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Abstract

We consider the joint distributions of particle positions for the con-
tinuous time totally asymmetric simple exclusion process (TASEP).
They are expressed as Fredholm determinants with a kernel defining a
signed determinantal point process. We then consider certain periodic
initial conditions and determine the kernel in the scaling limit. This
result has been announced first in a letter by one of us [34] and here
we provide a self-contained derivation. Connections to last passage
directed percolation and random matrices are also briefly discussed.

1 Introduction

Continuous time TASEP. The totally asymmetric simple exclusion process
(TASEP) is one of the simplest interacting stochastic particle systems. Its
particles are on the lattice of integers, Z, with at most one particle at each
site (exclusion principle). The dynamics of the TASEP is defined as follows.
Particles jump on the neighboring right site with rate 1 provided that the
site is empty. This means that jumps are independent of each other and take
place after an exponential waiting time with mean 1, which is counted from
the time instant when the right neighbor site is empty.

On the macroscopic level the particle density, u(x, t), evolves determin-
istically according to the Burgers equation ∂tu + ∂x(u(1 − u)) = 0 [32].
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Therefore a natural question is to focus on fluctuation properties and on
large deviations, which exhibit rather unexpected features. The fluctuations
of the integrated particle current and in the positions of particles are two
faces of the same coin as to be discussed later.

The fluctuations of particle positions are sensitive to the initial conditions.
For example, one can consider particles initially positioned every second site,
i.e., on 2Z. Another possibility would be to consider the stationary measure
of the same density as this initial condition, which is Bernoulli with density
1/2. The scaling exponents for particle positions fluctuations are the same
for the two initial conditions. However, the limiting distribution differ: as we
will see, in the first case it is the GOE Tracy-Widom of random matrices [41]
which differs from the stationary case [12]. Thus it is of interest to understand
which class of initial conditions leads to the same limit distribution.

The first result in this direction has been obtained for the step initial
condition. To be precise, denote by xk(t) the position of particle k at time
t, where the k’s are integers labelling the particles from right to left. The
step initial condition is then xk(0) = −k, k ∈ N. It has been studied by
Johansson [15] by means of a growth model. In terms of the TASEP, the
quantity analyzed is the large time asymptotic fluctuations of the position
of a given particle. For any fixed α ∈ (0, 1), the fluctuation of x[αt](t) are
asymptotically governed by the GUE Tracy-Widom distribution, F2, namely
there are some v = v(α) and b = b(α) such that

lim
t→∞

P(x[αt](t) ≤ v(α)t+ s b(α)t1/3) = F2(s). (1.1)

The distribution F2 first appeared in the context of the Gaussian Unitary
Ensemble (GUE) of random matrices as the distribution of the largest eigen-
value in the limit of large matrix dimension [40].

A natural question is to ask how the positions of different particles are
correlated, i.e., one considers for fixed but large time t the process k 7→ xk(t).
To illustrate known results we focus at k ∼ t/4, but the same holds with
different numerical coefficients for k ∼ αt, α ∈ (0, 1) 1. (1.1) tells us that
the fluctuations live on a t1/3 scale and it turns out that the position of
two particles are, on the t1/3 scale, non-trivially correlated over a distance
of order t2/3. The exponents 1/3 and 2/3 are indeed the ones of the KPZ
universality class [18], to which the TASEP belongs. Indeed, Johansson [16]
proves a functional limit theorem in a discrete-time setting. Its continuous-

1We choose α = 1/4 because then the term linear in t disappears in (1.2), (1.3), and
(1.6).
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time version writes

lim
t→∞

x[t/4+u(t/2)2/3 ](t)− (−2u(t/2)2/3 + u2(t/2)1/3)

−(t/2)1/3
= A2(u) (1.2)

where A2 is known as the Airy process, first discovered in the PNG model
under droplet growth [29].

Besides the step initial condition explained above, at least two other
situations are of particular interest. One is the stationary initial condition,
for which the two-point function of the TASEP is analyzed in [12]. The
second one has deterministic initial conditions leading to a macroscopically
uniform density, thus called flat initial conditions. The simplest realization
is to set xk(0) = −2k, k ∈ Z.

In [34] an important new result has been obtained, making possible the
asymptotic analysis for such initial conditions. First of all, as expected by
universality, the position of a particle has fluctuations governed by the GOE
Tracy-Widom distribution, F1 [41]. This result is a combination of [11, 34]
and states

lim
t→∞

P(x[t/4](t) ≥ −st1/3) = F1(2s). (1.3)

More importantly, in [34] the analogue of the Airy process A2 for flat initial
conditions, which we denote by A1, is identified. It is a marginal of the
signed determinantal point process with the extended kernel (1.4). Here
signed refers to the non-positiveness of the measure (it does not define a
probability measure). Explicitly, let B0(x, y) = Ai(x + y) and let ∆ be the
one-dimensional Laplacian; then

KA1
(u1, s1; u2, s2) = −(e(u2−u1)∆)(s1, s2)1(u2 > u1) + (e−u1∆B0e

u2∆)(s1, s2),
(1.4)

or, equivalently as shown in Appendix A,

KA1
(u1, s1; u2, s2) = − 1√

4π(u2 − u1)
exp

(
− (s2 − s1)

2

4(u2 − u1)

)
1(u2 > u1)

+Ai(s1 + s2 + (u2 − u1)
2) exp

(
(u2 − u1)(s1 + s2) +

2

3
(u2 − u1)

3

)
. (1.5)

This is in complete analogy with the Airy process A2, which is a marginal of
the determinantal point process defined by the extended Airy kernel.

In Theorem 2.1 we provide a derivation of the fact that the joint distri-
bution of particle positions is given by the Fredholm determinant of a kernel.
This is a general result which is then applied to the flat initial conditions
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xk(0) = −2k, k ∈ Z, see Theorem 2.2. The proper rescaling of particle
positions is

xresc
t (u) = −t−1/3

(
x[t/4+ut2/3](t) + 2ut2/3

)
. (1.6)

With this rescaling, in the limit of large time t, the kernel converges to
KA1

as shown in Theorem 2.3. There we show pointwise convergence. In a
forthcoming paper [3] we will analyze a discrete time version of the TASEP
and strengthen our result to the convergence of the Fredholm determinants.
Such a stronger convergence would imply the convergence of (1.6) to A1 in
the sense of finite-dimensional distributions.

As a remark we want to point out that, while periodic initial condition
does not seem to be accessible by previously known techniques, with the
new construction both step and periodic initial conditions can be analyzed.
The technique used so far is the reduction of the model to a determinantal
point process via the Robinson-Schensted-Knuth correspondence. For further
references and details on determinantal point processes we refer the reader
to surveys [14, 17, 22, 37] and the lecture notes [38].

Reformulation of the result. The TASEP integrated current at position x
and time t, J(x, t), is the number of particles which jumped from site x to site
x+1 during the time interval [0, t]. Let us label by 1 the right-most particle
starting at position x1(0) ≤ x. Then P(J(x, t) ≥ s) = P(xs(t) ≥ x + 1).
Thus the result of this paper translates directly to the integrated currents.

The TASEP can be mapped to last passage percolation on Z2 with i.i.d.
exponentially distributed random variables ω(i, j), i, j ∈ Z. ω(i, j) is the
waiting time of particle number j to jump from position i − j to i − j + 1.
There is a slight switch in the point of view. For the TASEP one considers the
particle positions at fixed time t, while in last passage percolation, one studies
the last passage time from the origin to points of a given lattice domain
{i, j ∈ Z2, i+ j = t}. These two points of view are closely connected. They
can be regarded as taking different cross sections in the Bernoulli cone [27].
The problem considered in [15] is the point-to-point last passage percolation,
which corresponds to the step initial condition for the TASEP. Flat initial
conditions correspond to the point-to-line percolation.

Finally, the same last passage percolation model can be seen as a one-
dimensional growth model [15,33], called discrete polynuclear growth model,
which serves as a discretized model for KPZ growth [18]. KPZ growth is
discussed in the books [2,23] but for a recent exposition of KPZ universality
see [27].

Universality issue. The TASEP also has discrete time versions. One of
these is the parallel update rule (see the review [36]) and it is given as follows.
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At each time step particles jump to the neighboring right site with probability
p ∈ (0, 1), provided the target site is empty. The jumps occurs independently
and simultaneously. There are two interesting limits of the discrete-time
TASEP, namely p → 0 and p → 1. The continuous-time TASEP is ob-
tained by setting the time-unit to p and then take p → 0. The limit p → 1
yields the so-called polynuclear growth (PNG) model, see e.g. Section 2.1.5
of [9]. There, one has a height function h on a one-dimensional substrate,
and flat initial condition for the TASEP translates to growth starting with
h(x, t = 0) = 0, also called flat PNG.

By universality the process A1 is expected to appear in the discrete-
time TASEP and the PNG model as well. Universality has been confirmed
for step initial conditions and the corresponding PNG model with droplet
growth [16,29]. Moreover, for flat initial conditions, the limit process should
be independent on the initial particle spacing. Results in a discrete-time
version of the TASEP with different initial spacing will be presented in [3].

For the flat PNG model, it is known [1, 28] that the height at one fixed
point is GOE Tracy-Widom distributed in the limit of large time t. Thus,
on the basis of the result for the TASEP with alternating initial conditions,
see Theorem 2.3, we can conjecture the behavior of the flat PNG model.

Conjecture 1. The properly rescaled height function of the PNG model with
flat initial conditions converges, in the large time limit, to the process A1.

The scaling exponents are the same and the coefficients can be determined
by matching with the PNG droplet case.

Finally, let us discuss the connection to random matrices. For the TASEP
with the step initial condition, the one-point asymptotic distribution is the
GUE Tracy-Widom distribution, F2, and the whole limit process is the Airy
process A2. The derivation uses an extension of the model to a multi-layer
version. The Airy process arises also for a GUE matrix diffusion, the so-called
β = 2 Dyson’s Brownian Motion [6]. The motion of the properly rescaled
largest eigenvalue converges to the Airy process. The connection extends to
finitely many of the largest eigenvalues which have the same limiting behavior
as the first top layers in the multi-layer PNG model.

For the TASEP with flat initial condition, the one-point distribution is
the GOE Tracy-Widom distribution and the limit process is A1. At this
point it is tempting to conjecture that the evolution of the largest eigenvalue
of a matrix which follows β = 1 Dyson’s Brownian Motion has the same
limiting behavior as the surface height for flat PNG, namely the A1 process.
The correspondence at the level of top eigenvalues for GOE and the top
layers of the multi-layer flat PNG at a fixed position has been proven in [8],
making the conjecture even more plausible. Knowing the analogue of the
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Airy process for random growth with flat initial conditions one can guess the
result for β = 1 Dyson’s Brownian Motion [6].

Conjecture 2. The evolution of the largest eigenvalue of N × N matrices
for β = 1 Dyson’s Brownian Motion converges, in the limit N → ∞ and
properly rescaled, to the process A1.

Again, the prefactors for the scaling can be easily calculated by matching
the known one-point distributions and the behavior of joint distributions at
short distances. This conjecture concerns only the largest eigenvalue and with
this approach we are unable to make a conjecture for the other eigenvalues.

To make Conjecture 2 more transparent, we explain it in the simpler case
of the two-matrix model. There, one considers two real symmetric N × N
matrices, M(0) and M(t), with joint distribution

1

ZN,t
exp

(
−Tr(M(0))2

2N

)
exp

(
−Tr(M(t)− qM(0))2

2N(1− q2)

)
dM(0)dM(t) (1.7)

where q = exp(−t/2N) and dM(·) =
∏

1≤i≤j≤N dM(·)i,j. Let λmax(0) and
λmax(t) be the largest eigenvalues of M(0) and M(t). These eigenvalues
fluctuate on a scale of order N1/3 and are non-trivially correlated if one
chooses t ∼ N2/3. Then Conjecture 2 means that, properly rescaled, the
joint distribution of λmax(0) and λmax(t) converges to the two-point joint
distribution of the process A1 in the N → ∞ limit.

We also refer to the surveys on the question of universality in mathemat-
ics and physics [5] and on connections between different models, including
random matrices [10].

Outline. The paper is organized as follows: In Section 2 we state the
main result. In Section 3 the kernel of the signed determinantal point pro-
cess describing the joint particle distributions is derived. The kernel involves
an orthogonalization which is carried out in Section 4 for the case of al-
ternating initial conditions. In Section 5 we prove the convergence of the
properly rescaled kernel to the kernel KA1

. In Appendix A we explain how
the compact form of the kernel is derived, and in Appendix B we explain how
the orthogonalization can be carried out using classical Charlier orthogonal
polynomials.
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2 Model and results

In this paper we consider the continuous-time totally asymmetric simple
exclusion process (TASEP) on Z. At any given time t, every site j ∈ Z can
be occupied at most by one particle. Thus a configuration of the TASEP can
be described by η ∈ {0, 1}Z = Ω. ηj is called the occupation variable of site
j, which is defined by ηj = 1 if site j is occupied and ηj = 0 if site j is empty.

The dynamics of the TASEP is defined as follows. Particles jump on
the neighboring right site with rate 1 provided that the site is empty. This
means that jumps are independent of each other and are performed after an
exponential waiting time with mean 1, which starts from the time instant
when the right neighbor site is empty. More precisely, let f : Ω → R be
a function depending only on a finite number of ηj ’s. Then the backward
generator of the TASEP is given by

Lf(η) =
∑

j∈Z

ηj(1− ηj+1)
(
f(ηj,j+1)− f(η)

)
. (2.1)

Here ηj,j+1 denotes the configuration η with the occupations at sites j and
j + 1 interchanged. The semigroup eLt is well-defined as acting on bounded
and continuous functions on Ω. eLt is the transition probability of the
TASEP [21].

Joint distributions

Let us start at time t = 0 with N particles at positions yN < . . . < y2 < y1.
Then the main result is the joint distribution of any subset of these particles
at time t > 0. It turns out that it can be described by a signed determinantal
point process, where signed refers to the non-positiveness of the measure.

Theorem 2.1. Let σ(1) < σ(2) < . . . < σ(m) be the indices of m out of the
N particles. The joint distribution of their positions xσ(k)(t) is given by

P

( m⋂

k=1

{
xσ(k)(t) ≥ ak

})
= det(1− χaKtχa)ℓ2({σ(1),...,σ(m)}×Z) (2.2)

where χa(σ(k), x) = 1(x < ak). Kt is the extended kernel with entries

Kt(n1, x1;n2, x2) = −φ(n1,n2)(x1, x2) +

n2−1∑

i=0

Ψn1

n1−n2+i(x1)Φ
n2

i (x2) (2.3)
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where

φ(n1,n2)(x1, x2) =

(
x1 − x2 − 1

n2 − n1 − 1

)
, (2.4)

Ψn
i (x) =

1

2πi

∮

Γ0

dw

wi+1

(1− w)i

wx−yn−i
et(w−1), (2.5)

and the functions Φn
i (x), i = 0, . . . , n − 1, form a family of polynomials of

degree ≤ n satisfying ∑

x∈Z

Ψn
i (x)Φ

n
j (x) = δi,j . (2.6)

The path Γ0 in the definition of Ψn
i is any simple loop, anticlockwise oriented,

which includes the pole at w = 0 but not the one at w = 1.

The dependence on the set {yi} is hidden in the definition of the Φn
i ’s

and the Ψn
i ’s but is omitted, since the set {yi} is fixed in the following.

Alternating initial configuration

Now we consider alternating initial configuration, namely

ηi(0) =

{
1, if i is even,
0, if i is odd.

(2.7)

The alternating initial configuration can be obtained by taking 2N particles
around the origin, for example at positions 2Z ∩ [−2N, 2N − 2], and then
taking the limit N → ∞. In Lemma 4.1 we do the orthogonalization, i.e.,
construct Φn

i ’s which satisfy (2.6) for this special case, from which the kernel
Kt is obtained.

Theorem 2.2. Let particle with label ni start at −2ni, i ∈ Z. At time t,
the particles are at positions xi. The kernel (2.3) for the alternating initial
configuration is given by

Kt(n1, x1;n2, x2) = −
(
x1 − x2 − 1

n2 − n1 − 1

)
+

−1

2πi

∮

Γ0

dv
(1 + v)x2+n1+n2

(−v)x1+n1+n2+1
e−t(1+2v)

(2.8)
where Γ0 is any simple loop, anticlockwise oriented, which includes the pole
at v = 0 but do not include v = −1.
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Scaling limit

The particle density is 1/2 and since particles jump to the right with rate
1 provided the site is empty, the mean speed of the particles is 1/2. Let us
number the particles from right to left with y1(0) = 0 as reference point,
i.e., yi(0) = −2(i − 1), i ∈ Z. Then the particles which at time t are close
to x = 0 are the particles with numbers close to t/4. From universality we
know also that the scaling exponent for fluctuations should be 1/3 and the
one for spatial correlations should be 2/3. Therefore, the scaling limit to be
considered is

xi = [−2uit
2/3 − sit

1/3], ni = [t/4 + uit
2/3]. (2.9)

Remark: The scaling exponents for this model are determined by the re-
quirement that there is a non-trivial limit. The numerical factor in front of
t1/3 is chosen so that the single-time kernel has a simple form, Ai(x + y).
The numerical factors for the t2/3 terms are set in such a way that the prop-
agator in (1.4) is generated by the Laplacian without additional prefactors.
Universality argument is not needed to obtain the result, but it is useful to
predict the correct answer.

In Section 5 we carry out the asymptotic analysis for the pointwise con-
vergence of the kernel, with the following result.

Theorem 2.3 (Pointwise convergence of the kernel). Let x1, n1, x2, n2 be
rescaled as in (2.9). Then, for any s1, s2, u1, u2 ∈ R fixed,

lim
t→∞

Kt(n1, x1;n2, x2)t
1/32x2−x1 = KA1

(u1, s1; u2, s2) (2.10)

where the extended kernel KA1
is given in (1.5).

In this paper we do not perform the asymptotic analysis necessary to get
convergence of the Fredholm determinants. We will do the complete analysis
in a discrete-time version of the TASEP in a forthcoming paper [3], from
which the continuous time limit follows as a corollary. Nevertheless, it is
instructive for the reader to see the implications of the convergence of the
Fredholm determinant.

Let A1 be the process with m-point joint distributions at
u1 < u2 < . . . < um given by

P

( m⋂

k=1

{A1(uk) ≤ sk}
)
= det(1− χsKA1

χs)L2({u1,...,um}×R) (2.11)
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where χs(uk, x) = 1(x > sk). The convergence of Fredholm determinant
would then imply

lim
t→∞

x[t/4+ut2/3](t) + 2ut2/3

−t1/3
= A1(u), (2.12)

with the convergence understood in the sense of finite-dimensional distribu-
tions.

3 Signed determinantal point process

In this section we prove Theorem 2.1. Consider the TASEP with N particles
starting at time t = 0 at positions yN < . . . < y2 < y1. The first step
is to obtain the probability that at time t these particles are at positions
xN < . . . < x2 < x1, which we denote by

G(x1, . . . , xN ; t) = P((xN , . . . , x1; t)|(yN , . . . , y1; 0)). (3.1)

This function has been determined before using Bethe-Ansatz method [35].

Lemma 3.1 (Schütz [35]). The transition probability has a determinantal
form

G(x1, . . . , xN ; t) = det(Fi−j(xN+1−i − yN+1−j, t))1≤i,j≤N (3.2)

with

Fn(x, t) =
(−1)n

2πi

∮

Γ0,1

dw

w

(1− w)−n

wx−n
et(w−1), (3.3)

where Γ0,1 is any simple loop oriented anticlockwise which includes w = 0
and w = 1.

This representation of the transition probability was utilized to study the
current fluctuations in [24,30]. To study the joint distribution, we need a de-
composition of G(x1, . . . , xN ; t) given in the next lemma. This decomposition
is obtained using only the recurrence relation

Fn−1(x, t) = Fn(x, t)− Fn(x+ 1, t) (3.4)

and its integrated form

Fn+1(x, t) =
∑

y≥x

Fn(y, t). (3.5)
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Figure 1: Graphical representation of the domain of integration D for N = 4.
One has to “integrate” out the variables xj

i , i ≥ 2 (i.e., the black dots). The
positions of xk

1, k = 1, . . . , N are given (i.e., the white dots).

Actually, (3.5) comes from (3.4) and the fact that limy→∞ Fn(y, t) = 0 fast
enough (so that r.h.s. of (3.5) is well defined). The other property needed to
obtain Theorem 2.1 is the following. Comparing (2.5) and (3.3), we have

ΨN
k (x) = (−1)kF−k(x− yN−k, t) (3.6)

for k ≥ 0. Notice that, for n = −k < 0, (3.3) defining Fn has actually only
one pole at w = 0. We then get the relation

Fn+1(x, t) = −
∑

y<x

Fn(y, t), (3.7)

which translates into

ΨN
N−k(x) =

∑

y<x

ΨN+1
N+1−k(y). (3.8)

In the definition of the ΨN
k ’s in Theorem 2.1, the path Γ0 includes only the

pole at the origin, exactly because we need (3.8) to hold also for k < 0.

Lemma 3.2. Let us denote xk = xk
1, k = 1, . . . , N . Then

G(x1, . . . , xN ; t) =
∑

D

det(F−j(x
N
i+1 − yN−j, t))0≤i,j≤N−1 (3.9)

where the sum is over the following set

D = {xj
i , 2 ≤ i ≤ j ≤ N |xj

i > xj+1
i , xj

i ≥ xj−1
i−1}. (3.10)

See Figure 1 for a graphical representation of D.
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This lemma is actually more general as shown in [34]. By applying just
the recursion relation (3.5) the domain of summation in Lemma 3.2 would be
D′ = {xj

i , 2 ≤ i ≤ j ≤ N |xj
i ≥ xj−1

i−1} instead of D. The reduction of the sum-
mation domain to D uses only the antisymmetry of the determinant. Thus
the same holds for any antisymmetric function f . It might be interesting in
other applications, so we state it explicitly.

Lemma 3.3. Let f an antisymmetric function of {xN
1 , . . . , x

N
N}. Then, when-

ever f has enough decay to make the sums finite,

∑

D

f(xN
1 , . . . , x

N
N ) =

∑

D′

f(xN
1 , . . . , x

N
N) (3.11)

where

D = {xj
i , 2 ≤ i ≤ j ≤ N |xj

i > xj+1
i , xj

i ≥ xj−1
i−1},

D′ = {xj
i , 2 ≤ i ≤ j ≤ N |xj

i ≥ xj−1
i−1}, (3.12)

and the positions x1
1 > x2

1 > . . . > xN
1 being fixed.

Proof of Lemma 3.2. The proof consists in applying the property (3.5) itera-
tively and using the multilinearity of the determinants. From Lemma 3.1 we
have

G(x1
1, . . . , x

N
1 ; t) = det




F0(x
N
1 − yN , t) · · · F−N+1(x

N
1 − y1, t)

...
. . .

...
FN−1(x

1
1 − yN , t) · · · F0(x

1
1 − y1, t)


 .

(3.13)
The first step is to rewrite the last row as

∑

x2

2
≥x1

1

[
FN−2(x

2
2 − yN , t) · · · F−1(x

2
2 − y1, t)

]
. (3.14)

The second step is to apply the same procedure to the last and second to
last rows, which become

∑

x2

2
≥x1

1

∑

x3

3
≥x2

2

[
FN−3(x

3
3 − yN , t) · · · F−2(x

3
3 − y1, t)

]
(3.15)

and ∑

x3

2
≥x2

1

[
FN−3(x

3
2 − yN , t) · · · F−2(x

3
2 − y1, t)

]
(3.16)
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respectively. At this point we have

(3.13) =
∑

x2

2
≥x1

1

∑

x3

3
≥x2

2

∑

x3

2
≥x2

1

det




F0(x
N
1 − yN , t) · · · F−N+1(x

N
1 − y1, t)

...
. . .

...
FN−3(x

3
1 − yN , t) · · · F−2(x

3
1 − y1, t)

FN−3(x
3
2 − yN , t) · · · F−2(x

3
2 − y1, t)

FN−3(x
3
3 − yN , t) · · · F−2(x

3
3 − y1, t)



.

(3.17)
The determinant is antisymmetric in the variables (x3

2, x
3
3), therefore the con-

tribution of the symmetric part of the summation domain of
∑

x3

3
≥x2

2

∑
x3

2
≥x2

1

is zero. Since
∑

x3

3
≥x2

2

∑
x3

2
≥x2

1

=
∑

x3

3
≥x2

2

∑
x3

2
∈[x2

1
,x2

2
)+

∑
x3

3
≥x2

2

∑
x3

2
≥x2

2

, the

symmetric part of the domain is {x3
3 ≥ x2

2, x
3
2 ≥ x2

2}, thus the contribution
coming from the last sum is zero.

We iterate the same procedure. More precisely, for k = 4, . . . , N , we
apply (3.5) to the last (k − 1) rows. The new summing variable for the last
row is denoted by xk

k, the second last row xk
k−1, and so on. Finally, we can

delete the sums over the symmetric domain in (xk
2, . . . , x

k
k). In this way we

get the result

G(x1
1, . . . , x

N
1 ; t) =

∑

D

det




F0(x
N
1 − yN , t) · · · F−N+1(x

N
1 − y1, t)

...
. . .

...
F0(x

N
N − yN , t) · · · F−N+1(x

N
N − y1, t)


 .

(3.18)

This is the decomposition used in [34]. The “integrations variables”
{xn

i , i = 1, . . . , n} can be interpreted as the positions of particles labelled
by i = 1, . . . , n at time n. For example, x1

1, . . . , x
n
1 is the trajectory of par-

ticle 1, see also Figure 2. This is just a mathematical construction which
should not to be confused with the real TASEP particles and the natural
time in the TASEP positions, which at this stage is just the fixed parameter
t. At time n there are n particles at positions xn

1 , . . . , x
n
n. At time n+1, they

jump to a randomly uniformly chosen position satisfying xn+1
k ∈ [xn

k−1, x
n
k)

with the (n + 1)st particle added at position xn+1
n+1(≥ xn

n). Then the weight
of a configurations of xn

i ’s is given by

W ({xn
i ; 1 ≤ i ≤ n ≤ N}) (3.19)

=
( N∏

n=2

det(1(xn−1
i > xn

j ))1≤i,j≤n

)
det(F−j(x

N
i+1 − yN−j, t))0≤i,j≤N−1,

where we set xn−1
n = ∞. The products of determinants in (3.19) might look

complicated. However, one can verify that whenever some of the xi’s do not

13



0
1
2
3

N = 4

N + 1

xU

n

0

y1y2y3y4

Figure 2: LGV scheme for N = 4. The LGV graph is left/up-left directed
with weight 1 for each edge. From N to N + 1 the transitions are the F ’s.

satisfy the inequalities of D, then at least one of the determinant vanishes.
On the other hand, if the set of xi’s belongs to D, then each determinant has
value 1.

The form of the weight suggests that the correlation functions could be de-
terminantal. It is like having a Lindström-Gessel-Viennot (LGV) scheme [42],
see [39] for a nice exposition, with a sort of reservoir of particles at ∞ and
at each time-step a new particle is introduced. The LGV scheme is a sort
of generalization on a class of directed graphs of the Karlin-McGregor result
for diffusions [19]. Determinantal form of correlation functions appeared in
different contexts [4,7,13,16,25]. Although we do not use the LGV scheme in
the proof, it might be interesting for the reader to see how the weight (3.19)
can be described in this framework. The situation given by the weight (3.19)
corresponds to the limit U → ∞ of the system with fixed number of particles
illustrated in Figure 2. As U → ∞, the extra particles are not seen, they go
to ∞ in a sort of reservoir.

The proof of Theorem 2.1 is an application of the following Lemma, which
is proven by using the framework of [4].

Lemma 3.4. Assume we have a signed measure on {xn
i , n = 1, . . . , N, i =

1, . . . , n} given in the form,

1

ZN

N−1∏

n=1

det[φn(x
n
i , x

n+1
j )]1≤i,j≤n+1 det[Ψ

N
N−i(x

N
j )]1≤i,j≤N , (3.20)

where xn
n+1 are some “virtual” variables and ZN is a normalization constant.

If ZN 6= 0, then the correlation functions are determinantal.
To write down the kernel we need to introduce some notations. Define

φ(n1,n2)(x, y) =

{
(φn1

∗ · · · ∗ φn2−1)(x, y), n1 < n2,
0, n1 ≥ n2,

(3.21)
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where (a ∗ b)(x, y) =
∑

z∈Z a(x, z)b(z, y), and, for 1 ≤ n < N ,

Ψn
n−j(x) := (φ(n,N) ∗ΨN

N−j)(y), j = 1, 2, . . . , N. (3.22)

Set φ0(x
0
1, x) = 1. Then the functions

{(φ0 ∗ φ(1,n))(x0
1, x), . . . , (φn−2 ∗ φ(n−1,n))(xn−2

n−1, x), φn−1(x
n−1
n , x)} (3.23)

are linearly independent and generate the n-dimensional space Vn. Define a
set of functions {Φn

j (x), j = 0, . . . , n− 1} spanning Vn defined by the orthog-
onality relations ∑

x

Φn
i (x)Ψ

n
j (x) = δi,j (3.24)

for 0 ≤ i, j ≤ n− 1.
Under Assumption (A): φn(x

n
n+1, x) = cnΦ

(n+1)
0 (x), for some cn 6= 0,

n = 1, . . . , N − 1, the kernel takes the simple form

K(n1, x1;n2, x2) = −φ(n1,n2)(x1, x2) +
n2∑

k=1

Ψn1

n1−k(x1)Φ
n2

n2−k(x2). (3.25)

Remarks: Without Assumption (A), the correlations functions are still
determinantal but the formula is modified as follows. Let M be the N × N
dimensional matrix defined by [M ]i,j = (φi−1 ∗ φ(i,N) ∗ΨN

N−j)(x
i−1
i ). Then

K(n1, x1;n2, x2) (3.26)

= −φ(n1,n2)(x1, x2) +
N∑

k=1

Ψn1

n1−k(x1)

n2∑

l=1

[M−1]k,l(φl−1 ∗ φ(l,n2))(xl−1
l , x2).

The “virtual variables” are just there to write the formula in a simpler way,
but they do not represent real variables. This can be seen for example in
Assumption (A), where the r.h.s. does not depend on xn

n+1.
The analogue of the determinantal representation (3.2) for particle-

dependent hopping rates has been recently obtained [31]. Lemma 3.4 might
be applied in this context too.

Proof of Lemma 3.4. We apply Proposition 1.2 of [4] and we try to stick
as much as possible to the notations therein. Let, for n = 1, . . . , N , X(n)

denote the space of {xn
i , i = 1, . . . , n}, Y = X(1) ∪ . . . ∪ X(N), and let

X = {x0
1, x

1
2, . . . , x

N−1
N } ∪Y be the space on which our measure (3.20) is de-

fined. Let T (n,n+1) be the matrix with entries

[T (n,m)]i,j = φ(n,n+1)(xn
i , x

n+1
j ), 1 ≤ i, j ≤ n + 1 (3.27)
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and
[Ψ(N)]i,j = ΨN

N−j(x
N
i ), 1 ≤ i, j ≤ N. (3.28)

Then the weight (3.20) is proportional to the determinant of




0 −T (1,2) 0 · · · 0
0 0 −T (2,3) · · · 0
...

...
...

. . .
...

0 0 0 · · · −T (N−1,N)

Ψ(N) 0 0 0 0



. (3.29)

We are interested in the measure on Y only, thus we change the ordering
by putting the variables x0

1, . . . , x
N−1
N at the beginning. Let us define the

n× (n + 1) matrix W[n,n+1) by

[W[n,n+1)]i,j = φ(n,n+1)(xn
i , x

n+1
j ), 1 ≤ i ≤ n, 1 ≤ j ≤ n+ 1, (3.30)

and the N × (m+ 1) matrix Em by

[Em]i,j =

{
φm(x

m
m+1, x

m+1
j ), i = m+ 1, 1 ≤ j ≤ m+ 1,

0, otherwise.
(3.31)

Then the weight (3.20) is proportional to a suitable symmetric minor of L,
with

L =




0 E0 E1 E2 . . . EN−1

0 0 −W[1,2) 0 · · · 0

0 0 0 −W[2,3)
. . .

...
...

...
...

. . .
. . . 0

0 0 0 0 · · · −W[N−1,N)

Ψ(N) 0 0 0 · · · 0




. (3.32)

By Proposition 1.2 of [4], the point-measure on Y is determinantal with
correlation kernel given by

K = 1Y − (1Y + L)−1
∣∣∣
Y×Y

(3.33)

provided that the partition function ZN 6= 0. With the decomposition of
X = {x0

1, x
1
2, . . . , x

N−1
N } ∪Y, we have a block decomposition of L as

L =

[
0 B
C D0

]
(3.34)
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with B = [E0, . . . , EN−1], C = [0, . . . , 0,Ψ(N)]t, and D0 equal to L without
the first line and column of the block representation (3.32). Let D = 1+D0,
then (see, e.g., Lemma 1.5 of [4]) the kernel is given by

K = 1−D−1 +D−1CM−1BD−1, M = BD−1C. (3.35)

D−1 was already computed in Lemma 1.5 of [4], with the result

D−1 =




1 W[1,2) · · · W[1,N)

0 1

. . .
...

...
. . .

. . . W[N−1,N)

0 0 0 1


 , (3.36)

where

W[n,m) =

{
W[n,n+1) · · ·W[m−1,m), m > n,

0, m ≤ n.
(3.37)

Thus the (n,m) block of 1−D−1 is W[n,m). Next, we have

D−1C =




W[1,N)Ψ
(N)

...
W[N−1,N)Ψ

(N)

ΨN


 , (3.38)

and

BD−1 =
[
E0 E0W[1,2) + E1 · · ·

∑N−1
k=1 Ek−1W[k,N) + EN−1

]
. (3.39)

Therefore the (n,m) block of the correlation kernel is given by

K(n,m) = −W[n,m) +W[n,N)Ψ
(N)M−1

(m−1∑

k=1

Ek−1W[k,m) + Em−1

)
. (3.40)

Using (3.21) one gets [W[n,m)]i,j = φ(n,m)(xn
i , x

m
j ). Moreover by (3.22) we

have

[W[n,N)Ψ
(N)]i,j =

∑

y

φ(n,m)(xn
i , y)Ψ

N
N−j(y) = Ψn

n−j(x
n
i ). (3.41)

It remains to evaluate the last part of (3.40). For the following N×m matrix
we have

[m−1∑

k=1

Ek−1W[k,m) + Em−1

]

i,j
=

{
(φi−1 ∗ φ(i,m))(xi−1

i , xm
j ), 1 ≤ i ≤ m,

0, m+ 1 ≤ i ≤ N.

(3.42)
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Notice that the functions in (3.42) form a basis of Vm. Thus we can define
a m×m matrix Bm which does a change of basis to {Φm

m−1(x), . . . ,Φ
m
0 (x)},

namely

(φi−1 ∗ φ(i,m))(xi−1
i , x) =

m∑

l=1

[Bm]i,lΦ
m
m−l(x). (3.43)

We multiply this equation by
∑

xΨ
m
m−j(x) and obtain

[Bm]i,j = (φi−1 ∗ φ(i,m) ∗Ψm
m−j)(x

i−1
i ). (3.44)

In particular, we have BN = M . Let us define the N ×m matrix

[Φ(m)]i,j =

{
Φm

m−i(x
m
j ), 1 ≤ i ≤ m,

0, m+ 1 ≤ i ≤ N.
(3.45)

Then

M−1
(m−1∑

k=1

Ek−1W[k,m) + Em−1

)
= B−1

N

[
Bm 0
0 0

]
Φ(m). (3.46)

Assume the condition (B): (3.46) = Φ(m) for m = 1, . . . , N . Then we get
the simple form of the kernel, (3.25), of the Lemma. However, this is not
always the case. For 1 ≤ i, j ≤ m, we obtain using (3.22),

[Bm]i,j = (φi−1 ∗ φ(i,m) ∗Ψm
m−j)(x

i−1
i ) = (φi−1 ∗ φ(i,N) ∗ΨN

N−j)(x
i−1
i ) = [BN ]i,j.

(3.47)

Thus we can write BN =

[
Bm ⋆
Qm ⋆

]
for some (N − m) × m matrix Qm.

By multiplying on both sides by BN the condition (B), we see that (B) is
equivalent to

m∑

k=1

[Qm]i,kΦ
m
m−k(x) = 0 (3.48)

for all x and for all i = 1, . . . , N − m, and for all m = 1, . . . , N . But the
functions Φm

m−k(x) form a basis of Vm, thus (B) is fulfilled iff Qm = 0 for
all m = 1, . . . , N . Thus (B) is equivalent to the condition BN is an upper-
diagonal matrix.

Assume Bm upper diagonal for some m. This is verified for m = 1 where
B1 = 1. Then by (3.47) [Bm+1]i,j = [Bm]i,j for i = 1, . . . , m, and Bm+1 is still
upper-diagonal iff

[Bm+1]m+1,j ≡ (φm ∗Ψm+1
m+1−j)(x

m
m+1) = cmδj,m+1, cm 6= 0. (3.49)
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cm 6= 0 because ZN 6= 0. Finally, the orthogonal relations (3.24) imply that
φm(x

m
m+1, x) = cmΦ

m+1
0 (x), which is Assumption (A) of the Lemma.

Proof of Theorem 2.1. It consists in an application of Lemma 3.4, with

φn(x
n
i , x

n+1
j ) = 1(xn

i > xn+1
j ), n = 1, . . . , N − 1, (3.50)

and
ΨN

N−i(x) = (−1)N−iF−N+i(x− yi, t), i = 1, . . . , N. (3.51)

An important point is that in (3.3) the functions Fi’s are defined by an
integral enclosing w = 0 and w = 1. At this stage, we have only functions
Fi’s for i ≤ 0. In this case, as mentioned around (3.6), w = 1 is actually
not a pole, thus the weight (3.19) and the weight (3.20) with the above
replacements are proportional. The definition of the Ψ’s using only one pole
fit exactly in the framework of Lemma 3.4. In fact, by (3.8), we have the
composition rule

(φ ∗Ψn+1
n+1−j)(x) = Ψn

n−j(x), (3.52)

which gives (3.22) by iterations. In our setting, if we sum up all the variables
{xm

j , 1 ≤ m < n, 1 ≤ j ≤ m}, we get a Vandermonde determinant in the vari-
ables xn

j ’s. Thus the space Vn of Lemma 3.4 is generated by {1, x, . . . , xn−1}
and Φn

k are polynomials of order at most n− 1. A simple computation using
(2.5) leads to

∑

x

Ψn
j (x) =

{
0, j = 1, . . . , n− 1,

1, j = 0,
(3.53)

which, together with (3.24) leads to Φn
0 (x) = 1 = φn−1(∞, x). Thus we have

a determinantal system with kernel (3.25), which can be rewritten as

Kt(n1, x1;n2, x2) = −φ(n1,n2)(x1, x2) +
n2−1∑

i=0

Ψn1

n1−n2+i(x1)Φ
n2

i (x2). (3.54)

Since in this paper we explain the detail of the derivation in [34], it is use-
ful to point out a difference. There one does not obtain directly φ(n1,n2) as in
Theorem 2.1. There the one-time transition becomes φn(x, y) = −1(y ≥ x)
and the representation (3.3) has to be used instead. The final form of the
kernel (eq. (13) in [34]) comes from splitting the contribution from the pole
at w = 1 and the remainder. In the geometric picture, it corresponds to
have the conjugate LGV graph with reservoir of particles at −∞ instead of
at +∞.
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0
x

t

−2N 2N − 2

Figure 3: Trajectories of the 2N particles. The black dots are the initial
positions and the white dots are the positions of the particles at some later
time t. This is a scheme leading, in the N → ∞ limit, the alternating initial
configuration on Z.

4 Orthogonalization

In order to get the kernel for the alternating initial configuration, i.e., for
the case where particles initially occupy exactly the sublattice 2Z, we start
with a finite number of particles, 2N . In the second step we will focus on the
region where the N -dependence vanishes. In this way we will get the kernel
for the system we actually are interested in.

Consider the case where at time t = 0 there are 2N particles placed every
second site centered around the origin, see Figure 3, namely

yi = 2N − 2i, i = 1, . . . , 2N. (4.1)

From Theorem 2.1, the kernel is known once the orthogonalization is carried
out. Here we state the result and a short proof. In Appendix B we explain
a constructive way of obtaining needed functions using Charlier orthogonal
polynomials.

Lemma 4.1. The functions Ψn
k(x) and Φn

k(x) have the following integral
representations. Let z = x+ 2n− 2N . Then

Ψn
k(x) =

(−1)k

2πi

∮

Γ0

dw

wz+1
e(w−1)t((w − 1)w)k (4.2)

and

Φn
k(x) =

(−1)k

2πi

∮

Γ0

dv

v

1 + 2v

evt
(1 + v)z−1

(v(1 + v))k
(4.3)

where Γ0 is an anticlockwise simple loop enclosing only the pole at 0.
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Proof. We have

Ψn
k(x) = (−1)kF−k(x− yn−k, t) = (−1)kF−k(z − 2k, t). (4.4)

Then (3.3) leads directly to (4.2). Next we prove that (4.3) satisfy the or-
thogonality relation (3.24). Since Ψn

k(x) = 0 for z(x) < 0, we have

∑

z≥0

Ψn
k(x(z))Φ

n
j (x(z)) =

(−1)k

2πi

∮

Γ0

dw(w−1)t((w − 1)w)k (4.5)

×(−1)j

2πi

∮

Γ0

dv

v

(1 + 2v)

evt(v(v + 1))j

∑

z≥0

(v + 1)z−1

wz+1

provided that the integration domain satisfy |1 + v| < |w|. The last sum
gives

∑

z≥0

(v + 1)z−1

wz+1
=

1

(w − (1 + v))(1 + v)
. (4.6)

Thus (4.5) has a simple pole at w = 1 + v, and once the integral over w is
computed, we get

∑

z≥0

Ψn
k(x(z))Φ

n
j (x(z)) =

(−1)k+j

2πi

∮

Γ0

dv
1 + 2v

v(1 + v)
(v(1 + v))k−j. (4.7)

The final step is a change of variable. Let u = v(1 + v). Then

du = (1 + 2v)dv (4.8)

and the integral is again around 0. Thus we get

∑

z≥0

Ψn
k(x(z))Φ

n
j (x(z)) =

(−1)k+j

2πi

∮

Γ0

du
1

uj+1−k
= δj,k. (4.9)

Once the orthogonalization is made, we determine the kernel of Theo-
rem 2.2.

Proof of Theorem 2.2. We need to derive the formula for the first term (the
main part) of the kernel. For convenience, we first shift the integrating
variable of Ψn

k to go around −1 by setting u = w − 1. This leads to

Ψn
k(x) =

(−1)k

2πi

∮

Γ−1

du

(1 + u)z+1
eut(u(1 + u))k (4.10)
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with z = x+2n− 2N . We start with particles at positions yi = 2N − 2i, i =
1, . . . , 2N . The main term in the kernel is written, with zi = xi + 2(ni −N),
as

n2−1∑

k=0

Ψn1

n1−n2+k(x1)Φ
n2

k (x2) =
(−1)n1−n2

(2πi)2

∮

Γ0

dv
(1 + 2v)(1 + v)z2

evt(v(1 + v))n2

×
∮

Γ−1

du
eut(u(1 + u))n1

(1 + u)z1+1

1

u(1 + u)− v(1 + v)
(4.11)

provided that the integration paths satisfies (a) |u(1 + u)| > |v(1 + v)| and
(b) u = 0 is not inside the contour Γ−1. To obtain this expression we first
take the finite sum over k inside the integrals, and secondly we extend it to
k = −∞. This can be done since the sum is absolutely summable because of
(a) and we do not create new poles inside the integration contours because
of (b). For example, we can set Γ1 by |1 + u| = 1/2 and take Γ0 to be a
contour with |v| small enough.

To obtain the kernel for the alternating initial configuration we focus
on the xi’s far enough from the right-most particle so that the system in
the considered region becomes independent of the fact that we have only
a finite number of particles. This is obtained when zi < ni, i.e., whenever
u = −1 is not anymore a pole. This condition is satisfied for any fixed xi

(i.e., around the origin) and any finite time t by taking N large enough. In
fact, it corresponds to taking ni − N = O(1) in N . In this case we are left
with one simple pole at u = −1−v. Denote ni = N +mi, then zi = xi+2mi

and the main part of the kernel becomes, for any xi’s as N → ∞,

n2−1∑

k=0

Ψn1

n1−n2+k(x1)Φ
n2

k (x2) =
−1

2πi

∮

Γ0

dv
(1 + v)x2+m1+m2

(−v)x1+m1+m2+1
e−t(1+2v). (4.12)

Finally, by relabelling the particles we obtain (2.8).

5 Asymptotic analysis

In this section we do the asymptotic analysis for the alternating initial con-
ditions and prove Theorem 2.3. Just to remind, the scaling limit we have to
consider is

xi = [−2uit
2/3 − sit

1/3],

ni = [t/4 + uit
2/3]. (5.1)
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Proof of of Theorem 2.3. The pointwise limit of the first term is quite easy
to obtain. Let us set a = (u2−u1)t

2/3− 1, b = (s2− s1)t
1/3+1, and ε = b/a.

Then we have to compute

t1/3
(
a(2 + ε)

a

)
. (5.2)

We simply use x! =
√
2πx exp(x ln(x)− x)(1 +O(x−1)). Since for s1, s2 is a

bounded set, ε → 0 as t → ∞, we have that

t1/3
(
a(2 + ε)

a

)
= t1/32x1−x2

1√
4πa

exp(−b2/4a)(1 +O(ε)) (5.3)

and by replacing back the expressions of a and b we get,

lim
t→∞

t1/3
(
x1 − x2 − 1

n2 − n1 − 1

)
2x2−x1 =

1√
4π(u2 − u1)

exp

(
− (s2 − s1)

2

4(u2 − u1)

)
. (5.4)

Next we analyze the second of the kernel (2.8) multiplied by t1/3. This
can be written as

−t1/3

2πi

∮

Γ0

dv exp
(
tf0(v) + t2/3f1(v) + t1/3f2(v) + f3(v)

)
(5.5)

with

f0(v) =
1

2
ln

(
1 + v

−v

)
− 1− 2v,

f1(v) = −(u2 − u1) ln ((1 + v)(−v)) ,

f2(v) = −s2 ln(1 + v) + s1 ln(−v),

f3(v) = − ln(−v). (5.6)

To do a steep descent analysis we first have to find the stationary points of
f0(v). Simple computations lead to

df0(v)

dv
= − (1 + 2v)2

2v(1 + v)
, (5.7)

which has a double zero at v = −1/2. Moreover,

d2f0(v)

dv2

∣∣∣
v=−1/2

= 0,
d3f0(v)

dv3

∣∣∣
v=−1/2

= 16. (5.8)
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−1/2 π/3

C

Figure 4: The steep descent path Γ0 used in the asymptotic analysis.

The steep descent path Γ0 used for the analysis, shown in Figure 4, is
given by Γ0 = Γ1

0 ∨ Γ2
0 ∨ Γ3

0 with

Γ1
0 =

{
v = −1

2
+ we−iπ/3, w ∈ [0, 1/2]

}
,

Γ2
0 =

{
v = −1

2
eiθ, θ ∈ [π/3, 5π/3]

}
, (5.9)

Γ3
0 =

{
v = −1

2
+ (1/2− w)eiπ/3, w ∈ [0, 1/2]

}
.

Let us verify that Γ0 is actually a steep descent path2. On Γ2
0,

dRe(f0)(θ)

dθ
= −4 sin θ(1− cos θ)

5− 4 cos θ
. (5.10)

Therefore the real part of f0 is stationary only at θ = 0, π and the maximum
is at θ = 0, the minimum at θ = π. By symmetry we need to check only on
Γ1
0. We find

dRe(f0)(w)

dw
= − 8w2(1 + 2w2)

(1 + 2w + 4w2)(1− 2w + 4w2)
(5.11)

which is strictly negative except at w = 0 where it is zero. Thus Γ0 is a steep
descent path.

Consider now the piece of the path Γδ
0 = {z ∈ Γ0||z + 1/2| ≤ δ}. Let us

denote F (v) = exp(tf0(v) + t2/3f1(v) + t1/3f2(v) + f3(v)). Then since Γ0 is a

2For an integral I =
∫
γ
dzetf(z), we say that γ is a steep descent path if (1) Re(f(z))

is maximum at some z0 ∈ γ: Re(f(z)) < Re(f(z0)) for z ∈ γ \ {z0}, and (2) Re(f(z)) is
monotone along γ except at its maximum point z0 and, if γ is closed, at a point z1 where
the minimum of Re(f) is reached.
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steep descent path,

−t1/3

2πi

∮

Γ0

dvF (v) =
−t1/3

2πi

∫

Γδ
0

dvF (v) +
−t1/3

2πi

∫

Γ0\Γδ
0

dvF (v)

=
−t1/3

2πi

∫

Γδ
0

dvF (v) + F (−1/2)O(e−µt) (5.12)

for some µ > 0 (in our case, µ ∼ δ3). The precise expression of F (−1/2) is

F (−1/2) = 22(u2−u1)t2/3+(s2−s1)t1/3+1 = 2x1−x2+1. (5.13)

For the integral on Γδ
0 we can apply Taylor development. On Γδ

0 we have
v = −1/2 + e±iπ/3w, 0 ≤ w ≤ δ, and we obtain

f0(v) = −8

3
w3 +O(w4),

f1(v) = 2(u2 − u1) ln 2 + 4(u2 − u1)e
2πi/3w2 +O(w3),

f2(v) = (s2 − s1) ln 2− 2(s1 + s2)e
iπ/3w +O(w2),

f3(v) = ln 2 +O(w) (5.14)

where the error terms O(· · · ) are uniform for s1, s2 in a bounded set. Set

f̃i(v) to be the expressions fi(v) without the error terms, and similarly F̃ (v):

F̃ (v) = exp
(
tf̃0(v) + t2/3f̃1(v) + t1/3f̃2(v) + f̃3(v)

)
. Then

−t1/3

2πi

∫

Γδ
0

dvF (v) =
−t1/3

2πi

∫

Γδ
0

dvF̃ (v) +
−t1/3

2πi

∫

Γδ
0

dv(F (v)− F̃ (v)). (5.15)

To estimate the second integral, we use the inequality |ex−1| ≤ e|x||x|. Thus
∣∣∣
−t1/3

2πi

∫

Γδ
0

dv(F (v)− F̃ (v))
∣∣∣ ≤ t1/3

π

∫ δ

0

dw|F̃ (v(w) = e−iπ/3w − 1/2)|

× eO(w4t+w3t2/3+w2t1/3+w)O(w4t+ w3t2/3 + w2t1/3 + w)

=
t1/3

π

∫ δ

0

dw|etf̃0(v(w))(1+χ1)+t2/3 f̃1(v(w))(1+χ2)+t1/3 f̃2(v(w))(1+χ3)|

× O(w4t + w3t2/3 + w2t1/3 + w) (5.16)

for some χ1, χ2, χ3 which can be made as small as desired by choosing
δ small enough. At the integration boundary w = δ the leading term
is exp(−8δ3t(1 + χ1)/3). This easily implies that the integral remains
bounded as t → ∞. Now we do the change of variable z = t1/3w. The
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t1/3dw = dz and O(w4t + ... + w) = O(z4 + ... + z)t−1/3. The rest of

the integral is e−
8

3
z3(1+χ1)+c1z2+c2z for some constants c1, c2, since the func-

tion f̃i do not contains the error terms. The integrand is then t−1/3 times
O(z4 + ... + z)e−

8

3
z3(1+χ1)+c1z2+c2z and the integral is on [0, δt1/3]. The

e−
8

3
z3(1+χ1) dominates the integral for large z. Thus t1/3 × (5.16) remains

finite in the t → ∞ limit. Therefore the above estimate of the error term
becomes F (−1/2)O(t−1/3).

The final step is to compute −t1/3

2πi

∫
Γδ
0

dvF̃ (v). Extending δ to ∞ we only

make an error of order F (−1/2)O(e−µt) for some 0 < µ ∼ δ3 and this leads
to the integration along the path γ∞ = {e−iπsgn(w)/3|w|, w ∈ R}. Therefore

−t1/3

2πi

∫

Γδ
0

dvF̃ (v) = F (−1/2)
−t1/3e−iπ/3

2πi

∫ ∞

0

dw2e−8w3t/3

× e4(u2−u1)w2t2/3e−2πi/3

e−2(s1+s2)wt1/3e−iπ/3

+ F (−1/2)O(e−µt). (5.17)

The change of variable z = 2t1/3e−iπ/3w leads then to

−t1/3

2πi

∫

Γδ
0

dvF̃ (v) =
F (−1/2)

−4πi

∫

γ∞

dzez
3/3+(u2−u1)z2−(s1+s2)z

+F (−1/2)O(e−µt). (5.18)

Finally we use an Airy function representation

1

−2πi

∫

γ∞

dvev
3/3+av2+bv = Ai(a2 − b) exp(2a3/3− ab) (5.19)

to obtain the final result

lim
t→∞

2

F (−1/2)

∫

Γ0

dvF (v) = Ai(s1 + s2 + (u2 − u1)
2)e2(u2−u1)3/3+(s1+s2)(u2−u1).

(5.20)

A Compact form for the extended kernel

In this Appendix we show that the entries of the compact form of the kernel
(1.4) agree with (2.10). Let us introduce some notations. Let Q be the
multiplication operator by the position, D be the differentiation operator,
and let ∆ be the Laplacian. On Schwarz test functions f ∈ S(R),

(Qf)(x) = xf(x), (Df)(x) =
∂

∂x
f(x), (∆f)(x) =

∂2

∂x2
f(x). (A.1)
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Moreover, denote by Kλ the operator with kernel Kλ(x, y) = Ai(x + y + λ)
and the Airy operator HA = −∆+Q.

We will apply Baker-Campbell-Haussdorf formula. If [A, [A,B]] = c1 and
[B, [A,B]] = c′1 for some constant c, c′, then

eAeB = eA+B+
1
2
[A,B]+

1
12

[A,[A,B]]−
1
12

[B,[A,B]] (A.2)

from which follows, for [A,B] = c1,

eA+B = eAeBe−
1
2
[A,B]. (A.3)

Moreover, we will use the property of Airy functions

Ai′′(x+ y) = (x+ y)Ai(x+ y). (A.4)

We collect some useful properties in the following lemma.

Lemma A.1.

1) Commutation relations: [Q,D] = −1, [Q,∆] = −2D,

2) HAKλ = −Kλ(λ1 +Q),

3) etDKλ = Kλ+t and Kλe
tD = Kλ−t,

4) e−t∆Kλ = e−
2
3
t3−λte−tQKλ+t2e

−tQ.

Proof. 1) By applying to f ∈ S(R) we get [Q,D]f(x) = −f(x) and
[Q,∆]f(x) = −2f ′(x) = −2Df(x).
2) We apply the definition of HA and use (A.4) to get

(HAKλf)(x) = −
∫

dyAi(x+y+λ)(y+λ)f(y) = −(Kλ(λ1+Q)f)(x). (A.5)

3) Follows from (etDf)(x) = f(x+ t).
4) We use the property 2) and (A.2) with A = −t∆ and B = −t(−∆ + Q),
to get

e−t∆Kλ = e−t∆e−t(−∆+Q)etHAKλ = e−
1
6
t3e−tQ+t2DKλe

−tQe−λt (A.6)

Then apply (A.3) with A = −tQ and B = t2D to get 4).
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What we have to compute explicitly is e−u1∆K0e
u2∆. From 4) of

Lemma A.1 we have

e−u1∆K0e
u2∆ = e−

2
3
u3

1e−u1QKu2

1
e−u1Qeu2∆. (A.7)

The last part can be rewritten as

e−u1Qeu2∆ = e(u2∆−u1Q−
1
6
u2u2

1
−u1u2D)+(2u1u2D) (A.8)

by (A.2) with A = −u1Q and B = u2∆. Then using (A.3) with
A = u2∆− u1Q− 1

6
u2u

2
1 − u1u2D and B = 2u1u2D we obtain

e−u1Qeu2∆ = e2u1u2Deu2∆e−u1Qeu2u2

1 . (A.9)

Plugging this back into (A.7) we have

e−u1∆K0e
u2∆ = e−

2
3
u3

1
+u2u2

1e−u1QKu2

1
e2u2u1Deu2∆e−u1Q. (A.10)

Then we apply 3) of Lemma A.1, namely Ku2

1
e2u2u1D = Ku2

1
−2u2u1

, and we

exchange the order of K· and eu2∆ because are both symmetric and apply 4)
of Lemma A.1. This results into

e−u1∆K0e
u2∆ = e−

2
3
(u1−u2)3e−(u1−u2)QK(u1−u2)2e

−(u1−u2)Q. (A.11)

Explicitly

(e−u1∆K0e
u2∆)(s1, s2) = e

2
3
(u2−u1)3e(u2−u1)(s1+s2)Ai(s1 + s2 + (u1 − u2)

2).
(A.12)

Thus we showed how the second term in (1.4) leads to the corresponding one
in (1.5). It remains the first one, (e(u2−u1)∆)(s1, s2), for u2 > u1. This is just
the one-dimensional heat kernel, for which it is well known that (see e.g. [26])

(e(u2−u1)∆)(s1, s2) =
1√

4π(s2 − s1)
exp

(
−(u2 − u1)

2

4(s2 − s1)

)
. (A.13)

B Charlier polynomials

In this Appendix we explain a constructive method to do the orthogonal-
ization. Let Cn(x, t) be the Charlier polynomial of degree n. They are
orthogonal polynomials with respect to the weight on {0, 1, . . .} given by

wt(z) = e−ttz/z! (B.1)
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which are traditionally normalized via

∑

z≥0

Cn(z, t)Cm(z, t)wt(z) =
n!

tn
δn,m (B.2)

or, equivalently, Cn(z, t) = (−1/t)nzn + · · · . They can be expressed in terms
of hypergeometric functions

Cn(x, t) = 2F0(−n,−x; ;−1/t) (B.3)

and satisfy the recurrence relation

x

t
Cn(x− 1, t) = Cn(x, t)− Cn+1(x, t). (B.4)

From the generating function of the Charlier polynomials

∑

n≥0

Cn(x, t)

n!
vn = ev(1− v/t)x (B.5)

one gets the integral representation

1

n!
Cn(z, t) =

1

2πi

∮

Γ0

dv

v

ev(1− v/t)z

vn
. (B.6)

For a good reference on orthogonal polynomials, see [20].
It is not too difficult to see that the functions ΨN

k defined in Lemma 4.1
can be expressed in terms of the Charlier orthogonal polynomials as

ΨN
k (z) =

e−ttz−k

(z − k)!
Ck(z − k, t). (B.7)

Using the recurrence relation (B.4) repeatedly we obtain

ΨN
k (z) = wt(z)

2k∑

l=0

Sk,lCl(z, t), (B.8)

where the entries of the matrix S are

Sk,l = (−1)l−k

(
k

l − k

)
. (B.9)

Notice that S is not a square matrix. From this it follows that the polyno-
mials ΦN

k which satisfy
∑

z≥0

ΦN
k (z)Ψ

N
j (z) = δk,j, (B.10)
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are given by

ΦN
k (z) =

N−1∑

l=0

Cl(z, t)
tl

l!
S̃−1
l,k . (B.11)

where by S̃−1
i,j we mean the (i, j)-entry of the inverse of the square matrix

S̃ = [Si,j]0≤i,j≤N−1 obtained by restricting S to the first N indices. The
first main difficulty is to obtain the inverse of S̃. After some work we could
determine it, namely

S̃−1
i,j =

(
2j − i

j − i

)
i

2j − i
(B.12)

with the identification S̃−1
0,0 = 1 and the convention that the RHS of (B.12)

is zero when i > j.
At this point we substitute (B.12) into (B.11), perform the summation,

and finally change the variable v = −wt. The final result is the biorthogonal
functions ΦN

k reported in (4.3).
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