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Abstract

In these lecture notes, we present some connections between ran-
dom matrices, the asymmetric exclusion process and random tilings.
These three apparently unrelated objects have (sometimes) a similar
mathematical structure, an interlacing structure, and the correlation
functions are given in terms of a kernel. In the basic examples, the
kernel is expressed in terms of orthogonal polynomials.
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1 Structure of these lecture notes

In these notes we explain why there are limit processes and distribution
functions which arise in random matrix theory, interacting particle systems,
stochastic growth models, and random tilings models. This is due to a com-
mon mathematical structure describing special models in the different fields.
In Section 2 we introduce the mathematical structure in the context of the
Gaussian Unitary Ensemble and its eigenvalues’ minor process. In Section 3
we introduce the totally asymmetric simple exclusion process (TASEP), a
particle process sharing the same structure as the GUE minor process. Fi-
nally, in Section 4 we discuss the extension of TASEP to an interacting
particles system in 2 + 1 dimensions. This model has two projections which
are still Markov processes [9] (see also the lecture notes [30]):

1. TASEP,

2. the Charlier process (a discrete space analogue of Dyson’s Brownian
motion).

Furthermore, projections at fixed times of the model leads to random tilings
measures, one of which is the measure arising from the well known shuffling
algorithm for the Aztec diamond.

Some books in random matrix theory are [3, 34, 48]. In the handbook [2]
one finds a lot of applications of random matrices and related models. For in-
stance, the relation between random matrices and growth models is discussed
in [33], while determinantal point processes are explained in [8].

2 Gaussian Unitary Ensemble of random ma-

trices (GUE)

2.1 The Gaussian Ensembles of random matrices

The Gaussian ensembles of random matrices have been introduced by physi-
cists (Dyson, Wigner, ...) in the sixties to model statistical properties of the
resonance spectrum of heavy nuclei. The energy levels of a quantum system
are the eigenvalues of a Hamiltonian. They observed that statistical prop-
erties such as eigenvalues’ spacing statistics is the roughly the same for all
heavy nuclei, i.e., there is a universal behavior. Based on these observations,
they had the brilliant idea to study the statistical properties by considering
a random Hamiltonian. Further, since the heavy nuclei have a lot of bound
states, their Hamiltonian was replaced by a large matrix with random entries.
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Finally, to have a chance to describe the physical properties of heavy atoms,
the matrices need to satisfy the intrinsic symmetries of the systems:

1. a real symmetric matrix can describe a system with time reversal sym-
metry and rotation invariance or integer magnetic momentum,

2. a real quaternionic matrix (i.e., the basis are the Pauli matrices) can be
used for time reversal symmetry and half-integer magnetic momentum,

3. a complex hermitian matrix can describe a system which is not time
reversal invariant (e.g., with external magnetic field).

This lead to the definition of the Gaussian Ensembles of random matrices. In
this lecture notes we consider only the case of complex hermitian matrices.

Definition 1. The Gaussian Unitary Ensemble (GUE) of random ma-
trices is a probability measure P on the set of N × N complex hermitian
matrices given by

P(dH) =
1

ZN

exp

(
− β

4N
Tr(H2)

)
dH, with β = 2, (1)

where dH =
∏N

i=1 dHi,i

∏
1≤i<j≤N dRe(Hi,j)dIm(Hi,j) is the reference mea-

sure, and ZN is the normalization constant.

The meaning of β = 2 will be clear once we consider the induced measure
on the eigenvalues. The name GUE refers to the Gaussian form of the mea-
sure (1) and its invariance over the unitary transformations. From a physical
point of view, this invariance holds for systems which do not depend on the
choice of basis used to describe them. By imposing that the measure P is (a)
invariant under the change of basis (in the present case, invariant under the
action of the group of symmetry U(N)) and (b) the entries of the matrices
are independent random variables (of course, up to the required symmetry),
then the only solutions are measures of the form

exp
(
−aTr(H2) + bTr(H) + c

)
, a > 0, b, c ∈ R. (2)

The value of c is determined by the normalization requirement, while by an
appropriate shift of the zero of the energy (i.e., H → H − E for some given
E), we can set b = 0. The energy shift is irrelevant from the physical point
of view because by the first principle of thermodynamics, the energy of a
system is an extensive observable defined up to a constant. The value of a
is a scale parameter that can be freely chosen. In the literature there are
mainly three typical choices, see Table 1.
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a = 1/2N a = 1 a = N

Largest eigenvalue 2N +O(N1/3)
√
2N +O(N−1/6)

√
2 +O(N−2/3)

Eigenvalues density O(1) O(N1/2) O(N)

Table 1: Typical scaling for the Gaussian Unitary Ensemble

Another way to obtain (1) is to take the random variables, Hi,i ∼ N (0, N)
for i = 1, . . . , N , and Re(Hi,j) ∼ N (0, N/2), Im(Hi,j) ∼ N (0, N/2) for
1 ≤ i < j ≤ N to be independent random variables.

For the real symmetric (resp. quaternionic) class of matrices, one defines
the Gaussian Orthogonal Ensemble (GOE) (resp. Gaussian Symplectic En-
semble (GSE)) as in Definition 1 but with β = 1 (resp. β = 4) and, of
course, the reference measure is now the product Lebesgue measure over the
independent entries of the matrices.

2.2 Eigenvalues’ distribution

One quantity of interest for random matrices is the distribution of the eigen-
values. The invariance under the choice of basis for the Gaussian ensembles
of random matrices implies that the distribution of the eigenvalues can be
explicitly computed with the following result. Denote by PGUE(λ) the prob-
ability density of eigenvalues at λ ∈ R

N .

Proposition 2. Let λ1, λ2, . . . , λN ∈ R denote the N eigenvalues of a random
matrix H with law (1). Then, the joint density of the eigenvalues is given by

PGUE(λ) =
1

ZN
|∆N (λ)|β

N∏

i=1

exp

(
− β

4N
λ2
i

)
, with β = 2, (3)

∆N (λ) :=
∏

1≤i<j≤N(λj − λi) is the Vandermonde determinant, and ZN is a
normalization constant.

The Vandermonde determinant, ∆N , is called a determinant because of
the identity

∆N(λ) = det
[
λj−1
i

]
1≤i,j≤N

. (4)

Notice that PGUE(# e.v. ∈ [x, x + dx]) ∼ (dx)2, so that the probability of
having eigenvalues with multiplicity greather of equal to two is zero. In this
case, the point process of the eigenvalues,

∑N
n=1 δλn , is called simple.

For GOE (resp. GSE) the joint distributions of eigenvalues have the
form (3) but with β = 1 (resp. β = 4) instead.
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2.3 Orthogonal polynomials

The correlation function for GUE eigenvalues can be described using Hermite
orthogonal polynomials. Therefore, we briefly discuss orthogonal polynomi-
als on R. Formulas can easily be adapted for polynomials on Z by replacing
the Lebesgue measure by the counting measure and integrals by sums.

Definition 3. Given a weight ω : R 7→ R+, the orthogonal polynomials

{qk(x), k ≥ 0} are defined by the following two conditions:

1. qk(x) is a polynomial of degree k with qk(x) = ukx
k + . . ., uk > 0,

2. the qk(x) satisfy the orthonormality condition,

〈qk, ql〉ω :=

∫

R

ω(x)qk(x)ql(x)dx = δk,l. (5)

Remark 4. There are other normalizations which are often used, such
as in the Askey Scheme of hypergeometric orthogonal polynomials [47].
Sometimes, the polynomials are taken to be monic, i.e., uk = 1 and
the orthonormality condition is replaced by an orthogonality condition∫
R
ω(x)q̃k(x)q̃l(x)dx = ckδk,l. Of course q̃k(x) = qk(x)/uk and ck = 1/u2

k.
Sometimes, the polynomials are neither orthonormal (like in Definition 3)
nor monic, like the standard Hermite polynomials that we will encounter,
and are given by derivatives of a generating function.

A useful formula for sums of orthogonal polynomials is the Christoffel-
Darboux formula:

N−1∑

k=0

qk(x)qk(y) =





uN−1

uN

qN(x)qN−1(y)− qN−1(x)qN(y)

x− y
, for x 6= y,

uN−1

uN

(q′N(x)qN−1(x)− q′N−1(x)qN (x)), for x = y.

(6)
This formula is proven by employing the following three term relation

qn(x) = (Anx+Bn)qn−1(x)− Cnqn−2(x), (7)

with An > 0, Bn, Cn > 0 are some constants. See Appendix B for details
of the derivation. For the polynomials given in Definition 3, it holds that
An = un/un−1 and Cn = An/An−1 = unun−2/u

2
n−1.
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2.4 Correlation functions of GUE

Now we restrict to the GUE ensemble and discuss the derivation of the
correlation functions for the GUE eigenvalues’ point process.

Let the reference measure be Lebesgue. Then, the n-point correlation
function, ρ

(n)
GUE(x1, . . . , xn) is the probability density of finding an eigenvalue

at each of the xk, k = 1, . . . , n. PGUE defined in (3) is symmetric with respect
the permutation of the variables, which directly implies the following result.

Lemma 5. The n-point correlation function for GUE eigenvalues is given
by

ρ
(n)
GUE(x1, . . . , xn) =

N !

(N − n)!

∫

RN−n

PGUE(x1, . . . , xN )dxn+1 . . .dxN (8)

for n = 1, . . . , N and ρ
(n)
GUE(x1, . . . , xn) = 0 for n > N .

It is important to notice that we do not know which eigenvalue is at
which position. In particular ρ

(1)
GUE(x) is the eigenvalues’ density at x and∫

R
ρ
(1)
GUE(x)dx = N (which is not 1, so ρ

(1)
GUE(x) is not the density of a distri-

bution function). More generally,

∫

Rn

ρ
(n)
GUE(x1, . . . , xn)dx1 . . .dxn =

N !

(N − n)!
. (9)

Our next goal is to do the integration in (8). For any family of polyno-
mials {qk, k = 0, . . . , N − 1} where qk has degree k, by multi-linearity of the
determinant, we have

∆N (λ) = det[λj−1
i ]1≤i,j≤N = const× det[qj−1(λi)]1≤i,j≤N . (10)

Therefore, setting ω(x) := exp(−x2/2N), we have

PGUE(λ1, . . . , λN)

= const× det[qk−1(λi)]1≤i,k≤N det[qk−1(λj)]1≤k,j≤N

N∏

i=1

ω(λi)

= const× det

[
N∑

k=1

qk−1(λi)qk−1(λj)

]

1≤i,j≤N

N∏

i=1

ω(λi).

(11)

Notice that until this point, the family of polynomials q do not have to be
orthogonal. However, if we choose the polynomials orthogonal with respect
to the weight ω, then the integrations in (8) become particularly simple.
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Proposition 6. Let qk be orthogonal polynomials with respect to the weight
ω(x) = exp(−x2/2N). Then,

ρ
(n)
GUE(x1, . . . , xn) = det

[
KGUE

N (xi, xj)
]
1≤i,j≤n

, (12)

where

KGUE
N (x, y) =

√
ω(x)

√
ω(y)

N−1∑

k=0

qk(x)qk(y). (13)

The proof of Proposition 6 is in Appendix C. To obtain the result, we
need to integrate over xn+1, . . . , xN and see that the determinant keeps the
same entries but becomes smaller. The key identities used are

∫

R

KGUE
N (x, x)dx = N,

∫

R

KGUE
N (x, z)KGUE

N (z, y)dz = KGUE
N (x, y),

(14)

which hold precisely because the qk’s in (13) are the orthogonal polynomials
with respect to ω(x).

Definition 7. A point process (i.e., a random point measure) is called de-

terminantal if its n-point correlation function has the form

ρ(n)(x1, . . . , xn) = det[K(xi, xj)]1≤i,j≤n (15)

for some (measurable) function K : R2 → R, called the kernel of the deter-
minantal point process.

One might ask when does a measure defines a determinantal point pro-
cess? A sufficient condition is the following (see Proposition 2.2 of [7], see
also [67] for the GUE case).

Theorem 8. Consider a probability measure on R
N of the form

1

ZN

det[Φi(xj)]1≤i,j≤N det[Ψi(xj)]1≤i,j≤N

N∏

i=1

ω(xi)dxi, (16)

with the normalization ZN 6= 0. Then (16) defines a determinantal point
process with kernel

KN(x, y) =

N∑

i,j=1

Ψi(x)[A
−1]i,jΦj(y), (17)

where A = [Ai,j]1≤i,j≤N ,

Ai,j = 〈Φi,Ψj〉ω =

∫

R

ω(z)Φi(z)Ψj(z)dz. (18)
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2.5 GUE kernel and Hermite polynomials

The GUE kernel KGUE
N can be expressed in terms of the standard Hermite

polynomials, {Hn, n ≥ 0}, defined by

Hk(y) = (−1)key
2 dk

dyk
e−y2 . (19)

They satisfy ∫

R

e−y2Hk(y)Hl(y)dy =
√
π2kk!δk,l, (20)

with Hk(y) = 2kyk + . . .. Further we have

d

dy

(
e−y2Hn(y)

)
= −e−y2Hn+1(y) (21)

and ∫ x

−∞
e−y2Hn+1(y)dy = −e−x2

Hn(x). (22)

By the change of variable y = x/
√
2N and a simple computation, one

shows that

qk(x) =
1

4
√
2πN

1√
2kk!

Hk

(
x√
2N

)
(23)

are orthogonal polynomials with respect to ω(x) = exp(−x2/2N), and that
uk = (2πN)−1/4k!−1/2N−k/2. Then, Christoffel-Darboux formula (6) gives

KGUE
N (x, y) =





qN (x)qN−1(y)− qN−1(x)qN (y)

x− y
Ne−(x2+y2)/4N , for x 6= y,

(q′N (x)qN−1(x)− q′N−1(x)qN (x))Ne−(x2+y2)/4N , for x = y.
(24)

With the normalization in (1) the eigenvalues’ density remains bounded
and the largest eigenvalue is close to the value 2N . Indeed, the eigenvalues’
density at position µN is given by

ρ(1)(µN) = KGUE
N (µN, µN)

N→∞−→






1

π

√
1− (µ/2)2, for µ ∈ [−2, 2],

0, otherwise.
(25)

The asymptotic density in the r.h.s. of (25) is called Wigner’s semicircle
law.
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2.6 Distribution of the largest eigenvalue: gap proba-
bility

Next we want to see how to compute the distribution of the largest eigenvalue,
λmax. One uses the following simple relation,

P(λmax ≤ s) = P(none of the eigenvalue is in (s,∞)), (26)

which is a special case of gap probability, i.e., the probability that there
are no eigenvalues in a Borel set B. The gap probabilities are expressed in
terms of n-point correlation functions as follows:

P(none of the eigenvalue is in B) = E

(∏

i

(1− 1B(λi))

)

=
∑

n≥0

(−1)nE

( ∑

i1<...<in

n∏

k=1

1B(λik)

)
sym
=

∑

n≥0

(−1)n

n!
E

( ∑

i1,...,in
all different

n∏

k=1

1B(λik)

)

=
∑

n≥0

(−1)n

n!

∫

Bn

ρ(n)(x1, . . . , xn) dx1 . . .dxn,

(27)
where 1B(x) = 1 if x ∈ B and 1B(x) = 0 if x 6∈ B. The last step holds for
simple point processes, which are point processes for which the probability
of double occurrence of points (here eigenvalues) is zero.

For the GUE we have

P(λmax ≤ s) =

∞∑

n=0

(−1)n

n!

∫

(s,∞)n
det[KGUE

N (xi, xj)]1≤i,j≤ndx1 . . .dxn

≡ det(1−KGUE
N )L2((s,∞),dx).

(28)

The series expansion in (28) is called the Fredholm series expansion of the
Fredholm determinant1 det(1 −KGUE

N )L2((s,∞),dx). In our case the sum over
n is actually finite because the kernel has finite rank. Indeed, for n > N the
correlation functions are equal to zero, since the kernel KGUE

N has rank N .
Here we kept the formulation of the general case.

1If M is a n× n matrix with eigenvalues µ1, . . . , µn, then det(1−M) =
∏n

j=1
(1− µj).

A Fredholm determinant is a generalisation of this for integral operators K with kernel K.
See e.g. [58, 65] for details.
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Figure 1: Interlacing structure of the GUE minors’ eigenvalues.

2.7 Correlation functions of GUE minors: interlacing

structure

In this section we explain how the determinantal structure extends to eigen-
values of minors. In this setting the measures lives on interlaced eigenvalues
configurations known as Gelfand-Tsetlin patterns, see Figure 1. This setting
is different from the one of the Eynard-Mehta formula [25, 50] for Dyson’s
Brownian motion, where the configurations lives of copies of a fixed number
of particles. For the latter, see [40] for a generic statement, which is the
analogue of Theorem 10 below. The two situations fits in the general alge-
braic structure of the conditional L-ensembles introduced by Borodin and
Rains in [21].

Consider a N ×N GUE random matrix H and denote by λN
1 , . . . , λ

N
N its

eigenvalues. Denote by Hm the m×m minor of the matrix H where only the
first m rows and columns are kept. Let λm

1 , . . . , λ
m
m be the eigenvalues of Hm.

In [35, 44], the correlation functions of {λm
k , 1 ≤ k ≤ m ≤ N} are computed

and are also determinantal on {1, . . . , N} × R.
Order the eigenvalues for each minor so that λm

1 ≤ λm
2 ≤ . . . ≤ λm

m. Then,
the GUE minor measure can be written as, see e.g. [35],

const×
(N−1∏

m=1

1(λm ≺ λm+1)

)
det[ΨN

N−i(λ
N
j )]1≤i,j≤N , (29)

where

ΨN
N−k(x) =

(−1)N−k

(2N)(N−k)/2
e−x2/2NHN−k(x/

√
2N), (30)

and λm ≺ λm+1 means that the eigenvalues’ configuration satisfies the in-
terlacing condition

λm+1
1 < λm

1 ≤ λm+1
2 < λm

2 ≤ . . . < λm
m ≤ λm+1

m+1, (31)
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see Figure 1 for an illustration. Strictly speaking, one should not have strict
inequality, but this is irrelevant since the events with λn

k = λn+1
k have prob-

ability zero.
One can verify that

∫

Rn(n−1)/2

∏

1≤k≤m≤n−1

dλm
k

n−1∏

m=1

1(λm ≺ λm+1) =
∆n(λ

n)
∏n−1

m=1 m!
. (32)

This means that summing over the λn
k , 1 ≤ k ≤ n ≤ N − 1 we recover a

measure as in (16), with Ψk replaced by ΨN
k and Φk a polynomial of degree k.

In the same spirit as in Eynard-Mehta formula, it turns out to be conve-
nient to write the indicator function over interlacing configurations as a deter-
minant. Here, however, the sets {λm

j , 1 ≤ j ≤ m} and {λm+1
j , 1 ≤ j ≤ m+1}

have different sizes. To keep notations compact, we introduce the symbol
λm
m+1 = virt. We call them virtual variables, since they are not eigenvalues

of a matrix. Defining φ(x, y) = 1(x > y), φ(virt, y) = 1, then

det[φ(λm
i , λ

m+1
j )]1≤i,j≤m+1 =

{
1, if (31) is satisfied,
0, otherwise.

(33)

Therefore the measure on the GUE eigenvalues’ minor is given by

const×
(N−1∏

m=1

det[φ(λm
i , λ

m+1
j )]1≤i,j≤m+1

)
det[ΨN

N−i(λ
N
j )]1≤i,j≤N . (34)

Until now the eigenvalues are still ordered for each minor. We can relax
this constraint whenever we want (for instance to apply Theorem 10 below).
Indeed, the measure (34) is symmetric under the permutation of the eigen-
values of a given minor. Thus relaxing the constraint it results only in a
change of normalisation constant.

A measure of the form (34) has determinantal correlations [13]. The
difference with the case of the eigenvalues of a the N ×N matrix is that now
the correlation functions are determinantal on {1, . . . , N} × R instead of R.
This means the following: the probability density of finding an eigenvalue of
Hni

at position xi, for i = 1, . . . , n, is given by

ρ(n)((ni, xi), 1 ≤ i ≤ n) = det
[
KGUE

N (ni, xi;nj, xj)
]
1≤i,j≤n

. (35)

To explain the formula for the extended kernel KGUE
N we need to introduce

some definitions. Let us set

Ψn
n−k(x) := (φ ∗Ψn+1

n+1−k)(x). (36)
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Then, from (22) we have

Ψn
n−k(x) =

(−1)n−k

(2N)(n−k)/2
e−x2/2NHn−k(x/

√
2N) (37)

for 1 ≤ k ≤ n. Next we need to find {Φn
n−k(x), k = 1, . . . , n} orthogonal, with

respect to the weight ω(x) = 1, to the functions {Ψn
n−j(x), j = 1, . . . , n}, and

such that

span{Φn
0 (x), . . . ,Φ

n
n−1(x)} = span{1, x, . . . , xn−1}. (38)

We find

Φn
n−j(x) =

(−1)n−j

√
2π(n− j)!

(
N

2

)(n−j)/2

Hn−j(x/
√
2N). (39)

Finally, let us define by φ∗(n2−n1) the convolution of φ with itself n2 − n1

times, namely, for n2 > n1,

(φ∗(n2−n1))(x1, x2) =
(x2 − x1)

n2−n1−1

(n2 − n1 − 1)!
1[x2−x1≥0]. (40)

Applying Theorem 10 to this particular case we obtain the following result.

Proposition 9. With the above notations, the correlation functions of the
GUE minors are determinantal with kernel given by

KGUE
N (n1, x1;n2, x2) = −(φ∗(n2−n1))(x1, x2)1[n1<n2]+

n2∑

k=1

Ψn1
n1−k(x1)Φ

n2
n2−k(x2).

(41)

This result is a particular case of a more general statement. Consider a
measure on {xn

i , 1 ≤ i ≤ n ≤ N} of the form

1

ZN

(N−1∏

n=1

det[φn(x
n
i , x

n+1
j )]1≤i,j≤n+1

)
det[ΨN

N−i(x
N
j )]1≤i,j≤N , (42)

where xn
n+1 are some virtual variables and ZN is a normalization constant.

If ZN 6= 0, then the correlation functions are determinantal. Define

φ(n1,n2)(x, y) =

{
(φn1 ∗ · · · ∗ φn2−1)(x, y), n1 < n2,
0, n1 ≥ n2,

(43)
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where (a ∗ b)(x, y) =
∫
R
a(x, z)b(z, y)dz, and, for 1 ≤ n < N ,

Ψn
n−j(x) := (φ(n,N) ∗ΨN

N−j)(y), j = 1, 2, . . . , N. (44)

Set φ0(x
0
1, x) = 1. Then the functions

{(φ0 ∗ φ(1,n))(x0
1, x), . . . , (φn−2 ∗ φ(n−1,n))(xn−2

n−1, x), φn−1(x
n−1
n , x)} (45)

are linearly independent and generate the n-dimensional space Vn. Further
define a set of functions {Φn

j (x), j = 0, . . . , n−1} spanning Vn defined by the
orthogonality relations

∫

R

Φn
i (x)Ψ

n
j (x)dx = δi,j (46)

for 0 ≤ i, j ≤ n− 1.

Theorem 10. Assume that we have a measure on {xn
i , 1 ≤ i ≤ n ≤ N}

given by (42). If ZN 6= 0, then the measure has determinantal correlations.
Further, under

Assumption (A): φn(x
n
n+1, x) = cnΦ

(n+1)
0 (x), cn 6= 0, ∀n = 1, . . . , N − 1,

(47)
the kernel has the simple form

K(n1, x1;n2, x2) = −φ(n1,n2)(x1, x2) +

n2∑

k=1

Ψn1

n1−k(x1)Φ
n2

n2−k(x2). (48)

Remark 11. Without Assumption (A), the correlations functions are still
determinantal but the formula is modified as follows. Let M be the N × N
dimensional matrix defined by [M ]i,j = (φi−1 ∗ φ(i,N) ∗ΨN

N−j)(x
i−1
i ). Then

K(n1, x1;n2, x2) (49)

= −φ(n1,n2)(x1, x2) +
N∑

k=1

Ψn1
n1−k(x1)

n2∑

l=1

[M−1]k,l(φl−1 ∗ φ(l,n2))(xl−1
l , x2).

Theorem 10 is proven using the framework of [21].

In the case of the measure (34), the n-dimensional space Vn is spanned by
{1, x, . . . , xn−1}. This is a consequence of (32). Thus the Φn

k are polynomials
of degree k, compare with (39).

In the next section we consider the interacting particle system where
Theorem 10 was first discovered.
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3 Totally Asymmetric Simple Exclusion Pro-

cess (TASEP)

3.1 Continuous time TASEP: interlacing structure

The totally asymmetric simple exclusion process (TASEP) is one of the sim-
plest interacting stochastic particle systems. It consists of particles on the
lattice of integers, Z, with at most one particle at each site (exclusion prin-
ciple). The dynamics in continuous time is as follows. Particles jump on
the neighboring site to the right with rate 1 provided that the site is empty.
This means that jumps are independent of each other and take place after
an exponential waiting time with mean 1, which is counted from the time
instant when the neighboring site to the right is empty.

Here we consider all particles with equal rate 1. However, the frame-
work which we explain below, can be generalized to particle-dependent rates
and particle jumping in both directions as follows: a jump to the right is
suppressed if the site is already occupied, while a jump to the left is never
suppressed; in the latter, particles occupying the site are forced to move to
the left simultaneously with the jumping particle. This generalization, called
PushASEP, together with a partial extension to space-time correlations is
the content of our paper [10]. We remark that the resulting model is not the
well-studied partially asymmetric simple exclusion process, where also the
left jumps are blocked if their left site is occupied.

On the macroscopic level the particle density, u(x, t), evolves deterministi-
cally according to the Burgers equation ∂tu+∂x(u(1−u)) = 0 [59]. Therefore
a natural question is to focus on fluctuation properties, which exhibit rather
unexpected features. The asymptotic results can be found in the literature,
see Appendix A. Here we focus on a method which can be used to analyze
the joint distributions of particles’ positions. This method is based on a in-
terlacing structure first discovered by Sasamoto in [61], later extended and
generalized in a series of papers, starting with [13]. We explain the key steps
following the notations of [13], where the details of the proofs can be found.

Consider the TASEP with N particles starting at time t = 0 at positions
yN < . . . < y2 < y1. The first step is to obtain the probability that at time t
these particles are at positions xN < . . . < x2 < x1, which we denote by

G(x1, . . . , xN ; t) = P((xN , . . . , x1; t)|(yN , . . . , y1; 0)). (50)

This function has firstly been determined using Bethe-Ansatz method [63].
A posteriori, the result can be checked directly by writing the evolution
equation for G (also known as master equation).
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Lemma 12. The transition probability is given by

G(x1, . . . , xN ; t) = det(Fi−j(xN+1−i − yN+1−j, t))1≤i,j≤N (51)

with

Fn(x, t) =
(−1)n

2πi

∮

Γ0,1

dw

w

(1− w)−n

wx−n
et(w−1), (52)

where Γ0,1 is any simple loop oriented anticlockwise which includes w = 0
and w = 1.

The key property of Sasamoto’s decomposition is the following relation

Fn+1(x, t) =
∑

y≥x

Fn(y, t). (53)

Denote xk
1 := xk to be the position of TASEP particles. Using the multi-

linearity of the determinant and (53) one obtains

G(x1, . . . , xN ; t) =
∑

D′

det(F−j+1(x
N
i − yN−j+1, t))1≤i,j≤N , (54)

where
D′ = {xn

i , 2 ≤ i ≤ n ≤ N |xn
i ≥ xn−1

i−1 }. (55)

Then, using the antisymmetry of the determinant and Lemma 13 below we
can rewrite (54) as

G(x1, . . . , xN ; t) =
∑

D
det(F−j+1(x

N
i − yN−j+1, t))1≤i,j≤N , (56)

where
D = {xn

i , 2 ≤ i ≤ n ≤ N |xn
i > xn+1

i , xn
i ≥ xn−1

i−1 }. (57)

Lemma 13. Let f be an antisymmetric function of {xN
1 , . . . , x

N
N}. Then,

whenever f has enough decay to make the sums finite,

∑

D
f(xN

1 , . . . , x
N
N) =

∑

D′

f(xN
1 , . . . , x

N
N), (58)

with the positions x1
1 > x2

1 > . . . > xN
1 being fixed.

Now, notice that, for n = −k < 0, (52) has only a pole at w = 0, which
implies that

Fn+1(x, t) = −
∑

y<x

Fn(x, t). (59)
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Figure 2: Graphical representation of the domain of integration D for N = 4.
One has to “integrate” out the variables xj

i , i ≥ 2 (i.e., the black dots). The
positions of xk

1, k = 1, . . . , N are given (i.e., the white dots).

Define

ΨN
k (x) :=

1

2πi

∮

Γ0

dw

w

(1− w)k

wx−yN−k−k
et(w−1),

φ(x, y) := 1(x > y), φ(virt, y) = 1.

(60)

In particular, for k = 1, . . . , N , ΨN
k (x) = (−1)kF−k(x− yN−k, t).

Consider particle configurations ordered level-by-level, i.e., with xn
1 ≤

xn
2 ≤ . . . ≤ xn

n for all n = 1, . . . , N . Then, the interlacing condition D, is
given by

xn+1
1 < xn

1 ≤ xn+1
2 < xn

2 ≤ . . . < xn
n ≤ xn+1

n+1, (61)

for n = 1, . . . , N − 1 (see Figure 2 for a graphical representation). This
interlacing structure can be written as

det[φ(xn
i , x

n+1
j )]1≤i,j≤n+1 =

{
1, if (61) is satisfied,
0, otherwise,

(62)

where xn
n+1 = virt. Therefore, we can replace the sum over D by a product

of determinants of increasing sizes. Namely,

G(x1, . . . , xN ; t) =
∑

xn
k∈Z

2≤k≤n≤N

Q({xn
k , 1 ≤ k ≤ n ≤ N}) (63)

where the measure Q is given by

Q({xn
k , 1 ≤ k ≤ n ≤ N}) =

(N−1∏

n=1

det(φ(xn
i , x

n+1
j ))1≤i,j≤n+1

)

× det(ΨN
N−j(x

N
i ))1≤i,j≤N .

(64)
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As for the GUE minor case, if we compute Ψn
n−k(x) := (φ ∗ Ψn+1

n+1−k)(x), we
get (60) but with N replaced by n. Notice that (64) is symmetric under
exchange of variables at the same level, so that we can relax the constraint
that the particle configurations are ordered level-by-level, by multiplying (64)
by a constant.

Remark 14. The measure (64) is not necessarily a probability measure, since
positivity is not ensured. However the algebraic structure is the same as the
one encountered in GUE minors measure, compare with (34). In particular,
the distribution of TASEP particles’ position can be expressed in the same
form as the gap probability, but in general for a signed determinantal point
process. The precise statement is given in Theorem 15 below.

Applying the discrete version of Theorem 10 (in which one just replaces
R by Z and integrals by sums), see Lemma 3.4 of [13], we get the following
result.

Theorem 15. Suppose that at time t = 0 there are N particles at positions
yN < . . . < y2 < y1. Let σ(1) < σ(2) < . . . < σ(m) be the indices of m out of
the N particles. The joint distribution of their positions xσ(k)(t) is given by

P

( m⋂

k=1

{
xσ(k)(t) ≥ sk

})
= det(1− χsKtχs)ℓ2({σ(1),...,σ(m)}×Z) (65)

where χs(σ(k), x) = 1(x < sk). Kt is the extended kernel with entries

Kt(n1, x1;n2, x2) = −φ(n1,n2)(x1, x2) +

n2∑

k=1

Ψn1

n1−k(x1)Φ
n2

n2−k(x2) (66)

where

φ(n1,n2)(x1, x2) =

(
x1 − x2 − 1

n2 − n1 − 1

)
, (67)

Ψn
i (x) =

1

2πi

∮

Γ0

dw

wi+1

(1− w)i

wx−yn−i
et(w−1), (68)

and the functions Φn
i (x), i = 0, . . . , n − 1, form a family of polynomials of

degree ≤ n− 1 satisfying
∑

x∈Z
Ψn

i (x)Φ
n
j (x) = δi,j . (69)

The contour Γ0 in the definition of Ψn
i is any simple loop, anticlockwise

oriented, which includes the pole at w = 0 but excludes the pole w = 1.

Note that the initial particle positions, y1, . . . , yN , are in the definition
of the Ψn

i ’s and consequently enters in the Φn
i ’s through the orthogonality

relation (69).
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3.2 Correlation functions for step initial conditions:
Charlier polynomials

Now we consider the particular case of step initial conditions, yk = −k for
k ≥ 1. In that case, the measure (64) is positive, i.e., it is a probability
measure. The correlation functions of subsets of {xn

k(t), 1 ≤ k ≤ n, n ≥ 1}
are determinantal with kernel KTASEP

t , which are computed by Theorem 15.
The correlation kernel KTASEP

t is given in terms of Charlier polynomials,
which we now introduce. The Charlier polynomial of degree n is denoted by
Cn(x, t) and defined as follows. Consider the weight ω on Z+ = {0, 1, . . .}

ω(x) = e−ttx/x!. (70)

Then, Cn(x, t) is defined via the orthogonality condition

∑

x≥0

ω(x)Cn(x, t)Cm(x, t) =
n!

tn
δn,m (71)

or, equivalently, Cn(x, t) = (−1/t)nxn+ · · · . They can be expressed in terms
of hypergeometric functions

Cn(x, t) = 2F0(−n,−x; ;−1/t) = Cx(n, t). (72)

From the generating function of the Charlier polynomials

∑

n≥0

Cn(x, t)

n!
(tw)n = ewt(1− w)x (73)

we obtain the integral representation

tn

n!
Cn(x, t) =

1

2πi

∮

Γ0

dw
ewt(1− w)x

wn+1
. (74)

Equations (72) and (74) give

Ψn
k(−n + x) =

e−ttx

x!
Ck(x, t) and Φn

j (−n + x) =
tj

j!
Cj(x, t). (75)

In particular, the kernel of the joint distributions of {xN
1 , . . . , x

N
N} is

KTASEP
t (N,−N + x;N,−N + y) =

N−1∑

k=0

ΨN
k (−N + x)ΦN

k (−N + y)

= ω(x)
N−1∑

k=0

qk(x)qk(y)

(76)
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where qk(x) = (−1)k tk/2√
k!
Ck(x, t) = (tkk!)−1/2xk + . . . are orthogonal polyno-

mials with respect to ω(x) in (70). Therefore, using the Christoffel-Darboux
formula (6) we get, for x 6= y,

KTASEP
t (N,−N + x;N,−N + y)

=
e−ttx

x!

tN

(N − 1)!

CN−1(x, t)CN (y, t)− CN(x, t)CN−1(y, t)

x− y
. (77)

Remark 16. The expression of the kernel in (76) is not symmetric in x
and y. Is this wrong? No! For a determinantal point process the ker-
nel is not uniquely defined, but only up to conjugation. For any function
f > 0, the kernel K̃(x, y) = f(x)K(x, y)f(y)−1 describes the same determi-
nantal point process of the kernel K(x, y). Indeed, the f ’s cancel out in the
determinants defining the correlation functions. In particular, by choosing
f(x) = 1/

√
ω(x), we get a symmetric version of (76).

Double integral representation of KTASEP
t

Another typical way of representing the kernel KTASEP
t is as double contour

integral. This representation is well adapted to large-t asymptotic analysis
(both in the bulk and the edge).

Let us start with (68) with yk = −k. We have

Ψn
k(x) =

1

2πi

∮

Γ0

dw
et(w−1)(1− w)k

wx+n+1
. (78)

Remark that Ψn
k(x) = 0 for x < −n, k ≥ 0. The orthogonal functions

Φn
k(x), k = 0, . . . , n − 1, have to be polynomials of degree k and to satisfy

the orthogonal relation
∑

x≥−nΨ
n
k(x)Φ

n
j (x) = δi,j. They are given by

Φn
j (x) =

−1

2πi

∮

Γ1

dz
e−t(z−1)zx+n

(1− z)j+1
. (79)

Indeed, for any choice of the paths Γ0,Γ1 such that |z| < |w|,
∑

x≥−n

Ψn
k(x)Φ

n
j (x) =

−1

(2πi)2

∮

Γ1

dz

∮

Γ0,z

dw
et(w−1)

et(z−1)

(1− w)k

(1− z)j+1

∑

x≥−n

zx+n

wx+n+1

=
−1

(2πi)2

∮

Γ1

dz

∮

Γ0,z

dw
et(w−1)

et(z−1)

(1− w)k

(1− z)j+1

1

w − z

=
(−1)k−j

2πi

∮

Γ1

dz(z − 1)k−j−1 = δj,k,

(80)
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since the only pole in the last w-integral is the simple pole at w = z.
After the orthogonalization, we can determine the kernel. Let us compute

the last term in (66). For k > n2, we have Φ
n2
n2−k(x) = 0. By choosing z close

enough to 1, we have |1 − z| < |1 − w|, and then extend the sum over k to
+∞, i.e.,

n2∑

k=1

Ψn1
n1−k(x1)Φ

n2
n2−k(x2) =

n2∑

k=1

−1

(2πi)2

∮

Γ0

dw

∮

Γ1

dz
etwzx2+n2

etzwx1+n1+1

(1− w)n1−k

(1− z)n2−k+1

=
−1

(2πi)2

∮

Γ0

dw

∮

Γ1

dz
etwzx2+n2

etzwx1+n1+1

n2∑

k=1

(1− w)n1−k

(1− z)n2−k+1

=
−1

(2πi)2

∮

Γ0

dw

∮

Γ1

dz
etwzx2+n2

etzwx1+n1+1

∞∑

k=1

(1− w)n1−k

(1− z)n2−k+1

=
−1

(2πi)2

∮

Γ0

dw

∮

Γ1

dz
etw(1− w)n1zx2+n2

etz(1− z)n2wx1+n1+1

1

z − w
.

(81)
The integral along Γ1 contains only the pole z = 1, while the integral over Γ0

only the pole w = 0 (i.e., w = z is not inside the integration paths). This is
the kernel for n1 ≥ n2. For n1 < n2, there is the extra term −φ(n1,n2)(x1, x2).
It is not difficult to check that

1

(2πi)2

∮

Γ0

dw

∮

Γw

dz
etw(1− w)n1zx2+n2

etz(1− z)n2wx1+n1+1

1

z − w

=
1

2πi

∮

Γ0

dw
(1− w)n1−n2

wx1+n1−(x2+n2)+1
=

(
x1 − x2 − 1

n2 − n1 − 1

)
.

(82)

Therefore, the double integral representation of KTASEP
t (for step initial con-

dition) is the following:

KTASEP
t (n1, x1;n2, x2)

=





−1

(2πi)2

∮

Γ0

dw

∮

Γ1

dz
etw(1− w)n1zx2+n2

etz(1− z)n2wx1+n1+1

1

z − w
, if n1 ≥ n2,

−1

(2πi)2

∮

Γ0

dw

∮

Γ1,w

dz
etw(1− w)n1zx2+n2

etz(1− z)n2wx1+n1+1

1

z − w
, if n1 < n2.

(83)

Remark 17. Notice that in the GUE case, the most natural objects are the
eigenvalues for the N ×N matrix, λN

1 , . . . , λ
N
N . They are directly associated

with a determinantal point process. The corresponding quantities in terms
of TASEP are the positions of the particles, x1

1, . . . , x
N
1 . The measure on
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these particle positions is not determinantal, but with the extension to the
larger picture, namely to {xn

k , 1 ≤ k ≤ n ≤ N}, we recover a determinantal
structure. This is used to determine the joint distributions of the particles,
since in terms of {xn

k , 1 ≤ k ≤ n ≤ N} we only need to compute a gap
probability.

3.3 Discrete time TASEP

There are several discrete time dynamics of TASEP from which the contin-
uous time limit can be obtained. The most common dynamics are:

• Parallel update: at time t ∈ Z one first selects the particles that can
jump (their right neighboring site is empty). Then, the configuration
of particles at time t + 1 is obtained by moving independently with
probability p ∈ (0, 1) the selected particles.

• Sequential update: one updates the particles (sequentially) from
right to left. The configuration at time t + 1 is obtained by moving
with probability p ∈ (0, 1) the particles whose right site is empty. This
procedure is from right to left, which implies that also a block of m
particles can move in one time-step with probability pm.

Other dynamical rules have also been introduced, see [64] for a review.

Sequential update

For the TASEP with sequential update, there is an analogue of Lemma 12,
with the only difference lying in the functions Fn (see [57] and Lemma 3.1
of [12]). The functions Fn satisfy again the recursion relation (53) and The-
orem 15 still holds with the only difference being in the Ψn

i (x)’s which are
now given by

Ψn
i (x) =

1

2πi

∮

Γ0

dw

wi+1

(1− p+ pw)t(1− w)i

wx−yn−i
. (84)

For step initial conditions, the kernel is then given by (83) with etw/etz re-
placed by (1− p+ pw)t/(1− p+ pz)t.

Parallel update

For the TASEP with parallel update, the same formalism used above can still
be applied. However, the interlacing condition and the transition functions
φn are different. The details can be found in Section 3 of [14] (in that paper
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we also consider the case of different times, which can be used for example
to study the tagged particle problem). The analogue of (64) is the following
(see Proposition 7 of [14]).

Lemma 18. The transition probability G(x; t) can be written as a sum over

D′′ = {xn
i , 2 ≤ i ≤ n ≤ N |xn

i > xn
i−1} (85)

as follows:

G(x1, . . . , xN ; t) =
∑

D′′

Q̃({xn
k , 1 ≤ k ≤ n ≤ N}), (86)

where

Q̃({xn
k , 1 ≤ k ≤ n ≤ N}) =

(N−1∏

n=1

det(φ♯(xn
i−1, x

n+1
j ))1≤i,j≤n+1

)

× det(F−j+1(x
N
i − yN−j+1, t+ 1− j))1≤i,j≤N .

(87)
where we set xn

0 = −∞ (we call them virtual variables). The function φ♯ is
defined by

φ♯(x, y) =





1, y ≥ x,
p, y = x− 1
0, y ≤ x− 2,

(88)

and F−n is given by

F−n(x, t) =
1

2πi

∮

Γ0,−1

dw
wn

(1 + w)x+n+1
(1 + pw)t. (89)

The product of determinants in (87) also implies a weighted interlacing
condition, different from the one of TASEP. More precisely,

xn+1
i ≤ xn

i − 1 ≤ xn+1
i+1 . (90)

The difference between the continuous-time TASEP is that it is possible that
xn+1
i+1 = xn

i − 1. The weight gets multiplied by p for each occurrence of
xn+1
i+1 = xn

i − 1. The continuous-time limit is obtained by replacing t by t/p
and letting p → 0.

Theorem 15 also holds in this case with the following functions:

φ̃(n1,n2)(x1, x2) =
1

2πi

∮

Γ0,−1

dw
1

(1 + w)x1−x2+1

(
w

(1 + w)(1 + pw)

)n1−n2

1[n2>n1],

Ψn
i (x) =

1

2πi

∮

Γ0,−1

dw
(1 + pw)t

(1 + w)x−yn−i+1

(
w

(1 + w)(1 + pw)

)i

,

(91)

23



and Φn
k are polynomials of degree k given by the orthogonality condition (69):∑

x∈ZΨ
n
i (x)Φ

n
j (x) = δi,j . In particular, for step initial conditions, yk = −k,

k ≥ 1, we obtain the following result.

Proposition 19. The correlation kernel for discrete-time TASEP with par-
allel update is given by

KTASEP
t (n1, x1;n2, x2) = −φ(n1,n2)(x1, x2) + K̃TASEP

t (n1, x1;n2, x2), (92)

with φ(n1,n2) given by

φ(n1,n2)(x1, x2) =
1[n2>n1]

2πi

∮

Γ−1

dw
(1 + pw)n2−n1wn1−n2

(1 + w)(x1+n1)−(x2+n2)+1
(93)

and

K̃TASEP
t (n1, x1;n2, x2)

=
1

(2πi)2

∮

Γ0

dz

∮

Γ−1

dz
(1 + pw)t−n1+1

(1 + pz)t−n2+1

wn1(1 + z)x2+n2

zn2(1 + w)x1+n1+1

1

w − z
. (94)

Remark 20. The discrete-time parallel update TASEP with step initial
condition is equivalent to the shuffling algorithm on the Aztec diamond
as shown in [51]. This particle dynamics also fits in the framework devel-
oped in [9]. See [27] for an animation, where the particles have coordinates
(zni := xn

i + n, n).

4 2 + 1 dynamics: connection to random

tilings and random matrices

In recent years there has been a lot of progress in understanding large time
fluctuations of driven interacting particle systems on the one-dimensional
lattice. Evolution of such systems is commonly interpreted as random growth
of a one-dimensional interface, and if one views the time as an extra variable,
the evolution produces a random surface (see e.g. Figure 4.5 in [53] for a nice
illustration). In a different direction, substantial progress have also been
achieved in studying the asymptotics of random surfaces arising from dimers
on planar bipartite graphs.

Although random surfaces of these two kinds were shown to share certain
asymptotic properties (also common to random matrix models), no direct
connection between them was known. We present a class of two-dimensional
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random growth models (that is, the main object is a randomly growing sur-
face, embedded in four-dimensional space-time).

In two different projections these models yield random surfaces of the two
kinds mentioned above (one reduces the spatial dimension by one, the second
projection is to fixed time).

We now explain the 2 + 1-dimensional dynamics. Consider the set of
variables {xn

k(t), 1 ≤ k ≤ n, n ≥ 1} and let us see what is their evolution
inherited from the TASEP dynamics.

4.1 2 + 1 dynamics for continuous time TASEP

Packed initial condition

Consider continuous time TASEP with step-initial condition, yk = −k for
k ≥ 1. As we will verify below, a further property of the measure (64) with
step initial conditions is that

xn
k(0) = −n+ k − 1, (95)

i.e., step initial condition for TASEP naturally induces a packed initial condi-
tion for the 2+1 dynamics which is illustrated in Figure 3 (top left picture).

Let us verify that (95) holds. The first N − 1 determinants in (64)
imply the interlacing condition (61). In particular, xN

1 (0) = −N and
xN
k (0) ≥ −N + k − 1 for k ≥ 2. At time t = 0 we have

F−k(x, 0) =
1

2πi

∮

Γ0

dw
(w − 1)k

wx+k+1
. (96)

By Cauchy’s residue theorem, we have F−k(x, 0) = 0 for x ≥ 1 (since the
integrand has no pole at ∞), F−k(x, 0) = 0 for x < −k (no pole at 0), and
F−k(0, 0) = 1. The last determinant in (64) is then the determinant of




F0(0, 0) F−1(−1, 0) · · · F−N+1(−N + 1, 0)
F0(x

N
2 (0) +N, 0) F−1(x

N
2 (0) +N − 1) · · · F−N+1(x

N
2 (0) + 1, 0)

...
...

. . .
...

F0(x
N
N(0) +N, 0) F−1(x

N
N (0) +N − 1, 0) · · · F−N+1(x

N
N (0) + 1, 0),


 .

(97)
Let us determine when the determinant of the matrix (97) is nonzero:

1. Because of xN
k (0) ≥ −N +k−1, the first column of (97) is [1, 0, . . . , 0]t.

2. Then, if xN
2 (0) > −N + 1, the second column is [∗, 0, . . . , 0]t and the

determinant of (97) is zero. Thus we have xN
2 (0) = −N + 1.
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Figure 3: (Top, left) Illustration of the initial conditions for the particles
system. (Bottom, left) A configuration obtained from the initial conditions.
(right) The corresponding lozenge tiling configurations. In the height func-
tion picture, the white circle has coordinates (x, n, h) = (−1/2, 0, 0). For a
Java animation of the model see [26].

3. Repeating the argument for the other columns, we obtain that the
determinant of (97) is not zero if and only if xN

k (0) = −N + k − 1 for
k = 3, . . . , N .

This initial condition is illustrated in Figure 3 (top, left).

Dynamics

Now we explain the dynamics on the variables {xn
k(t), 1 ≤ k ≤ n, n ≥ 1}

which is inherited by the dynamics on the TASEP particles {xn
1 (t), n ≥ 1}.

Each of the particles xm
k has an independent exponential clock of rate one,

and when the xm
k -clock rings the particle attempts to jump to the right by

one. If at that moment xm
k = xm−1

k − 1 then the jump is blocked. Otherwise,
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we find the largest c ≥ 1 such that xm
k = xm+1

k+1 = · · · = xm+c−1
k+c−1 , and all c

particles in this string jump to the right by one.
Informally speaking, the particles with smaller upper indices are heavier

than those with larger upper indices, so that the heavier particles block and
push the lighter ones in order for the interlacing conditions to be preserved.

We illustrate the dynamics using Figure 3, which shows a possible con-
figuration of particles obtained from our initial condition. In this state of
the system, if the x3

1-clock rings, then particle x3
1 does not move, because it

is blocked by particle x2
1. If the x2

2-clock rings then particle x2
2 moves to the

right by one unit, but in order to keep the interlacing property particles x3
3

and x4
4 also move to the right by one unit at the same time. This aspect of

the dynamics is called “pushing”.

4.2 Interface growth interpretation

Figure 3 (right) has a clear three-dimensional connotation. Given the random
configuration {xn

k(t)} at time moment t, define the random height function

h : (Z+ 1
2
)× Z>0 × R≥0 → Z≥0,

h(x, n, t) = #{k ∈ {1, . . . , n} | xn
k(t) > x}. (98)

In terms of the tiling on Figure 3, the height function is defined at the vertices
of rhombi, and it counts the number of particles to the right from a given
vertex. (This definition differs by a simple linear function of (x, n) from the
standard definition of the height function for lozenge tilings, see e.g. [45,46].)
The initial condition corresponds to starting with perfectly flat facets.

In terms of the stepped surface of Figure 3, the evolution consists of
removing all columns of (x, n, h)-dimensions (1, ∗, 1) that could be removed,
independently with exponential waiting times of mean one. For example, if
x2
2 jumps to its right, then three consecutive cubes (associated to x2

2, x
3
3, x

4
4)

are removed. Clearly, in this dynamics the directions x and n do not play
symmetric roles. Indeed, this model belongs to the 2 + 1 anisotropic KPZ
class of stochastic growth models, see [9, 11].

4.3 Random tilings interpretation

A further interpretation of the particle system is a random tiling model.
To see this, one surrounds each particle location by a rhombus of one type
(the light-gray in Figure 3) and draws unit-length horizontal edges through
locations where there are no particles. In this way we have a random tiling
with three types of tiles that we call white, light-gray, and dark-gray. Our
initial condition corresponds to a perfectly regular tiling.
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Figure 4: Illustration of the dynamics on tiles for a column of height m = 4.

Random tilings have the following dynamics. Consider all sub-
configurations of the random tiling which look like a visible column, i.e.,
for some m ≥ 1, there are m light-gray tiles on the left of m white tiles (and
then automatically closed by a dark-gray tile). The dynamics is an exchange
of light-gray and white tiles within the column. More precisely, for a column
of height m, for all k = 1, . . . , m, independently and with rate 1, there is
an exchange between the top k light-gray tiles with the top white tiles as
illustrated in Figure 4 for the case m = 4.

Remark 21. We can also derive a determinantal formula not only for the
correlation of light-gray tiles, but also for the three types of tiles. This is
explicitly stated in Theorem 5.2 of [9].

4.4 Diffusion scaling and relation with GUE minors

There is an interesting partial link with GUE minors. In the diffusion scaling
limit

ξnk :=
√
2N lim

t→∞

xn
k(t)− t√

2t
(99)

the measure on {ξnk , 1 ≤ k ≤ n ≤ N} is exactly given by (34).

Remark 22. It is important to stress, that this correspondence is a fixed-
time result. From this, a dynamical equivalence does not follow. Indeed, if
we let the GUE matrices evolve according to the so-called Dyson’s Brownian
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Figure 5: A random tiling of the Aztec diamond of size n = 10.

Motion, then the evolution of the minors is not the same as the (properly
rescaled) evolution from our 2 + 1 dynamics for TASEP [1]. Nevertheless,
projecting onto the (t, n) paths with increasing t and decreasing n one still
obtains the same measures [31].

4.5 Shuffling algorithm and discrete time TASEP

An Aztec diamond is a shape like the outer border of Figure 5. The shuffling
algorithm [24, 37] provides a way of generating a uniform tiling of an Aztec
diamond of size n.

We now discuss the connection between discrete time TASEP with paral-
lel update and step initial condition. We take the parameter p = 1/2 to get
uniform distribution of the random tiling model. It is helpful to do a linear
change of variable. Instead of xn

k we use

znk = xn
k + n, (100)

so that the interlacing condition becomes

zn+1
k ≤ znk ≤ zn+1

k+1 . (101)

The step initial condition for TASEP particles is zn1 (0) = 0, n ≥ 1. An
analysis similar to the one of Section 4.1 leads to znk (0) = k − 1, 1 ≤ k ≤ n.
Then, the dynamics on {znk , 1 ≤ k ≤ n, n ≥ 1} inherited by discrete time
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Figure 6: Two examples of configurations at time t = 2 obtained by the
particle dynamics and its associated Aztec diamonds (rotated by 45 degrees).

parallel update TASEP is the following. First of all, during the time-step
from n− 1 to n, all particles with upper-index greater or equal to n + 1 are
frozen. Then, from level n down to level 1, particles jump independently to
the neighboring site to the right with probability 1/2, provided the interlacing
condition (101) with the lower levels is satisfied. If the interlacing condition
would be violated for particles in upper levels, then these particles are also
pushed by one position to restore (101).

Finally, let us explain how to associate a tiling configuration to a particle
configuration. For that we actually need to know the particle configuration
at time t = n and its previous time. Up to time t = n only particles with
upper-index at most n could have possibly moved. These are also the only
particles which are taken into account to determine the random tiling. The
tiling follows these rules, see Figure 6 for an illustration:

1. light-gray tiles: placed on each particle which moved in the last time-
step,

2. middle-gray tiles: placed on each particle which did not move in the
last time-step,

3. dark-gray tiles and white tiles: in the remaining position, depending
on the tile orientation.

The proof of the equivalence of the dynamics can be found in [51], where
particle positions are slightly shifted with respect to Figure 6. In [27] you
can find a Java animation of the dynamics.
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A Further references

In this section we give further references, in particular, of papers based on
the approach described in these lecture notes.

• Interlacing structure and random matrices : In [44], the authors studied
the GUE minor process which also arises in the Aztec diamond at the
turning points. Turning points and GUE minor process also occur
for some class of Young diagrams [52]. The antisymmetric version of
the GUE minors is studied in [36]. In [35], the correlation functions for
several random matrix ensembles are obtained, using two methods: the
interlacing structure from [13] and the approach of [50]. When taking
the limit into the bulk of the GUE minors one obtains the bead process,
see [22]. Further works on interlacing structures are [23, 43, 49, 68].

• GUE minors and TASEP : Both the GUE minor process and its anti-
symmetric version occurs in the diffusion scaling limit of TASEP [15,
16].

• 2+1 dynamics : The Markov process on interlacing structure introduced
in [9] is not restricted to continuous time TASEP, but it is much more
general. For example, it holds for PushASEP dynamics [18] and can
be used for growth with a wall too [19]. In a discrete setting, a similar
approach leads to a shuffling algorithm for boxed plane partitions [17].
As already mentioned, the connection between shuffling algorithm and
interlacing particle dynamics is proved in [51] (the connection with
discrete time TASEP is however not mentioned).

• 2 + 1 anisotropic growth: In the large time limit in the 2 + 1 growth
model the Gaussian Free Field arises, see [9] or for a more physical
description of the result [11]. In particular, height fluctuations live on
a
√
ln t scale (in the bulk) and our model belongs to the anisotropic

KPZ class, like the model studied in [54].

• Interlacing and asymptotics of TASEP : Large time asymptotics of
TASEP particles’ positions with a few but important types of initial
condition have been worked out using the framework initiated with [13].
Periodic initial conditions are studied in [13] and for discrete time
TASEP (sequential update [12], parallel update [14]). The limit pro-
cess of the rescaled particles’ positions is the Airy1 process. For step
initial condition it was the Airy2 process [40]. The transition process
between these two has been discovered in [15], see also the review [29].

31



Finally, the above technique can be used also for non-uniform jump
rates where a shock can occur [16].

• Line ensembles method and corner growth models : TASEP can be also
interpreted as a growth model, if the occupation variables are taken to
be the discrete gradient of an interface. TASEP belongs to the so-called
Kardar-Parisi-Zhang (KPZ) universality class of growth models. It is
in this context that the first connections between random matrices and
stochastic growth models have been obtained [38]. The model studied is
analogue to step initial conditions for TASEP. This initial condition can
be studied using non-intersection line ensembles methods [39,40]. The
Airy2 process was discovered in [56] using this method, see also [42,62,
66] for reviews on this technique. The non-intersecting line description
is used also to prove the occurrence of the Airy2 process at the edge of
the frozen region in the Aztec diamond [41].

• Stationary TASEP and directed percolation: Directed percolation for
exponential/geometric random variables is closely related with TASEP.
In particular, the two-point function of stationary TASEP can be re-
lated with a directed percolation model [55]. The large time behavior
of the two-point function conjectured in [55] based on universality is
proved in [32]. Some other universality-based conjectures of [55] have
been verified in [6]. The large time limit process of particles’ positions
in stationary TASEP, the corresponding point-to-point directed perco-
lation (with sources), and also for a related queueing system, has been
unraveled in [5]. The different models share the same asymptotics due
to the slow-decorrelation phenomena [28].

• Directed percolation and random matrices : Directed percolation, the
Schur process and random matrices also have nice connections; from
sample covariance matrices [4], to small rank perturbation of Hermitian
random matrices [60], and to the generalization [20].
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B Christoffel-Darboux formula

Here we prove Christoffel-Darboux formula (6). First of all, we prove the
three term relation (7). From qn(x)/un = xn + · · · it follows that

qn(x)

un
− xqn−1(x)

un−1
(102)

are polynomials of degree n− 1. Thus,

qn(x)

un
=

xqn−1(x)

un−1
+

n−1∑

k=0

αkqk(x), αk =

〈
qn
un

− Xqn−1

un−1
, qk

〉

ω

, (103)

whereX is the multiplication operator by x, and 〈f, g〉ω =
∫
R
ω(x)f(x)g(x)dx

is the scalar product.
Let us show that αk = 0 for k = 0, . . . , n− 3. Using 〈Xf, g〉ω = 〈f,Xg〉ω

we get

αk =
1

un
〈qn, qk〉ω − 1

un−1
〈qn−1, Xqk〉ω = 0 (104)

for k + 1 < n − 1, since Xqk is a polynomial of degree k + 1 and can be
written as linear combination of q0, . . . , qk+1.

Consider next k = n− 2. We have

αn−2 = − 1

un−1

〈qn−1, Xqn−2〉ω = −un−2

u2
n−1

, (105)

because we can write

xqn−2(x) = un−2x
n−1 + a polynomial of degree n− 2

=
un−2

un−1

qn−1(x) + a polynomial of degree n− 2.
(106)

Therefore, setting Bn = αn−1un, An = un/un−1, and Cn = unun−2/u
2
n−1, we

obtain the three term relation (7). We rewrite it here for convenience,

qn(x) = (Anx+Bn)qn−1(x)− Cnqn−2(x). (107)

From (107) it follows

qn+1(x)qn(y)− qn(x)qn+1(y)

= An+1qn(x)qn(y)(x− y) + Cn+1 (qn(x)qn−1(y)− qn−1(x)qn(y)) . (108)

We now consider the case x 6= y. The case x = y is obtained by taking the
y → x limit. Dividing (108) by (x− y)An+1 we get, for k ≥ 1,

qk(x)qk(y) = Sk+1(x, y)− Sk(x, y), (109)
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where we defined

Sk(x, y) =
uk−1

uk

qk(x)qk−1(y)− qk−1(x)qk(y)

x− y
. (110)

Therefore (for x 6= y)

N−1∑

k=0

qk(x)qk(y) = SN(x, y)− S1(x, y) + q0(x)q0(y) = SN (x, y). (111)

The last step uses q0(x) = u0 and q1(x) = u1x + c (for some constant c),
from which it follows q0(x)q0(y) = S1(x, y). This ends the derivation of the
Christoffel-Darboux formula.

C Proof of Proposition 6

Here we present the details of the proof of Proposition 6 since it shows how
the choice of the orthogonal polynomial is convenient. The basic ingredients
of the proof of Theorem 8 are the same, with the only important difference
that the functions in the determinants in (16) are not yet biorthogonal.

First of all, let us verify the two relations (14). We have

∫

R

KGUE
N (x, x)dx =

N−1∑

k=0

〈qk, qk〉ω = N, (112)

and

∫

R

KGUE
N (x, z)KGUE

N (z, y)dz =

N−1∑

k,l=0

√
ω(x)ω(y)qk(x)ql(y)〈qk, ql〉ω

= KGUE
N (x, y).

(113)

By Lemma 5, Equation (11), and the definition of KGUE
N , we have

ρ
(n)
GUE(x1, . . . , xn)

= cN
N !

(N − n)!

∫

RN−n

det
[
KGUE

N (xi, xj)
]
1≤i,j≤N

dxn+1 . . .dxN . (114)

We need to integrate N − n times, each step is similar. Assume therefore
that we already reduced the size of the determinant to m×m, i.e., integrated
out xm+1, . . . , xN . Then, we need to compute

∫

R

det
[
KGUE

N (xi, xj)
]
1≤i,j≤m

dxm. (115)
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In what follows we write only K instead of KGUE
N . We expland the determi-

nant along the last column and get

det [K(xi, xj)]1≤i,j≤m = K(xm, xm) det [K(xi, xj)]1≤i,j≤m−1

+

m−1∑

k=1

(−1)m−kK(xk, xm) det




[K(xi, xj)]1≤i,j≤m−1,

i 6=k

[K(xm, xj)]1≤j≤m−1





= K(xm, xm) det [K(xi, xj)]1≤i,j≤m−1

+

m−1∑

k=1

(−1)m−k det




[K(xi, xj)]1≤i,j≤m−1,
i 6=k

[K(xk, xm)K(xm, xj)]1≤j≤m−1


 .

(116)
Finally, by using the two relations (14), Equation (115) becomes

N det [K(xi, xj)]1≤i,j≤m−1 +
m−1∑

k=1

(−1)m−k det




[K(xi, xj)]1≤i,j≤m−1,

i 6=k

[K(xk, xj)]1≤j≤m−1





= (N − (m− 1)) det [K(xi, xj)]1≤i,j≤m−1 .

(117)
This result, applied for m = N,N − 1, . . . , n+ 1, leads to

ρ
(n)
GUE(x1, . . . , xn) = cNN ! det

[
KGUE

N (xi, xj)
]
1≤i,j≤n

. (118)

Now we need to determine cN . Since cN depends only of N , we can
compute it for the n = 1 case. From the above computations, we have
ρ
(1)
GUE(x) = cNN !KGUE

N (x, x) and
∫
R
ρ
(1)
GUE(x)dx = N we have cN = 1/N !.
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[60] S. Péché, The largest eigenvalue of small rank perturbations of hermitian
random matrices, Probab. Theory Relat. Fields 134.

[61] T. Sasamoto, Spatial correlations of the 1D KPZ surface on a flat sub-
strate, J. Phys. A 38 (2005), L549–L556.

[62] T. Sasamoto, Fluctuations of the one-dimensional asymmetric exclusion
process using random matrix techniques, J. Stat. Mech. P07007 (2007).
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