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Abstract

We consider the totally asymmetric simple exclusion process
(TASEP) in discrete time with sequential update. The joint distri-
bution of the positions of selected particles is expressed as a Fredholm
determinant with a kernel defining a signed determinantal point pro-
cess. We focus on periodic initial conditions where particles occupy
dZ, d ≥ 2. In the proper large time scaling limit, the fluctuations
of particle positions are described by the Airy1 process. Interpreted
as a growth model, this confirms universality of fluctuations with flat
initial conditions for a discrete set of slopes.

1 Introduction

The totally asymmetric simple exclusion process (TASEP) in discrete time
consists of particles on Z with at most one particle at each site (exclusion
principle). At each time step, particles jump to the neighboring right site
with probability p ∈ (0, 1), provided the target site is empty. There are
mainly two types of update rules one can consider. One is called parallel
update. It consists in first checking for all particles if they can jump (i.e., if
their right neighbor is empty) and then, simultaneously and independently,
these particles jump to the right each with probability p. The second update
rule, the one we actually analyze in this paper, is called sequential update.
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In this case, at each time step particles are processed sequentially from right
to left, i.e., starting from right to left, if the site on the right of a particle
is empty, then this particle jumps there with probability p. This update
rule allows to shift blocks of particles to the right during one time-step.
Equivalently, it can be regarded as a parallel update rule for holes, which
under the constraint of keeping their order, jump to the left k steps with
probability proportional to pk.

On a macroscopic level the particle density, u(x, t), evolves deterministi-
cally according to the Burgers equation ∂tu + ∂x(u(1 − u)/(p−1 − u)) = 0.
It is therefore natural to focus on fluctuations, which turn out to have un-
expected features. For example, the fluctuations of particle positions live on
a t1/3 scale and the limiting distribution depends on the type of the initial
configuration.

In this paper we consider the positions of particles as observables. If
one starts with step initial conditions, i.e., particles occupying Z−, then
the macroscopic particle density has a region of linear decay [14]. There
the fluctuations are governed by the GUE Tracy-Widom distribution [17],
see [7]. Moreover, in the limit of large time t, the joint distributions of particle
positions are governed by the Airy process [12] (called Airy2 process in the
following). The second situation which has been analyzed is the stationary
initial condition [6]. These results have been obtained for the continuous time
and/or parallel update discrete time TASEP, but can be easily extended to
the sequencial update case.

A third class of initial conditions consists in deterministic and periodic
initial configurations. In [15] and [1] the continuous time TASEP has been
studied for the particular case of alternating initial configuration, i.e., initially
with particles on 2Z. In this case the one-particle fluctuations are described
by the GOE Tracy-Widom distribution. Joint distributions are given by
a Fredholm determinant and the kernel converges pointwise to the one of
the Airy1 process. In the present paper we extend these results in several
directions. Firstly, we look at the fully discretized version of the TASEP
with sequencial update. Secondly, our result holds for a wider set of periodic
initial configurations and, thirdly, the control on the kernel is stronger and we
prove convergence of joint distribution functions. The corresponding results
for continuous time can be obtained along the same lines.

The Airy1 process, A1, is a marginal of the signed determinantal point
process with extended kernel KF1, in the same way as the Airy2 process is
related to the extended Airy kernel. Explicitly, we set B0(x, y) = Ai(x + y)
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and let Δ denote the one-dimensional Laplacian. Then

KF1(u1, s1; u2, s2) = −(e(u2−u1)Δ)(s1, s2)1(u2 > u1) + (e−u1ΔB0e
u2Δ)(s1, s2).

(1.1)
More explicitly, as shown in Appendix A of [1], one has

KF1(u1, s1; u2, s2) = − 1√
4�(u2 − u1)

exp

(
− (s2 − s1)

2

4(u2 − u1)

)1(u2 > u1)

+Ai(s1 + s2 + (u2 − u1)
2) exp

(
(u2 − u1)(s1 + s2) +

2

3
(u2 − u1)

3

)
. (1.2)

In particular, the one-point distribution of the Airy1 process is given in terms
of the GOE Tracy-Widom distribution [18], as shown in [5],P(A1(0) ≤ s) = F1(2s). (1.3)

The process A1 was first described by Sasamoto [15]. The starting point
is a determinantal formula for the probability distribution of the continu-
ous time TASEP with finitely many particles, first discovered by Schütz [16].
Sasamoto found a clever reformulation making possible the large time asymp-
totic analysis for the positions of particles. The details of the derivation are
presented in [1]. There we show how the signed determinantal point process
arises by applying a result on the L-ensembles defined in [2].

For the discrete-time sequential update TASEP, a determinantal formula
of the same type as in [16] was derived in [13] via the Bethe Ansatz. Since this
is the starting point of our analysis we present here an elementary derivation.
Very recently, a determinantal formula for parallel update was obtained [10].
Whether or not in this case a similar approach can be used for asymptotic
analysis has still to be investigated.

By universality, one expects that the same limit process appears for any
deterministic and periodic initial configurations, not only for particles ini-
tially on 2Z. In this paper we consider initial conditions with one particle
every d sites. The fluctuations of the position of a particle live on the scale
t1/3, while the positions of two particles are non-trivially correlated (on the
t1/3 scale) if they are of order t2/3 apart. In Theorem 2.5 we prove that,
properly rescaled, the joint distributions of particle positions converge to the
joint distributions of the Airy1 process. That is, let xk(t) be the position at
time t of the particles starting at −dk, then for some constants �, �, �1, �2
depending only on p and d, one has

x[�1t+�2ut2/3](t)− �ut2/3

�t1/3
−→ A1(u), as t→ ∞, (1.4)
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Figure 1: The growth model associated to the TASEP. If a particle jumps to
the right, then the surface growth vertically as indicated by the dashed line.

in the sense of finite dimensional distributions.

Reformulation of the result. The TASEP can be interpreted as a stochas-
tic growth model of an interface, which turns out to belong to the Kardar-
Parisi-Zhang (KPZ) universality class introduced in [8]. Given a realization
of the particle process, one defines for each time t a continuous height func-
tion, x 7→ ℎt(x), as follows. The height at 0 is given by ℎt(0) = 2Nt, where Nt

is the number of particles which jumped from site 0 to site 1 during the time
interval [0, t). If at time t a particle is at site x, then ℎt decreases linearly
with slope −1 in the interval [x, x+1], and increases with slope +1 if the site
is empty. Thus, if x is an integer, one has always ∣ℎt(x+ 1)− ℎt(x)∣ = 1. A
particle jumping at time t from x to x+1 corresponds to increasing ℎt(x+1)
by 2. The surface obtained in this way grows vertically under the TASEP
dynamics as indicated in Figure 1.

The step-initial conditions, corresponding to ℎ0(x) = ∣x∣, generate a
curved macroscopic shape and the limit process is the Airy2 process, first de-
scribed in another growth model, the polynuclear growth model [12]. The al-
ternating initial conditions, particles starting from 2Z, correspond to growth
on a flat and horizontal substrate, ℎ0(x) = (1+(−1)x)/2, x ∈ Z. In this case
the macroscopic limit shape is a constant function and the fluctuations are
governed by the Airy1 process. By universality one expects that the result
are unchanged if the initial substrate is flat but tilted. Theorem 2.5 confirms
universality for a discrete set of non-zero slopes (corresponds to d ≥ 3).

The TASEP can also be interpreted as a directed percolation model,
where “flat” corresponds to the point-to-line, while “curved” to the point-
to-point setting, see e.g. [4, 7, 11]. Finally, it has been conjectured [1, 3] that
the evolution of the largest eigenvalue of GOE Dyson’s Brownian Motion of
random matrices is governed by the Airy1 process too. This conjecture is
however not based on KPZ universality.
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New features. In the analysis some new interesting features appear. The
kernel can be expressed in a double integral representation and, as stated in
Theorem 2.1, one of the contour integrals circumscribes d − 1 simple poles,
which are the roots of a polynomial. There is only one simple case, d = 2,
which is equivalent to flat and horizontal initial conditions. In this case,
there is only one pole and the asymptotic analysis reduces to the one of a
single integral on the complex plane. An explicit solution of the polynomial
equation does not exist for arbitrary d ≥ 3, thus we had to employ several
new ideas to circumvent the problem. Similar situations might appear in
other problems like point-to-line directed percolation and all sorts of growth
models on a flat substrate.

Outline. The remainder of the paper is organized as follows. In Section 2
we define the model precisely and state the main result of this work. In
Section 3 we give a new derivation of the determinantal formula of [13] and
then apply our previous work [1] to the discrete-time TASEP. In Section 4
we perform the necessary orthogonalization and obtain the finite time kernel.
The asymptotic analysis is the content of Section 5. In Appendix A we deal
with the trace-class problem of the kernel KF1 . In Appendix B we describe
an alternative, more constructive, way of obtaining the orthogonalizazion.
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CRDF grant RIM1-2622-ST-04. P.L. Ferrari thanks M. Loss for sketching
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2 Model and results

The model analyzed in this paper is the discrete-time TASEP with sequential
update on Z. At any given time t, every site j ∈ Z can be occupied at most
by one particle. Thus a configuration of the TASEP can be described by
� = {�j , j ∈ Z∣�j ∈ {0, 1}}. �j is called the occupation variable of site j,
which is defined by �j = 1 if site j is occupied and �j = 0 if site j is empty.

Let �(t) be a TASEP configuration at time t. Then the configuration at
time t+1 is obtained by the following dynamics. Starting from right to left,
a particle jumps to the neighboring site with probability p ∈ (0, 1) provided
this site is empty. Since the update is sequential from right to left, during a
time step a block of consecutive particles can jump. For example, if at time
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1− p p(1− p) p2

Figure 2: Example of the transition weights with sequential update. Above
is the configuration at time t. Below are the possible outcomes at time t+1
together with the transition weights.

t we have �0(t) = �1(t) = 1 and �2(t) = 0, then the particle at 0 can jump to
1 provided the particle at 1 jumps to 2, see Figure 2.

Let us start at time t = 0 with particles occupying the sublattice dZ. The
observable we focus at is the joint distribution of particle positions, which
can be expressed as a Fredholm determinant as stated in Theorem 2.1.

Theorem 2.1. Let �(1) < �(2) < . . . < �(m) be the indices of the m
particles starting at time t = 0 from positions xk(0) = −d(�(k)− 1). Denote
by xk(t) their positions at time t. Their joint distribution is given byP( m∩

k=1

{
x�(k)(t) ≥ ak

})
= det(1− �aK�a)ℓ2({�(1),...,�(m)}×Z), (2.1)

where �a(�(k), x) = 1(x < ak) and the kernel K is defined as follows.
For fixed v, let u0(v), . . . , ud−1(v) be the roots of the equation u(1+u)

d−1 =
v(1 + v)d−1, with u0(v) = v the trivial solution. Then the kernel for the d-
spaced initial configuration is

K(n1, x1;n2, x2) = −
(
x1 − x2 − 1

n2 − n1 − 1

)
+K0(n1, x1;n2, x2) (2.2)

with

K0(n1, x1;n2, x2) (2.3)

=
1

2�i

∮

Γ0

dv

d−1∑

i=1

1 + dv

1 + dui(v)

(1 + pui(v))
t(−ui(v))n1(1 + v)x2+n2−2

(1 + pv)t(−v)n2(1 + ui(v))x1+n1+1
,

where Γ0 is any simple loop anticlockwise oriented around the pole at v = 0
(without other poles being inside Γ0).

For alternating initial configurations, d = 2, the kernel is particularly
simple.
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Corollary 2.2. The kernel for the 2-periodic configuration is given by

K(n1, x1;n2, x2) = −
(
x1 − x2 − 1

n2 − n1 − 1

)
(2.4)

+
−1

2�i

∮

Γ0

dv
(1 + v)x2+n1+n2−2

(−v)x1+n1+n2−1

(
1− p− pv

1 + pv

)t

.

Proof. Apply (2.3) with u1(v) = −1 − v.

In Theorem 2.5 we prove the convergence of the fluctuations of particle
positions to the Airy1 process. Thus we need to define this process and the
scaling limit.

Definition 2.3 (The Airy1 process). Let B0(x, y) = Ai(x + y), Δ the one-
dimensional Laplacian, and the kernel KF1 defined by

KF1(u1, s1; u2, s2) = −(e(u2−u1)Δ)(s1, s2)1(u2 > u1) + (e−u1ΔB0e
u2Δ)(s1, s2).

(2.5)
The Airy1 process A1 is the process with m-point joint distributions at
u1 < u2 < . . . < um given by the Fredholm determinantP( m∩

k=1

{A1(uk) ≤ sk}
)
= det(1− �sKF1�s)L2({u1,...,um}×R), (2.6)

where �s(uk, x) = 1(x > sk).

Remark 2.4. The kernel KF1 is not trace-class on L2({u1, . . . , um} × R),
because the diffusion part appearing for u2 > u1 makes it not even Hilbert-
Schmidt. However, as shown in Appendix A, there exists a conjugate
operator, one with a kernel leading to the same Fredholm expansion of
det(1− �sKF1�s), that is trace-class on L2({u1, . . . , um} × R). Thus the
Fredholm determinant in (2.6) regarded as its Fredholm expansion series is
well defined.

We focus on the region around the origin. The fluctuations of the particle
positions are of order t1/3 and non-trivial correlations occur for particles at a
distance of order t2/3, as expected from the KPZ scaling exponents. The mean
density of particles is 1/d and the probability of jumping to the neighboring
site is p, provided the position is available. With sequential update, a particle
can jump to the right even if the target site is occupied, provided that the
blocking particle itself jumps during the same time step. Therefore in the
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stationary state the probability that the right position is available is given
by ∑

k≥0

(p/d)k
d− 1

d
=
d− 1

d− p
. (2.7)

The average speed of particles is p(d− 1)/(d− p), which means that at time
t particles with index close to tp(d− 1)/((d− p)d) will be close to the origin.
This motivates the following scaling.

Scaling limit. Define the constants

� =
(2(1− p)p)1/3(d(d− 1))2/3

d− p
, � = −�2 2

d− 1
. (2.8)

We consider particles with index n(u, t) given by

n(u, t) =

[
p(d− 1)

d(d− p)
t− �

d
ut2/3

]
(2.9)

which typically at time t is at a position close to �ut2/3. Recall that the
initial condition is xk(0) = −d(k − 1), k ∈ Z. Then the rescaled process is
given by

u 7→ Xt(u) =
xn(u,t) − �ut2/3

−�t1/3 (2.10)

and converges to the Airy1 process as follows.

Theorem 2.5. Let Xt be the rescaled process as in (2.10). Then, in the limit
of large time t, it converges to the Airy1 process A1,

lim
t→∞

Xt = A1, (2.11)

in the sense of finite-dimensional distributions (given by (2.6)).

3 Signed determinantal point process

We first consider a system with a finite number N of particles. The d-periodic
configuration is then obtained by the proper N → ∞ limit. We start at
time t = 0 with N particles at positions yN < . . . < y2 < y1 and study the
probability that at time t these particles are at positions xN < . . . < x2 < x1.
Denote this transition probability by

Gt(x1, . . . , xN) = P((xN , . . . , x1; t)∣(yN , . . . , y1; 0)). (3.1)
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Lemma 3.1 (See [13]). The transition probability has a determinantal form

Gt({x}) = det(Fi−j(xN+1−i − yN+1−j, t))1≤i,j≤N (3.2)

with

Fn(x, t) = (1− p)t
(−1)n

2�i

∮

Γ0,1

dw

w

(
1 +

p

1− p
w

)t
(1− w)−n

wx−n
, (3.3)

where Γ0,1 is any simple loop around 0 and 1 oriented anticlockwise.

Notational remark: with the notation
∫
ΓS
f(z)dz with S a set of points

we mean that the integral is taken over any simple loop, oriented anticlock-
wise, enclosing the set S, and such that all the poles of f inside ΓS belong
to S. Equivalently,

∫
ΓS
f(z)dz = 2�i

∑
z∈S Res(f, z).

This result is already contained in [13], where the derivation used the
Bethe-ansatz method. Here we present a different derivation.

Proof of Lemma 3.1. To obtain (3.2) we first write the master equation for
the N particles,

Gt+1(xN , . . . , x1) =
∑

b1,...,bN∈{0,1}
(1− p)N

(
p

1− p

)b1+...+bN

Gt(xN − bN , . . . , x1 − b1)

(3.4)
with the boundary conditions due to the exclusion constraint

Gt(xN , . . . , xk+1, xk+1+1, xk−1, . . . , x1)=Gt(xN , . . . , xk+1, xk+1, xk−1, . . . , x1),
(3.5)

for k = 1, . . . , N − 1, cp. with [16].
We assume that a formula of the form (3.2) holds and prove that there

exists a family of functions {Fn} satisfying the Lemma. As an abbreviation
we set F j

n(x, t) = Fn(xN+1−j−yN+1−j , t) during the proof. Inserting (3.2) into
the master equation (3.4) and using the multi-linearity of the determinant,
we get

Gt+1(xN , . . . , x1)

=
∑

b1,...,bN∈{0,1}
(1− p)N

(
p

1− p

)b1+⋅⋅⋅+bN

det
[
F j
i−j(xN+1−i − bN+1−i, t)

]
1≤i,j≤N

= det

⎡

⎣(1− p)

1∑

bN+1−i=0

(
p

1− p

)bN+1−i

F j
i−j(xN+1−i − bN+1−i, t)

⎤

⎦
1≤i,j≤N

(3.6)

= det
[
(1− p)F j

i−j(xN+1−i, t) + pF j
i−j(xN+1−i − 1, t)

]
1≤i,j≤N

.
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This is equal to det
[
F j
i−j(xN+1−i, t+ 1)

]
1≤i,j≤N

if the functions Fn’s satisfy

Fn(x, t+ 1) = (1− p)Fn(x, t) + pFn(x− 1, t). (3.7)

We also have to take into account the boundary conditions. The two sides
of (3.5) are N × N determinants with all the rows identical except for the
(N + 1− k)th one. Combining the two determinants, (3.5) reads

0 = det

⎡
⎢⎢⎢⎢⎣

...

F j
N−k−j(xk+1, t)

F j
N+1−k−j(xk+1, t)− F j

N+1−k−j(xk+1 + 1, t)
...

⎤
⎥⎥⎥⎥⎦
1≤j≤N

. (3.8)

The two lines explicitly written are linearly dependent whenever the functions
Fn satisfy

Fn−1(x, t) = c(Fn(x, t)− Fn(x+ 1, t)) (3.9)

for some c. Here we choose c = 1. Any other choice of c corresponds to
the replacement Fn by c−nFn, which, however, keep the determinant in (3.2)
unchanged.

The functions Fn are determined by the two relations (3.7) and (3.9), as
well as the initial condition

G0(xN , . . . , x1) = �yN ,xN
⋅ ⋅ ⋅ �y1,x1. (3.10)

F0(x, t) is already determined by one-particle configurations. In fact, in
this case, Gt(x) = P(x(t) = x∣x(0) = y) = F0(x− y, t). Therefore

F0(x− y, t) = (1− p)t
(

p

1− p

)x−y (
t

x− y

)
. (3.11)

This result is consistent with (3.7) and (3.10). Denote by Δ the discrete
derivative Δf(x) ≡ f(x+ 1)− f(x). Then (3.9) implies

F−n(x, t) = (−1)n(ΔnF0)(x, t). (3.12)

F0 has the following integral representation,

F0(x, t) = (1− p)t
1

2�i

∮

Γ0

dw

w

(
1 +

p

1− p
w

)t
1

wx
, (3.13)

where Γ0 is any simple loop around 0 oriented anticlockwise. Therefore to
obtain F−n we simply apply

Δn 1

wx
=

(1− w)n

wn+x
. (3.14)
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Thus, for n ≥ 0,

F−n(x, t) = (1− p)t
(−1)n

2�i

∮

Γ0

dw

w

(
1 +

p

1− p
w

)t
(1− w)n

wx+n
. (3.15)

In this case, there is no pole at w = 1, thus replacing Γ0 by Γ0,1 leaves the
result unchanged.

For n > 0, Fn is determined by the recurrence relation

Fn+1(x, t) =
∑

y≥x

Fn(y, t) (3.16)

together with the property that F0(x, t) = 0 for x large enough. To have the
sum in (3.16) well defined we need ∣w∣ > 1, i.e., the integration path includes
1, which is a pole of the integrand for n ≥ 1. Thus in order for (3.16) to be
satisfied for all n, we need to take into account the poles both at 0 and 1.

The analogue of Theorem 2.1 for a finite number of particles is the fol-
lowing Proposition, which is a consequence of Lemma 3.4 of [1].

Proposition 3.2. Let �(1) < �(2) < . . . < �(m) be the indices of m out
of the N particles initially at y�(1), . . . , y�(m). The joint distributions of their
positions x�(k)(t) is given byP( m∩

k=1

{
x�(k)(t) ≤ ak

})
= det(1− �aK�a)ℓ2({�(1),...,�(m)}×Z) (3.17)

where �a(�(k), x) = 1(x > ak). K is the extended kernel with entries

K(n1, x1;n2, x2) = −�(n1,n2)(x1, x2) +

n2−1∑

i=0

Ψn1
n1−n2+i(x1)Φ

n2
i (x2) (3.18)

where

�(n1,n2)(x1, x2) =

(
x1 − x2 − 1

n2 − n1 − 1

)
. (3.19)

The functions Ψn
i , n ≥ 1, i ∈ Z, are defined by

Ψn
i (x) = (1− p)t

1

2�i

∮

Γ0

dw

wi+1

(
1 +

p

1− p
w

)t
(1− w)i

wx−yn−i
(3.20)

where the path Γ0 in the definition of Ψn
i is any simple loop, anticlockwise

oriented, which includes the pole at w = 0 but not the one at w = 1. The
functions Φn

i , i = 0, . . . , n−1, n ≥ 1, are polynomials of degree at most n−1
uniquely defined by

∑

x∈ZΦn
i (x)Ψ

n
j (x) = �i,j, j = 0, . . . , n− 1. (3.21)
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Proof. The proof is an application of Lemma 3.4 of [1], with

�n(x
n
i , x

n+1
j ) = 1(xni > xn+1

j ), n = 1, . . . , N − 1, (3.22)

and
ΨN

N−i(x) = (−1)N−iF−N+i(x− yi, t), i = 1, . . . , N. (3.23)

The above functions Fi are defined by an integral enclosing w = 0 only, since
w = 1 is not a pole for i ≤ 0. With the definition (3.20) above we have the
composition rule

(� ∗Ψn+1
n+1−j)(x) = Ψn

n−j(x). (3.24)

In our setting, if we sum up all the variables {xmj , 1 ≤ m < n, 1 ≤ j ≤ m}, we
obtain a Vandermonde determinant in the variables xnj . Thus the space Vn of
Lemma 3.4 in [1] is generated by {1, x, . . . , xn−1} and the Φn

k are polynomials
of order at most n− 1. A simple computation using (3.20) leads to

∑

x

Ψn
j (x) =

{
0, j = 1, . . . , n− 1,

1, j = 0,
(3.25)

which, together with (3.21) leads to Φn
0 (x) = 1 = �n−1(∞, x). Then the

Proposition 3.2 follows from Lemma 3.4 of [1].

4 Orthogonalization

Consider the case where the particles are initially regularly spaced as follows

yi = −d(i− 1), i = 1, . . . , N. (4.1)

for d ≥ 2. For any fixed time t, we first obtain the kernel for a fixed number
of particles, N . Then we take the N → ∞ limit and focus on a point far
enough to the left where the particles do not feel the fact that there is a
rightmost particle.

Lemma 4.1. The functions Ψn
k(x) and Φn

k(x) have the following integral
representations. Let z = x+ d(n− 1), then

Ψn
k(x) =

(−1)k

2�i

∮

Γ0

dw

wz+1
(1 + p(w − 1))t((w − 1)wd−1)k (4.2)

and

Φn
k(x) =

(−1)k

2�i

∮

Γ0

dv

v

1 + dv

(1 + pv)t
(1 + v)z−1

(v(1 + v)d−1)k
(4.3)

where Γ0 is any anticlockwise simple loop enclosing only the pole at 0.

12



Proof. We have

Ψn
k(x) = (−1)kF−k(x− yn−k, t) = (−1)kF−k(z − dk, t). (4.4)

Thus (3.3) leads directly to (4.2). Next we prove that (4.3) satisfies the
orthogonality relation (3.21). Since Ψn

k(x) = 0 for x < −d(n− 1), i.e. z < 0,
we have

∑

z≥0

Ψn
k(x(z))Φ

n
j (x(z)) =

(−1)k

2�i

∮

Γ0

dw(1 + p(w − 1))t
(
(w − 1)wd−1

)k

×(−1)j

2�i

∮

Γ0

dv

v

(1 + dv)

(1 + pv)t(v(v + 1)d−1)j

∑

z≥0

(v + 1)z−1

wz+1
(4.5)

provided that the integration domain satisfies ∣1 + v∣ < ∣w∣. The last sum
gives

∑

z≥0

(v + 1)z−1

wz+1
=

1

(w − (1 + v))(1 + v)
. (4.6)

(4.5) has a simple pole at w = 1 + v. Therefore the integration over w leads
to

∑

z≥0

Ψn
k(x(z))Φ

n
j (x(z)) =

(−1)k+j

2�i

∮

Γ0

dv
1 + dv

v(1 + v)
(v(1 + v)d−1)k−j. (4.7)

The final step is a change of variable. Let u = v(1 + v)d−1. Then

du = (1 + v)d−2(1 + dv)dv (4.8)

and the integral is again around 0. Thus

∑

z≥0

Ψn
k(x(z))Φ

n
j (x(z)) =

(−1)k+j

2�i

∮

Γ0

du
1

uj+1−k
= �j,k. (4.9)

There is also a more constructive way of doing the orthogonalization using
Krawtchouk orthogonal polynomials. In fact, as shown in Appendix B, the
Ψ(N)’s can be written as linear combinations of Krawtchouk polynomials on
the interval [0, t+d(N−1)] and parameter p. What one has to do is to invert
a certain N ×N matrix with entries depending on the initial conditions. We
were able to do it in the case d = 2 and obtain the formula of Lemma 4.1.
Once the form of the Φ’s is obtained for d = 2, it is easy to find the proper
ansatz in the case d > 2.
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Proof of Theorem 2.1. We apply Proposition 3.2 with the orthogonalization
of Lemma 4.1. With the change of variable u = w − 1 in (4.2) the function
Ψn

k has an integral representation with a pole at u = −1, namely

Ψn
k(x) =

(−1)k

2�i

∮

Γ−1

du

(1 + u)z+1
(1 + pu)t(u(1 + u)d−1)k (4.10)

with z = x + d(n − 1). The main part of the kernel, denoted by
K0(n1, x1;n2, x2), reads

n2−1∑

k=0

Ψn1
n1−n2+k(x1)Φ

n2
k (x2) =

(−1)n1−n2

(2�i)2

∮

Γ0

dv
(1 + dv)(1 + v)z2+d−2

(1 + pv)t(v(1 + v)d−1)n2

×
∮

Γ−1

du
(1 + pu)t(u(1 + u)d−1)n1

(1 + u)z1+1

1

u(1 + u)d−1 − v(1 + v)d−1
(4.11)

with zi = xi + d(ni − 1) provided that the paths of integration for u and v
satisfy (a) ∣u(1 + u)d−1∣ > ∣v(1 + v)d−1∣ and that (b) u = 0 is not inside
the contour Γ−1. The expression (4.11) is obtained as follows from (3.18).
First we exchange the finite sum and the integrals. Then we extend the
sum over k to −∞. The expression remains unchanged if the two above
conditions are satisfied. In fact, for k ≤ −1, the pole at v = 0 vanishes
because of the extra term v−k and by (a) the series is absolutely summable.
Condition (b) reflects the fact that in the definition of (3.20) the integration
path includes only the pole at 0. A possible choice of the integration paths
is Γ−1 = {u, ∣1+ u∣ = 1/2} and Γ0 a contour with ∣v∣ small enough to satisfy
(a).

The kernel for the d-spaced initial configuration is obtained from the finite
system by choosing the xi such that the kernel becomes independent of the
fact that we have only a finite number of particles. In other words, we choose
xi such that the kernel is invariant with respect to the shift of the positions
by −d and the particle numbers by 1. This is achieved when zi < (d − 1)ni

because u = −1 is not anymore a pole. Then only the d − 1 simple poles
inside Γ−1 contribute.

When we evaluate the integral over u we first integrate out the d − 1
non-trivial poles, that is, the zeros of

R(u, v) = u(1 + u)d−1 − v(1 + v)d−1. (4.12)

Let u1(v), . . . , ud−1(v) be the solutions of R(u, v) = 0 different from the
trivial one ud(v) = v. Then the kernel for the d-spaced initial configuration
is as given in (2.2)-(2.3). A simple case is d = 2, where the only non-trivial
solution of R(u, v) = 0 is u = −1− v.

14



−L L "t2/3 ∞

s1

s2

Figure 3: The different regimes of (s1, s2) for which the kernel is analyzed.

5 Asymptotic analysis

Proof of Theorem 2.5

To prove Theorem 2.5 we consider a conjugate kernel to K, i.e., a kernel
which gives the same correlation functions. It is given by

Kconj(n1, x1;n2, x2) (5.1)

= K(n1, x1;n2, x2)

(
d

d− 1

)x2+dn2−(x1+dn1)( dd

(d− 1)d−1

)n1−n2

.

We also use the notation Kconj
0 for the conjugate of the second part of the

kernel K, denoted by K0 in (2.3). Notice that the kernel is invariant under
simultaneous shifts xi → xi + dS and ni → ni + S, S ∈ Z. For the scaling
limit we have to consider, compare with (2.8) and (2.9),

xi =

[
−�2 2

d− 1
rit

2/3 − �sit
1/3

]
,

ni =

[
p(d− 1)

d(d− p)
t+ �2

2

d(d− 1)
rit

2/3

]
. (5.2)

From now on we fix r1, . . . , rm ∈ R. The dependence on these constants
is not indicated in the following propositions, since it is irrelevant for the
proof of Theorem 2.5.

To prove convergence of the Fredholm determinant we need to control
the behavior of the kernel (5.1) as a function of s1 and s2. We do it in three
steps corresponding to the three regions indicated in Figure 3. In Propo-
sition 5.1 we prove uniform convergence on a bounded set, by controlling
the finite-t deviations from the asymptotic term. We thus have the con-
trol for (s1, s2) ∈ [−L, L]2 for any fixed L. Then, in Proposition 5.3, we
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obtain a bound for (s1, s2) ∈ [−L, "t2/3]2 ∖ [−L, L]2, for L and t large enough
and " small enough. Finally, in Proposition 5.4, we obtain a bound for
(s1, s2) ∈ [−L,∞)2 ∖ [−L, "t2/3]2, for any fixed " > 0 and t large.

Proposition 5.1 (Uniform convergence on compact sets). For fixed r1 and
r2, the extended kernel has the following limit. Let us fix any L > 0. Then,
with xi, ni defined as in (5.2), the kernel converges uniformly for (s1, s2) ∈
[−L, L]2 as

lim
t→∞

Kconj(n1, x1;n2, x2)�t
1/3

= − 1√
4�(r2 − r1)

exp

(
− (s2 − s1)

2

4(r2 − r1)

)1(r2 > r1) (5.3)

+Ai(s1 + s2 + (r2 − r1)
2) exp

(
(r2 − r1)(s1 + s2) +

2

3
(r2 − r1)

3
)
.

Proposition 5.1 leads to a uniform bound on the kernel as in Corollary 5.2.
This is obtained using the super-exponential decay of the Airy function,

namely, for any a > 0, ∣Ai(x)∣ ≤ e−
2
3
x3/2 ≤ Constae

−ax for some Consta
depending on a.

Corollary 5.2. For any fixed L > 0 there exists a t0 = t0(L) > 0 and a
ConstL independent of t0 s.t. for t > t0 the bound

∣∣Kconj(n1, x1;n2, x2)�t
1/3

∣∣ ≤ ConstL (5.4)

holds for all s1, s2 ∈ [−L, L].

Proposition 5.3 (Moderate deviations). For any large enough L there exist
an "0 = "0(L) > 0 and a t0 = t0(L) > 0 such that for any positive " < "0 and
t > t0 the estimate

∣Kconj
0 (n1, x1;n2, x2)�t

1/3∣ ≤ e−(s1+s2) (5.5)

holds for (s1, s2) ∈ [−L, "t2/3]2 ∖ [−L, L]2.

Proposition 5.4 (Large deviations). Let c = (d − 1)p/(d− p), " > 0 as in
Proposition 5.3 (small enough), and s̃i = �sit

−2/3.
(1) If s̃1 ∈ [", c] or s̃2 ∈ [", c] we have the bound

∣Kconj
0 (n1, x1;n2, x2)∣ ≤ e−(s1+s2) (5.6)

for t large enough.
(2) If s̃1 ∈ (c,∞) or s̃2 ∈ (c,∞), then the kernel is zero for t large enough.
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The last ingredient is an estimate on the binomial part of the kernel.

Proposition 5.5. For any s1, s2 ∈ R and r2 − r1 > 0 fixed, the bound

�t1/3
(

d

d− 1

)x2+dn2−(x1+dn1) ( dd

(d− 1)d−1

)n1−n2
(
x1 − x2 − 1

n2 − n1 − 1

)

≤ Const1e
−∣s2−s1∣ (5.7)

holds for t large enough and Const1 independent of t.

With these results we can now prove Theorem 2.5.

Proof of Theorem 2.5. From Corollary 5.2, Propositions 5.3 and 5.4, it follows
that there exist a t0 > 0 and a Const2 independent of t0 such that

∣∣Kconj
0 (n1, x1;n2, x2)�t

1/3
∣∣ ≤ Const2e

−(s1∨0+s2∨0) (5.8)

for any t > t0. Here a ∨ b = max{a, b}.
The joint distributions of the rescaled process Xt defined in (2.10) are

given by a Fredholm determinant with seriesP( m∩

k=1

{Xt(uk) ≤ sk}
)

=
∑

n≥0

(−1)n

n!

m∑

i1,...,in=1

∫
dy1 . . .dyn

n∏

k=1

1(yk < �uikt
2/3 − �sikt

1/3)

× det
(
Kconj(n(uik , t), [yk];n(uil, t), [yl])

)
1≤k,l≤n

. (5.9)

By the change of variables �k = (yk − �uikt
2/3)/(−�t1/3) and a conjugation

we obtain

(5.9) =
∑

n≥0

m∑

i1,...,in=1

∫
d�1 . . .d�n

n∏

k=1

1(�k > sik) (5.10)

×(−1)n

n!
det

(
�t1/3Kconj(n(uik , t), [yk];n(uil, t), [yl])

(1 + �2
l )

il

(1 + �2
k)

ik

)

1≤k,l≤n

.

The term
(1+�2

l )
il

(1+�2
k)

ik
is the new conjugation, which does not change the deter-

minant.
OnKconj

0 we use the bound (5.8). Whenever ik > il, we have an additional
term coming from the binomial part of the kernel. This contribution is
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bounded as in Proposition 5.5. Therefore the (k, l) coefficient in the last
determinant in (5.10) is bounded, for t large enough, by

⎧
⎨
⎩

Const3(e
−∣�l−�k∣ + e−(�l∨0+�k∨0))

(1+�2
l )

il

(1+�2
k)

ik
, ik > il,

Const3e
−(�l∨0+�k∨0) (1+�2

l )
il

(1+�2
k)

ik
, ik ≤ il,

(5.11)

with Const3 independent of t. We also use the bounds, for i, j ∈ {1, . . . , m},

(1 + x2)i

(1 + y2)j
e−∣x−y∣ ≤ 1

1 + y2
(1 + x2)i

(1 + y2)i
e−∣x−y∣ ≤ 1

1 + y2
Const4, j > i, (5.12)

and
(1 + x2)i

(1 + y2)j
e−x∨0−y∨0 ≤ Const5e

−(x+y)/2. (5.13)

These bounds applied to (5.11) leads to

(5.11) ≤ Const6

{
(1 + �2

k)
−1, ik > il,

e−(�k+�l)/2, ik ≤ il,
(5.14)

for some Const6 independent of t.
(5.14) implies that in the determinant in (5.10) we can single out a prod-

uct
∏n

k=1max{(1 + �2
k)

−1, e−�k/2}. Then the entries of the determinant are
bounded by Const6, so that the whole integrand is bounded by

1

n!
Constn6n

n/2

n∏

k=1

max{(1 + �2
k)

−1, e−�k/2}1(�k > −L) (5.15)

where the factor nn/2 is the Hadamard bound (the absolute value of a de-
terminant of a n × n matrix with entries of absolute value not exceeding 1
is bounded by nn/2). Therefore, for t large enough and some Const7 > 0
independent of t,

∣(5.9)∣ ≤
∑

n≥0

nn/2

n!
mnConstn7 <∞ (5.16)

because n! grows like (n/e)n, which is much stronger than nn/2 and any term
exponential in n. Therefore for t large enough the integrand can be bounded
by a t-independent integrable function. By applying dominated convergence,
we can exchange the t→ ∞ limit with the sums and integrals. The pointwise
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convergence comes from Proposition 5.1, thus

lim
t→∞

P( m∩

k=1

{Xt(uk) ≤ sk}
)

=
∑

n≥0

(−1)n

n!

m∑

i1,...,in=1

∫

�k>sik

d�1 . . .d�n

n∏

k=1

det(KF1(uik , �k; uil, �l))1≤k,l≤n

≡ P( m∩

k=1

{A1(uk) ≤ sk}
)
. (5.17)

Thus Xt converges to A1 as t → ∞ in the sense of finite-dimensional distri-
butions.

Proof of the uniform convergence on bounded sets

Proof of Proposition 5.1. Let us consider the scaling (5.2). First we determine
the contribution coming from the binomial term of (2.2), i.e.,

�t1/3
(

d

d− 1

)x2+dn2−(x1+dn1) ( dd

(d− 1)d−1

)n1−n2
(
x1 − x2 − 1

n2 − n1 − 1

)
. (5.18)

Set

a =
2�2

d(d− 1)
(r2−r1)t2/3−1, b = �(s2−s1)t1/3+(d−1), and " = b/a. (5.19)

The binomial term is
(
a(d+")

a

)
and x! =

√
2�x exp(x ln(x) − x)(1 +O(x−1)).

Therefore we have

(5.18) =
1 +O(t−1/3)√
4�(r2 − r1)

e−b2/(2d(d−1)a)(1 +O(")). (5.20)

By reinserting the expressions for a and b we obtain

(5.18) =
1√

4�(r2 − r1)
exp

(
− (s2 − s1)

2

4(r2 − r1)

)
(1 +O(") +O(t−1/3)) (5.21)

with an error uniform for s1, s2 ∈ [−L, L]. For any fixed r2 > r1, the error
O(") is also of order O(t−1/3). Thus taking the limit t→ ∞ we get the first
term of the limit kernel KF1 , see (2.5).

Next, we consider the main part of the kernel, i.e., (2.3). It is not difficult
to see (by looking at the image of any closed simple loop around u = −1
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under the map u(1+u)d−1) that the image of {u1(v), . . . , ud−1(v)} form closed
loops around −1 if v is a closed loop around 0. The leading term of the kernel
is

1

2�i

d−1∑

i=1

∮

Γ0

dv exp
(
t (v)− t (ui(v))

)
(5.22)

with
 (v) = − p

d− p
ln(v)− ln(1 + pv). (5.23)

We can rewrite

Re( (v)) = − p

d− p
ln
(
∣v∣∣1/p+ v∣d/p−1

)
− ln p. (5.24)

In Proposition 5.9 we prove that there exists a path Γ0 of finite length such
that Re( (v)) − Re( (ui(v))) < 0 whenever ui(v) ∕= v. Moreover, Proposi-
tion 5.9 says that Re( (v))−Re( (ui(v))) < 0 except at the point v = −1/d
for the solution u1(v) (the one for which u1(−1/d) = −1/d = v). There-
fore the contributions of u2, . . . , ud−1 are bounded by O(e−�it)F (0) for some
�i > 0 and

F (0) =

(
d

d− 1

)x1+dn1−(x2+dn2) ( dd

(d− 1)d−1

)n2−n1 d

d− 1
. (5.25)

The contribution of u1 can be estimated by integrating only on ∣v+1/d∣ ≤ �
for some � > 0. The error will be exponentially small in t. Thus, let Γ�

0

denote Γ0 restricted to a �-neighborhood of −1/d. Then,

K0(n1, x1;n2, x2)�t
1/3 = O(e−�t)F (0) (5.26)

+
�t1/3

2�i

∫

Γ�
0

dv
1 + dv

1 + du1(v)

(1 + pu1(v))
t(−u1(v))n1(1 + v)x2+n2−2

(1 + pv)t(−v)n2(1 + u1(v))x1+n1+1
.

for some � = �(�) > 0.
From now on we denote u = u1 since the other solutions of R(u, v) = 0

do not appear anymore. Close to the critical point we can compute the value
of u by the series

u(v) = −1

d
−
(
v+

1

d

)
−2d(d− 2)

3(d− 1)

(
v+

1

d

)2−4d2(d− 2)2

9(d− 1)2
(
v+

1

d

)3
+O

((
v+

1

d

)4)
.

(5.27)
Let z = v + 1/d and let the image of Γ�

0 be ��, where ∣z∣ ≤ �. Thus we can
use Taylor expansion and the last term of (5.26) becomes

�t1/3

−2�i

∫

��

dz exp
(
tf0(z) + t2/3f1(z) + t2/3f2(z) + f3(z)

)
(5.28)
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with

f0(z) =
d3�3

3(d− 1)3
z3 +O(z4),

f1(z) = −�2(r2 − r1)
2

d(d− 1)
ln((d− 1)d−1/dd) +

�2(r2 − r1)d
2

(d− 1)2
z2 +O(z3),

f2(z) = −�(s2 − s1) ln((d− 1)/d)− �
d

d− 1
(s1 + s2)z +O(z2),

f3(z) = ln(d/(d− 1)) +O(z). (5.29)

The errors are uniform for si ∈ [−L, L] (the s-dependence in the error terms
is only in the f2 term). Let f̃i(z) be the expression fi(z) without the error
terms. Define F (z) = exp(tf0(z) + t2/3f1(z) + t2/3f2(z) + f3(z)) and F̃ (z)
similarly. Then

�t1/3

−2�i

∫

��

dzF (z) =
�t1/3

−2�i

∫

��

dzF̃ (z) +
�t1/3

−2�i

∫

��

dz(F (z)− F̃ (z)). (5.30)

To estimate the last term we use the inequality ∣ex − 1∣ ≤ e∣x∣∣x∣. Thus
∣∣∣∣
�t1/3

−2�i

∫

��

dz(F (z)− F̃ (z))

∣∣∣∣ (5.31)

≤ �t1/3

2�

∫

��

dz∣F̃ (z)∣eO(z4t+z3t2/3+z2t1/3+z)O(z4t+ z3t2/3 + z2t1/3 + z)

=
�t1/3

2�

∫

��

dz∣etf̃0(z)(1+�1)+t2/3 f̃1(z)(1+�2)+t1/3f̃2(z)(1+�3)∣

× O(z4t + z3t2/3 + z2t1/3 + z)

for some �1, �2, �3 which can be made as small as desired by choosing � small
enough. We take as integration path �� = {e−i�sgn(w)/3∣w∣, w ∈ [−�, �]} which
is close to the steepest descent path when w → 0.

At the integration boundaries, w = ±�, the leading term is

exp

(
− d3�3

3(d− 1)3
�3(1 + �1)t

)
,

thus the integral remains bounded as t → ∞ and, by the change of variable
wt1/3 = q we see that the error term is O(t−1/3)F (0).

The final step is to compute �t1/3

−2�i

∫
��
dzF̃ (z). Extending � to ∞ we collect

only an error of order O(e−�t)F (0) with 0 < � ∼ �3. This leads to the
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integration on the path �∞ = {e−i�sgn(w)/3∣w∣, w ∈ R}. Thus

�t1/3

−2�i

∫

�∞

dzF̃ (z) = F (0)
2�t1/3e−i�/3

−2�i

∫R+

dw exp

(
− d3�3

3(d− 1)3
w3t

)

× exp

(
�2(r2 − r1)d

2

(d− 1)2
e−i2�/3w2t2/3

)
exp

(
−� d

d − 1
(s1 + s2)e

−i�/3wt1/3
)
.

The change of variable q = w�e−i�/3d/(d− 1) gives

�t1/3

−2�i

∫

�∞

dzF̃ (z) = G(0)
1

−2�i

∫

�∞

dqeq
3/3e(r2−r1)q2e−(s1+s2)q (5.32)

with G(0) = F (0)(d−1)/d. By considering the conjugate kernel Kconj
0 instead

of K0, the term G(0) cancels.
Finally we use an Airy function representation

1

−2�i

∫

�∞

dvev
3/3+av2+bv = Ai(a2 − b) exp(2a3/3− ab) (5.33)

to obtain the final result

lim
t→∞

�t1/3

G(0)
K0(x1, n1; x2, n2) = Ai(s1 + s2 + (r2 − r1)

2)e2(r2−r1)3/3+(s1+s2)(r2−r1)

(5.34)
uniformly for s1, s2 ∈ [−L, L].

The goal of the following sequence of lemmas is Proposition 5.9 used in
the proof of Proposition 5.1 above.

Lemma 5.6. Define the path


1 = {−1 + sin(�(d− 1))ei�/ sin(�d), � ∈ [0, �/d)}. (5.35)

On 
1, v(1+v)
d−1 ∈ R. Let ui, i = 1, . . . , d, be the d solutions of the equation

R(u, v) ≡ u(1 + u)d−1 − v(1 + v)d−1 = 0. (5.36)

Then, for all v ∈ 
1 and ui ∕∈ {v, v̄}, we have

∣∣ui(1/p+ ui)
d/p−1

∣∣ ∕=
∣∣v(1/p+ v)d/p−1

∣∣ . (5.37)

Lemma 5.7. On 
1 ∖ {−1/d} the solutions u(v) of R(u, v) = 0 are simple
zeros.
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Lemma 5.8. Assume that a, b ∈ ℝ satisfy either
(1) b < a < 0 or
(2) a < b and a(a − 1) < b(b − 1). Then, for � > 1, we have the strict
inequality

�a − �b < (�− 1)(a− b). (5.38)

Proposition 5.9. Let u1(v) be the solution of R(u, v) = 0 such that
u1(−1/d) = −1/d, and u2(v), . . . , ud−1(v) the other non-trivial d − 2 so-
lutions. Then, there exists a path Γ0 encircling the origin, passing through
v = −1/d such that

Re( (v))− Re( (ui(v))) < 0 (5.39)

except for the solution u1(v) at the point v = −1/d.

Proof of Lemma 5.6. For d = 2 nothing has to be shown because there are
only two solutions, u = v and u = v̄. Thus we consider d ≥ 3. Since for
v ∈ 
1, v(1 + v)d−1 ∈ R, we have to prove that the system of equations

∣u∣∣1 + u∣d−1 = ∣v∣∣1 + v∣d−1

∣u∣∣1/p+ u∣d/p−1 = ∣v∣∣1/p+ v∣d/p−1 (5.40)

has only the trivial solutions u = v and u = v̄. If (5.40) has a solution u, then
by symmetry ū is also a solution. Thus in the rest of the proof we restrict
ourselves to the upper-half plane.

(5.40) is an equation involving only distances of u and v from the points
0, −1, and −1/p. Let us choose any v and set

a = ∣v∣, b = ∣1 + v∣, c = ∣1/p+ v∣. (5.41)

Similarly we choose a u ∕= v and set

ã = ∣u∣, b̃ = ∣1 + u∣, c̃ = ∣1/p+ u∣. (5.42)

Then (5.40) writes

ãb̃d−1 = abd−1, ãc̃d/p−1 = acd/p−1, (5.43)

that is,
ã = a�, b̃ = b/�1/(d−1), c̃ = c/�p/(d−p). (5.44)

For � = 1, we have u = v. Thus consider � ∕= 1. Given a, b such that the
circle centered at 0 of radius a intersects the circle centered at −1 of radius b,
the position of v is uniquely determined, see Figure 4. Thus this determine
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abc
� − �

�

0−1−1/p

Figure 4: Geometric representation of (5.40).

c too, i.e., there exists a function f to be determined such that c2 = f(a, b).
Define the function

F (�, a, b) ≡ f(�a, b/�1/(d−1))− f(a, b)/�2p/(d−p). (5.45)

Then since also c̃2 = f(ã, b̃), the scaling relations (5.44) imply that the
Lemma will be proven once we show that F (�, a, b) = 0 only at � = 1 for
a, b such that v ∈ 
1.

To determine the function f we use elementary trigonometry. Let � − �
be the argument of v. Then

b2 = a2 + 1− 2a cos(�),

c2 = a2 + p−2 − 2ap−1 cos(�). (5.46)

From this it follows

c2 ≡ f(a, b) =
1− p

p2
+
b2

p
− 1− p

p
a2. (5.47)

v ∈ 
1, is parametrized by an angle � and we have

a =
sin(�)

sin(�d)
, b =

sin(�(d− 1))

sin(�d)
. (5.48)

Therefore

F (�, a, b) =
1− p

p2
(
1− �−2p/(d−p)

)
+

1− p

p

sin2(�)

sin2(�d)

(
�−2p/(d−p) − �2

)

+
sin2(�(d− 1))

p sin2(�d)

(
�−2/(d−1) − �−2p/(d−p)

)
(5.49)
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Define the function

G(�) =
1− p

p2
(
1− �−2p/(d−p)

)
+

1− p

pd2
(
�−2p/(d−p) − �2

)

+
(d− 1)2

pd2
(
�−2/(d−1) − �−2p/(d−p)

)
(5.50)

Using the properties

1) sin2(�)

sin2(�d)
and sin2(�(d−1))

sin2(�d)
are positive and increasing function in � for

� ∈ [0, �/d),

2) �−2p/(d−p) − �2 > 0 for � ∈ (0, 1) and �−2p/(d−p) − �2 < 0 for � > 1,

3) �−2/(d−1) − �−2p/(d−p) > 0 for � ∈ (0, 1) and �−2/(d−1) − �−2p/(d−p) < 0
for � > 1,

we obtain that

F (�, a, b) ≥ G(�), for � ∈ (0, 1),

F (�, a, b) ≤ G(�), for � > 1. (5.51)

Therefore we have to prove that G(�) > 0 for � ∈ (0, 1) and G(�) < 0 for
� > 1. This follows from the fact that

1) G(1) = 0 (trivial verification) and

2) G′(�) < 0 for all � ∕= 1 (to be proven below).

G′(�) is given by

H(�) ≡ pd2

2
�G′(�) =

d− p

�2p/(d−p)
− d− 1

�2/(d−1)
− (1− p)�2. (5.52)

Consider first � > 1. We can rewrite

H(�) = (d− 1)
(
�−2p/(d−p) − �−2/(d−1)

)
+ (1− p)

(
�−2p/(d−p) − �2

)
. (5.53)

By Lemma 5.8 if follows, for � > 1, that

A(�) = �−2p/(d−p) − �−2/(d−1) <

(
2

d− 1
− 2p

d− p

)
(�− 1). (5.54)

Moreover, for d ≥ 3, by Lemma 5.8 we have that

�−2p/(d−p) − �2 < − 2d

d− p
(�− 1) (5.55)
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holds for � > 1. Using these bounds we obtain H(�) < 0 for � > 1, from
which G′(�) < 0 for � > 1 too.

Now consider the case � ∈ (0, 1). We get

�H ′(�)/2 =
(
�−2/(d−1) − �−2p/(d−p)

)
+ (1− p)

(
�−2p/(d−p) − �2

)
> 0 (5.56)

because both terms are strictly positive for � ∈ (0, 1). Since H(1) = 0, we
then get H(�) < 0 for � ∈ (0, 1). Thus G′(�) < 0 for � ∈ (0, 1) too, and this
finishes the proof of Lemma 5.6.

Proof of Lemma 5.7. On 
1 we have v(1+ v)
d−1 ∈ R. By symmetry if u(v) is

a solution of R(u, v) = 0, then also ū(v) is a solution of the same equation.
Thus we have to check that u = v is a simple zero for v ∈ 
1 ∖ {−1/d}. We
have R(u, v) =

∏d
k=1(v−uk(v)). If u = v would be a double solution, then the

Taylor expansion of R(u, v) at u = v would have the form
∑

k≥1 ak(v)(v−u)k
with a1(v) = 0. However, explicit computations gives

R(u, v) = −v(1 + v)d−1

(
1

v
+
d− 1

v + 1

)
(v − u) + a2(v)(v − u)2 + ⋅ ⋅ ⋅ . (5.57)

We see that the only v ∈ 
1 such that a1(v) = 0 is v = −1/d. Thus
Lemma 5.7 is proven.

Proof of Lemma 5.8. Consider the function f(�) = �a − �b. Then its second
derivative is

f ′′(�) =
(
a(a− 1)�a − b(b− 1)�b

)
�−2. (5.58)

For b > a and � > 1 we then have f ′′(�) <
(
a(a − 1) − b(b − 1)

)
�a−2 < 0

as soon as a(a − 1) − b(b − 1) < 0. In this case f(�) is strictly concave for
� > 1 and case (2) of Lemma 5.8 is proven.
For b < a < 0, f(�) is not anymore concave for all � > 1. Let us compute
the zero of f ′(�), �1, and the zero of f ′′(�), �2. We get

�1 = exp

(
ln(b/a)

a− b

)
> 1, (5.59)

�2 = exp

(
ln(b/a)

a− b

)
exp

(
ln((b− 1)/(a− 1))

a− b

)
> �1.

This means that f(�) is strictly concave as long as it increases and at � = 1
it is still increasing. Thus the bound for case (1) follows.

Proof of Proposition 5.9. We first define Γ0 close to infinity and the critical
point. Secondly, using Lemma 5.6 we prove that we can complete the path
satisfying Proposition 5.9. The way we do it is illustrated in Figure 5.
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�/d �
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1

Γ0

Γ0

Figure 5: Illustration of the path Γ0 (the bold line) used in the asymptotic
analysis. The dashed line is the 
1. On the right the structure close to the
critical point is shown.

First we consider the infinity, i.e., v = �ei' for � ≫ 1, and ' ∈
(−�/d, �/d). Then the d − 1 non-trivial solutions uk(v), k = 1, . . . , d − 1,
(different from the u = v one) of R(u, v) = 0 can be expanded in power of
�−1. Let us set

uk = �ei'e−i2�k/d(1 + �k/�+O(�−2)). (5.60)

Simple calculations lead to

�k =
d− 1

d

(
1− (−1)2(d−k)(d−1)/d

)
e−i', (5.61)

from which

Re( (v))−Re( (uk(v))) = − (1− p)d

�p(d− p)
Re

(
ei'−ei'e−i2�k/d

)
+O(�−2). (5.62)

Since for k = 1, . . . , d − 1 and ' ∈ (−�/d, �/d), Re
(
ei' − ei'e−i2�k/d

)
> 0,

it follows that for � large enough, Re( (v))− Re( (uk(v))) < 0. This strict
inequality holds also for ' = ±�/d for k = 2, . . . , d − 1. Therefore we can
choose a part of Γ0 to be parametrized by v = �ei' for all ' ∈ (−�/d, �/d).

Next we look close to the critical point. The above strict inequality holds
also for ' = ±�/d for k = 2, . . . , d−1, thus also on the line 
1. By continuity
and Lemma 5.6, Re( (v))−Re( (uk(v))) does not change its sign along 
1,
thus we can follow the path 
1 to come back to the critical point, with the
result

Re( (−1/d))− Re( (uk(−1/d))) < 0, k = 2, . . . , d− 1. (5.63)
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By continuity, Re( (v))−Re( (uk(v))) < 0 in a small enough neighborhood
of −1/d. Thus any path leaving from −1/d is good, at least locally, for the
d−2 solutions. Next, we consider the solution u1(v) close to the critical point.
It is the only non-trivial solution that u1(−1/d) = −1/d (see Lemma 5.7).
By Taylor expansion we obtain (5.27), which yields

 (v)−  (u1(v)) =
d3�3

3(d− 1)3
z3 +O(z4), z = v + 1/d, (5.64)

see (5.29). Thus in a neighborhood of the critical point there are three lines
along which Re( (v))− Re( (u1(v))) = 0. These lines are locally given by

v = −1

d
+ix+O(x2), v = −1

d
+ei�/6x+O(x2), v = −1

d
+ei5�/6x+O(x2),

(5.65)
for x real, see Figure 5. Therefore we can choose the path Γ0 close to the
critical point to be any path of the form

v = −1

d
+ ei�x+O(x2), � ∈ (−�/2,−�/6) ∪ (�/6, �/2). (5.66)

The steepest descent path leaves the critical point with an angle ±�/3.
The final step is to see that we can join the part of the path Γ0 close

to the critical point and the one far away (at large enough distance � from
the origin) by going close to 
1. Assume that we can not do that. Then
somewhere along the way we must hit a point where Re( (v)) = Re( (ui(v))
with ui(v) ∕= v. Let us call points v with this property “bad”. Thus, we know
that there are bad points at arbitrarily small distances to 
1, and also these
points have bounded absolute values because the neighborhood of infinity is
completely controlled.

Therefore, the sequence of bad points necessarily has a limit point on 
1
which is not −1/d (because near −1/d everything is controlled, too). But
because of Lemma 5.6, this implies that bad points near 
1 can come only
from the root u1(v) which is equal to v̄ on 
1. Thus we have to prove that
the root u1 does not cause bad points. For this, the neighborhood of 
1 away
from the critical point can be parametrized as

v(', �) =
(
− 1 +

sin((d− 1)')

sin(d')
ei'

)
e−i�. (5.67)

For ' ∈ (0, �/d), 1 ≫ � > 0 means that the point has increased real and
decreases imaginary part with respect to � = 0. We can compute explicitly
u1(v) in series of �, with the result

u1(', �) = v(−', �)(1 + �� +O(�2)) (5.68)
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with

� = −i
1 + v(', 0)d

1 + v(', 0)

1 + v(−', 0)
1 + v(−', 0)d. (5.69)

Let v(', 0) = x+ iy. Then explicit computations lead to

d

d�

(
Re (v)− Re (u(v))

)∣∣∣
�=0

=
py

(d− p)((1 + x)2 + y2)((1 + px)2 + p2y2)

×
(
(p+ 2pd− 3d)(y2 + x2) + (3p− 2− d) + (4d+ 2pd− 2− 4d)x

)

The denominator is always positive. Consider y > 0 (i.e., away from the
critical point). Then p + 2pd − 3d = p(1 − p) + 3(p − 1)d < 0 for p ∈ (0, 1)
and d ≥ 2. Thus the term in y2 is always strictly negative. To analyze the
contribution in x, we set x = −1/d+ z, and on 
1 ∖ {−1/d} we have z > 0.
As a function of z, the remainder of the numerator becomes

−(d− 1)2(d− p)

d2
− 2(d− 1)(p(d− 1)− 2d(1− p))

d
z

−(p(d− 1) + 3d(1− p))z2 < 0. (5.70)

Therefore, in a right-neighborhood of 
1, Re( (v))−Re( (u1(v))) < 0. Thus
u1(v) does not generate bad points in a right-neighborhood of 
1 (excluding

1).

In the above construction of the contour Γ0 we ignored the requirement
that the contour is not allowed to contain any additional poles, see Theo-
rem 2.1. These additional poles appear as ui(v) = −1/d. In particular, if
u(1 + u)d−1 is real, then also v(1 + v)d−1 is real. This happens on the d − 1
branches, one being 
1 from (5.35), the others are d − 2 branches originate
at −1 and going to infinity in the directions e±ik�/d, k = 2, . . . , d− 1. These
branches do not intersect with 
1 because of Lemma 5.7, thus do not inter-
sect the interior of Γ0. Therefore the path Γ0 fulfills all the requirements of
Theorem 2.1.

Proof of the bound for moderate deviations

Proof of Proposition 5.3. In this proof we set s̃i = �sit
−2/3. The " > 0 is still

to be chosen. We can set it as small as desired, but of course independent
of t. For " > 0 small enough, the path Γ0 can be chosen to be equal to the
path used in the proof of Proposition 5.9 and illustrated in Figure 5, except
for a deformation close to the critical point.

We set

 ",i(v) = − p

d− p
ln(v/ui(v))−ln

(
1 + pv

1 + pui(v)

)
+s̃2 ln(1+v)−s̃1 ln(1+ui(v)).

(5.71)
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First consider the " = 0 situation. Let ui(v) be the solutions of R(u, v) =
0 as in Proposition 5.9. It follows from Proposition 5.9 that there exists a
� > 0 such that Re( ",1(v)) ≤ −� for all v ∈ Γ0 ∖ {∣v + 1/d∣ ≤ Const8�

2/3}
for some Const8 > 0 small enough. Next consider the situation we want to
analyze, i.e., " > 0 small. Since Γ0 remains on a bounded region, we can
choose " with 0 < " ≪ �4/3 such that Re( ",1(v)) ≤ �/2 for v as above.
Similarly, for i = 2, . . . , d− 1, Re( ",i(v)) ≤ �/2 for all v ∈ Γ0, since the only
solution ui(v) such that Re( 0,i(−1/d)) = 0 is u1(v).

Thus we choose Γ0 as in Proposition 5.9 for {∣v+1/d∣ ≥ c�2/3}, and modify
only the path in the region {∣v + 1/d∣ ≤ c�2/3}. The contribution coming

from the unmodified path is then bounded by O(e−�t/2) < O(e−2"3/4t) <

O(e−2"3/2t). Now, note that s
3/2
i ≤ "3/2t, thus the previous contribution is

bounded by O(e−(s1+s2)3/2).
Next we have to consider the neighborhood of v = −1/d and see how

the positions of the critical points depends on ". We will then be able to
choose the appropriate path locally. We have already computed u1(v) in the
neighborhood of v = −1/d in (5.27). The doubly critical point at v = −1/d
is separates now into two critical points v± on the real axis. They are the
stationary points of Re( ",1(v)) − Re( ",1(−1/d)) and can be computed in
series of

√
s̃1 + s̃2. Explicitly we have

Re( ",1(v))−Re( ",1(−1/d)) =
d3�3

3(d− 1)3
z3(1+O(z))− (s̃1 + s̃2)d

d− 1
z(1+O(z))

(5.72)
with z = v + 1/d. From (5.72) it follows that

v± = −1

d
±

√
s̃1 + s̃2

(d− 1)

d�3/2
(1 +O(

√
s̃1 + s̃2)). (5.73)

Re( ",1(v)) is minimal at v+. Therefore we can choose the path Γ0 to pass
by v+. Since we need just a bound, we can disregard the error term and set
the path Γ0 to pass by

v0+ = −1

d
±

√
s̃1 + s̃2

(d− 1)

d�3/2
. (5.74)

The steepest descent path leaves v0+ along the imaginary direction, see Fig-
ure 6, thus the final choice of Γ0 in the �-neighborhood of −1/d is simply

�0 = {v0+ + iy, ∣y∣ ≤
√
s̃1 + s̃2

(d−1)
√
3

d�3/2 } joint with �1 and �̄1.
We change the variable by setting v = −1/d+z, and denote z+ = v0++1/d.

Then the contribution coming from the integral over Γ0 in the �-neighborhood
of −1/d is

�t1/3

−2�i

∫

�̄1∨�0∨�1
dz exp

(
Ft(z)

)
(5.75)

30



−1
d

v0+

�0

�1

�̄1

Figure 6: Local choice of the path Γ0 (the bold line) used in the asymptotic
analysis for moderate deviations.

where Ft(z) = tf0(z) + t2/3f1(z) + t1/3f2(z) + f3(z), with

f0(z) =
d3�3

3(d− 1)3
z3(1 +O(z))− (s̃1 + s̃2)d

d− 1
z(1 +O(z)),

f1(z) = −�2(r2 − r1)
2

d(d− 1)
ln

(
(d− 1)d−1

dd

)
+
�2(r2 − r1)d

2

(d− 1)2
z2 +O(z3),

f2(z) = −�(s2 − s1) ln((d− 1)/d),

f3(z) = ln(d/(d− 1)) +O(z). (5.76)

This is like (5.29) except that now the si are in the leading term f0 since
they can be very large, namely of order O(t2/3).

On �0, z =
√
s̃1 + s̃2

(d−1)

d�3/2 (1 + iw) with w ∈ (−
√
3,
√
3). It is not difficult

to check that on �0

Re(tf0(z)) ≤ −2

3
(s1 + s2)

3/2(1 +O(
√
s̃1 + s̃2)),

Re(t2/3f1(z)) ≤ t2/3f1(0) + (s1 + s2)(1 +O(
√
s̃1 + s̃2)),

Re(f3(z)) ≤ f3(0) +O(
√
s̃1 + s̃2). (5.77)

For L large enough, the linear term in s1+s2 is controlled by the−2
3
(s1+s2)

3/2

term. Thus for " small enough, the contribution (5.75) coming from �0 can
be bounded as

∣�0∣�t1/3eFt(0)e−
1
3
(s1+s2)3/2 . (5.78)

But ∣�0∣ = 2t−1/3
√
s1 + s2

(d−1)
√
3

d�
, therefore the t1/3 factor simplifies and the

contribution (5.75) coming from �0 is bounded by Const9e
Ft(0)e−

1
3
(s1+s2)3/2 for

some finite Const9 > 0.
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The final step is to bound the contribution coming from the integration
on �1 (the same bound holds for the �̄1 contribution). It is parametrized
by z = ei�/3y, y ∈ [z+/2, �]. The term t2/3f1(z) is dominated, for large
L, by the cubic term in z coming from the term tf0(z). In fact, while y
increases the cubic term becomes more and more dominating with respect to
the quadratic term in z and from the analysis on �0, the domination occurs
already at y = z+/2.

The linear term in z of f3(z) is dominated by the linear term in z coming
from tf0(z), again for L large enough. Therefore for L≫ 1 and � ≪ 1,

Re(Ft(z)) ≤ Ft(0)− t
d3�3

6(d− 1)3
y3 − t

(s̃1 + s̃2)d

4(d− 1)
y

≤ Ft(0)− t
d3�3

6(d− 1)3
y3 − t

(s̃1 + s̃2)
3/2

8�3/2
(5.79)

where the last inequality follows from y ≥ z+/2. Thus

∣∣∣∣
�t1/3

−2�i

∫

�1

dzeFt(z)

∣∣∣∣ ≤ Const10e
Ft(0)e−

1
8
(s1+s2)3/2

∫ ∞

0

dyt1/3e
−t d3�3

6(d−1)3
y3
.

(5.80)
The last integral equals a constant independent of t, and the t-dependent
terms in the factor eFt(0) vanishes if we consider the conjugate kernel Kconj

0

of K0, see (5.1). In fact,

eFt(0) =

(
(d− 1)d−1

dd

)−t2/3�2(r2−r1)
2

d(d−1)
(
d− 1

d

)−t1/3�(s2−s1) d

d− 1

=

(
(d− 1)d−1

dd

)n1−n2
(
d− 1

d

)x2+dn2−(x1+dn1) d

d− 1
. (5.81)

Let the " and the t chosen above be denoted by "0 and t0 respectively.
Then the decay is exponentially small in (s1 + s2)

2/3 times a constant inde-
pendent of L, " and t for 0 < " ≤ "0 and t ≥ t0. Thus, the whole result
can be simply bounded by e−(s1+s2) for L large enough. Therefore the bound
(5.5) holds.

Proof of large deviation bound

Proof of Proposition 5.4. In this proof the notation ≃ means that the two
expressions are equal up to a factor which is not exponentially large in t.
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More precisely, we say that f ≃ g if limt→∞
1
t
ln(f/g) = 0. We have

Kconj
0 (n1, x1;n2, x2) =

n2−1∑

k=0

Ψn1
n1−n2+k(x1)

(
d− 1

d

)x1+n1
(

dd

(d− 1)d−1

)n1

× Φn2
k (x2)

(
d

d− 1

)x2+n2
(
(d− 1)d−1

dd

)n2

. (5.82)

Let us denote � ≡ �(k) = k/t. Then we have

Kconj
0 (n1, x1;n2, x2) ≃

n2−1∑

k=0

I1(�(k), s̃1)I2(�(k), s̃2) (5.83)

where

I1(�, s) ≃ 1

2�i

∮

Γ−1

du exp
(
tf�,s(u)

)
,

I2(�, s) ≃ 1

2�i

∮

Γ0

dv exp
(
− tf�,s(v)

)
, (5.84)

and

f�,s(u) = ln(1 + pu) + � ln(−u)− (d− 1)
( p

d− p
− �

)
ln(1 + u)

+s
(
ln(1 + u)− ln(1− 1/d)

)
. (5.85)

We just have to find bounds on I1 and I2 such that their product is ex-
ponentially small in t. Then, since the sum (5.83) includes O(t) products,
the result is obtained by determining the � ∈ [0, p/(d− p)] which minimizes
I1(�, s)I2(�, s).

The stationary points of f�,s(u), are by the Cauchy-Riemann equations
also the critical points of Re(f�,s(u)). Denote � = (d − 1)(p/(d − p) − �),
then we have to consider only � > 0, resp. s < �, because the limit cases
� = 0, resp. s = �, correspond to a vanishing pole at u = 0, resp. u = −1.
Thus when � = 0, I2(�, s) ≃ 0, and when s ≥ �, I1(�, s) ≃ 0. This is what
happens in case (2), because if s̃i > c = (d− 1)p/(d− p), then � < s for all
� ≥ 0.

First we consider s = 0. Then

df�,0(u)

du
≡ p

1 + pu
+
�

u
− �

1 + u
= 0 (5.86)

has two solutions in (−1, 0),

u−,0 = min
{
− 1

d
,− �(d− p)

p(�(d− p) + (1− p))

}

≤ max
{
− 1

d
,− �(d− p)

p(�(d− p) + (1− p))

}
= u+,0 (5.87)
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with equality for � = (1 − p)p/(d − p)2 ∈ (0, p/(d − p)) for any p ∈ (0, 1)
and d ≥ 2. In Lemma 5.10 we prove that for s ∈ (0, �), u−,s ∈ (−1,−1/d) is
strictly decreasing in s, while u+,s ∈ (−1/d, 0) and is strictly increasing in s.
u+,s is the left-most maximum of f�,s(u) for u ∈ (−1, 0). Thus, for s > s0,

f�,s(u+,s) > f�,s(u+,s0) > f�,s0(u+,s0) (5.88)

because f�,s(u+,s0) = f�,s0(u+,s0) + (s − s0)
(
ln(1 + u+,s0) − ln(1 − 1/d)

)
.

Similarly we obtain, for s < s0, f�,s0(u−,s0) < f�,s(u−,s).
In Lemma 5.11 we prove that I1(�, s) ≃ etf�,s(u−,s) (resp. I2(�, s) ≃

e−tf�,s(u+,s)), from which

Kconj
0 (n1, x1;n2, x2) ≃ exp

(
t max
0≤�≤p/(d−p)

(f�,s̃1(v−,s̃1)− tf�,s̃2(v+,s̃2))
)
. (5.89)

Then using (5.88) we get

Kconj
0 (n1, x1;n2, x2) ≲ exp

(
t max
0≤�≤p/(d−p)

(f�,"(v−,")− f�,"(v+,"))
)

≲ exp
(
− 2

3
(2"/�)3/2t + tO("2)

)
. (5.90)

For " → 0 the maximum is obtained at � = (1 − p)p/(d − p)2. For " > 0
small it turns out that the optimization is also obtained for the same �. This
can be seen by looking at � + x

√
" and see that x = 0 gives the maximum.

Finally, if only one between s̃1 and s̃2 is in (", c), the other being smaller
than ", we have to replace v−," by v−,0 or v+," by v+,". In this case we then
obtain the bound exp

(
− 2

3
("/�)3/2t + tO("2)

)
instead of the one in (5.90).

For 0 < "≪ 1 and t≫ 1, we then have the bound

exp
(
− 1

3
("/�)3/2t

)
. (5.91)

Now, since " ≤ s̃1 + s̃2 ≤ 2c, then t ≥ (s1 + s2)
3/2(�/2c)3/2 and

√
s1 + s2 ≥

t1/3
√
"/�. Thus we get

(5.91) ≤ e−(s1+s2)3/2("/2c)3/2/3 ≤ e−(s1+s2)"2t1/3/(3c3/2�1/2) ≤ e−(s1+s2) (5.92)

for t large enough.

A remark to point (2) of Proposition 5.4. The kernel is identically equal
to zero as soon as the position we look is smaller than the initial position of
the particle, thus the maximal value that the si’s can take without the kernel
being identically equal to zero is of order t.
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Figure 7: Shape of Re(f�,s) along the real axis. The shown divergences are
at −1/p, −1 and 0.

Lemma 5.10. Let � > 0, 0 < s < �, and consider the function f�,s defined
in (5.85). F�,s has two stationary points at −1 < u−,s < −1/d < u+,s < 0.
Moreover, u−,s is strictly decreasing in s and u+,s is strictly increasing in s.

Proof. In the limit case s = 0 we have two solutions in (−1, 0) but not strictly
away from −1/d, see (5.87). First consider u+,s. Let us take s > s0 ≥ 0. By
definition f ′

�,s0
(u+,s0) = 0 and limu→0− f

′
�,s0

(u) = −∞, therefore f ′
�,s0

(u) < 0
for u ∈ (u+,s0, 0). On the other hand,

f ′
�,s(u+,s0) = f ′

�,s0(u+,s0) +
s− s0

1 + u+,s0

> 0, s < s0. (5.93)

Therefore u+,s ∈ (u+,s0, 0), thus u+,s is strictly increasing in s. The result for
u−,s follows in a similar way. The shape of Re(f�,s) for � > 0, 0 < s < � is
shown in Figure 7.

Lemma 5.11. Let � > 0 and s̃i < �. Then the following asymptotic expo-
nential behaviors hold

I1(�, s̃1) ≃ exp
(
tf�,s̃1(u−,s)

)
, I1(�, s̃1) ≃ exp

(
− tf�,s̃2(u+,s)

)
. (5.94)

Proof. We will show that Γ−1 = {u = −1 + (u−,s + 1)ei�, � ∈ [−�, �)} and
Γ0 = {v = −u+,se

i�, � ∈ [−�, �)} are steep descent paths1 of the integral
defining I1 and I2 with maximal value at � = 0. The Lemma follows then
from the fact that the paths Γ−1 and Γ0, which pass through u−,s and u+,s,
are of length of order 1 in t.

1For an integral I =
∫


dzetf(z), we say that 
 is a steep descent path if (1) Re(f(z))

is maximal at some z0 ∈ 
: Re(f(z)) < Re(f(z0)) for z ∈ 
 ∖ {z0} and (2) Re(f(z)) is
monotone along 
 ∖ {z0} except, if 
 is closed, at a single point where Re(f) is minimal.
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Let us start with I1(�, s). Denote g(�) = Re(f�,s(u)) for u ∈ Γ−1, and
r = u−,s + 1. Explicitly,

g(�) =
1

2
ln
(
(1− p)2 + p2r2 + 2p(1− p)r cos(�)

)

+
�

2
ln
(
1 + r2 − 2r cos(�)

)
+ Const11 (5.95)

for some Const11 independent of �. Then

dg(�)

d�
= r sin(�)

( �

1 + r2 − 2r cos(�)
− 1

1−p
p

+ p
1−p

r2 + 2r cos(�)

)
. (5.96)

� = 0 corresponds to u = u−,s, which is a simple zero of df(u)
du

, thus a saddle
point. u = u−,s is a local minimum of Re(f(u)) along the real direction,
thus it is a local maximum along the path Γ−1 at � = 0 and for ∣�∣ ≪ 1,
Re(f(u)) ≃ −c�2 for some c > 0. This implies that the term inside the
brackets is strictly negative at � = 0.

To see that Γ−1 is a steep descent path, we have to check that the term
inside the brackets is negative, as already shown for � = 0. Thus we have to
show that

1− p

p
+

p

1− p
r2 + 2r cos(�) < �−1

(
1 + r2 − 2r cos(�)

)
. (5.97)

This rewrites as

2r cos(�)(1 + �−1) <
1

�
− 1− p

p
+ r2

(
1

�
− p

1− p

)
. (5.98)

This inequality holds for all � because it holds for � = 0 where the cos(�) is
maximal.

Now, consider I2(�, s). Let g̃(�) = Re(−f�,s(v)) for v ∈ Γ0 and denote
r = −u+,s. Then

g̃(�) = −1

2
ln(1 + p2r2 − 2pr cos(�)) +

� − s

2
ln(1 + r2 − 2r cos(�)) + Const12

(5.99)
for some Const12 independent of �. Then

dg̃(�)

d�
= r sin(�)

(
� − s

1 + r2 − 2r cos(�)
− 1

p−1 + pr2 − 2r cos(�)

)
. (5.100)

If the term in the parenthesis is negative for all �, then Γ0 is a steep descent
path with maximum at u+,s. This condition writes

1− � − s

p
+ r2(1− p(� − s)) > 2r cos(�)(1− � + s). (5.101)
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Since 1−�+s ≥ 1−� = 1−(d−1)p/(d−p)+(d−1)� ≥ 1−(d−1)p/(d−p) > 0
for p ∈ (0, 1), it follows that the inequality holds for all � if it holds at � = 0.
But there the inequality holds since u+,s is a local quadratic minimum along
the real direction of g̃(u).

Proof of the bound of the binomial term

Proof of Proposition 5.5. We divide the analysis into two cases.
1) ∣s1 − s2∣ ≤ t1/6. In this case the results follows from the estimate (5.21)
with O(") ≤ O(t−1/6). This, together with the inequality

e−x2/(4r) ≤ e4re−∣x∣, (5.102)

leads to the desired bound.
2) ∣s1 − s2∣ ≥ t1/6. Denote a as in (5.20) and x1 − x2 − 1 = �a. a ≃ t2/3 ≫ 1
for large t. Then ∣s1 − s2∣ ≥ t1/6 corresponds to ∣� − d∣ ≥ c1t

−1/6 with
c1 = d(d− 1)/(2�(r2 − r1)). The �-dependent term in the l.h.s. of (5.7) is

(
d

d− 1

)−�a (
�a

a

)
≃ eag(�), (5.103)

with

g(�) = (� ln(�)− (�− 1) ln(�− 1)− � ln(d/(d− 1))) . (5.104)

In (5.103) the correction to eag(�) behaves like 1/
√
a, thus a prefactor

1/
√
r2 − r1 will always be in Const1. We have

dg(�)

d�
= ln(�/(�− 1))− ln(d/(d− 1)),

d2g(�)

d�2
= − 1

�(�− 1)
. (5.105)

Thus dg(�)
d�

= 0 only at � = d and d2g(�)
d�2 is increasing in �. Thus for � ∈ [1, d],

g(�) ≤ g(d) + f1(�), f1(�) = − 1

2d(d− 1)
(�− d)2. (5.106)

Moreover, for � ∈ [1, �c],

g(�) ≤ g(d) + f2(�), f2(�) = − 1

4d(d− 1)
(�− d)2 (5.107)

where �c is defined by f ′
2(�c) = lim�→∞ g′(�): �c = d+2d(d−1) ln(d/(d−1)).

For � ≥ �c, we set f3(�) = (�−d)f2(�c)/(�c−d). Then g(�) ≤ g(d)+f3(�).
With these bounds on g(�) we then get:
a) 1 ≤ � ≤ d: eag(�) ≤ eag(d)e−(s2−s1)2/(4(r2−r1)),
b) d ≤ � ≤ �c: e

ag(�) ≤ eag(d)e−(s2−s1)2/(8(r2−r1)),

c) � ≥ �c: e
ag(�) ≤ eag(d)e−∣s2−s1∣t1/3�d2(�c)/(2d(d−1) ln(d/(d−1))).

Finally, by (5.102) the desired bound holds for t large enough.
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A Kernel KF1 and trace-class

Fredholm’s series point of view

One way of looking at (2.6) is by simply considering the Fredholm series

det(1− �sKF1�s)L2({u1,...,um}×R)

=
∑

n≥0

(−1)n

n!

m∑

i1,...,in=1

∫ ∞

si1

dx1 ⋅ ⋅ ⋅
∫ ∞

sin

dxn det(K(uik , xk; uil, xl))1≤k,l≤n.

Then it is not difficult to see that the function is absolutely sum-
able/integrable, so that the series is well defined. The required bound is
easily obtained if we conjugate the kernel with

�(uk, x) = (1 + x2)2k (A.1)

as follows. We use

det (K(uik , xk; uil, xl))1≤k,l≤n = det

(
K(uik , xk; uil, xl)

�(uil, xl)

�(uik , xk)

)

1≤k,l≤n

(A.2)
and the Hadamard bound, that is, the absolute value of a determinant of a
n × n matrix with entries of absolute value not exceeding 1 is bounded by
nn/2. The details are like in the proof of Theorem 2.5.

Operator point of view

The second point of view is to consider (2.6) as a Fredholm determinant
of an operator. The Fredholm determinant is well defined for trace-class
operators. What we then mean by (2.6) is that there exists a conjugate
operator (i.e., leading to the same determinantal measure) which is trace-
class on ℋ = L2({u1, . . . , um} ×R).

Consider the conjugate operator K̃1 given by the kernel

K̃1(u1, s1; u2, s2) = K1(u1, s1; u2, s2)
�(u2, s2)

�(u1, s1)
. (A.3)

The choice of �(uk, x) is not at all unique. We use the following one:

�(uk, x) = (1 + x2)2k. (A.4)

Proposition A.1. The operator K̃1 as defined above is trace-class on
ℋ = L2({u1, . . . , um} ×R).
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Proof. We can write K̃1 =
∑m

k,l=1 PkK̃1Pl where Pk is the projection from ℋ
into its subspace ℋk = {f ∈ ℋ∣f(ui, x) = 0, i ∕= k}. Then

∥K̃1∥1,ℋ ≤
m∑

k,l=1

∥PkK̃1Pl∥1,ℋ. (A.5)

Now, ∥PkK̃1Pl∥1,ℋ = ∥K̃k,l
1 ∥1 where K̃k,l

1 is the operator on L2(R) with kernel

K̃1(uk, ⋅; ul, ⋅). Thus to prove that K̃1 is trace-class onℋ, it is enough to prove

that, for k, l = 1, . . . , m, K̃k,l
1 is trace-class as operator on L2(R). This is

proven in Lemma A.2 and Lemma A.3.

Lemma A.2. The operator with kernel

Lk,l(x, y) =
(
e(uk−ul)Δ

)
(x, y)

�(uk, x)

�(ul, y)
1[x≥sk]1[y≥sl]1[uk>ul] (A.6)

is trace-class on L2(R).

Proof. For uk ≤ ul nothing has to be proven since Lk,l = 0. Consider uk > ul
(i.e., k > l) and define the two operators

A(x, z) =
(
e
1
2
(uk−ul)Δ

)
(x, z)

(1 + z2)k+l

(1 + x2)2k
(A.7)

and

B(z, y) =
(
e
1
2
(uk−ul)Δ

)
(z, y)

(1 + y2)2l

(1 + z2)k+l
. (A.8)

Then
Lk,l = PskABPsl (A.9)

with Pa(x) = 1[x≥a]. The P ’s are projectors, thus ∥Ps⋅∥∞ = 1. From this it
follows

∥Lk,l∥1 ≤ ∥A∥2∥B∥2. (A.10)

It is simple to prove that ∥A∥2 <∞ and ∥B∥2 < ∞, since the 2-norm is
easily bounded using its integral kernel.

∥A∥22 ≤
∫R2

dxdz
1

2�(uk − ul)
e−2(x−z)2/(uk−ul)

(1 + z2)2(k+l)

(1 + x2)2(k+l)

1

(1 + x2)2(k−l)

(A.11)
By changing the variable z = y + x, it is easy to see that

∫R dz
1

2�(uk − ul)
e−2(x−z)2/(uk−ul)

(1 + z2)2(k+l)

(1 + x2)2(k+l)
≤ Const13 (A.12)
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Therefore

∥A∥22 ≤ Const13

∫R dx
1

(1 + x2)2(k−l)
≤ �

2
Const13 (A.13)

since k− l ≥ 1. In the same way we can check that ∥B∥2 <∞, thus proving
the result of the Lemma.

Lemma A.3. The operator with kernel

Mk,l(x, y) =
(
e−ulΔB0e

ukΔ
)
(x, y)

�(uk, x)

�(ul, y)
1[x≥sk]1[y≥sl] (A.14)

is trace-class on L2(R).

Proof. First of all, let Pa be the projector on [a,∞), and set

Qk,l(x, y) =
(
e−ulΔB0e

ukΔ
)
(x, y)

�(uk, x)

�(ul, y)
. (A.15)

Then, for −L ≤ min{uk, ul}, it holds that

Mk,l = Puk
Qk,lPul

= Puk
P−LQk,lP−LPul

(A.16)

and, using ∥Pa∥∞ = 1, we get

∥Mk,l∥1 ≤ ∥P−LQk,lP−L∥1. (A.17)

Instead of using the projectors, we can think of Qk,l as an operator on
ℋL = L2([−L,∞),dx). The Airy function can be expressed as

Ai(x) =
1

2�

∫R d�e−�2�e
1
3
�3−x�ei(

1
3
�3−��2+x�) (A.18)

for any � > 0. Let us set

�(�) = 1
3
�3−��2+(uk−ul)2�, � = 1

3
�3− (uk−ul)2�+ 2

3
(uk−ul)3 (A.19)

and define the measures d�(x) = (1+x2)−2ldx, d�(x) = (1+x2)2kdx. With
these notations we have, for f ∈ ℋL,

∣⟨f,Qk,lf⟩ℋL
∣ =

∣∣∣∣
∫ ∞

−L

d�(x)

∫ ∞

−L

d�(y)f(x)Qk,l(x, y)f(y)

∣∣∣∣ (A.20)

and

Qk,l(x, y) =
e�

2�

∫R d�e−�2�ei�(�)e(x+y)(i�−�), (A.21)
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where we set � = −(uk − ul − �). By choosing � > uk − ul we have � > 0
and we can exchange the integrals. Let us set

g1(�, �) =

∫ ∞

−L

d�(x)f(x)eix�e−�x, g2(�, �) =

∫ ∞

−L

d�(x)f(x)eix�e−�x.

(A.22)
Then

∣⟨f,Qk,lf⟩ℋL
∣ ≤ e�

2�

∫R d�e−�2� ∣g1(�, �)∣ ∣g2(�, �)∣

≤ e�

4�

∫R d�e−�2�(∣g1(�, �)∣2 + ∣g2(�, �)∣2) (A.23)

where we used a2 + b2 ≥ 2ab. The first term can be evaluated as follows.
∫R d�e−�2�∣g1(�, �)∣2 (A.24)

=

∫R d�e−�2�

(∫ ∞

−L

d�(x)f(x)e−ix�e−�x

)(∫ ∞

−L

d�(y)f(y)eiy�e−�y

)

=

∫ ∞

−L

d�(x)

∫ ∞

−L

d�(y)f(y)f(x)e−�(x+y)

∫R d�e−�2�ei(x−y)�

=

√
�

�

∫ ∞

−L

d�(x)

∫ ∞

−L

d�(y)f(y)f(x)e−�(x+y)e−(x−y)2/4�.

The second term is computed in essentially the same way. We obtain

0 ≤ ∣⟨f,Qk,lf⟩ℋ∣ ≤
e�

4
√
��

⟨f,Gf⟩ℋ (A.25)

with G the operator with kernel

G(x, y) = e−�(x+y)e−(x−y)2/(4�)
(
(1 + x2)2k(1 + y2)2k + (1 + x2)−2l(1 + y2)−2l

)
.

(A.26)
Qk,l is Hilbert-Schmidt on ℋL (use (A.21)). Thus Qk,l is a compact

operator. For any orthonormal basis {�n}n≥1 we have

∑

n≥1

∣⟨�n, Qk,l�n⟩ℋL
∣ ≤ e�

4
√
��

∑

n≥1

⟨�n, G�n⟩ℋL
. (A.27)

By (A.25) and (A.26) G is a positive and continuous operator, thus we have

∑

n≥1

⟨�n, G�n⟩ℋL
=

∫ ∞

−L

dxG(x, x) =

∫ ∞

−L

dxe−2�x((1+x2)4l+(1+x2)−4k) <∞.

(A.28)
This holds for any orthonormal basis, thus the Lemma is proved.
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B Krawtchouk orthogonal polynomials

Let Kn(x, p, t) = 2F1(−n,−x;−t; 1/p) be the Krawtchouk polynomials, see
e.g. [9]. To obtain an integral representation we use their generating function

T∑

n=0

(
T

n

)
Kn(z, p, T )�

n =

(
1− 1− p

p
�

)z

(1 + �)T−z. (B.1)

From this it follows that

(
T

n

)
Kn(z, p, T ) =

1

2�i

∮

Γ0

d�

(
1− 1−p

p
�
)z

(1 + �)T−z

�n+1
(B.2)

where Γ0 is an anticlockwise oriented simple loop with 0 as the only pole
inside Γ0.

In the case of particles starting from yj = −d(j − 1) we obtain, for
k = 0, . . . , N − 1,

ΨN
k (z) = (1− p)t

(
t+ k

z − (d− 1)k

)(
p

1− p

)z−(d−1)k

Kk(z − (d− 1)k, p, t+ k).

(B.3)
We use the two identities

(x+ 1)Kn(x, p,N) (B.4)

= (N + 1)p
(
Kn(x+ 1, p, N + 1)−Kn+1(x+ 1, p, N + 1)

)

and

(N + 1− x)Kn(x, p,N) (B.5)

= (N + 1)(1− p)
(
Kn(x, p,N + 1) +

p

1− p
Kn+1(x, p,N + 1)

)

recursively and eventually obtain, setting T = t+ d(N − 1),

ΨN
k (z) = !T (z)

d(N−1)∑

l=0

Sk,lKl(z, p, T ) (B.6)

with

!T (z) = (1− p)T
(

p

1− p

)z (
T

z

)
(B.7)

the standard weight for the Krawtchouk polynomials Kj(z, p, T ),
j = 0, . . . , T , and the (not square) matrix S with entries

Si,j =

(
p

1− p

)j
1

pi

∑

�≥0

(
(d− 1)i

�

)(
d(N − 1− i)

j − i− �

)( −p
1− p

)−�

. (B.8)
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To obtain a family of polynomials {ΦN
k (z), k = 0, . . . , N − 1}, with ΦN

k

of degree k, and which satisfy
∑

z≥0Φ
N
k (z)Ψ

N
j (z) = �k,j, we need to be able

to invert the matrix S restricted to the entries 0 ≤ i, j ≤ N − 1. The
orthogonality relation of the Krawtchouk polynomials is, for 0 ≤ n,m ≤ T ,

T∑

z=0

!T (z)Km(z, p, T )Kn(z, p, T ) =

((
T

n

)(
p

1− p

)n)−1

�m,n. (B.9)

Therefore

ΦN
k (z) =

N−1∑

l=0

Kl(z, p, T )

(
T

l

)(
p

1− p

)l

S−1
l,k . (B.10)

In the inverse of the matrix S = [Si,j]0≤i,j,≤N−1, the terms in front of
the sum are easily accounted for. In fact, if a matrix S has entries Si,j =
f(i)S̃i,jg(j), then its inverse has entries S−1

i,j = g−1(i)S̃−1
i,j f

−1(i). In our case,

f(i) = p−i and g(j) =
(

p
1−p

)j
, and Si,j =

∑
�≥0

(
(d−1)i

�

)(
d(N−1−i)
j−i−�

)
��. with

� = −1−p
p
.

Case d = 2

In this case, set T = t + 2(N − 1) and !T (z) = (1− p)T
(

p
1−p

)z (
T
z

)
. Then

Si,j =

(
p

1− p

)j
1

pi

(j−i)∑

�≥0

(
1− p

−p

)� (
i

�

)(
2(N − 1− i)

j − i− �

)
, (B.11)

ΨN
k (z) = !T (z)

2(N−1)∑

l=0

Sk,lKl(z, p, T ), (B.12)

and

ΦN
k (z) =

N−1∑

l=0

Kl(z, p, T )

(
T

l

)(
p

1− p

)l

S−1
l,k . (B.13)

The computation of the inverse of S is quite involved, but at the end of the
week one finds, with 0 ≤ i, j ≤ N − 1,

S−1
i,j =

(
1− p

p

)i

pj
(j−i)∑

�≥0

(
1− p

−p

)�

(−1)j−i

(
2N − 2− i− j − �

j − i− �

)(
j + �

�

)
A

(�)
i,j

(B.14)
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with

A
(j−i)
i,j =

i

2j − i
, and setting it to be 1 for i = j = 0,

A
(�)
i,j = 2

j(N − 1− i)− �(N − 1)

(j + �)(2N − 2− i− j − �)

the last being the expression for 0 ≤ � ≤ j − i− 1.
To obtain the functions ΦN

k we plug the solution of the inverse of the ma-
trix in the expression above and perform the sums. First one exchanges the
path integral and the finite sums. Then the sums can be simplified by extend-
ing them to −∞ or ∞ depending on the case. This can be done because the
extra terms turn out to be analytic functions leading to a zero contribution
after integration. In the end we obtain ΦN

0 = 1 and, for 1 ≤ k ≤ N − 1,

ΦN
k (z) =

(−1)k

2�i

∮

Γ0

dv

v

1

vk
(1− pv)t+2k−z−1 (1 + (1− p)v)z−k−1 (1 + (2− p)v) .

(B.15)
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[16] G.M. Schütz, Exact solution of the master equation for the asymmetric
exclusion process, J. Stat. Phys. 88 (1997), 427–445.

[17] C.A. Tracy and H. Widom, Level-spacing distributions and the Airy
kernel, Comm. Math. Phys. 159 (1994), 151–174.

[18] C.A. Tracy and H. Widom, On orthogonal and symplectic matrix en-
sembles, Comm. Math. Phys. 177 (1996), 727–754.

45


