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Consider simple random walks on Z" (SRW) and define the contact matrix
C of a SRW w by

0 otherwise

cij(w):{ 1 for |w(i) — w(j)| = 0,i # j "

Let C be the set of contact matrices of SRW of length N. Then the
number of contact matrices are given by

W(N) =|C|= ) 1/degC(w) = |2[E(deg ), (2)

weN

where [ is the expectation value with respect to the relevant uniform distri-
bution.

We define the growth factor of the number of contact matrices by

In|C|
= . 3

In Information Loss in Coarse Graining of Polymer Configurations via Con-
tact Matrices we proved that vy — 1 as N — oco. An upper bound for large
but finite size system is given in the following proposition.
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Proposition 1. For all fized ¢ > 0, there exists a constant k' > 0 such that
for N large enough,

InP(Ry/N <
’}/Nél—li,|n ( N/ —€)|‘ (4)
N
Let Iy = N+1— Ry be the number of intersections. Consider an interval

J = |ko, k1] and the subset of random walk with intersection ratio Iy /N € J:

An(J) = {w € Qn sit. In(w)/N € J}. (5)

Definition 2. The mean degeneracy on the subset Ay (J) is defined by

(deg C), = H{w s.t. In(w)/N € J}| _ |An ()]

T H{C(w) s.t. Iy(w)/N e J}| ~ W(N),’ (6)

where W (N) s is the number of contact matrices of random walks with Iy /N €

J.
Definition 3. Let J = [ko, k1|. We define
a1
d(J) = thJng In (degC),. (7)

The main result of this section is that, for ky < 7' = limy_,o E(Iy)/N, and

ko < k1 < 1, the mean degeneracy increases exponentially in N.

Proposition 4. For SRW on Z", n > 2,

d([ko, k1]) > 0 for all kg < " and ky < k1 < 1. (8)

In order to prove Proposition 4 we need the following proposition. First
let us introduce some notations. We divide Z" into disjoint n-cubes of edge
length 4. For a w € Qy, F(w) is defined to be the number of free-4-loops
(loops of length 4 which are not intersected by the remaining of w, see con-
figuration P in Figure 1 in the proof of Proposition 5).

Proposition 5. For SRW on Z" and J = [ko, k1] with ky < 7’ and k; €

(ko, 1), there exists an ay > 0 such that

1
By =liminf —— InP{w € Ax(J) s.t. F(w) <a;N} >0. 9)
N—o0 N



Assuming Proposition 5 we prove Proposition 4.

Proof of Proposition 4. Let us consider ky < 7" and k; € (ko, 1).

w w S w (6]
oy S P € Av() st F() S asNp+ (10)

+ 27%NP{w € Ax(J) s.t. F(w) > ay;N} < 2exp(—min{j3;, ayIn2}N)

since the contact matrix of a random walk contains M free-4-loops is at least
2™ times degenerate. But d(J) = liminfy_,o —x In(W(N),/[An(J)|), then
by Proposition 5, d(.J) > min{f5,, a,In2} > 0. O

Proof of Proposition 5. It is known that P(w(n) # 0,Vn > 1) ~ 7 =
limy 00 Ry /N with 7 € (0,1) for n > 3. Hamana and Kesten in [1] proved,
for SRW of Z", that ¢(z) = limy_o —InP(Ry > Nz)/N exists for all z.
0 < ¢(r) < oo for 7 < < 1 and (x) is increasing and convex on [7, 1].
For 0 <z < 7, ¢(x) = 0. Since we work with intersection instead of the
range of the support, we use the following notations: ¢'(z) = ¢(1 — z) and
m=1-7.

We consider ko, k; fixed with ky < 7', ki € (ko, 1) and let J = [ko, ky]. In
what follows we consider only the cubes visited by the random walk. Since

In/N € J, Ry/N > 1—k; > 0 and each cube contains 4" points, therefore

1—k
qn

there are at least aN = N visited cubes for each w € Ay (J). It is easy
to see that at least N of these cubes are occupied at most by b = % < 0
steps.

Consider the set AY(J) = {w € Ay(J) s.t. F(w) < aN}, a < 1. We
do two successive operations one these random walks.

Operation 1: Let w € ASY(J), then 0 < % =f<a IHp=0
we do not have to do this operation. At each of these SN occurrences we
eliminate the free-4-loop replacing P with L (see Figure 1). We therefore

obtain a random walk & of length N with F(w) = 0. The intersection
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Figure 1: The transformation from the configuration P to L.

or

Figure 2: The transformation which adds a 4-loop.

number is changed to In(w)/N € [ko, k1 + ). @ is degenerate because can be
obtained by different random walks. Two random walks w; and wy change
to the same one, i.e. wW; = Wy, if they differs only by the change of some
P by L configurations. Let YN = #(P in w;) + #(L in wy), obviously 8 <
v < 1. There are (g%) possible w changed to the same w. By Stirling’s
formula (g%) ~ AN with A(y,8) = yIny — BlnB — (v — B)In(y — B)
and 0 < 8 < a, f < v <1. A(v, ) remains bounded by —f1In g+ O(5) <
—%Blnﬁ < —%aln a, and for f < a < 1, therefore the resulting random
walk do not have free-4-loops and are at most e N221e degenerate. Thus

3
Niyalna pandom walks.

we have constructed at least |ASY (J)e

Operation 2: Consider a random walk w resulting from Operation 1.
Consider the first /N cubes with at most b = % steps of w and choose 2aN
out of these (disjointed) cubes. This can be made in (2%037,) possibilities. The
first time that w passes in one chosen cube, we add a 4-loop as in Figure 2.

This uses 8 steps at each time, therefore N — N(1 + 16a). w passes in a



cube not more than b times and at each time we replace the path inside the
chosen cubes by another one of length increased by 2 which remains on the
boundary of the cube, leaving the enter and the exit points unchanged. Then
N(1+ 16a) - n € N(1 + 16a) + [2 - 2aN,2b- 2aN] and I,/n < ki + ca,
¢y = 17+ 4b. The resulting random walk, called &, has 2aN free-4-loops in
the center of the cubes and is also degenerate because w; and wy are modified
to the same random walk, i.e. {; = Wy, if they differ only in the 2aN cubes.
Since each cube contains at most b steps of the random walk and for each
step we have at most 2n possible places to occupy, then the new random
walk are at most C*V times degenerate, with C' = (2n)?.

We have constructed at least (27) C—N|ASN (J)|eN2olne random walks

of length n € [N(1+ 20a), N(1 + cocr)] and L2 < k; + cpa. Therefore

a N(l4caa)
2 —aN| A aN Néalna< !
(o )OIt < 52

with J' = [ko, k1 + c2c). Up to non exponential corrections,
[An ()] == Q] (e DN — v (oI, (12)

But ¢’(k) is convex and strictly increasing for k& < 7’ and ¢'(k) = 0 for

k > 7', then
V' (ky + coar) > ' (ky) — cxaZ (ky) (13)
with Z(ki) = 7(//(0);;#’(1“) < 00. Then ¢~ *k1)N _ o=¢'(ko)N ~ o=¥'(k1)N gn(d
¢~V (kitacs)N(Laes) _ v/ (ko)N(1+aes) < o~/ (k)N jaN By (14)
with By = c2Z(ky) + c3aZ(k;). Consequently
RHS(11) =~ (2n)N(1+C2"‘)6_1/"(k1)Neo‘BlN and (15)
s~ ()
x P{we Ayx(J) st. F(w) < alN}. (16)
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__Inegn(11)

~ > we obtain

N
2aN

Taking lim infy_,

P(a) = lim —i1n<

3
_ _ >
N >+5J 2alna+alnC’ aB >0, (17)

with B = ¢; In2n — By. Moreover

1 SN a. . a a a
. - 2 _ _ - = =
Nh_r)r(l)o N In <2aN> 5 In 5T (2 2a> In (2 2a> +2aln2a. (18)

For a small enough, the hypothesis ; = 0 leads to a contradiction because

lim, 0 P(«) = 0 and lim,_, %P(a) = —o00. Therefore 8; > 0. O

Proof of proposition 1. It is known that that P(Ry/N < ¢) does not go
to 0 exponentially fast in N (see e.g. [1]). Let J; = [0,1—¢) and Jo = [1—¢, 1].
Then

W(N) = W(N)y, + W(N)s,. (19)
The terms in the sum are evaluated by
W(N);, =~ |Qn[P(Iy/N € Jy)e NV (20)
and
W(N)y, <|Qn|P(Ry/N <e¢). (21)

W(N),/|2n| is exponentially small in N because d(.J;) > 0 by Proposition 4.

Since P(Ry /N < ¢) is not exponentially small in N, for N large enough,
1InP(Ry/N < )

<1l-- 22

= 2  Nln(2n) (22)

Consequently for N large enough we obtain the desired result with &' =

1/21n (2n). O
References

[1] Y. Hamana and H. Kesten, A large deviation result for the range of
random walk and for the Wiener sausage, Probab Theory Relat Fields,



