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Abstract

A statistical mechanics model for a faceted crystal is the 3D Ising
model at zero temperature. It is assumed that in one octant all sites
are occupied by atoms, the remaining ones being empty. Allowed atom
configurations are such that they can be obtained from the filled octant
through successive removals of atoms with breaking of precisely three
bonds. If V denotes the number of atoms removed, then the grand
canonical Boltzmann weight is qV , 0 < q < 1. As shown by Cerf and
Kenyon, in the limit q → 1 a deterministic shape is attained, which has
the three facets (100), (010), (001), and a rounded piece interpolating
between them. We analyse the step statistics as q → 1. In the rounded
piece it is given by a determinantal process based on the discrete
sine-kernel. Exactly at the facet edge, the steps have more space to
meander. Their statistics is again determinantal, but this time based
on the Airy-kernel. In particular, the border step is well approximated
by the Airy process, which has been obtained previously in the context
of growth models. Our results are based on the asymptotic analysis
for space-time inhomogeneous transfer matrices.

1 Introduction

As a very common phenomenon, crystals are faceted at sufficiently low tem-
peratures with facets joined through rounded pieces. Of course, on the atomic
scale the crystal surface must be stepped. These steps meander through ther-
mal fluctuations. On a facet the steps are regularly arranged except for small
errors, whereas on a rounded piece the steps have more freedom to fluctu-
ate. Our aim is to understand the precise step statistics, where the step
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Figure 1: Crystal corner viewed from the (111)-direction for q = 0.98.

bordering the crystal facet is of particular interest. To gain some insight
we will study a simplified statistical mechanics model of a cubic crystal. Its
equilibrium shape has three facets, each consisting of a part of one of the
coordinate planes. The facets do not touch each other and there is an in-
terpolating rounded piece, see Figure 1. For this model the step statistics
will be analyzed in great detail. In [5] we explain how our results relate to
the predictions of universal properties of crystals with short range step-step
interactions.

Let us first explain our model for the corner of a crystal. The crystal is
assumed to be simple cubic with lattice Z3. We use lattice gas language and
associate to each site x ∈ Z3

+, Z+ = {0, 1, 2, . . . }, the occupation variable
nx = 0, 1 with 1 standing for site x occupied by an atom and 0 for site x
empty. Up to a chemical potential the binding energy of the configuration n
is

H(n) = J
∑

|x−y|=1

(nx − ny)2, J > 0. (1.1)

We consider very low temperatures, meaning that all allowed configurations
have the same energy, i.e. the same number of broken bonds. To define
properly, we introduce the reference configuration nref in which only the
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octant Z3
+ is occupied,

nref
x =

{
1 for x ∈ Z3

+,
0 for x ∈ Z3 \ Z3

+.
(1.2)

n is an allowed configuration if for a sufficiently large box Λ one has

nx = nref
x for all x ∈ Z3

+ \ Λ and H(n)−H(nref) = 0. (1.3)

The set of allowed configurations is denoted by Ω. By construction Ω is
countable. To favor a crystal corner, we introduce the fugacity q, 0 < q < 1,
and assign to each n ∈ Ω the weight

qV (n), (1.4)

where V (n) is the number of atoms removed from nref , i.e.

V (n) =
∑

x∈Z3
+

(1− nx). (1.5)

A configuration n ∈ Ω can uniquely be represented by a height function
h over Z2

+. For the column at (i, j) ∈ Z2
+, all sites below h(i, j), excluding

h(i, j), are empty and all sites above h(i, j) are filled. n ∈ Ω if and only if

h(i+ 1, j) ≤ h(i, j), h(i, j + 1) ≤ h(i, j), h(i, j)→ 0 for (i, j)→∞.
(1.6)

By abuse of notation, the set of height functions satisfying (1.6) is also de-
noted by Ω. For h ∈ Ω let V (h) be the volume in Z3

+ below h. Then the
weight for the height h is qV (h).

There is an alternative way to describe configurations n ∈ Ω, which we
just mention for completeness, but will not use later on. One builds the
crystal out of unit cubes and projects its surface along the (111)-direction,
which results in a tiling of the plane R2 with lozenges (rhombi) oriented
along 0, 2π/3, and 4π/3. With the orientation of Figure 2 there are three
sectors of the plane corresponding to the polar angle θ with −π/6 < θ < π/2,
π/2 < θ < 7π/6, 7π/6 < θ < 11π/6. n ∈ Ω if and only if the tiling in each
sector becomes regular sufficiently far away from the origin.

Instead of tilings, if preferred, one can also think of covering the dual
hexagonal lattice by dimers such that every site is covered. In computer
science this is called perfect matching. Equivalently, to have a more statistical
mechanics flavor, one can consider the fully frustrated antiferromagnetic Ising
model on a triangular lattice, i.e for an allowed spin configuration every
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Figure 2: The (111) projection of a configuration n ∈ Ω. In each of the three
sectors the tiling becomes regular far away from the origin.

triangle must have exactly two spins of the same sign. Erasing all bonds
connecting equal sign spins yields a lozenge tiling, and viceversa.

Following the conventional pattern we should now state our main results.
This would mean to bring in a lot of additional notation making our intro-
duction unwieldy. Thus we sketch only the general goals, explain our results,
and connect to previous studies of the model. The precise theorems will be
given in the respective sections.

The step statistics is studied in the limit q → 1. Thus it is convenient to
set

q = 1− 1

T
, T →∞. (1.7)

Let hT denote the random height function distributed according to

1

ZT
exp[ln(1− 1

T
)V (h)] (1.8)

relative to the counting measure on Ω, ZT the normalizing partition function.
For large T the heights are O (T ). Thus one expects a limit shape on scale
T . In fact, as proved in [2, 13],

lim
T→∞

1

T
hT ([uT ], [vT ]) = hma(u, v) (1.9)
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Figure 3: Zoom to the facet edge in Figure 1.

in probability. Here (u, v) ∈ R2
+ and [ ] denotes the integer part. Let

D = {(u, v) ∈ R2
+, e

−u/2 + e−v/2 > 1}. On D, hma is strictly decreasing in
both coordinates and hma > 0, whereas hma = 0 on R2

+ \ D. The analytic
form of hma is given in Section 3. If r denotes the distance to ∂D = {(u, v) ∈
R2

+, e
−u/2 + e−v/2 = 1}, it follows that hma vanishes as r3/2. This is the

Pokrovsky-Talapov law [14].
Our interest here is to zoom to the atomic scale. One possibility is

to consider a macroscopic point (u, v) ∈ D and the local height statistics
{hT ([uT ] + i, [vT ] + j), (i, j) ∈ Z2}. In the limit T → ∞, locally the height
profile is planar and one expects that the height statistics corresponds to a
random tiling of the plane with the three types of lozenges from Figure 2,
such that the relative fraction of lozenges yields the average slope∇hma(u, v).
This property will be proven in Section 4 and we refer to it as local equilib-
rium: as T → ∞, locally one sees an infinite volume translation invariant,
spatially ergodic Gibbs measure for the lozenges with their chemical poten-
tials determined through ∇hma(u, v).

An even more intriguing issue is to zoom to the facet edge, which means
to take (u, v) ∈ ∂D, see Figure 3. Since the step density vanishes at ∂D,
typically there will be only a few steps in focus. Thus it is more natural to
consider directly the crystal step bordering the facet. By symmetry we can
choose the border step lying in the 2−3 plane. Then the border step is given
as the graph of the function

t 7→ bT (t) = hT (0, t), t ∈ Z+. (1.10)
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From (1.6) we have bT (t + 1) ≤ bT (t) and limt→∞ bT (t) = 0. For large T , bT
is O (T ), and there is a limiting shape according to

lim
T→∞

T−1bT ([τT ]) = b∞(τ), (1.11)

where

b∞(τ) = −2 ln(1− e−τ/2), τ > 0. (1.12)

(1.12) tells us only the rough location of the step. For the step statistics
the relevant quantity is the size of the fluctuations of bT ([τT ]) − Tb∞(τ).
As will be shown they are of order T 1/3 which is very different from steps
inside the rounded piece of the crystal which are allowed to fluctuate only as
lnT [19]. On a more refined level one would like to understand correlations,
e.g. the joint height statistics at two points t and t′. They have a systematic
part corresponding to b∞(τ). Relative to it the correlation length along the
border step scales as T 2/3, which reflects that on short distances the border
step looks like a Brownian motion. Thus b∞ has to be expanded including
the curvature term and the correct scaling for the border step is

T−1/3
{
bT ([τT+sT

2/3])−
(
b∞(τ)T+b′∞(τ)sT 2/3+ 1

2
b′′∞(τ)s2T 1/3

)}
=AT (s).

(1.13)

Here τ > 0 is a fixed macroscopic reference point and s ∈ R with sT 2/3 the
longitudinal distance. s 7→ AT (s) is regarded as a stochastic process in s.
Our central result is the convergence

lim
T→∞

AT (s) = κA(sκ/2) (1.14)

in the sense of convergence of finite dimensional distributions. The limit
process A(s) is the stationary Airy process. Its scale is determined by the
local curvature via κ = 3

√
2b′′∞(τ). The Airy process appeared first in the

study of shape fluctuations for the polynuclear growth model [15]. It can also
be obtained through edge scaling of β = 2, GUE Dyson’s Brownian motion.

2 Line ensemble, determinantal process

2.1 Gradient lines

In view of Figure 2, it is natural to represent h in term of its level lines with
the hope that they have a tractable statistics. In fact, it turns out to be more
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Figure 4: The gradient lines for the tiling of Figure 2.

convenient to consider the gradient lines as drawn in Figure 4. In Figure 5
the underlying lattice is distorted in such a way that the gradient lines be-
come “trajectories” on a square lattice. It is this latter representation which
will be used in the sequel. Clearly, the surface statistics can be reconstructed
from the statistics of the line ensemble. As first noticed by Okounkov and
Reshetikhin [13] the occupation number field corresponding to the line en-
semble of Figure 5 has determinantal correlations. In this section we will
rederive their results using the fermionic framework, which is a convenient
starting point for our asymptotic analysis.

The gradient lines of Figures 4, 5 are defined through

t = j − i, h`(t) = h(i, j)− `(i, j), (2.1)

where

`(i, j) = (i+ j − |i− j|)/2 (2.2)

labels the line, (i, j) ∈ Z2
+. h` is increasing for t ≤ 0 and decreasing for t ≥ 0,

h`(t) ≤ h`(t+ 1), t ≤ 0, h`(t) ≥ h`(t+ 1), t ≥ 0, (2.3)

with the asymptotic condition

lim
t→±∞

h`(t) = −`. (2.4)

By construction the gradient lines satisfy the non-crossing constraint

h`+1(t) < h`(t− 1), t ≤ 0, h`+1(t) < h`(t+ 1), t ≥ 0. (2.5)
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Figure 5: The gradient lines for the tiling of Figure 2.

Height configurations h ∈ Ω are mapped one-to-one to gradient lines satisfy-
ing (2.3), (2.4), and (2.5).

We extend h` to piecewise constant functions on R such that the jumps
are at midpoints, i.e. at points of Z + 1

2
. For a given line, h`, let t`,1 < . . . <

t`,k(`) < 0 be the left jump times with jump heights s`,1, . . . , s`,k(`) and let
0 < t`,k(`)+1 < . . . < t`,k(`)+n(`) be the right jump times with jump heights
−s`,k(`)+1, . . . ,−s`,k(`)+n(`). It follows from (1.4), (1.5) that the weight for the
line configuration {h`}`=0,1,... is given by

∞∏

`=0

exp

[
ln(1− 1/T )

( k(`)+n(`)∑

j=1

s`,j|t`,j|
)]
. (2.6)

The line ensemble with weight (2.6) can be thought of as world lines
of “fermions”, where t refers to time and j to space. It is then natural to
introduce the random field of occupation variables, denoted by η(j, t). Thus
η(j, t) = 1 if there is a line passing at (j, t) and η(j, t) = 0 otherwise. As to be
shown, the random field η has determinantal correlation functions, which as
one crucial ingredient relies on the non-crossing constraint (2.5). However,
in previous applications only nearest neighbor jumps appear, whereas our
model has the unusual feature that jumps of arbitrary size are allowed.

2.2 Fermions

The basic tool is the transfer matrix from t to t + 1, t ∈ Z. A fermion is
created (resp. annihilated) at the position j ∈ Z by the operator a∗j (resp. aj).
The CAR algebra {a∗j , aj, j ∈ Z} over Z is defined by the anticommutation
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relations

{ai, aj} = 0, {a∗i , a∗j} = 0, {ai, a∗j} = δi,j (2.7)

for i, j ∈ Z. First we consider t ≤ −1, in which case only up-steps can occur.
To each unit up-step at time t we assign the weight qt = q|t+1/2| which satisfy
(2.6). The rule is that in a jump from i to j, j ≥ i, one creates additional
particles at sites m with i + 1 ≤ m ≤ j and annihilates particles at sites
m with i ≤ m ≤ j − 1. E.g. if a fermionic world line jumps from −1 to
3, one creates particles at positions 0, 1, 2, 3, and annihilates the particles at
−1, 0, 1, 2. This rule ensures the non-crossing constraint (2.5), since, if two
fermionic world lines would intersect, a fermion is created twice at the same
position, which leads to a zero contribution. The corresponding rule applies
to t ≥ 0 with the difference that the jumps are downwards only.

Let us define the operators

bl =
∑

k∈Z
a∗k+lak. (2.8)

The transfer matrix from t to t+ 1 is a sum of the n-step transitions Tn as

T̂ (t, t+ 1) =
�
+ qtT1 + q2

t T2 + . . .+ qnt Tn + . . . , (2.9)

where

Tn =
(−1)n
n!

∑

k1,... ,kn

ak1 . . . akna
∗
kn+1 . . . a

∗
k1+1. (2.10)

The (−1)n prefactor results from the left ordering of the aj and a
∗
j ’s.

We would like to reexpress Tn in terms of products of the bi’s only. For
n,m > 0 the commutators are

bna
∗
k = a∗kbn + a∗k+n, bnak = akbn − ak−n, [bn, bm] = 0, [b−n, b−m] = 0.

(2.11)

These relations lead to

Tn =
∑

d1,... ,dn≥1
d1+2d2+...=n

n∏

j=1

(
bj
j

)dj 1

dj!
. (2.12)

The Schur polynomials {pk(y)}k≥0 are polynomials such that

exp

(∑

k≥1

tkyk

)
=
∑

l≥0

pl(y)t
l, y = y1, y2, . . . , (2.13)
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and given explicitly by

pl(y) =
∑

x1,... ,xl≥1
x1+2x2+...=l

l∏

j=1

y
xj
j

xj!
. (2.14)

Comparing with (2.13) yields

T̂ (t, t+ 1) =
∑

l≥0

qltTl = exp

(∑

k≥1

qkt
bk
k

)
. (2.15)

We conclude that the transfer matrix is given by

T̂ (t, t+ 1) = exp

(∑

k≥1

qk|t+1/2| bk
k

)
(2.16)

for t ∈ Z− = {−1,−2, . . . }, and, by the same reasoning,

T̂ (t, t+ 1) = exp

(∑

k≥1

qk(t+1/2) b−k
k

)
(2.17)

for t ∈ Z+.
T̂ (t, t + 1) is quadratic in the fermion operators. Hence it is the second

quantization of a one-particle operator acting of `2. For easier reading second
quantization is merely indicated by a “̂ ”, i.e. for A acting of `2 we set
Â = Γ(A) as its second quantization. From (2.16), (2.17) we read off

T (t, t+ 1) = exp

(∑

k≥1

qk|t+1/2|

k
αk

)
(2.18)

for t ∈ Z−, and

T (t, t+ 1) = exp

(∑

k≥1

qk(t+1/2)

k
α−k

)
(2.19)

for t ∈ Z+ with matrices αk defined through

[αk]i,j =

{
1 if i− j = k,
0 otherwise.

(2.20)

T (t, t+ 1) are invertible with the `2-norms

‖T (t, t+ 1)‖ ≤ exp

(
q|t+1/2|

1− q|t+1/2|

)
,

‖T (t, t+ 1)−1‖ ≤ exp

(
q|t+1/2|

1− q|t+1/2|

)
. (2.21)
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For the state at t = ±∞ all sites in Z− ∪ {0} are filled, those in Z+ \ {0}
are empty, which, together with the transfer matrices (2.16), (2.17) deter-
mines the Green’s functions of an imaginary time (Euclidean) Fermi field.
It is inhomogeneous in space-time and uniquely given through the two-point
function 〈a∗i (t)aj(t′)〉. To compute it correctly one has to employ the stan-
dard finite volume approximation. We first restrict all world lines to lie in
the spatial interval [−M,M ]. Thereby the transfer matrix depends on M in
the sense that all creation and annihilation operators with index |k| > M are
set equal to zero. The state at ±∞ is (1, . . . , 1, 0, . . . , 0)t which is 2M + 1
long with the last 1 at site 0. The projector on this state is approximated
through

exp[βN̂M ] (2.22)

in the limit β →∞ with N̂M =
∑0

k=−M a∗kak−
∑M

k=1 a
∗
kak. We first compute

the equal time Green’s function through

〈a∗i (t0)aj(t0)〉T = (2.23)

= lim
M→∞

lim
L→∞

lim
β→∞

1

Zβ,M,L

Tr

(
eβN̂M

L∏
t

t=t0

T̂M(t, t+ 1)a∗i aj

t0−1∏
t

t=−L
T̂M(t, t+ 1)

)
,

where the trace is over the antisymmetric Fock space F with one-particle
space `2([−M, . . . ,M ]). The products are time-ordered increasingly from
right to left, which is indicated by the superscript t at the product symbol∏
. Zβ,M,L is the normalizing partition function, which is defined through the

same trace with a∗i aj replaced by
�
. As explained in Appendix A.1, (2.23)

can be expressed in terms of one-particle operators as the limitM,L, β →∞
of

〈a∗i (t0)aj(t0)〉T,βML =


 �

+

(
t0−1∏

t

t=−L
TM(t, t+ 1)eβNM

L∏
t

t=t0

TM(t, t+ 1)

)−1


−1

j,i

.

(2.24)

Let P+ + P− =
�
in `2 with P+ the projection onto Z+ \ {0} and let

eGright(t0) =
∞∏

t=t0

T (t, t+ 1), eGleft(t0) =

t0−1∏

t=−∞
T (t, t+ 1), (2.25)

and

eG↑(t0) =

min(0,t0)−1∏

t=−∞
T (t, t+ 1), eG↓(t0) =

∞∏

t=max(0,t0)

T (t, t+ 1). (2.26)
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By (2.21) the infinite products are well-defined, as are their inverses. The
T (t, t+ 1)’s commute and no time-ordering is required. Hence

G↑(t0) =

min(0,t0)−1∑

t=−∞

∑

r≥1

qr|t+1/2|

r
αr =

∑

r≥1

µr(t0)αr,

G↓(t0) =
∞∑

t=max(0,t0)

∑

r≥1

qr(t+1/2)

r
α−r =

∑

r≥1

νr(t0)α−r (2.27)

with

µr(t0) =
qr/2q−rmin(0,t0)

r(1− qr) , νr(t0) =
qr/2qrmax(0,t0)

r(1− qr) . (2.28)

In (2.24) we take limits as indicated in (2.23). Then

〈a∗i (t0)aj(t0)〉T =
[
eGleft(t0)P−(P−e

Gright(t0)eGleft(t0)P− + P+)
−1P−e

Gright(t0)
]
j,i
.

(2.29)

Let

eG− =
−1∏

t=−∞
T (t, t+ 1), eG+ =

∞∏

t=0

T (t, t+ 1). (2.30)

Then eGright(t0)eGleft(t0) = eG+eG− = eG−eG+ and, decomposing `2 = P−`2 ⊕
P+`2, we have

eG− =

[
a 0
c b

]
, eG+ =

[
a′ c′

0 b′

]
. (2.31)

Thus

P−(P−e
Gright(t0)eGleft(t0)P− + P+)

−1P− =

[
(aa′)−1 0

0 0

]
(2.32)

and, since

e−G− =

[
a−1 0

−b−1ca−1 b−1

]
, e−G+ =

[
(a′)−1 −(a′)−1c′(b′)−1

0 (b′)−1

]
, (2.33)

we obtain

e−G+P−e
−G− = P−(P−e

Gright(t0)eGleft(t0)P− + P+)
−1P−. (2.34)
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Therefore

〈a∗i (t0)aj(t0)〉T =
[
eGleft(t0)e−G+P−e

−G−eGright(t0)
]
j,i
, (2.35)

which rewrites as

〈a∗i (t0)aj(t0)〉T =
[
eG↑(t0)−G↓(t0)P−e

−(G↑(t0)−G↓(t0))
]
j,i
. (2.36)

The Fermi field depends on T through q = 1− 1/T . For this reason we keep
the index T .

Using the anticommutation relations (2.7) in (2.23) we immediately ob-
tain

〈aj(t0)a∗i (t0)〉T =
[
eG↑(t0)−G↓(t0)P+e

−(G↑(t0)−G↓(t0))
]
j,i
. (2.37)

Thus our final result for the equal time correlations reads

〈a∗i (t0)aj(t0)〉T =
∑

l≤0

[
eG↑(t0)−G↓(t0)

]
j,l

[
e−G↑(t0)+G↓(t0)

]
l,i
,

〈aj(t0)a∗i (t0)〉T =
∑

l>0

[
eG↑(t0)−G↓(t0)

]
j,l

[
e−G↑(t0)+G↓(t0)

]
l,i
. (2.38)

To extend (2.38) to unequal times we have to go through the same limit
procedure as before. Since the argument is in essence unchanged, there is no
need to repeat. We define the propagator from a to b, a ≤ b, through

eG(a,b) =
b−1∏

t=a

T (t, t+ 1), eG(a,a) =
�
, eG(b,a) = e−G(a,b). (2.39)

Using the identity

e−G(0,t0)ame
G(0,t0) =

∑

k∈Z

[
eG(0,t0)

]
m,k
ak (2.40)

for t ≥ t′, the full two-point function is given by

〈a∗j(t)aj′(t′)〉T =
∑

l≤0

[
eG↑(0)−G↓(0)+G(0,t′)

]
j′,l

[
e−G↑(0)+G↓(0)−G(0,t)

]
l,j
,

〈aj(t)a∗j′(t′)〉T =
∑

l>0

[
eG↑(0)−G↓(0)+G(0,t)

]
j,l

[
e−G↑(0)+G↓(0)−G(0,t′)

]
l,j′
. (2.41)
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2.3 Determinantal random field η(j, t)

Moments of the random field η(j, t) introduced above can be expressed
through fermionic correlations. We consider first equal time correlations.
The basic identity is

�
T

(
n∏

k=1

ηT (jk, t)

)
=

〈 n∏

k=1

a∗jk(t)ajk(t)

〉

T

, (2.42)

where ET is the expectation with respect to the normalized weight (2.6). If
{j1, . . . , jn} are distinct, then, as explained in Appendix A.2, the fermionic
expectation is determinantal and

�
T

(
n∏

k=1

η(jk, t)

)
= Det (RT (jk, t; jl, t))1≤k,l≤n , (2.43)

with

RT (i, t; j, t) = 〈a∗i (t)aj(t)〉T . (2.44)

If coinciding arguments are admitted, then (2.43) still holds with the con-
vention

RT (i, t; j, t) =

{
〈a∗i (t)aj(t)〉T for i ≤ j,
〈a∗i (t)aj(t)〉T − δi,j = −〈aj(t)a∗i (t)〉T for i > j.

(2.45)

(2.42) is easily extended to unequal time correlations. Let us consider
n disjoint space-time points (j1, t1), . . . , (jn, tn) ordered increasingly as t1 ≤
t2 ≤ . . . ≤ tn. Then the basic identity is

�
T

(
n∏

k=1

η(jk, tk)

)
= 〈a∗jn(tn)ajn(tn) · · · a∗j1(t1)aj1(t1)〉T . (2.46)

Using (2.40) the left hand side equals

∑

k1,... ,kn
l1,... ,ln

n∏

q=1

[
e−G(0,tq)

]
kq ,jq

[
eG(0,tq)

]
jq ,lq
〈a∗knaln · · · a∗k1al1〉T . (2.47)

Let us set

RT (j, t; j
′, t′) =

{
〈a∗j(t)aj′(t′)〉T for t ≥ t′,
−〈aj′(t′)a∗j(t)〉T for t < t′.

(2.48)
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Then the unequal time correlations are given by

�
T

(
n∏

k=1

η(jk, tk)

)
= Det (RT (jk, tk; jl, tl))1≤k,l≤n . (2.49)

The identity (2.49) has been derived from left to right. One can read
it also from right to left. Then RT is the defining kernel, resp. Green’s
function, which is considered to be given and (2.49) defines the moments
of some determinantal space-time random field over Z × Z. Of course, RT

cannot be chosen arbitrarily, since the right hand side of (2.49) must be
moments of a probability measure. For determinantal random fields over the
space coordinate only, compare with (2.43), proper conditions on the defining
kernel have been studied in detail [18, 17]. The space-time variant is less well
understood, see [8] for a discussion.

The determinantal property is preserved under limits. Thus through bulk
and edge scaling further determinantal space-time random fields will be en-
countered below. One of them is over Z × Z with equal-time given through
the sine-kernel. The other is over Z × R with equal-time given through the
Airy kernel.

3 Limit shape

On the macroscopic scale, in the limit T → ∞, the random field η(j, t)
becomes deterministic with a profile given by

ρ(ζ, τ) =





1 for ζ ≤ b−∞(τ),
1
π
arccos

(
cosh(τ/2)− e−ζ+|τ |/2/2

)
for b−∞(τ) < ζ < b∞(τ),

0 for ζ ≥ b∞(τ),

(3.1)

with

b−∞(τ) = −2 ln(1 + e−|τ |/2), b∞(τ) = −2 ln(1− e−|τ |/2). (3.2)

More precisely, for all continuous test functions f : R2 → R with compact
support

lim
T→∞

1

T 2

∑

j,t

f(j/T, t/T )η(j, t) =

∫
dζ dτρ(ζ, τ)f(ζ, τ) (3.3)

almost surely. (3.3) assumes more spatial averaging than needed. In fact, it
suffices to choose a test function whose support on the scale of the lattice
diverges as T →∞ and to properly normalize.
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As a consequence of (3.3) the limit (1.9) holds. hma can be read off from
(3.1) and is given in parametric form through

hma(u, v) =

{
0 for (u, v) ∈ R2

+ \ D,
1
2
(u+ v − |τ |) + ζ(u, v) for (u, v) ∈ D, (3.4)

where τ = v − u and where ζ(u, v) is the unique solution ζ of the equation

1

2
(u+ v − |τ |) =

∫ ζ

b−∞(τ)

(1− ρ(ζ ′, τ)) dζ ′ − ζ (3.5)

in the interval [b−∞(τ), b∞(τ)]. While the limit (3.3) has been established by
Okounkov and Reshetikhin [13], compare also with Section 4, the existence
of the limit shape has been proved before by Cerf and Kenyon [2]. Instead of
(1.8), they used the fixed volume constraint V (h) = 2ζR(3)T

3, resp. V (h) ≤
2ζR(3)T

3, with ζR the Riemann zeta function. They write the limit shape
S0, as a set of R3, in the parametric representation

S0 = {2(f(a, b, c)− ln a, f(a, b, c)− ln b, f(a, b, c)− ln c) | a, b, c > 0} (3.6)

with

f(a, b, c) =
1

4π2

∫ 2π

0

du

∫ 2π

0

dv ln(a+ beiu + ceiv). (3.7)

Here a, b, c denote the weights for the three orientations of the lozenges and
f(a, b, c) is the corresponding free energy per unit area for the lozenge tiling
of the plane. As expected from the equivalence of ensembles, the shapes
given by (3.4) and (3.6) are identical. This can be seen as follows. Let
z = (z1, z2, z3) represent a point on the limit shape. We compare z2− z1 and
z3 − z1 (resp. z3 − z2) for z2 ≥ z1 (resp. z2 ≤ z1) for the parametrizations
(3.4) and (3.6). This leads to a = 1, b = e−τ/2, c = e−ζ/2 for z2 ≥ z1 and to
b = 1, a = e−|τ |/2, c = e−ζ/2 for z2 ≤ z1. Since (3.7) is symmetric in a, b, c,
one verifies that indeed

∫ ζ

−2 ln(1+e−|τ |/2)

(1− ρ(ζ ′, τ)) dζ ′ = 2f(1, e−|τ |/2, e−ζ/2) + ζ. (3.8)

According to (3.4), hma = 0 on R2
+ \ D. Close to the edge the height

vanishes with the power 3/2. E.g. in the direction τ = v − u one has

hma(r, τ) '
2

3
cosh(τ/4)π−121/4r3/2 (3.9)
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with r the distance to the edge. The 3/2 power is known as Pokrovsky-
Talapov law [14].

A limit shape theorem is a law of large numbers. It is available also
for related tiling models. A famous case is the Aztec diamond [3]. Cohn,
Larsen and Propp [4] consider the 3D-Young diagrams constrained to the
box αN × βN × γN with α, β, γ ∼ O (1) and compute the limit shape as
N → ∞. In the line-ensemble representation their model corresponds to
q = 1 with the boundary conditions that at t = −αN, βN all lattices sites
are occupied except for those in the interval [1, γN ]. [4] computed the line
density and from it the limit shape. Two or higher order point functions are
not studied. From our representation we see that higher order correlation
functions are determinantal even in this case. However the computation of
the two-point function is more complicated, since one cannot rely any more
on an expression like (2.36). For a list of further limit shape theorems we
refer to the survey [11].

The limit shape can be determined through minimizing the appropriate
macroscopic free energy functional. The input is the microscopic surface
tension at given slope∇h. For example in the (111)-frame the surface tension
σ(111)(∇h) is given by (3.7), where a, b, c are defined through the prescribed
surface tilt ∇h. σ(111) has been computed in [10, 21, 1]. Correspondingly
there is a surface tension in the (001)-frame, denoted by σ(001)(∇h).

To obtain the free energy F for some macroscopic height profile h over
a bounded domain B, one argues that h is made up of little planar pieces,
each one of them having the surface tension at the corresponding local slope.
Adding up yields

F(h) =
∫

B
du dv σ(001)(∇h(u, v)). (3.10)

In our case we have B = R2
+, h is decreasing in both variables such that

h(u, v) = 0 for (u, v)→∞, and V (h) =
∫
B du dv h(u, v). The minimizer of F ,

under these constraints and V (h) = 2ζR(3), is hma from (3.4). Equivalently
one could minimize F(h) + V (h).

Probabilistically, F(h) + V (h) can be viewed as a large deviation func-
tional in the sense that in the limit T →∞, with respect to the normalized
probability Z−1qV (h),

�
T

(
T−1hT ([uT ], [vT ]) ' h

)
= O

(
e−T

2(F(h)+V (h)−F(hma)−V (hma))
)

(3.11)

for given macroscopic height profile h [2].
Expanding (3.11) to quadratic order in δh = h − hma yields a heuristic

formula for the covariance of the Gaussian shape fluctuations. In spirit it



4 BULK SCALING, LOCAL EQUILIBRIUM 18

is proportional to (−∂2
u − ∂2

v)
−1, hence like a massless Gaussian field. This

implies in particular, that on the macroscopic scale shape fluctuations are
small, of order lnT only. Gaussian fluctuations are proved for the Aztec
diamond in [9] and for domino tilings of a Temperleyan polyomino in [12].

The limit shape theorem (3.1) implies that also the border step has a
deterministic limit. We state a result, which is stronger than what could be
deduced from (3.1) and which follows by the transfer matrix techniques to
be explained in Section 5.

Theorem 3.1. Let bT be the border step as defined in (1.10). Then for any
δ > 0, c > 0, 0 < u− < u+ <∞ one has

lim
T→∞

� (|T−1bT ([uT ])− b∞(u)| ≥ cT−2/3+δ, u− ≤ u ≤ u+

)
= 0. (3.12)

4 Bulk scaling, local equilibrium

For local equilibrium we zoom to a point (ζ0, τ0)T with b−∞(τ0) < ζ0 < b∞(τ0)
at average density ρ = ρ(ζ0, τ0), which means to consider the random field

ηbulk
T (j, t) = η([ζ0T ] + j, [τ0T ] + t) (4.1)

with (j, t) ∈ Z2 and [ ] denoting the integer part. Properly speaking we
should keep the reference point (ζ0, τ0) in our notation. Since it is fixed
throughout, we suppress it for simplicity. In the limit T → ∞, ηbulk

T (j, t)
becomes stationary. Then at fixed t, one has to fill the Fermi states up to
the density ρ which implies that ηbulk

∞ (j, t), t fixed, is a determinantal point
process on Z as defined through the discrete sine-kernel. Only at τ0 = 0, the
inhomogeneity of the underlying η-field can still be seen, which, of course, is
an artifact of our coordinate system. In the (111) projection the line τ0 = 0
would be just like any other local slope with a corresponding stationary
distribution of lozenges. The case τ0 = 0 can also be treated. For simplicity
we omit it and require τ0 6= 0.

Let us define the kernel S(j, t; j ′, t′) by

S(j, t; j ′, t′) =
sgn(t− t′)

2π

∫

I(t,t′)

dk exp
[
ik(j ′ − j) + (t′ − t) ln(1− e−|τ0|/2e−ik)

]

(4.2)

for τ0 > 0 and

S(j, t; j ′, t′) =
sgn(t− t′)

2π

∫

I(t,t′)

dk exp
[
ik(j ′ − j)− (t′ − t) ln(1− e−|τ0|/2eik)

]

(4.3)
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for τ0 < 0, where

I(t, t′) =

{
[−πρ, πρ], if t ≥ t′,
[πρ, 2π − πρ], if t < t′,

and sgn(t− t′) = 1, if t ≥ t′, and sgn(t− t′) = −1, if t < t′. In particular at
equal times

S(i, t; j, t) =
sin(ρπ(i− j))
π(i− j) , (4.4)

which is the sine-kernel. S depends on the reference point (ζ0, τ0). In the
particular case of equal times the dependence is only through the local den-
sity.

Theorem 4.1. In the sense of convergence of local distributions we have

lim
T→∞

ηbulk
T (j, t) = ηsine(j, t). (4.5)

For τ0 > 0, ηsine(j, t) is the determinantal space-time random field with defin-
ing kernel (4.2) and for τ0 < 0 the one with the kernel (4.3).

Remark: Theorem 4.1 is identical to Theorem 2 of [13]. We use here an
integral representation for the defining kernel RT which differs somewhat
from the one of [13] and which turns out to be convenient in the context of
the edge scaling.

Proof: We consider the case τ0 > 0 only, since τ0 < 0 follows by symmetry.
Let us set

BT (j, t; j
′, t′) = eg(j)−g(j

′)RT ([ζ0T ] + j, [τ0T ] + t; [ζ0T ] + j ′, [τ0T ] + t′), (4.6)

where RT is defined in (2.48) and g(j) = j |τ0|T ln(1−1/T )/2. The determi-
nant in (2.49) does not change under similarity transformation, in particular
not under multiplying by eg(ui)−g(uj). Therefore

�
T

(
m∏

k=1

ηbulk
T (jk, tk)

)
= Det (BT (jk, tk; jl, tl))1≤k,l≤m (4.7)

and we need to prove that pointwise

lim
T→∞

BT (j, t; j
′, t′) = S(j, t; j ′, t′). (4.8)
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First consider t ≥ t′. For τ0 > 0 we take T large enough so that τ0T +t′ ≥
0 (this simplifies (4.13) below). Using (2.49) we obtain

BT (j, t; j
′, t′) = eg(j)−g(j

′) (4.9)

×
∑

l≤0

[
eG↑(τ0T )−G↓(τ0T+t)

]
ζ0T+j,l

[
eG↓(τ0T+t′)−G↑(τ0T )

]
l,ζ0T+j′

.

An explicit expression for the matrix elements of the two-point functions can
be found using the translation invariance of the one-particle operators. In
Fourier representation they are given by

[
exp

(∑

r∈Z
σrαr

)]

n,m

=
1

2π

∫ π

−π
exp(−ik(n−m)) exp

(∑

r∈Z
σre

ikr

)
dk

(4.10)

for σr ∈ R. Then using (4.10) and changing l into −l, we have

BT (j, t; j
′, t′) =

∑

l≥0

eg(j)

2π

∫ π

−π
dkeσ(k)T eϕq(k,t)e−ik(ζ0T+j)e−ikl

× e−g(j
′)

2π

∫ π

−π
dk′e−σ(k′)T e−ϕq(k

′,t′)eik
′(ζ0T+j′)eik

′l, (4.11)

where

σ(k) = (1− q)
∑

r≥1

qr/2

r(1− qr)(e
ikr − qrτ0/(1−q)e−ikr) (4.12)

and

ϕq(k, t) =
∑

r≥1

qr/2(1− qrt)
r(1− qr) qrτ0/(1−q)e−ikr. (4.13)

To study the asymptotic of integrals as (4.11) we consider the complex k
plane and regard the integration in (4.11) as being along the real line from −π
to π. Such a line integral can be deformed to another path C with the same
endpoints. The complex integration along C will be denoted by

∫
C
dk · · · .

In the particular case when the path is on the real line, say from a to b, the
integral will be denoted by

∫ b
a
dk · · · .

Let us consider the following four paths: ξ0 = −π → π, ξ1(p) = −π+ip→
π+ip, ξ2 = −π → −π+ip, and ξ3 = π+ip→ π with 0 ≤ p ≤ τ0. The factors
in (4.11) are integrals along ξ0. Their integration contour can be deformed
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from ξ0 to ξ2 ◦ ξ1 ◦ ξ3 without changing the integrals, since the integrands are
holomorphic. Moreover the integrals on ξ2 and ξ3 cancel exactly because of
periodicity of the integrands. We transform the integral in k into the integral
along ξ1(θ) and the one in k′ into the integral along ξ1(θ+ε), with 0 < ε¿ 1
and θ = −τ0T ln(1 − 1/T )/2. θ is chosen such that the exponentially large
function in T passes through the critical point of σ(k′). Consequently we
have

BT (j, t; j
′, t′) =

eg(j)−g(j
′)

(2π)2

∫

ξ1(θ)

dk′
∫

ξ1(θ+ε)

dke(σ(k)−σ(k′))T eiζ0T (k′−k)

× eϕq(k,t)−ϕq(k
′,t′)ei(k

′j′−kj)(1− ei(k′−k))−1. (4.14)

As T →∞ we obtain

σ(k) = 2i
∑

r≥1

e−rτ0/2

r2
sin((k − iτ0/2)r) +O (1/T ) . (4.15)

Therefore the terms that increase or decrease exponentially in T in (4.14)
are E(k) and −E(k′), where

E(k) = 2i
∑

r≥1

e−rτ0/2

r2
sin((k − iτ0/2)r)− iζ0k. (4.16)

The critical points of E(k) are

±kc + iτ0/2, kc = arccos

(
cosh(τ0/2)−

e−ζ0+τ0/2

2

)
∈ R. (4.17)

For Im(k) = τ0/2, Re(E(k)) = ζ0τ0/2, the analysis of Re(E(k)) for k close
to the line Im(k) = τ0/2 shows that, for Re(E(k)) ∈ [−π,−kc] ∪ [kc, π], it
decreases when increasing Im(k) and, for Re(E(k)) ∈ [−kc, kc], it decreases
when decreasing Im(k).

Next we transform the integral into a sum of three terms, the first two
vanish as T → ∞ and the third one gives the final result, see Figure 6. We
have

∫
I0
dk′ dk · · · =

∫
I1
dk′ dk · · · +

∫
I2
dk′ dk · · · +

∫
I3
dk′ dk · · · , where the

integrand is the one of (4.14). Let us compute the three integrals separately.
For the integration along I3, first we integrate out k taking the residuum at
k = k′. Then changing the variable to z = k′ − iθ we obtain

∫

I3

dk′ dk · · · = 1

2π

∫ kc

−kc
dzeϕq(z+iθ,t)−ϕq(z+iθ,t

′)eiz(j
′−j). (4.18)
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Figure 6: Deformation of integration paths. The original integral, along I0,
is deformed to the sum of integrals along I1, I2, and I3. k is integrated along
the dashed lines and k′ along the solid lines. The full dots are the critical
points of σ(k).

The asymptotic of ϕq(z + iθ, t) is

ϕ(z, t) = lim
q→1

ϕq(z + iθ, t) = −t ln(1− e−τ0/2e−iz). (4.19)

The integrals along I1 and I2 are treated in the same way. Let us estimate,
e.g., the one along I1. First we integrate in k. The integral

∫ dk · · ·
,

such that the integration avoids the two arcs of circle of radius ε̃ around
the critical points (see Figure 6), is bounded by O

(
e−aε̃T/(ε̃T )

)
for some

a > 0. O
(
e−aε̃T/T

)
comes from integrating eE(k)T and O (1/ε̃) because the

minimum of |k − k′| equals ε̃. The integration through the two arcs around
the critical points is bounded by O

(
ea
′ε̃T/(ε̃T )

)
for some a′ > 0, because

the integrand is at most of O
(
ea
′ε̃T/ε̃

)
for some a′ > 0 and the length of

the path of integration is O (1/T ). We choose therefore ε̃ = 1/T , so that∫ dk · · ·
 ≤ O (1). The integration in k′ gives an extra-factor O (1/T ), and

lim
T→∞

∫

I1

dk′ dk · · · = 0. (4.20)
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Summarizing for t ≥ t′, we have proved that,

lim
T→∞

BT (j, t; j
′, t′) =

1

2π

∫ ρπ

−ρπ
dzeϕ(z,t−t′)eiz(j

′−j), (4.21)

where ρ = kc/π and ϕ(z, t) as given in (4.19). In particular for t = t′,
ϕ(z, t − t′) = 0, which implies (4.4). The case t < t′ is treated in a similar
way, leading to

lim
T→∞

BT (j, t; j
′, t′) = − 1

2π

∫ 2π−ρπ

ρπ

dzeϕ(z,t−t′)eiz(j
′−j). (4.22)

Therefore

lim
T→∞

�
T

(
m∏

k=1

ηbulk
T (jk, tk)

)
= Det (S(jk, tk; jl, tl))1≤k,l≤m

= Eb

(
m∏

k=1

ηsine(jk, tk)

)
. (4.23)

The proof for τ0 < 0 is identical.

(4.21), (4.22) define a space-time homogeneous Fermi field. Physically it
corresponds to fermions on the lattice Z in their ground state at density ρ
and with kinetic energy

Ekin(k) = ln(1− e−|τ0|/2−ik sgn τ0). (4.24)

Ekin is complex reflecting that the fermions have a drift.
The moments (4.23) define a probability measure Pb on the lozenge tilings

of the plane, where the relative fraction of their type depends on the reference
point (ζ0, τ0). Pb is a Gibbs measure in the sense that its conditional expec-
tations satisfy the DLR equations. We refer to [6] of how DLR equations are
adjusted in the context of surface models. Pb is translation invariant with a
definite fraction of each type of lozenges. Pb is even spatially mixing, since
truncated correlations decay to zero. One would expect that Pb is the unique
Gibbs measure with these properties. A proof would require that the same
limit measure Pb is obtained when other boundary conditions are imposed,
at fixed lozenge chemical potentials. To our knowledge, only for the surface
model studied in [6] such a uniqueness property has been established.
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5 Edge scaling

For the edge scaling one zooms at a macroscopic point lying exactly on the
border of the facet, i.e. at (ζ0, τ0)T with ζ0 = b∞(τ0). For simplicity we set
τ0 > 0. τ0 < 0 follows by symmetry. Since at the edge the step density is
zero, one has to consider a scale coarser than the one for the bulk scaling
in Section 4. From our study of the PNG droplet we know already that the
longitudinal scale is T 2/3 and the transversal scale is T 1/3. On that scale the
curvature of b∞ cannot be neglected. Therefore the correct reference points
are

t(s) = [τ0T + sT 2/3], (5.1)

j(r, s) = [b∞(τ0)T + b′∞(τ0)sT
2/3 + 1

2
b′′∞(τ0)s

2T 1/3 + rT 1/3].

Note that (r, s) ∈ R2. The discrete lattice disappears under edge scaling.
Let us abbreviate

α1 = b∞(τ0) = −2 ln(1− e−τ0/2),
α2 = −b′∞(τ0) = e−τ0/2/(1− e−τ0/2),
α3 = b′′∞(τ0) = e−τ0/2/2(1− e−τ0/2)2.

(5.2)

Then the edge-scaled random field reads

ηedge
T (r, s) = T 1/3ηT ([α1T − α2sT

2/3 + 1
2
α3s

2T 1/3 + rT 1/3], [τ0T + sT 2/3]).
(5.3)

The prefactor T 1/3 is the volume element for rT 1/3. Properly speaking we
should keep the reference time τ0. Since it is fixed throughout, we suppress
it in our notation.

Since ηedge
T is determinantal, so must be its limit. For the PNG droplet

under edge scaling the limit is the Airy random field and, by universality, in
our model the steps close to the facet edge should have the same statistics in
the limit T →∞. The Airy field is determinantal in space-time with Green’s
function

KAiry(r, s; r′, s′) = sgn(s′ − s)
∫

R
dλ θ(λ(s− s′))eλ(s′−s) Ai (r − λ)Ai (r′ − λ) ,

(5.4)

where the step function θ(s) = 0, if s < 0, and θ(s) = 1, if s ≥ 0. The Airy
field is stationary in time. In particular, the equal time correlations are given
through the Airy kernel

KAiry(r, s; r′, s) =

∫ 0

−∞
dλAi (r − λ)Ai (r′ − λ) (5.5)

=
1

r − r′
(
Ai(r)Ai′(r′)− Ai(r′)Ai′(r)

)
.
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Theorem 5.1. Under edge scaling (5.3) the correlation functions have the
following limit,

lim
T→∞

�
T

(
m∏

k=1

ηedge
T (rk, sk)

)
=

�

(
m∏

k=1

(
κ−1ηAiry

(rk
κ
,
κ

2
sk

)))
(5.6)

uniformly for rk, sk in a bounded set. Here κ = 3
√

2b′′∞(τ0). In particular for

the process ηedge
T (f, s) =

∫
dxf(x)ηedge

T (x, s), smeared over continuous test
functions f : R→ R with compact support, one has

lim
T→∞

ηedge
T (f, s) =

∫
dxf(κx)ηAiry(x, sκ/2) (5.7)

in the sense of the convergence of joint finite-dimensional distributions.

To prove Theorem 5.1 one only has to establish that under edge scaling
(2.48) converges to (5.4). We define the rescaled kernel (2.48) as

KT (r, s; r
′, s′) =

e−g(r,s)

e−g(r′,s′)
T 1/3RT (j(r, s), t(s); j(r

′, s′), t(s′)) (5.8)

where g(r, s) = −j(r, s)(τ0T ln(1 − 1/T )/2 + sT 2/3 ln(1 − 1/T )/2) and
RT (j, t; j

′, t′) from (2.48).

Proposition 5.2. The edge-scaled kernel (5.8) converges to the Airy kernel

lim
T→∞

KT (r, s; r
′, s′) = κ−1KAiry

(
r

κ
,
κ

2
s;
r′

κ
,
κ

2
s′
)

(5.9)

uniformly for r, r′, s, s′ in bounded sets.

Granted Proposition 5.2 we establish Theorem 5.1.

Proof of Theorem 5.1: From (2.49) and (5.3) it follows that

�
T

(
m∏

k=1

ηedge
T (rk, sk)

)
= Det

(
T 1/3RT (j(rk, sk), t(sk); j(rl, sl), t(sl))

)
1≤k,l≤m .

(5.10)

This determinant does not change when multiplied by the factor e−g(r,s)+g(r
′,s′)

and therefore

�
T

(
m∏

k=1

ηedge
T (rk, sk)

)
= Det (KT (rk, sk; rl, sl))1≤k,l≤m . (5.11)
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Note that g(r, s) diverges as T →∞. On the other hand

�

(
m∏

k=1

(
κ−1ηAiry

(rk
κ
,
κ

2
sk

)))
= Det

(
κ−1KAiry

(rk
κ
,
κ

2
sk;

rl
κ
,
κ

2
sl

))
1≤k,l≤m

.

(5.12)

Theorem 5.1 thus follows from (5.9).

We turn to the proof of Proposition 5.2. As bounded set we fix throughout
a centered box B ⊂ Rd, where the dimension d depends on the context.

Proof of Proposition 5.2: Let us first consider s2 ≥ s1. By definition
of KT (r2, s2; r1, s1), (2.41), (4.10), and (2.48), we have

KT (r2, s2; r1, s1) =
e−g(r1,s1)

e−g(r2,s2)
T 1/3 ×

×
∑

l≤0

1

2π

∫ π

−π
dke−ikj(r1,s1)eikle

∑
n≥1(µneikn−νne−ikn)e

∑
n≥1 ϕ

1
ne
−ikn

(5.13)

× 1

2π

∫ π

−π
dk′eik

′j(r2,s2)e−ik
′le−

∑
n≥1(µneik

′n−νne−ik
′n)e−

∑
n≥1 ϕ

2
ne
−ik′n

,

where µn = qn/2/n(1 − qn), νn = µnq
nτ0T , and ϕin = νn(1 − qnsiT 2/3

). As in
Section 4 we regard the integrals in (5.13) as complex line integrals and use
the notation explained below (4.13).

The integrands in (5.13) are holomorphic away from {k ∈ C | Re(k) =
0, | Im(k−iτ0/2)| ≥ τ0/2} and the straight path from−π to π can be deformed
provided no singularities are touched. In our choice the deformed path has
three straight lines, the first one from −π to −π + iβi(T ), the second one
from −π + iβi(T ) to π + iβi(T ), and the last one from π + iβi(T ) to π with
βi ∈ (0, τ0), see Figure 7. To be precise, the path along the real line touches
at k = 0 the starting point of a branch cut of the term in the exponential,
but still the integral remains unchanged by the above deformation. Since the
integrands are 2π-periodic along the real axis, the first and the last integrals
cancels exactly. β1(T ) is determined such that the terms in the exponential
are purely imaginary. We obtain

βi(T ) = −
1

2

(
siT

2/3 ln(1− 1/T ) + τ0T ln(1− 1/T )
)
, i = 1, 2. (5.14)

We also define l = LT 1/3. Then the summation goes over L ∈ T−1/3(Z−∪{0})
and

KT (r2, s2; r1, s1) =
e−g(r1,s1)

e−g(r2,s2)

T 1/3

4π2

∑

L∈T−1/3(Z−∪{0})

J̃1(L)J̃2(L)e
δ1−δ2 , (5.15)
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PSfrag replacements

Re

Im

0

τ0

−π π

Figure 7: Deformation of the integration path. The original integral, from
−π to π, is deformed along the integral on the dashed path.

where

δi = j(ri, si)βi(T )− βi(T )LT 1/3 (5.16)

and

J̃1(L) =

∫ π

−π
e−ikj(r1,s1)eikLT

1/3

exp

[
2i
∑

n≥1

µn sin(kn)e
−β1(T )n

]
dk, (5.17)

J̃2(L) =

∫ π

−π
eik

′j(r2,s2)e−ik
′LT 1/3

exp

[
− 2i

∑

n≥1

µn sin(k
′n)e−β2(T )n

]
dk′.

Finally defining Ji(L) = T 1/3J̃i(L), we have

KT (r2, s2; r1, s1) =
∑

L∈T−1/3(Z−∪{0})

(4π2T 1/3)−1e
1
2
L(s2−s1)(1+O(T−1))J1(L)J2(L).

(5.18)

For the case s2 < s1 the result is

KT (r2, s2; r1, s1) = −
∑

L∈T−1/3(Z+\{0})

(4π2T 1/3)−1e
1
2
L(s2−s1)(1+O(T−1))J1(L)J2(L).

(5.19)

Now we proceed as follows. First we prove that, as T → ∞,
Ji(L)→ 2π

κ
Ai
(
ri−L
κ

)
for L ∈ B, by using the steepest descend curve for the

term which is exponentially small in T . Secondly we consider separately
s2 < s1 and s2 ≥ s1. In the latter case, for large L, we need the steepest
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descend curve for the whole integrand. The same strategy has been used
in [7]. In the case s2 < s1, for large L, the steepest descend curve does
not exist anymore. On the other hand the term e−L(s1−s2) serves as a
convergence factor and we only need to find bounds for the Ji(L).

Convergence for L in a bounded set.
Let L ∈ B. The integral J1(L) is written as

J1(L) = T 1/3

∫ π

−π
eTψ1,T (k)eikLT

1/3

dk, (5.20)

where

ψ1,T (k) = −ikT−1j(r1, s1) + 2i
∑

n≥1

µn
T
e−β1n sin(kn). (5.21)

We make a saddle point approximation by using a curve which, for small k,
is very close to the steepest descend curve for ψ(k), where

ψ(k) = lim
T→∞

(ikLT 1/3 + ψ1,T (k))/T (5.22)

and the convergence is uniform for (s1, r1, L) ∈ B. For the limit we obtain

ψ(k) = ψ0(k) + 2ik ln
(
1− e−τ0/2

)
, (5.23)

where

ψ0(k) =
∑

n≥1

2i sin(kn)
e−nτ0/2

n2
. (5.24)

In particular ψ(k) is holomorphic in C \ {k = x+ iy ∈ C |x = 0, |y| ≥ τ0/2}
and the whole integrand is 2π-periodic along the real axis.

Instead of integrating along the straight path −π → π we integrate along
C = {k = x+iy, y = − |x| /

√
3}, see Figure 8. For x small this path is almost

at steepest descend. The real part of ψ(k) reaches its maximum at k = 0.
To evaluate the errors for x away from zero we prove that the real part of
ψ(k) is strictly decreasing for |x| increasing. By symmetry we consider only
x ∈ [0, π]. A simple computation gives

dψ(k)

dx
= −(i+ 1/

√
3) ln(Q) (5.25)

with

Q =
(1− eix+x/

√
3−τ0/2)(1− e−ix−x/

√
3−τ0/2)

(1− e−τ0/2)2 (5.26)
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PSfrag replacements

Re

Im

0

τ0
2

− τ0
2

−π π

C

π/6

Figure 8: Deformation of the integration path. The path from −π to π is
deformed into C plus the dashed ones.

and

ReQ =
cosh(τ0/2)− cosh(x/

√
3) cos(x)

2 sinh2(τ0/4)
,

ImQ = −sin(x) sinh(x/
√
3)

2 sinh2(τ0/4)
. (5.27)

Using that cosh(x/
√
3) cos(x) ≤ 1 and is maximal at x = 0, we have

ReQ(x) ≥ ReQ(0) = 1, the inequality being strict if x 6= 0. Obviously
ImQ ≤ 0. Therefore

Re

(
dψ(k)

dx

)
= − 1

2
√
3
ln((ReQ)2 + (ImQ)2) + arctan(ImQ/ReQ) ≤ 0

(5.28)

for all x ∈ [0, π] and for all τ0 ∈ (0,∞). The inequality is strict if x 6= 0.

Since dRe(ψ(k))
dx

= Re
(

dψ(k)
dx

)
and by (5.28), Reψ(k) is maximal at k = 0,

ψ(0) = 0, and is strictly decreasing for |x| increasing.
Let us fix ε, 0 < ε ¿ 1, and let Cε be the part of C with x ∈ [−ε, ε].

Then the contribution at J1(L) coming from C \Cε is exponentially small in
T .

Lemma 5.3. For some δ > 0,

J1(L) = O
(
e−δT

)
+ T 1/3

∫

Cε

eψ1,T (k)T eikLT
1/3

dk. (5.29)
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Proof: Let C̃+
ε be the part of C with x ∈ [ε, π] and C̃−ε the one with x ∈

[−π,−ε]. For x ≥ ε, Reψ(k) ≤ Reψ(0) − 2δ < 0 for suitable δ = δ(ε) > 0.
In addition

ψ1,T (k)T + ikLT 1/3 = ψ(k)T +O
(
(L− r1)T 1/3 + s1T

2/3
)
. (5.30)

Then

∫

C̃+
ε

eψ1,T (k)T eikLT
1/3

dk

 ≤ e−δT
∫ π

ε

2√
3
e(Reψ(k)−δ)T eO((L−r1)T

1/3+s1T 2/3) dx.

(5.31)

For (L, s1, r1) ∈ B, the integral on the right side is uniformly bounded and
therefore


∫

C̃+
ε

eψ1,T (k)T eikLT
1/3

dk

 = O
(
e−δT

)
. (5.32)

Similarly for the integral along C̃−ε .

Lemma 5.4. Uniformly for (L, r1, s1) ∈ B, one has

J1(L) = O
(
e−δT

)
+O

(
T−1/3

)
+

2π

κ
Ai

(
r1 − L
κ

)
(5.33)

for large T , with κ = 3
√
2α3.

Proof: By Lemma 5.3 we have to evaluate the contribution of the integral
along Cε. For k close to 0 we have

ψ1,T (k)T + ikLT 1/3 = −2

3
iα3k

3T − ikT 1/3(r1 − L) (5.34)

+ O
(
s2
1k + s1k

3T 2/3 + k5T
)
.

Let C+
ε be the part of C with x ∈ [0, ε] and C−ε the one with x ∈ [−ε, 0].

Then
∫
Cε
· · · =

∫
C+
ε
· · · +

∫
C−ε
· · ·. We consider explicitly only one of the two

integrals, the second being evaluated in the same fashion,

T 1/3

∫

C+
ε

eψ1,T (k)T+ikLT 1/3

dk

= T 1/3

∫

C+
ε

e−
2
3
iα3k3T e−ikT

1/3(r1−L)eO(s
2
1k+s1k

3T 2/3+k5T) dk (5.35)

= T 1/3

∫

C+
ε

e−
2
3
iα3k3T e−ikT

1/3(r1−L) dk + E1(L).



5 EDGE SCALING 31

The error term is the integral along C+
ε with integrand

T 1/3e−
2
3
iα3k3T e−ikT

1/3(r1−L)(eO(s
2
1k+s1k

3T 2/3+k5T) − 1) (5.36)

= T 1/3e−
2
3
iα3k3T e−ikT

1/3(r1−L)eO(s
2
1k+s1k

3T 2/3+k5T)O
(
s2
1k + s1k

3T 2/3 + k5T
)
.

The term in the exponential is − 2
3
iα3k

3T (1 + χ1)− ikT 1/3(r1 − L)(1 + χ2),
where χ1 and χ2 can be made arbitrarily small by taking ε small enough (s1

is bounded). With the change of variable z = kT 1/3 we obtain

E1(L) =
1

T 1/3

∫

T 1/3C+
ε

e−i
2
3
α3(1+χ1)z3−i(1+χ2)(r1−L)zO

(
s2
1z + s1z

3 + z5T−1/3
)
dz.

(5.37)

Remark that at the boundary of the integration, the real part of the integrand
behaves as e−

2
3
α3ε3T . This integral is uniformly bounded in T for (L, r1, s1) ∈

B. The same holds for the integral on C−ε . Consequently E1(L) = O
(
T−1/3

)
.

Next we extend the integration from Cε to −πT 1/3(1, cos(π/6)) and
πT 1/3(1,− cos(π/6)), obtaining the path D1. In this way we add an error
of O

(
e−δ

′(ε)T
)
with δ′(ε) ∼ ε3. Similarly we can complete the path up to

x = ±NπT 1/3, y = −NπT 1/3/
√
3 by straight lines. The integral is equal to

the integration from −NπT 1/3 to NπT 1/3, since the function is 2πT 1/3 peri-
odic in the real direction and the error added by completing the integral is
exponentially small in T , for all N . Therefore we may take the limit N →∞.

Finally we obtain (5.33), since

∫ ∞

−∞
e−i

2
3
α3z3−iz(r1−L) dz =

2π

κ
Ai

(
r1 − L
κ

)
(5.38)

with κ = 3
√
2α3.

Convergence of KT (r2, s2; r1, s1) with s2 < s1.

Lemma 5.5. Uniformly for (si, ri) ∈ B, i = 1, 2,

lim
T→∞

KT (r2, s2; r1, s1) = −
∫ ∞

0

e
1
2
L(s2−s1) Ai

(
r1 − L
κ

)
Ai

(
r2 − L
κ

)
dL

κ2

(5.39)

with κ = 3
√
2α3.

Proof: Since (r1, r2) ∈ B, let us set L0 such that L0 ≤ 2(|r1|+ |r2|+ 1) for
all r1, r2. KT can be transformed into an integral adding an error O

(
T−1/3

)
.
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Let us fix an ε with 0 < ε¿ 1. Then

−KT (r2, s2; r1, s1) =

∫ L0

0

J1(L)J2(L)
e−LX

4π2
dL+

∫ εT 2/3

L0

J1(L)J2(L)
e−LX

4π2
dL

+

∫ ∞

εT 2/3

J1(L)J2(L)
e−LX

4π2
dL+O

(
T−1/3

)
(5.40)

with X = 1
2
(s1 − s2)(1 + O (1/T )) > 0. Since |Ji(L)| ≤ T 1/3, i = 1, 2, the

third term is bounded by T 2/3e−εT
2/3X/X → 0 as T → ∞. By Lemma 5.4

the first term converges, uniformly for (ui, si) ∈ B, to
∫ L0

0

Ai

(
r1 − L
κ

)
Ai

(
r2 − L
κ

)
eL

s2−s1
2

1

κ2
dL (5.41)

as T →∞.
We consider the second term. We have already established the point-

wise convergence of Ji(L) to 2π
κ
Ai
(
ri−L
κ

)
. If we obtain that for large T ,

|Ji(L)| ≤ G with a constant G independent of ri, si and L ∈ [L0, εT
2/3], then

by dominated convergence

lim
T→∞

∫ εT 2/3

L0

J1(L)J2(L)e
−LX dL =

∫ ∞

L0

Ai

(
r1 − L
κ

)
Ai

(
r2 − L
κ

)
e

1
2
L(s2−s1)

κ2
dL

(5.42)

uniformly for (ri, si) ∈ B. This property is proven in the following lemma.

Lemma 5.6. For L ∈ [L0, εT
2/3], |Ji(L)| ≤ G with the constant G indepen-

dent of si, ri, and L, provided 0 < ε¿ 1 and T large enough.

Proof: The exponential terms in (5.20) are purely imaginary for k real. Let
us set

ψI1(k) =
1

i
(ikLT−2/3 + ψ1,T (k)), (5.43)

then

J1(L) = T 1/3

∫ π

−π
eiψ

I
1(k)T dk. (5.44)

In particular for k close to 0,

ψI1(k) = −
2

3
α3k

3
(
1 +O

(
k2+s1T

−1/3
))
− k(r1 − L)T−2/3

(
1 +O

(
s2
1T

−1/3
))
.

(5.45)
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Since (r1 − L)T−2/3 ∼ O (ε) at most, we set L̃ = (L − r1)T−2/3. ψI1(k) has

two local extrema at ±k(L̃) with

k(L̃) =
√
L̃c0

(
1 +O

(
L̃+ s2

1T
−1/3

))
(5.46)

and c0 = (2α3)
−1/2. Moreover for |k| ≥ 2k(L̃), ψI1(k) is strictly decreasing.

J1(L) =
∫ π
−π · · · =

∑4
i=1

∫
Ii
· · · where I1 = [−π,−2c0

√
L̃], I2 = [−2c0

√
L̃, 0],

I3 = [0, 2c0
√
L̃], and I4 = [2c0

√
L̃, π]. The integrals along I1 and I4 are

evaluated similarly and so are the integrals along I2 and I3. We present in

detail only the integration along I3 and I4. Let γ =
√
L̃. Then

∫

I4

· · · = T 1/3

∫ π

2c0γ

eiψ
I
1(k)T dk = T 1/3

∫ u(π)

u(2c0γ)

f(u)eiuT du (5.47)

where u = ψI1(k) and f(u) =
dk(u)
du

. Integrating by parts we obtain

T−1/3

∫

I4

· · · = f(u)
eiuT

iT


u(π)

u(2c0γ)

−
∫ u(π)

u(2c0γ)

df(u)

du

eiuT

iT
du. (5.48)

For k ∈ I4 with |k| ≤ ε follows from (5.45) that du
dk
< 0 and d2u

dk2 ≥ 0. For
k > ε,

du

dk
= L̃− ln

(
1 + e−τ0 − 2e−τ0/2 cos(k)

1 + e−τ0 − 2e−τ0/2

)
+O

(
s1T

−1/3
)
. (5.49)

Then for k ∈ I4 with k > ε, du
dk

< 0 and d2u
dk2 ≥ 0. Therefore df(u)

du
=

−(du
dk
)−3 d2u

dk2 where du
dk
< 0 and d2u

dk2 ≥ 0 for every point in I4. Thus
df(u)

du
does

not change sign along I4, and

∫

I4

· · ·
 ≤

2

T 2/3
(|f(u(π))|+ |f(u(2c0γ))|) . (5.50)

Using (5.49), for T sufficiently large,

|f(u(π))| =
2 ln(1− e−τ0/2)− 2 ln(1 + e−τ0/2) + γ2 +O

(
s1T

−1/3
)−1

≤
ln(1− e−τ0/2)− ln(1 + e−τ0/2)

−1
= G1, (5.51)

provided ε small enough (which implies γ sufficiently small). The second
term is bounded by

|f(u(2c0γ))| =

1 +O

(
γ2 + s1T

−1/3
)

−γ2

 ≤ 2/γ2 (5.52)
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for ε small and s1 ∈ B. Therefore we have, uniformly in (r1, s1) ∈ B,

∫

I4

· · ·
 =


∫

I1

· · ·
 ≤

2G1

T 2/3
+

2

(L− r1)
≤ 2G1

T 2/3
+

2

(L0 − r1)
. (5.53)

Next we estimate

∫
I3
· · ·
.

∫

I3

· · · = T 1/3

∫ 2c0γ

0

eiψ
I
1(k)T dk = T 1/3

∫ c2γ

−c1γ
eiψ̃(k)T dk (5.54)

where ψ̃(k) = ψI1(k−k(L̃)), c1 = c0(1+O (γ)) and c2 = c0(1+O (γ)). Let us
define the paths ξ0 = {k = x, x : −c1γ → c2γ}, ξ1 = {k = −c1γe−iϕ, ϕ : 0→
π/4}, ξ2 = {k = e−iπ/4x, x : −c1γ → c2γ}, ξ3 = {k = c2γe

iϕ, ϕ : π/4 → 0}.
Then

∫
I3
· · · =

∫
ξ0
· · · = ∑3

i=1

∫
ξi
· · · . The integrals along ξ1 and ξ3 are

estimated in the same way.

T 1/3

∫

ξ1

eiψ̃(k)T dk = T 1/3

∫ π/4

0

eiϕeiψ̃(k(ϕ))T ic0γ(1 +O (γ)) dϕ (5.55)

and therefore
T

1/3

∫

ξ1

eiψ̃(k)T dk

 ≤ 2T 1/3γc0

∫ π/4

0

e−T Im(ψ̃(k(ϕ))) dϕ. (5.56)

Since ψ̃(k(ϕ)) = ψ̃(0)+ 1
2
ψ̃′′(0)k(ϕ)2(1+ δ1(ϕ)) with δ1(ϕ)→ 0 as ε→ 0 and

k(ϕ)2 = c20γ
2(1 +O (γ))e−2iϕ, one has

Im ψ̃(k(ϕ)) = −1

2
ψ̃′′(0)(k(ϕ))2(1 + δ2(ϕ))c

2
0γ

2(1 +O (γ)) sin(2ϕ) (5.57)

with δ2(ϕ)→ 0 as ε→ 0. Moreover, for ε small enough, sin(2ϕ)(1+δ2(ϕ))(1+
O (γ)) ≥ ϕ. From this it follows

T
1/3

∫

ξ1

eiψ̃(k)T dk

 ≤ 2T 1/3c0γ

∫ π/4

0

eTc
2
0γ

2ψ̃′′(0)ϕ/2 dϕ (5.58)

≤ 2T 1/3c0γ

∫ ∞

0

eTc
2
0γ

2ψ̃′′(0)ϕ/2 dϕ =
4T 1/3c0γ

Tc20γ
2

ψ̃′′(0)

.

We compute ψ̃′′(0) = −2γc−1
0

(
1 +O

(
γ2 + s1T

−1/3
))
. Therefore for s1 ∈ B

and T large enough,
T

1/3

∫

ξ1

eiψ̃(k)T dk

 ≤
4

(L− r1)
≤ 4

(L0 − r1)
. (5.59)
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Next we need to evaluate the integral along ξ2,

T 1/3

∫

ξ2

eiψ̃(k)T dk = T 1/3e−iπ/4eiT ψ̃(0)

∫ c2γ

−c1γ
eT ψ̃

′′(0)x2/2(1+O(x)) dx. (5.60)

Then for sufficiently small δ,
T

1/3

∫

ξ2

eiψ̃(k)T dk

 ≤ T 1/3

∫ c2γ

−c1γ
eT ψ̃

′′(0)x2(1+δ)/2 dx

≤ T 1/3

∫ ∞

−∞
eT ψ̃

′′(0)x23/4 dx ≤ T 1/3

∫ ∞

−∞
e−x

2Tγ/c0 dx (5.61)

=

√
π
√
c0

4
√
L− r1

=

√
π
√
c0

4
√
L0 − r1

.

Thus we have, uniformly for s1 ∈ B and T large enough,

∫

I3

· · ·
 ≤

8

(L0 − r1)
+

√
π
√
c0

4
√
L0 − r1

. (5.62)

Therefore Ji(L) is bounded by

|Ji(L)| ≤
4G1

T 2/3
+

20

(L0 − ri)
+

2
√
π

4
√

2α3(L0 − ri)
. (5.63)

Since L0 − ri ≥ 2 and X > 0, it follows that J1(L)J2(L)e
−LX is bounded by

an integrable function on [L0, εT
2/3] for 0 < ε¿ 1 and T large enough.

Convergence of KT (r2, s2; r1, s1) with s2 ≥ s1.

Lemma 5.7. Uniformly for (si, ri) ∈ B, i = 1, 2,

lim
T→∞

KT (r2, s2; r1, s1) =

∫ 0

−∞
e

1
2
L(s2−s1) Ai

(
r1 − L
κ

)
Ai

(
r2 − L
κ

)
dL

κ2

(5.64)

with κ = 3
√
2α3.

Proof: Let us set L0 such that L0 ≥ 2(|r1| + |r2| + 1) for all (r1, r2) ∈ B.
Then the sum in KT can be approximated by an integral at the expense of
an error O

(
T−1/3

)
. Let us fix ε, 0 < ε¿ 1. Then

KT (r2, s2; r1, s1) =

∫ 0

−L0

J1(L)J2(L)
eLX

4π2
dL+

∫ −L0

−εT 2/3

J1(L)J2(L)
eLX

4π2
dL

+

∫ −εT 2/3

−∞
J1(L)J2(L)

eLX

4π2
dL+O

(
T−1/3

)
, (5.65)
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with X = 1
2
(s2 − s1)(1 + O (1/T )) ≥ 0. The convergence of the first term

has already been proved. Let us set L̃ = −(L − r1)T−2/3. In the remainder
of the proof we set

ψ(k) =
1

i
ψ1,T (k)− kL̃. (5.66)

First consider L̃ ≥ ε.

J1(L) = T 1/3

∫ π

−π
eψ(k)T dk. (5.67)

With the change of variable u = ψ(k), f(u) = dk(u)
du

, and integration by parts,
we have

|J1(L)| ≤ T 1/32ψ(π)

T
max

k∈[ψ(−π),ψ(π)]


df(u)

du

 . (5.68)

To compute
df(u)

du

 we use df(u)
du

= −(du
dk
)−3 d2u

dk2 .
du

dk

 is (5.49) with

L̃ replaced by −L̃. It is easy then to see that uniformly for s1 ∈ B,
maxk∈[ψ(−π),ψ(π)]

df(u)
du

 ≤ G1L̃
−1 for G1 = 2/(sinh(τ0/2)ε)

2 < ∞. Then

for a suitable constant G2 <∞,

|J1(L)| ≤ G2(r1 − L)−1. (5.69)

The same holds for J2, therefore the third term in (5.65) is bounded by

∫ −εT 2/3

−∞

G2
2

(L+ |r1|+ |r2|)2
dL, (5.70)

which is convergent for T finite and vanishes for T →∞.
Finally we consider 0 < L̃ ≤ ε. Let us set β =

√
2(cosh(τ0/2)− 1). We

integrate over C =
{
k = x+ iy(x), y(x) = −

√
y(0)2 + x2/3

}
, with iy(0) the

stationary point of ψ(·, L̃), see Figure 9. y(0) = −β
√
L̃ + O

(
L̃3/2

)
and C

is almost the steepest descend curve for x small. This path has the property
that the real part of ψ(k) is strictly decreasing as |x| increases and

ψ(iy(0)) = −2

3
βL̃3/2

(
1 +O

(
s2
1T

−1/3 + L̃
))

. (5.71)

We divide the integral in the part with |x| ≤ ε and the remainder,

J1(L) = T 1/3

∫ π

−π
eψ(k)T dk = T 1/3

∫

C

eψ(k)T dk = T 1/3

∫

Cε

eψ(k)T dk + E2(L),

(5.72)
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Im

0

τ0
2

− τ0
2

−π π

C

y0

Figure 9: Deformation of the integration path. The path from −π to π is
deformed into C plus the dashed ones.

where

E2(L) = T 1/3

∫

C\Cε

eψ(k)T dk = O
(
e−δT eψ(x=0)T

)
= O

(
e−δT e−

2
3
β(r1−L)3/2

)
.

(5.73)

We then need to integrate only close to x = 0. We first establish some
properties of ψ(k) for x = 0.

Lemma 5.8.

i) ψ(iy(0), L̃) = −2
3
βL̃3/2 +O

(
L̃5/2 + L̃3/2s2

1T
−1/3

)
,

ii) dψ(k,L̃)
dk
|k=iy(0) = 0,

iii) d2ψ(k,L̃)
dk2 |k=iy(0) = − 2

β

√
L̃+O

(
L̃+

√
L̃s1T

−1/3
)
,

iv) d3ψ(k,L̃)
dk3 |k=iy(0) = − 2

β2 i+O
(
L̃+ s1T

−1/3
)
.

(5.74)

Proof: i) follows from Equation (5.71) and ii) because k = iy(0) is a sta-

tionary point of ψ(·, L̃). iv) follows from (5.34) because 2α3 = 1/β2. Finally

let λ =
√
L̃. Then

d

dλ

d2ψ(k, L̃)

dk2
=

d3ψ(k, L̃)

dk3

dk

dλ
(5.75)

and evaluating at k = iy(0) and λ = 0 we obtain iii).
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With these properties

J1(L)− E2(L) = T 1/3

∫

Cε

eψ(k)T dk (5.76)

= e−
2
3
βL̃3/2T eO(L̃

5/2T+L̃3/2s21T
2/3)T 1/3

∫

Cε

dke−
1
β

√
L̃(k−iy(0))2T e

− i
3β2 (k−iy(0))3T

×eO
(
L̃(k−iy(0))2T+

√
L̃(k−iy(0))2s1T 2/3+L̃(k−iy(0))3T+(k−iy(0))3s1T 2/3+(k−iy(0))4T

)

.

Let γ =
√
r1 − L, then

√
L̃ = γT−1/3. Let k′ = k−iy(0), then the integration

is along C ′ε = Cε + iy(0).

J1(L)− E2(L) = e−
2
3
βγ3

eO(γ
5T−2/3+γ3s21T

−1/3)T 1/3

∫

C′ε

dke−
γ
β
k2T 2/3

e
− i

3β2 k
3T

× exp[O
(
γ2k2T 1/3 + γs1k

2T 1/3 + γ2k3T 1/3 + k3s1T
2/3 + k4T

)
]. (5.77)

Since L̃ can be made arbitrarily small, for s1 ∈ B the exponent of the term
in the integral can be written as

−γ
β
k2T 2/3(1 + χ1)−

i

3β2
k3T (1 + χ2), (5.78)

where the χi can be made as small as desired by choosing ε small enough.
After the change of variable kT 1/3 = z the integral becomes

∫

C′εT
1/3

dze−
γ
β
z2(1+χ1)e

− i
3β2 z

3(1+χ2)
. (5.79)

The integration is taken along a contour, symmetric with respect to the
imaginary axis and such that for Re(z) ≥ 0, arg(z) ∈ [−π/6, 0]. This implies
that the integral is uniformly bounded.

Replacing the term in front of the integral (5.77) by one, the error can be
estimated as

e−
2
3
βγ3
(
eO(γ

5T−2/3+γ3s21T
−1/3) − 1

)
, (5.80)

since the integral in (5.77) is bounded. For L̃ ≤ ε,

(r1 − L)5/2T−2/3 + (r1 − L)3T−1/3 ≤ (r1 − L)3/2ε+ (r1 − L)
√
ε. (5.81)

As a consequence

e−
2
3
βγ3
(
eO(γ

5T−2/3+γ3s21T
−1/3) − 1

)
≤ O

(
e−

β
2
γ3

(γ5T−2/3 + γ3s2
1T

−1/3)
)

≤ O
(
T−1/3e−

β
2
(r1−L)3/2

)
. (5.82)
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After this step we can also remove the error inside the integral (5.77). As in
the case of L ∈ B, the removal of this error leads to an additional error of
T−1/3 with the prefactor e−

2
3
β(r1−L)3/2 . Consequently we have obtained

J1(L) = e−
2
3
β(r1−L)3/2

∫

C′εT
1/3

dze−
γ
β
z2e

− i
3β2 z

3

+O
(
T−1/3e−

2
3
β(r1−L)3/2

)

+ O
(
T−1/3e−

1
2
β(r1−L)3/2

)
+O

(
e−δT e−

2
3
β(r1−L)3/2

)
. (5.83)

Next we change to the variable z = w + iβ
√
r1 − L. The integral becomes

∫

C′εT
1/3+iβγ

e
− i

3β2w
3−i(r1−L)w

dw. (5.84)

Finally completing the contour of the integration such that it goes to
infinity in the directions arg(w) = ϕ± with ϕ+ = −π/6 and ϕ− = −5π/6
leads to an exponentially small error. Using that 2α3 = 1/β2, the main term
goes to 2π

κ
Ai
(
r1−L
κ

)
. Since the errors are integrable in L and go to zero as

T →∞, we obtain, for s2 ≥ s1,

lim
T→∞

KT (r2, s2; r1, s1) =

∫ 0

−∞
e

1
2
L(s2−s1) Ai

(
r1 − L
κ

)
Ai

(
r2 − L
κ

)
dL

κ2

(5.85)

with κ = 3
√
2α3.

With the change of variable λ = L/κ, (5.85) is rewritten as

lim
T→∞

KT (r2, s2; r1, s1) = κ−1

∫ 0

−∞
e

1
2
λ(s2−s1)κAi

(r1
κ
− λ
)
Ai
(r2
κ
− λ
)
dλ

= κ−1KAiry
(r2
κ
,
κ

2
s2;

r1
κ
,
κ

2
s1

)
. (5.86)

6 The border step, Airy process

As explained in [15], the Airy field is a random field which is concentrated
on line ensembles {h`(t), t ∈ R, ` ∈ Z+} with the properties

i) t 7→ h`(t) is continuous,

ii) h`(t) < h`−1(t) for all t.

The first line, h0(t), of the Airy field is by definition the Airy process, denoted
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by A(t). A(t) is almost surely continuous, stationary in t, and invariant
under time-reversal. Its single time distribution is given by the Tracy-Widom
distribution [20], known from the largest eigenvalue of GUE random matrices.
In particular, for fixed t,

�
(A(t) > y) ' e−y

3/24/3 for y →∞,
�
(A(t) < y) ' e−|y|

3/12 for y → −∞. (6.1)

The Airy process is localized. On the other hand it has long range correlations
as

〈A(0)A(t)〉 − 〈A(0)〉2 ' |t|−2 for |t| → ∞. (6.2)

The convergence of ηedge
T to the Airy field, as stated in Theorem 5.1,

implies that the border step statistics, properly scaled as AT , cf. (1.13),
converges to the Airy process.

Theorem 6.1. Let AT (s) be the border step rescaled as in (1.13) and let
A(s) be the Airy process. Then for any m, si, ai ∈ R, i = 1, . . . ,m, the limit

lim
T→∞

�
T

(
m⋂

i=1

{AT (si) ≤ ai}
)

=
�

(
m⋂

i=1

{A(siκ/2) ≤ ai/κ}
)

(6.3)

holds.

Proof: Let fi be the indicator function of (ai,∞). Then (6.3) corresponds
to

lim
T→∞

�
T

(
m⋂

i=1

{ηedge
T (fi, si) = 0}

)
=

�

(
m⋂

i=1

{ηAiry(fi/κ, siκ/2) = 0}
)
. (6.4)

We choose a large enough and split fi = fai +g
a with fai the indicator function

of (ai, a] and g
a the one of (a,∞). Then

∣∣∣∣
�
T

(
m⋂

i=1

{ηedge
T (fi, si) = 0}

)
− �

T

(
m⋂

i=1

{ηedge
T (fai , si) = 0}

)∣∣∣∣ ≤

≤
m∑

i=1

�
T

(
ηedge
T (ga, si) ≥ 1

)
. (6.5)

The term

�
T

(
m⋂

i=1

{ηedge
T (fai , si) = 0}

)
(6.6)
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converges to

�

(
m⋂

i=1

{ηAiry(fai /κ, siκ/2) = 0}
)

(6.7)

which yields the right hand side of (6.3) as a→∞.
The terms in the sum of the right hand side of (6.5) are bounded by

�
T

(
ηedge
T (ga, si) ≥ 1

)
≤ �

T

(
ηedge
T (ga, si)

)
=

∫ ∞

a

�
T

(
ηedge
T (r, si)

)
dr.

(6.8)

From (5.18),

�
T

(
ηedge
T (r, si)

)
'
∫ ∞

0

1

4π2
J1(−L)2 dL. (6.9)

J1(−L) is indeed a function of r + L, which asymptotics has been studied
already for r+L large, but bounded by r+L ≤ εT 2/3, with the result (5.83).
Therefore the integrals in (6.8), (6.9) converge for r + L ≤ εT 2/3.

Next consider r + L > εT 2/3. Let L̃ = (r + L)T−2/3. With the change of
variable u = ψ(k) and integrating twice by parts, we obtain

|J1(−L)| ≤ T 1/32ψ(π)

T 2
max

k∈[ψ(−π),ψ(π)]


d3k(u)

du3

 . (6.10)

Similarly as for (5.69) we have,

max
k∈[ψ(−π),ψ(π)]


d3k(u)

du3

 ≤ G1L̃
−2, (6.11)

for a suitable constant G1 <∞, which yields

|J1(−L)| ≤ G2(r + L)−2T−1/3 (6.12)

for some constant G2 < ∞. Therefore the integrals in (6.8), (6.9) have a
bound G(a) uniform in T which vanishes as a→∞

Probabilistically, it would be natural to lift Theorem 6.1 to the weak
convergence of path measures. The missing piece is the tightness for the
sequence of stochastic process AT (s). We have not attempted to fill this gap.
The interested reader is referred to [8], where tightness for the edge scaling
of the Aztec diamond is proved.
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A Fermionic correlations

A.1 Two-point function

Let Â =
∑

k,l∈Z Ak,la
∗
kal be the second quantization of the one-particle matrix

A. It is assumed that e−A is trace class and Det
(
1 + eA

)
6= 0 (see [16], Chap.

XIII). We use the identities

e−Âa∗i e
Â =

∑

j∈Z
a∗j [e

−A]j,i, e−Âaie
Â =

∑

j∈Z
[eA]i,jaj. (A.1)

Then

〈a∗i aj〉 =
1

Z
Tr
(
e−Âa∗i aj

)
=
∑

n∈Z

1

Z
Tr
(
a∗n[e

−A]n,ie
−Âaj

)
(A.2)

=
∑

n∈Z
[e−A]n,i(−〈a∗naj〉+ δj,n) = [e−A]j,i −

∑

n∈Z
〈a∗naj〉[e−A]n,i,

and
∑

n∈Z
〈a∗n[

�
+ e−A]n,iaj〉 = [e−A]j,i. (A.3)

Finally multiplying this expression by
∑

i∈Z [(
�
+ e−A)−1]i,m we obtain

〈a∗maj〉 = [(
�
+ eA)−1]j,m. (A.4)

A.2 Proof of (2.43)-(2.45)

We prove recursively that

〈a∗i1aj1 · · · a
∗
inajn〉 = Det (R(ik, jl))1≤k,l≤n , (A.5)

where

R(ik, jl) =

{
〈a∗ikajl〉 if k ≤ l,
−〈ajla∗ik〉 if k > l.

(A.6)

Then, taking ik = jk for all k, the result (2.43)-(2.45) is obtained. For
n = 1 the formula holds by definition. Suppose the formula (A.5) has been
established for some n, i.e.

〈a∗i1aj1 · · · a
∗
inajn〉 =



〈a∗i1aj1〉 〈a∗i1aj2〉 · · · 〈a∗i1ajn〉
−〈aj2a∗i1〉 〈a∗i2aj2〉 · · · 〈a∗i2ajn〉

...
...

. . .
...

−〈ajna∗i1〉 −〈ajna∗i2〉 · · · 〈a∗inajn〉


. (A.7)
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We will need one more expression for 〈· · · 〉 such that in the first k pairs the
annihilation operator precedes the creation operator,

〈aj1a∗i1 · · · ajka∗ika∗ik+1
ajk+1

. . . a∗inajn〉 =

= (−1)k



−〈aj1a∗i1〉 · · · 〈a∗i1ajk〉 〈a∗i1ajk+1
〉 · · · 〈a∗i1ajn〉

...
. . .

...
...

. . .
...

−〈ajka∗i1〉 · · · −〈ajka∗ik〉 〈a∗ikajk+1
〉 · · · 〈a∗ikajn〉

−〈ajk+1
a∗i1〉 · · · −〈ajk+1

a∗ik〉 〈a∗ik+1
ajk+1
〉 · · · 〈a∗ik+1

ajn〉
...

. . .
...

...
. . .

...
−〈ajna∗i1〉 · · · −〈ajna∗ik〉 −〈ajna∗ik+1

〉 · · · 〈a∗inajn〉



.

(A.8)

Let us prove this formula. For k = 0, it agrees with (A.7). Suppose it to be
true for some k. Let us then prove that the formula (A.8) holds for k + 1,

〈aj1a∗i1 · · · ajk+1
a∗ik+1

a∗ik+2
ajk+2

. . . a∗inajn〉 =
= −〈aj1a∗i1 · · · ajka

∗
ik
a∗ik+1

ajk+1
. . . a∗inajn〉 (A.9)

+ δik+1,jk+1
〈aj1a∗i1 · · · ajka

∗
ik
a∗ik+2

ajk+2
. . . a∗inajn〉.

Using the expression (A.8) and considering the expansion of the determinant
in the (k + 1)th column (or row), it is easy to see that (A.9) corresponds,
up to a factor of −1, to the expression (A.8) but with the diagonal term
a∗ik+1

ajk+1
replaced by −ajk+1

a∗ik+1
. Therefore (A.8) holds for k + 1, too.

Now we prove (A.7) for n + 1 by using (A.7) for n and (A.8) for n and
k ≤ n,

〈a∗qaj1 · · · a∗in+1
ajn+1

〉 = 1

Z
Tr
(
e−Âa∗qaj1 · · · a∗in+1

ajn+1

)

=
∑

m∈Z

1

Z
[e−A]m,q Tr

(
e−Âaj1 · · · a∗in+1

ajn+1
a∗m

)

= −
∑

m∈Z
[e−A]m,q 〈a∗maj1 · · · a∗in+1

ajn+1
〉 (A.10)

+
n+1∑

p=2

[e−A]jp,q 〈aj1a∗i2 · · · ajp−1
a∗ipa

∗
ip+1

ajp+1
. . . a∗in+1

ajn+1
〉

+ [e−A]j1,q 〈a∗i2aj2 · · · a
∗
in+1

ajn+1
〉.

We take the term with the sum over m ∈ Z together with the first one and
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multiply the whole expression by
∑

q∈Z [(
�
+ e−A)−1]q,i1 to obtain

〈a∗i1aj1 · · · a
∗
in+1

ajn+1
〉 = 〈a∗i1aj1〉〈a

∗
i2
aj2 · · · a∗in+1

ajn+1
〉 (A.11)

+
n+1∑

p=2

〈a∗i1ajp〉〈aj1a
∗
i2
· · · ajp−1

a∗ipa
∗
ip+1

ajp+1
. . . a∗in+1

ajn+1
〉.

Using (A.7) and (A.8) for n terms we see that this last expression is noth-
ing else than the expansion with respect to the first row of (A.7) with n
substituted by n+ 1.
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