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Consider simple random walks on Z

n

(SRW) and de�ne the 
onta
t matrix

C of a SRW ! by

C

ij

(!) =

�

1 for j!(i)� !(j)j = 0; i 6= j

0 otherwise

(1)

Let C be the set of 
onta
t matri
es of SRW of length N . Then the

number of 
onta
t matri
es are given by

W (N) = jCj =

X

!2


1= deg C(!) = j
jE (deg C)

�1

; (2)

where E is the expe
tation value with respe
t to the relevant uniform distri-

bution.

We de�ne the growth fa
tor of the number of 
onta
t matri
es by




N

=

ln jCj

ln j
j

: (3)

In Information Loss in Coarse Graining of Polymer Con�gurations via Con-

ta
t Matri
es we proved that 


N

! 1 as N !1. An upper bound for large

but �nite size system is given in the following proposition.
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Proposition 1. For all �xed " > 0, there exists a 
onstant �

0

> 0 su
h that

for N large enough,




N

� 1� �

0

j lnP(R

N

=N � ")j

N

: (4)

Let I

N

= N+1�R

N

be the number of interse
tions. Consider an interval

J = [k

0

; k

1

℄ and the subset of random walk with interse
tion ratio I

N

=N 2 J :

�

N

(J) = f! 2 


N

s.t. I

N

(!)=N 2 Jg: (5)

De�nition 2. The mean degenera
y on the subset �

N

(J) is de�ned by

hdeg Ci

J

=

jf! s.t. I

N

(!)=N 2 Jgj

jfC(!) s.t. I

N

(!)=N 2 Jgj

�

j�

N

(J)j

W (N)

J

; (6)

whereW (N)

J

is the number of 
onta
t matri
es of random walks with I

N

=N 2

J .

De�nition 3. Let J = [k

0

; k

1

℄. We de�ne

d(J) = lim inf

N!1

1

N

ln hdeg Ci

J

: (7)

The main result of this se
tion is that, for k

0

< �

0

� lim

N!1

E (I

N

)=N , and

k

0

< k

1

< 1, the mean degenera
y in
reases exponentially in N .

Proposition 4. For SRW on Z

n

, n � 2,

d([k

0

; k

1

℄) > 0 for all k

0

< �

0

and k

0

< k

1

< 1: (8)

In order to prove Proposition 4 we need the following proposition. First

let us introdu
e some notations. We divide Z

n

into disjoint n-
ubes of edge

length 4. For a ! 2 


N

, F (!) is de�ned to be the number of free-4-loops

(loops of length 4 whi
h are not interse
ted by the remaining of !, see 
on-

�guration P in Figure 1 in the proof of Proposition 5).

Proposition 5. For SRW on Z

n

and J = [k

0

; k

1

℄ with k

0

< �

0

and k

1

2

(k

0

; 1), there exists an �

J

> 0 su
h that

�

J

= lim inf

N!1

�

1

N

lnPf! 2 �

N

(J) s.t. F (!) � �

J

Ng > 0: (9)
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Assuming Proposition 5 we prove Proposition 4.

Proof of Proposition 4. Let us 
onsider k

0

< �

0

and k

1

2 (k

0

; 1).

W (N)

J

j�

N

(J)j

� Pf! 2 �

N

(J) s.t. F (!) � �

J

Ng + (10)

+ 2

��

J

N

Pf! 2 �

N

(J) s.t. F (!) > �

J

Ng � 2 exp(�minf�

J

; �

J

ln 2gN)

sin
e the 
onta
t matrix of a random walk 
ontainsM free-4-loops is at least

2

M

times degenerate. But d(J) = lim inf

N!1

�

1

N

ln(W (N)

J

=j�

N

(J)j); then

by Proposition 5, d(J) � minf�

J

; �

J

ln 2g > 0.

Proof of Proposition 5. It is known that P(!(n) 6= 0; 8n � 1) ' ~� =

lim

N!1

R

N

=N with ~� 2 (0; 1) for n � 3. Hamana and Kesten in [1℄ proved,

for SRW of Z

n

, that  (x) = lim

N!1

� lnP(R

N

� Nx)=N exists for all x.

0 <  (x) < 1 for ~� < x � 1 and  (x) is in
reasing and 
onvex on [~�; 1℄.

For 0 � x � ~�,  (x) = 0. Sin
e we work with interse
tion instead of the

range of the support, we use the following notations:  

0

(x) =  (1� x) and

�

0

= 1� ~�.

We 
onsider k

0

, k

1

�xed with k

0

< �

0

, k

1

2 (k

0

; 1) and let J = [k

0

; k

1

℄. In

what follows we 
onsider only the 
ubes visited by the random walk. Sin
e

I

N

=N 2 J , R

N

=N � 1� k

1

> 0 and ea
h 
ube 
ontains 4

n

points, therefore

there are at least aN =

1�k

1

4

n

N visited 
ubes for ea
h ! 2 �

N

(J). It is easy

to see that at least

a

2

N of these 
ubes are o

upied at most by b =

2

a

< 1

steps.

Consider the set �

�N

N

(J) = f! 2 �

N

(J) s.t. F (!) � �Ng, � � 1. We

do two su

essive operations one these random walks.

Operation 1: Let ! 2 �

�N

N

(J), then 0 <

F (!)

N

= � � �. If � = 0

we do not have to do this operation. At ea
h of these �N o

urren
es we

eliminate the free-4-loop repla
ing P with L (see Figure 1). We therefore

obtain a random walk e! of length N with F (e!) = 0. The interse
tion
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Figure 1: The transformation from the 
on�guration P to L.

or

Figure 2: The transformation whi
h adds a 4-loop.

number is 
hanged to I

N

(e!)=N 2 [k

0

; k

1

+�℄. e! is degenerate be
ause 
an be

obtained by di�erent random walks. Two random walks !

1

and !

2


hange

to the same one, i.e. e!

1

= e!

2

, if they di�ers only by the 
hange of some

P by L 
on�gurations. Let 
N = #(P in !

1

) + #(L in !

1

), obviously � �


 � 1. There are

�


N

�N

�

possible ! 
hanged to the same e!. By Stirling's

formula

�


N

�N

�

' e

A(
;�)N

with A(
; �) = 
 ln 
 � � ln� � (
 � �) ln (
 � �)

and 0 � � � �, � � 
 � 1. A(
; �) remains bounded by �� ln� +O(�) �

�

3

2

� ln� � �

3

2

� ln�, and for � � � � 1, therefore the resulting random

walk do not have free-4-loops and are at most e

�N

3

2

� ln�

degenerate. Thus

we have 
onstru
ted at least j�

�N

N

(J)je

N

3

2

� ln�

random walks.

Operation 2: Consider a random walk e! resulting from Operation 1.

Consider the �rst

a

2

N 
ubes with at most b =

2

a

steps of e! and 
hoose 2�N

out of these (disjointed) 
ubes. This 
an be made in

�

a

2

N

2�N

�

possibilities. The

�rst time that e! passes in one 
hosen 
ube, we add a 4-loop as in Figure 2.

This uses 8 steps at ea
h time, therefore N ! N(1 + 16�). e! passes in a

4




ube not more than b times and at ea
h time we repla
e the path inside the


hosen 
ubes by another one of length in
reased by 2 whi
h remains on the

boundary of the 
ube, leaving the enter and the exit points un
hanged. Then

N(1 + 16�) ! n 2 N(1 + 16�) + [2 � 2�N; 2b � 2�N ℄ and I

n

=n � k

1

+ 


2

�,




2

= 17 + 4b. The resulting random walk, 
alled b!, has 2�N free-4-loops in

the 
enter of the 
ubes and is also degenerate be
ause e!

1

and e!

2

are modi�ed

to the same random walk, i.e. b!

1

= b!

2

, if they di�er only in the 2�N 
ubes.

Sin
e ea
h 
ube 
ontains at most b steps of the random walk and for ea
h

step we have at most 2n possible pla
es to o

upy, then the new random

walk are at most C

�N

times degenerate, with C = (2n)

2b

.

We have 
onstru
ted at least

�

a

2

N

2�N

�

C

��N

j�

�N

N

(J)je

N

3

2

� ln�

random walks

of length n 2 [N(1 + 20�); N(1 + 


2

�)℄ and

I

n

n

� k

1

+ 


2

�. Therefore

�

a

2

N

2�N

�

C

��N

j�

�N

N

(J)je

N

3

2

� ln�

�

N(1+


2

�)

X

n=N

j�

n

(J

0

)j (11)

with J

0

= [k

0

; k

1

+ 


2

�℄. Up to non exponential 
orre
tions,

j�

N

(J)j ' j


N

j(e

� 

0

(k

1

)N

� e

� 

0

(k

0

)N

): (12)

But  

0

(k) is 
onvex and stri
tly in
reasing for k < �

0

and  

0

(k) = 0 for

k � �

0

, then

 

0

(k

1

+ 


2

�) �  

0

(k

1

)� 


2

�Z(k

1

) (13)

with Z(k

1

) =

 

0

(0)� 

0

(k

1

)

k

1

<1: Then e

� 

0

(k

1

)N

� e

� 

0

(k

0

)N

' e

� 

0

(k

1

)N

and

e

� 

0

(k

1

+�


2

)N(1+�


2

)

� e

� 

0

(k

0

)N(1+�


2

)

� e

� 

0

(k

1

)N

e

�NB

1

(14)

with B

1

= 


2

Z(k

1

) + 


2

2

�Z(k

1

): Consequently

RHS(11) ' (2n)

N(1+


2

�)

e

� 

0

(k

1

)N

e

�B

1

N

and (15)

LHS(11) =

�

a

2

N

2�N

�

(2n)

N

e

� 

0

(k

1

)N

e

N

3

2

� ln�

C

�N

� Pf! 2 �

N

(J) s.t. F (!) � �Ng: (16)

5



Taking lim inf

N!1

�

ln eqn(11)

N

, we obtain

P (�) = lim

N!1

�

1

N

ln

�

a

2

N

2�N

�

+ �

J

�

3

2

� ln�+ � lnC � �B � 0; (17)

with B = 


2

ln 2n� B

1

. Moreover

lim

N!1

�

1

N

ln

�

a

2

N

2�N

�

= �

a

2

ln

a

2

+

�

a

2

� 2�

�

ln

�

a

2

� 2�

�

+ 2� ln 2�: (18)

For � small enough, the hypothesis �

J

= 0 leads to a 
ontradi
tion be
ause

lim

�!0

P (�) = 0 and lim

�!0

d

d�

P (�) = �1. Therefore �

J

> 0.

Proof of proposition 1. It is known that that P(R

N

=N � ") does not go

to 0 exponentially fast inN (see e.g. [1℄). Let J

1

= [0; 1�") and J

2

= [1�"; 1℄.

Then

W (N) = W (N)

J

1

+W (N)

J

2

: (19)

The terms in the sum are evaluated by

W (N)

J

1

' j


N

jP(I

N

=N 2 J

1

)e

�Nd(J

1

)

(20)

and

W (N)

J

2

� j


N

jP(R

N

=N � "): (21)

W (N)

J

1

=j


N

j is exponentially small inN be
ause d(J

1

) > 0 by Proposition 4.

Sin
e P(R

N

=N � ") is not exponentially small in N , for N large enough,




N

� 1�

1

2

lnP(R

N

=N � ")

N ln (2n)

: (22)

Consequently for N large enough we obtain the desired result with �

0

=

1=2 ln (2n).
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