the summation, we

have
n

Yot) = sup > (Buoini(t —tiy1) = Buoipa(t — 7). (3.2)

0<ti < St <t S

Since Bi(s) := By_i11(t) — Bu_ip1(t — ) < Bi(s),

n

sup > (Bi(t:) = Bi(t —ti_1)) = sup Zy(t). (3.3)

0<ti<..<tp<t' .7 0<s<t

4
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